
MSc Computer Science

Final Project

Weighted, Weighted and Art
Found Wanting:
A Complexity-minimisation Approach for

Neuroevolution-based Side-channel

Analysis

Peter van der Velde

Supervisors: Luca Mariot, Andrea Continella, Marco Ottavi

January, 2025

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Abstract

Security is the basis of all modern communication. The different modes and needs of com-
munication have given way to many new approaches to encrypting the messages within
these communication channels. The need for correct ciphers to be trusted not to leak the
contents of the messages has led to ever-increasing scrutiny and research into the mathe-
matical basis of the scientific field of cryptography. However, the physical implementation
of a cryptographic algorithm may leak enough information to deduce the original encryp-
tion key. Most state-of-the-art attacks against such side-channel leakages rely on the use
of large complex neural networks. The design of these deep learning neural networks is in
itself a complex topic. To aid in the discovery of performant neural network designs search
algorithms have been designed. One such search algorithm is the NASCTY algorithm. The
current implementation has difficulty finding neural network designs considered more com-
plex and larger than a performant neural network architecture design. Extra complexity
requires more training time and execution time.

In this work, we investigate the limitations of the NASCTY algorithm and propose
that improvements to the efficacy of the algorithm might be possible by encouraging
smaller and less complex neural network architecture designs. To achieve this end, the
study introduces several changes to the underlying genetic algorithm, aiming to combat
premature convergence issues and limit unneeded complexity in resulting designs. The
results show that a custom fitness function influenced by the number of parameters of a
neural network is a viable solution to decreasing the unneeded complexity. This approach
both safeguards the size and complexity of the neural network designs but also converges to
a more optimal solution. Similarly, we found that for combatting premature convergence
and a wholesale stagnation of the genetic algorithm, the use of a partial random restart
policy and the implementation of an adaptable ranked mutation range were sufficient in
alleviating some of the symptoms. With these alterations to the genetic algorithm we
found both increased reliability and predictability in the performance of the algorithm
while simultaneously improving the quality of the convergence compared to the NASCTY
algorithm.

Keywords: Side-channel attacks, deep learning, security.

Acknowledgments

I want to express my deepest gratitude to my supervisor, Luca, for his guidance, encour-
agement, and overall help during this thesis.

Additionally, I would not dream of not thanking my family extensively for their sup-
port and motivation in finishing this thesis.

Finally, I cannot forget my friends who bore with me and my ramblings about colour-
ing pages and what now precisely the way is up on a figure, every coveted coffee break.

My thanks and appreciation to all of you for this adventure would have been bland if
not for your support.

i

Contents

1 Introduction 1
1.1 Thesis structure . 3

2 Background 5
2.1 Cryptography . 5

2.1.1 Advanced Encryption Standard (AES) 6
2.2 Side-channel attacks . 7

2.2.1 Countermeasures . 8
2.2.2 ANSSI SCA Database (ASCAD) . 9
2.2.3 Side-channel analysis evaluation . 9
2.2.4 Machine learning . 10

2.2.4.1 Machine learning techniques 10
2.2.5 Classification . 10

2.3 Neural Networks . 11
2.3.1 Multilayer Perceptron (MLP) . 12
2.3.2 Convolutional Neural Networks (CNN) 12

2.3.2.1 Convolutional layers . 12
2.3.2.2 Pooling layers . 13
2.3.2.3 Flatten layers . 14

2.4 Deep Learning Side-channel Analysis (DL-SCA) 14
2.5 Neural Architecture Search (NAS) . 15
2.6 Neuroevolution to attack side-channel traces yielding convolutional neural

networks (NASCTY) . 17
2.6.1 Initialisation . 17
2.6.2 Selection . 18
2.6.3 Crossover . 18
2.6.4 Mutation . 19
2.6.5 Replacement . 19
2.6.6 Limitations . 20

3 Research goal 21

4 Methodology 23
4.1 Research design . 23
4.2 Data source . 24
4.3 Base genetic algorithm . 25
4.4 Experimental setup . 25
4.5 Experiments . 26

4.5.1 Hyperparameters . 26

ii

4.5.1.1 Required number of evaluation epochs 26
4.5.1.2 Early termination . 27
4.5.1.3 Training data partition size 28
4.5.1.4 Population size . 29

4.5.2 Complexity . 30
4.5.3 Premature convergence . 31

4.5.3.1 Distribution index η . 31
4.5.3.2 Adaptive mutational rate 31
4.5.3.3 Partial replacement . 32
4.5.3.4 Anti-early stagnation strategies 32

4.5.4 Combined result . 33
4.6 Data analysis . 34

4.6.1 Selection accuracy . 34
4.6.2 Convergence . 35
4.6.3 Diversity . 35
4.6.4 Complexity . 35
4.6.5 Statistical tests . 36

4.6.5.1 Kruskal-Wallis . 36
4.6.5.2 Mann-Withney . 36

4.6.6 Performance . 36
4.7 Ethical considerations . 36
4.8 Limitations . 37

5 Hyperparameters 39
5.1 Accuracy fitness . 39
5.2 Early termination . 41
5.3 Training dataset size . 45
5.4 Population size . 49

6 Complexity 52
6.1 Parameter count . 52
6.2 Unintuitive design choices . 56
6.3 Composite custom fitness function . 59
6.4 Most promising parameters continued . 62

7 Premature convergence 64

8 Combined result 67
8.1 Selected modifications . 67
8.2 Synchronised fixed key ASCAD dataset . 68
8.3 Desynchronised level 50 fixed key ASCAD dataset 70
8.4 Desynchronised level 100 fixed key ASCAD dataset 72
8.5 Synchronised variable key ASCAD dataset 75

9 Discussion 79
9.1 Hyperparameters . 79
9.2 Complexity . 80
9.3 Premature convergence . 81
9.4 Combined results . 81

iii

10 Conclusion 82
10.1 Context . 82
10.2 Limitations . 82
10.3 Future work . 83
10.4 Takeaways . 83

A NAS performance comparison 89

B Accuracy 91

C Early termination 93

D Population size 94

E Composite custom fitness function 95

iv

Chapter 1

Introduction

At the heart of any modern communication channel lies cryptography. Cryptography
therefore is the art of ensuring that a message is both unalterable or indecipherable to all
but the intended recipient. One of the first and most famous encryption techniques is the
Caesar Cipher. Named after Gaius Julius Caesar, who described the cipher in his private
correspondence [1] and while not being the first recorded cipher, it is a simple implemen-
tation of a substitution cipher [2]. An encryption algorithm works by transforming the
message one wishes to send (the plaintext) using a cipher function in combination with a
secret key. The result of this cipher function called the ciphertext, can then be sent to the
recipient without (ideally) any adversarial parties able to discover the original message
(plaintext) [3]. The function of this ancient encryption cipher’s method was described as,
taking the original plaintext and shifting all letters in the message by a secret key. Given
a plaintext consisting of ‘ABCD’ and transforming it using the Caesar cipher with the
secret key 3, the resulting ciphertext would then be ‘DEFG’.

Over time these cryptographic techniques would be reinvented multiple times and
slowly evolve into more sophisticated and stronger encryption techniques. With the dawn
of advanced machines, cryptographic calculations would often be calculated for faster and
more complex ciphertexts. A famous example from the early 20th century is the rotor-
based Enigma machine developed in Germany and used in the Second World War [4].
All these advancements in turn led to the birth of computer-based code-breaking and the
development and use of electronic computers for encrypting and decrypting messages [5].

Nowadays, cryptography is the base that allows our modern communication networks
to function. From the private messages sent to our loved ones to banking transactions,
automated door systems, or even non-public (secret) government meetings one might at-
tend. Cryptography and its ciphers are what allows for trust between one or more parties.
As long as this trust holds, the systems that depend on it hold too.

To ensure that these encrypted messages remain indecipherable and unalterable for
third parties, it is necessary to have an adequately strong mathematical backbone. There-
fore, a large part of research on this topic has been centred around designing strong and
useful ciphers and the testing and attacking existing ciphers [6, 7, 8]. This focus is es-
sential to ensure that these cryptographic methods are without significant flaws in their
mathematical foundations.

However, the sketch of the world of cryptography as seen above only shows one side of
the coin. The means of encrypting messages in truth exists in two parts, the mathematical
theory and the physical implementation in hardware. Both aspects of the total security

1

of a system, in turn, expose different entry points for an attacker to approach.
In contrast with the days of Rome, the modern method of encrypting is done with the

employment of electronic computers. Attacks on the physical side of encryption are often
conducted with ‘side-channel attacks’, a type of attack that hopes to gain information
about the internal system by analysing the information a system may leak.

As human computers were replaced by their electronic counterparts, one could no
longer simply set the thumbscrews to them in order to make them give up information
about the key used in their cryptographic computations.

However, even if these newfangled electronic computers may no longer be pressured into
revealing sensitive information, they may still leak hints about the internal state of their
calculations. These leaks can provide valuable clues for understanding and potentially
compromising their cryptographic security.

These hints consist of data gleamed and recorded about the physical properties of the
running system and may include but are not limited to:

� timing information [9];

� power draw [10];

� audio/visual generation [11, 12, 13];

� electromagnetic emation [14].

Attacks that make use of leaked information by the cryptographic algorithms imple-
mentations which are the result of flaws in the design, and not in the underlying theory are
known as Side-Channel Attacks (SCA). The result of a side-channel attack is a probability
vector of all possible states of the secret (sub-)key could be in.

One major new approach is the usage of deep learning techniques as prominently
shown by Maghrebi et al. [15]. While the demonstrated attack shows impressive results
and strength, it does highlight several issues still to be solved.

One weakness in the usage of machine learning techniques is the need to design a new
network (i.e. the hyperparameters) for each possible implementation of a cryptographic
system. Hardware design, CPU used, software implementation, and (side-channel attack)
countermeasures implemented, all have a sizable impact on the design and shape of an
effective neural network. The design and shape of a neural network is described as the
neural network’s hyperparameters. The search for an efficient algorithm capable of find-
ing suitable hyperparameters for our specific problem is therefore forefront of our research.

The goal of this research will be to improve on an existing search algorithm, to over-
come the current limitations of the approach. The above-mentioned search algorithm is
a neuroevolution based algorithm researched by Schijlen et al. known as NASCTY [16].
Compared to the manually designing of neural network architecture, the NASCTY does
not match or improve upon either metric. However, the automated search algorithms
mentioned in Table 2.1 improve upon the needed traces before it can guess the secret key
value correctly and in how many parameters it can do that.

NASCTY is an effective approach for automatically designing neural network archi-
tectures that is held back by two limitations. This does mean that the full potential of the

2

NASCTY algorithm has not yet been reached, and would allow for the largest possible
improvement compared to the other already better performing search algorithms. The
first of the limitations it suffers from is that the end results found suffer from unneeded
complexity. This comes to fruition in the end results by finding results with a more com-
plex design in number of layers –and thus parameters– then expected, and the inclusion
of unintuitive design choices that result in not useful additions to the design. The second
limitation run into is the tendency of the algorithm to suffer from premature stagnation.
To not consider options outside the local optimum the algorithm is known to get stuck in.
Thereby denying the finding of better solutions. By improving on the search algorithm
the hope is that this will be a viable alternative to the manual designing of systems with
its numerous difficulties and downsides and that this chosen approach will be able to beat
the current state-of-the-art methodologies. To accomplish this task a research question
has been constructed:

To what extent does a complexity-minimising approach influence the efficacy
of the generated neural network architecture?

To help answer this research question three (sub-)research questions have been constructed:

� RQ1: How do different configurations of NASCTY hyperparameters influence the
trade-off between runtime and performance?

� RQ2: How can we design a fitness function that effectively balances algorithmic
efficacy with complexity in genotype evaluation?

� RQ3: What is the impact on the behaviour and performance of the algorithm from
the strategies combatting early stagnation?

Alongside this a number of experiments have been conducted to answer the main
research question of this thesis. As a result of the experiments a custom fitness function
has been developed to minimise complexity of the end results. This has been developed
together with an anti-premature convergence strategy to combat premature convergence
issues arising from the algorithm.

1.1 Thesis structure

This document has been divided into sections describing the different aspects of this re-
search. Chapter 2 will discuss and introduce the NASCTY search algorithm and its
limitations as well as all the needed background information to understand the problem
space. For the background information, we will discuss the basics of cryptography, the ex-
ploitation of side-channels to break cryptographic systems, the basics of machine learning,
the application of machine learning to breaking cryptographic systems via side-channels,
the automation of designing these machine learning models to make solutions more easy
and novel. Chapter 3 will discuss the research questions that are asked to improve the
NASCTY search algorithm. The research questions are asked to overcome the limitations
holding back the performance of the NASCTY search algorithm. Chapter 4 then discusses
the methodology with which the research questions will be answered. Chapter 5 (hyper-
parameters), Chapter 6 (complexity), Chapter 7 (premature convergence), and Chapter 8
(final results) contain the results found by conducting the experiments defined previously
in Chapter 4. Then with the results properly laid out, they can be discussed as to their
meanings and substance in Chapter 9. Finally, Chapter 10 then brings home the findings

3

and discussions and places them in their correct perspective, while noting the limitations
of the work and possible future avenues for improving or extending the findings of this
thesis.

4

Chapter 2

Background

To discuss the current landscape surrounding the to-be-proposed problem space, this sec-
tion will highlight several concepts directly related to our research. The concepts discussed
are: cryptography, side-channel analysis, neural networks, deep learning, neural network
search algorithms, and lastly the NASCTY search algorithm. Such concepts and goals
explored in further writing have been provided with enough background information for
them to be placed in the right context. The concepts discussed are condensed with large
parts of the underlying and coalescent theories omitted for the sake of brevity.

The notation scheme in this thesis hopes to follow commonly used notation schemes
for mathematical operations. We denote sets as calligraphic letters (e.g. X). Lower-case
x denotes either an element of a set X or a realization of a random variable denoted with
Roman capital letters (e.g. X) with values over X . Bold letters x denote a vector over
the set X .

2.1 Cryptography

The study of secure communication mentioned in Chapter 1, exists in two forms, Sym-
metric and asymmetric cryptography. Asymmetric cryptography, the newer of the two,
was as a topic first published about in 1976 and described by Diffie and Hellman [17]
as public key encryption schemes. Public key encryption schemes allow two parties to
communicate securely without the need for one another to agree beforehand on a secret
key. In contrast, symmetric cryptographic systems work with the assumption that when
a message is sent to a recipient, the recipient and sender are in possession of the secret
key needed to encrypt and decrypt the message.

The Caesar cipher mentioned in Chapter 1 therefore too is what would be considered
a symmetric cipher, as both parties must agree on the number of times each letter must
be shifted for the message to make sense.

A simple (symmetric) cryptographic system, consists of five parts:

� a plaintext message m where m ∈ P and message space P might be defined as
P = {A, . . . , Z}l of length l;

� the shared cryptographic key k ∈ K, with the key space K being dependent on the
used cryptographic algorithm;

� e is the cipher function used to encrypt message m with secret key k, i.e. e : P×K →
C;

5

� the resulting ciphertext c ∈ C of encryption algorithm e, where C is the set of all
possible ciphertexts produced by encryption algorithm e;

� the inverse of the encryption e, the decryption function d takes a ciphertext c and
transforms it back into the plaintext message m with the help of secret key k, i.e.
d : C ×K → P .

This cryptographic encryption algorithm e can then be described as,

c = ek(m) (2.1)

The reverse of the encryption operation (decryption) can be done by transforming the
ciphertext c back into the original plaintext message m.

m = dk(c) (2.2)

In both cases k ∈ K, with K being the complete key space of this algorithm.

As an example, the Caesar cipher has a key space of 26 different possible values. Each
value represents the number of steps the letters of the plaintext have to be shifted along the
alphabet, so K in our case can be expressed as K = {0, 1, 2, . . . , 23, 24, 25} given that each
key does not overlap with another. However, in today’s security landscape, 26 possible
key states are no longer considered sufficient.

2.1.1 Advanced Encryption Standard (AES)

To demonstrate the concepts related to modern ciphers of key space and encryption, the
Advanced Encryption Standard (AES) [18] will be used. The AES is as the name implies
a modern standardized cipher, originally known as the Rijndael block cipher, based on
substitution and permutation principles [19, 20, 21]. The encryption scheme of the AES
block cipher works in four stages:

1. The first stage KeyExpansion, is responsible for the initialisation of the sub-keys
needed in a later stage. These sub-keys –hereafter called round keys– are generated
from the original AES secret key using a key schedule.

2. The second stage AddRoundkey, then combines the input with the first round key by
XORing. XOR (i.e. exclusive OR) denoted by the mathematical operation ⊕ is the
bitwise combination of two variables, where exclusively either one of the variables
must be 1. If either both the variables are equal to 1 or 0 the output will be 0.

3. The third stage consist of a number of rounds in which in an iterative fashion the
input data goes through four functions: SubBytes, ShiftRows, MixColumns, and Ad-
dRoundkey. The first the SubBytes function substitutes the values in the input data.
This is done using a substitution table, also known as an S-box. The permutation
is done in the second and third step, by rearranging the order of the data bits. The
second step (ShiftRows) is completed by permutating the input by shifting the data
in the matrix row-wise. The third step (MixColumns) then permutates the input by
mixing the columns of the matrix. Finally, the state is XOR’ed with the round key,
before being passing on the state to the first function in this round or onto the last
and final round.

6

4. The final stage consist of an alternative cipher using the SubBytes, ShiftRows, and
AddRoundkey function. Neglecting the MixColumns function used in the third
stage.

Modern ciphers’ key sizes in the digital age are expressed by the number of bits they
can be described in. For the AES cipher, the keys are either of size 128, 192, or 256 bits.
Considering a bit has but two states, 1 or 0, the respective key spaces will consist of 2128,
2192, and 2256 possible keys for the AES cipher.

2.2 Side-channel attacks

Side-channel attacks, as discussed in Chapter 1, focus on exploiting information leaked
through the physical implementation of cryptographic systems rather than targeting in-
herent flaws in the cryptographic algorithms themselves.

0 200 400 600

−50

−25

0

25

Time

P
ow

er

Figure 2.1: Trace d1 from the ASCAD dataset [22].

This leaked information, commonly referred to as traces, relates to observable charac-
teristics of the cryptographic system during its operation.

The measurements used in side-channel attacks typically represent the variations and
fluctuations in physical quantities such as power consumption, electromagnetic radiation,
or timing behaviour over time. An example trace displaying the fluctuation of electro-
magnetic emanation measurements over time can be seen in Figure 2.1. A single trace
of a dataset will be denoted from now on as di with i being the index of the trace in a
dataset. All traces belonging to a certain system make up the dataset D. There are two
ways of conducting side-channel attacks: profiling and non-profiling side-channel analysis.
This thesis is related to profiling side-channel attacks, and will therefore give but minimal
space to background knowledge specific to non-profiling side-channel analysis.

Non-profiling side-channel analysis is a single-phase operation and tries to gleam pat-
terns in the leaked information. Then with the information gathered about the imple-
mentation make an educated guess as to the internal state of the machine. This is the
preferred form of analysis for quick direct attacks when one has limited access to the
device and detailed information of the internals of a device’s behaviour [23]. A profiling
side-channel analysis in contrast is a two-phase attack. The profiling phase is where the
attacker collects a dataset of traces and the used (sub-)keys from the target device when

7

doing cryptographic operations. The profiling traces are then analysed to create a model
(profile) of the target device. The second phase, referred to as the attack phase, then makes
use of the model created in phase one to launch an attack on the target device to estimate
the secret key k∗. Profiling side-channel analysis is preferred when the target’s security
mechanisms are robust enough that a more thorough attack is needed. The attacker has
access to the resources and time required to model the device’s behaviour and launch the
more sophisticated attack.

In both cases, the goal is to find a well-performing estimation function f that can be
described as:

f(d) = k̂ (2.3)

where: d is the observed side-channel leakage; k̂ is an estimation of the sensitive informa-
tion over all possible values of key space K.

0 50 100 150 200 250
0.00

0.02

0.04

0.06

0.08

Key value

E
st
im

at
ed

p
ro
b
ab

il
it
y

Figure 2.2: Estimated probability of sensitive key value of trace d1.

An example of a distribution of a trace can be seen in Figure 2.2, where we transform
traces d into the estimation k̂ on the right. The estimation k̂ can then be sorted from the
most probable to the least probable key candidate, resulting in the guessing vector g of
size |K|.

2.2.1 Countermeasures

Countermeasures have been invented to combat and reduce the amount of usable infor-
mation gathered from the implementation. By reducing the amount of useful information
contained within the traces, the effectiveness of side-channel attacks is similarly reduced.
We can divide countermeasures into roughly two distinct categories: masking countermea-
sures, and hiding countermeasures [24]. Masking countermeasures focus on (temporarily)
masking and obscuring internal values used in the algorithmic calculations, such that the
underlying sensitive values do not directly correlate with possible information gained from
side channels. Hiding countermeasures aim to reduce the correlation between the separate
internal algorithmic calculation operations and the side-channel emissions. The imple-
mentation of hiding countermeasures can be done in several ways, most prominent by
adding (random) noise to the output signal, trying to flatten the output signal, or switch-
ing around operations and adding delays in its calculations. Both countermeasures make

8

the mapping of side-channel measurements to the sensitive values harder to guess for an
attacker. Both approaches, though they hinder any possible side-channel attack, are not
considered to be significantly strong enough to rule out the possibility of any side-channel
attacks succeeding.

2.2.2 ANSSI SCA Database (ASCAD)

The ASCAD (ANSSI SCA Database) [25] was set up to be a dataset common to multiple
papers as a benchmarking reference containing numerous side-channel traces. Being the
common denominator allows the individual papers to measure the performance of certain
solutions in a reproducible manner. The database comes with multiple datasets based
on different architectures and whether it uses a fixed or variable key. In this thesis, we
will initially discuss the ATMEGA boolean masked AES with a fixed key dataset with
traces based upon the electromagnetic (EM) radiation side-channel. This dataset consists
of 50,000 profiling traces with each a corresponding subkey value and 10,000 attack traces
plus subkey values. Each trace vector consists of 700 elements over time, each element
representing the voltage measured at that moment in time.

2.2.3 Side-channel analysis evaluation

The evaluation of a side-channel attack’s effectiveness is a bit more complex than a simple
success or failure and instead tries to capture the effort needed to get the correct secret
key. The guessing rank gi = {g1, g2, g3, . . . , g|K|−1, g|K|}, result of trace di, ranks each
guess gi from the most likely to the least likely guess for the correct key. Key Rank (KR)
is the index of the correct secret key k∗ in this guessing vector.
Guessing Entropy (GE) is the average key rank index of all guessing vectors resulting from
Q number of attack traces [26].

GE =
1

Q

Q∑
i=1

KR(gi) (2.4)

The average key rank is often combined with other metrics to give a more complete
view of the performance of the attack.
Success Rate (SR) of order n, is the average empirical probability that the correct key k∗

is in the first n guesses of guessing vector g. The success rate can be formally defined as:

SR(n) = P (k∗ ∈ g1, g2, . . . , gn) (2.5)

When training the neural network models for side-channel analysis oft use is made
of the categorical cross-entropy (CCE). It is used to estimate the fitness of a model at a
certain point of time and can be used to inform about the training progress. The CCE is
a fitness function which compares the predicted output probability distribution ŷ ∈ RC

of length C for each of the classes to the ground truth y ∈ ZC
2 . The ground truth is

encoded as a one-hot encoded vector in which the correct output class is marked with an
one and the incorrect classes with a zero. With this in mind we can define the categorical
cross-entropy fitness function as:

CCE = −
C∑
i=1

yi · log(ŷi) (2.6)

9

2.2.4 Machine learning

Machine Learning was first discussed on an implementation level in 1958, by Rosen-
blatt [27] with the introduction of the perceptron (a digital analogue for the neuron) [28].
The field of machine learning went through several cycles of increased interest and waning
interest. The current revitalized interest in Machine Learning getting kick-started in 2012
(partially) by Krizhevsky et al. who showcased deep learning as a viable route for complex
real-world problems [29]. The term machine learning broadly refers to algorithmic systems
that can learn from training data to form predictions about new data.

2.2.4.1 Machine learning techniques

Machine Learning techniques can be divided into three separate categories: unsupervised-,
supervised-, and reinforcement-learning [30]. All three categories are based on the distinct
way each category learns from its training data.

1. Supervised learning are systems that have access to a training set (consisting of input
vectors and their respective correct output vectors). Two often used applications
of supervised learning are Regression and Classification. Regression applications
aim to estimate a continuous output value (or vector) based upon an input vector.
Classification as an application takes in an input vector x and tries to map this
input vector to a pre-described discrete category.

2. Unsupervised learning, in contrast, works by training on datasets without any cor-
responding output values. The applications of unsupervised learning lay not in
predicting any estimations of output, but in discovering patterns and relationships
within the data. Both Clustering and Dimension Reduction try to find patterns in
the data and find data with similar properties, cluster these data points together,
and in the case of dimension reduction, combine and reduce similar data point di-
mensions (e.g. to reduce 5-dimensional data to 3-dimensional data).

3. Reinforcement learning learns from a given input vector describing the current state
of the environment and the feedback the system gets. It can influence the envi-
ronment it operates in and is tasked with finding optimal strategies based on the
feedback it receives on its actions (that influence the environment).

Each of the mentioned machine learning techniques has numerous applications for solving
specific problems beyond those highlighted above [31].

2.2.5 Classification

The task of matching the internal state, and therefore the sensitive key k∗ used to encrypt
our message to the recorded side-channel leakage measurements, our traces d, lends itself
well to classification with supervised learning. Each possible value for keys k can be
mapped to a discrete category, and the resulting estimations of the confidence level that
the correct key k∗ is of a value corresponding to a distinct category.
There are several machine learning techniques well suited for classification problems. These
techniques can be separated into two distinct categories that we call classical machine
learning and the newer deep learning. Deep learning is a set of machine learning techniques
related to neural networks. These machine learning techniques using neural networks are
based on the perceptron model, which mimics the learning capabilities of the human brain.

10

Deep learning has become possible due to recent research findings in machine learning,
providing the theoretical foundation necessary to construct deeper layered systems without
the previously limiting strong diminishing returns on added layers.

Classical machine learning techniques designed for classification have proven to be more
than adequate for performing side-channel attacks in numerous instances [32, 33]. These
methods leverage well-established algorithms such as support vector machines, decision
trees, and logistic regression, benefiting from their interpretability and ability to handle
diverse data types. However, this thesis primarily discusses deep learning side-channel
attacks (DL-SCA), omitting extensive discussion on classical machine learning techniques.

2.3 Neural Networks

In its most basic form, a neural network can be described as a function taking in the input
vector x of size n is an element of the n-dimensional real vector space Rn and the output
vector y of size m. The neural network consists of an input layer matching the size of the
input vector, connected to one or more intermediate layers of artificial neurons known as
hidden layers. These hidden layers ultimately connect to the final layer, called the output
layer, which matches the size of the output vector. The smallest computation element in
this neural network, the artificial neuron, is, as the name implies, a mathematical analogue
for the biological neuron.

x1

x2

x3

xn

...

b

∑
ϕ

w1

w2

w3

wn

z

Figure 2.3: A visual representation of an artificial neuron.

An artificial neuron φ, takes in an input vector x = {x1, x2, . . . , xn} ∈ Rn of size n, a
weight vector w = {w1, w2, . . . , wn} ∈ Rn corresponding to each input, and an inherent
bias b ∈ R of the perceptron, which then get summed up into the weighted sum z. The
result of the weighted sum z is then used as the input for the activation function ϕ : R→ R.
The activation function in a perceptron is a non-linear function producing the neuron’s
output using the weighted sum z. It determines if a neuron is to be fired depending on
the inputs it has received, and allows a network to learn from its inputs.

We can describe the mathematical model of an artificial neuron φ as:

φ = ϕ(

n∑
i=1

xiwi + b) (2.7)

In an alternative formulation of the artificial neuron φ, the bias b is instead introduced as
the input value x0 of value 1 and weight w0 equal to the bias.

11

2.3.1 Multilayer Perceptron (MLP)

x1

x2

x3

y1

y2

Hidden
layersInput

layer Output
layer

Figure 2.4: A simple multilayer perceptron (MLP) with two hidden layers.

The multilayer perceptron in its basic explanation is a neural network with an input
layer, output layer, and one or more fully connected hidden layers. Fully connected layers
are also known as dense layers and consist of a vector of artificial neurons (as seen in
Figure 2.3) of which each individual neuron connects to all neurons in the previous and
next layer.

2.3.2 Convolutional Neural Networks (CNN)

In 1980 Fukushima developed the Neocognitron [34], a neural network designed for pattern
recognition tasks, powered with the help of hierarchical feature extraction. The neocog-
nitron visual pattern recognition functions were aided by the use of S-cells and C-cells,
based upon the simple and complex-cells found in the primary visual cortex [35]. Inspired
by the work of Fukushima on the Neocognitron [34], the general concepts for Convolutional
Neural Networks were devised and developed by LeCun et al. [36]. Convolutional neural
networks allow for classifying inputs without the inputs needing to be pre-processed. This
is in contrast with the multilayer perceptron networks mentioned previously, which depend
on pre-processing and feature extraction to work efficiently [37].

Instead, the CNN has in addition to fully connected layers, convolutional layers, pooling
layers, and flatten layers. A convolutional neural network is built up, working from head
to tail, by several layers of convolutional and pooling layers creating a funnel structure
before being flattened out by a flatten layer to one or more dense layers.

2.3.2.1 Convolutional layers

The convolutional layer of a convolutional neural network produces from input data a
feature map highlighting edges, textures, and other patterns. It does this with the help
of K learnable convolutional filters (kernels) denoted by Fk ∈ Rf×f×D, with f being the
dimensionality of the kernel and D the depth. These convolutional filters scan the input
data X ∈ RW×H×D with W , H, D being the width, height, and depth of the input data,
in steps with an area of (f × f ×D), applying the dot product of that area to the kernel
Fk filling up the output feature map Yk ∈ RW ′×H′×K . A visual representation of a single
instance of the above-mentioned operation can be seen in Figure 2.5. The stride is the
number of elements in the input data that the filter will pass by before applying the above
operation once more.

12

3

2

1

0

3

3

3

3

3

4

5

6

3

5

7

9

1 0

0 1

8

Input Feature Map Kernel Output Feature Map

Figure 2.5: A convolutional layer with a stride of 1 and a 2× 2 kernel.

With dimensional data it is possible to add padding (denoted by p) to the input data
to influence the resulting dimensions of the output Yk. As an example, below we have a
feature map Z to which a zero-padding of 1 has been applied:

Zpadded =



0 0 0 0 0 0
0 x11 x12 x13 x14 0
0 x21 x22 x23 x24 0
0 x31 x32 x33 x34 0
0 x41 x42 x43 x44 0
0 0 0 0 0 0

 (2.8)

The convolutional operation that computes the output feature map Yk at spatial
position (i, j) as the result of convolving kernel Fk over input X, can be defined as:

Yk(i, j) =

f−1∑
m=0

f−1∑
n=0

D−1∑
d=0

Fk(m,n, d) ·X((i · s) +m− p, (j · s) + n− p, d) (2.9)

Because of the inherent nature convolutional layers the spatial output dimension W ′

and H ′ of the output feature map Yk do not have to match the spatial input dimensions
W and H of the input data X. The spatial output dimensions are directly influenced
by the stride s, filter size f , and chosen padding p. We can calculate the spatial output
dimensions using the function g(l):

g(l) =

⌊
l − f + 2p

s

⌋
+ 1 (2.10)

With l being the input dimension, either W or H.

2.3.2.2 Pooling layers

The pooling layer of a convolutional neural network is a function that reduces the spatial
dimensions of the input feature maps, improving the computational/ efficiency of the
network and combatting overfitting. It performs this operation by summarizing areas
that the pooling window of size q× r visits of the input feature map X ∈ RH×W×D. Two
commonly used pooling functions for this task are the max pooling and the average pooling

13

3 3 3 3

2 3 4 5

1 6 5 7

0 3 6 9

3 5

6 9

Input Feature Map Output Feature Map

Figure 2.6: A max pooling layer with a stride of 2 and a 2× 2 pooling window.

functions, taking respectively the maximum value of any elements under the window, and
the average value. The pooling layers, additionally to a having a window size parameters
q × r, also has a stride s. To calculate the spatial output dimensions of the pooling layer
we can reuse the function g(l) which was also used for the convolutional layer defined in
Equation 2.10.

2.3.2.3 Flatten layers

1 4 7

2 5 8

3 6 9

1

4

7

2

5

8

3

6

9

Input Feature Map Output Feature Map

Figure 2.7: A flatten layer on a 3× 3 input feature map.

A flatten layer’s purpose is to be the bridge between the multidimensional layers (i.e.
the convolutional-, and pooling-layers) and the one dimensional fully connected layers. The
flatten layer is a linear transformation and takes as input a feature map X ∈ RH×W×D

and returns a vector Y ∈ RL of length L. We can find the output length L of vector Y
with the use of the formula:

L = W ·H ·D (2.11)

2.4 Deep Learning Side-channel Analysis (DL-SCA)

Making use of deep learning techniques to analyse side-channel data to extract sensitive
information of the underlying system is known as deep learning side-channel analysis or in
short DL-SCA. Deep learning based machine learning only gained momentum in the space

14

of side-channel analysis after circa 2016 [15]. With this paper Maghrebi et al. showed that
the deep-learning based attacks outperformed state-of-the-art attacks on both protected
and unprotected AES implementations. A protected AES implementation, is any AES
implementation employing side-channel analysis countermeasures. This ability of machine
learning techniques to learn patterns and relationships from data without prior instruction
has shown to be successful in this context.

In the few years since then many interesting findings were found in the scientific realm
of DL-SCA showing the effectiveness of deep learning aided attacks and need for deep
learning specific approaches to side-channel attacks. Since then:

� Deep learning has been found to be an effective attack, able in overcoming protected
targets [38]. The deep learning based side-channel attacks have been shown to be
efficient in defeating (combined) countermeasures [39].

� Various machine learning concepts and their usage in deep learning side-channel
analysis has been evaluated [40].

� A benchmarking dataset has been introduced with the goal of creating a standardized
machine learning oriented benchmark [22].

� Zaid et al. showed the effectiveness of CNN’s with small neural network architec-
tures in breaking targets selected from benchmarking datasets [41]. Wouters et al.
improved and added to both the proposed methodologies and CNN architecture of
Zaid et al. designing a CNN architecture much smaller (on average 50% smaller)
while retaining a similar performance [42].

� Stronger theoretical foundations of DL-SCA have been developed, and new counter-
measures have been researched.

2.5 Neural Architecture Search (NAS)

The architecture of a deep learning neural network is comprised of hyperparameters. The
hyperparameters of a machine learning neural network describe, if and how many con-
volutional layers are used, the form of the convolutional and pooling layers, the number
of dense layers, the number of artificial neurons, the used activation functions, etc. The
selected hyperparameters of the deep learning architecture are paramount to its perfor-
mance. However, earlier papers about deep-learning-assisted side-channel attacks did not
mention how the hyperparameters were selected for their design [43]. The hyperparame-
ter selection methods since then have become transparent and methodologies have been
invented and researched for the design of deep learning architectures [41, 42]. However,
these methodologies for designing neural network architectures require knowledge of the
underlying dataset and does not necessarily extend easily to other datasets [44].

To select the right hyperparameters for a specific problem space requires from re-
searchers to draw from their domain knowledge, experience, and empirical observations.
While such networks are drawn from a researcher’s skill in selecting hyperparameters, in-
dividuals lacking experience with the design process of a neural network may struggle to
find “optimal” solutions.

The large amount of options available in hyperparameter choice, make for a search
space that is too large for an exhaustive search. However, limiting ourselves to a limited
search space for more predictive results, random or grid search might leave out novel and
possible more performant neural network designs.

15

Table 2.1: Comparison of performance and parameter size of different hyperparam-
eter tuning methods on the synchronized ASCAD [25] dataset.

Model Type Traces to obtain mean key rank 0 Parameters

ASCAD[22] MLP 410 393 936
ASCAD[22] CNN 480 66 652 444
AutoSCA[45] MLP 129 478 656
AutoSCA[45] CNN 158 54 752
Zaid et al.[41] CNN 191 16 960

Wouters et al.[42] CNN ≈ 200 [46] 6 436
MetaQNN[46] CNN 202 79 439
MetaQNN[46] CNN 242 1 282
InfoNEAT[47] InfoNEAT 130 15 107
NASCTY[16] CNN 314 10 470

This is where Neural Architecture Search (NAS) steps in. NAS algorithms wish to
automate the process of designing neural networks. Neural architecture search algorithms
then too also aim, if not to match existing manually designed neural networks, to outper-
form them. In other words, NAS algorithms search through large search spaces consisting
of possible neural network hyperparameters looking for combinations performing well in
a selected problem. This comes with the added benefit of considering (unconventional)
hyperparameter combinations normally not considered, and the automation of finding so-
lutions for variable problems without having to consistently redesign each network to tailor
it to the personal needs of each problem.

There are currently several approaches for designing neural architecture search algo-
rithms:

� Reinforcement learning-based (RL), is an agent-based search algorithm. The agent
interacts with a DL-SCA environment, the agent hands over a possible architecture
to the environment, which in turn train the design and ascribes it a performance
metric. With this information the agent in turn explores the possible hyperparameter
combinations in an iterative fashion, all the while learning from the rewards it has
received. An adapted implementation of this approach for automating DL-SCA
architectures can be found in MetaQNN [48, 46].

� Bayesian Optimization (BO) tries to model an optimum of a possible target function,
the objective function, in the minimum number of iterations. It does this by creating
a surrogate function to approximate the unknown objective function. The second
part of the algorithm is the acquisition function which decides where in the sample
space to sample next. It then in an iterative fashion refines the surrogate function
to reach the optimal solution. An implementation of the Bayesian optimization
algorithm for finding DL-SCA algorithms is AutoSCA [45].

� Evolutionary algorithms (EA), are a collection of algorithms based on ideas from bio-
logical evolution. Genetic Algorithms (GA) for example is based on the evolutionary
concepts related to genetic mutation and selection, where each genome represents
a possible solution. The complete set of evolutionary algorithms and other related
biological-inspired algorithms is a rather large one with many different algorithms
each having their strengths and weaknesses. For their large number, an exhaustive
overview of all evolutionary algorithms is considered as out of scope for this thesis.

16

Two implementations of evolutionary based neural architectural search algorithms,
both using genetic algorithms, are:

– InfoNEAT [47] is a neural architecture search tailored for side-channel analysis
based upon the neuroevolution of augmenting topologies (NEAT) [49] algorithm.
The InfoNEAT algorithm is a genetic algorithm updating both the topology and
weights, developing a neural network for each of the separate neural network
output classes, all stacked together as an input for a logistic regression model.

– NASCTY [16] in contrast is a genetic algorithm based NAS aiming to only find
and discover performant deep learning architectures of CNN and MLP variety.
This thesis makes use of and discusses the inner workings of the NASCTY
algorithm in more detail in further on in the next section.

The recorded performance of the above-mentioned neural architecture search algo-
rithms on the non-desynchronised ASCAD dataset is shown in Table 2.1. This additionally,
shows the size of the resulting neural network architecture in the number of parameters
belonging to the designs.

2.6 Neuroevolution to attack side-channel traces yielding
convolutional neural networks (NASCTY)

Schijlen et al. [16] describes a novel approach for designing neural networks for side-
channel attacks with the use of a genetic algorithm (GA), called neuroevolution to attack
side-channel traces yielding convolutional neural networks (NASCTY). The NASCTY al-
gorithm reported in Algorithm 1 follows the different stages of a genetic algorithm, i.e.
Initialisation, selection, crossover, mutation, and replacement. The goal of the genetic
algorithm is to solve complex problems by simulating the process of natural evolution,
where a randomly initialized set of possible solutions –called the population– evolves over
successive generations by selecting promising solutions, combining, and mutating these
new solutions to iteratively produce increasingly better ones.

Algorithm 1 The NASCTY algorithm [16].

procedure NASCTY(max gen)
D train,K train,D val,K val← sample(ASCAD data)
pop← init population()
while gen ≤ max gen do

evaluate fitness(pop,D train,K train)
parents← tournament selection(pop)
offspring ← produce offspring(parents)
pop← parents ∪ offspring

return genome in pop with the lowest fitness

The five individual phases of the NASCTY genetic algorithm are detailed in the sub-
sections below. These subsections will delve into each phase, what different configurations
have been considered, and how each phase works and transforms the population.

2.6.1 Initialisation

The first stage of the algorithm is the initialisation stage. In this stage the initial population
of potential solutions is generated. These come in the form of a set of blueprints of neural

17

network architecture hyperparameters called genomes. The shape and values for genomes
used in the NASCTY algorithm are specified in Table 2.2.

Table 2.2: The values for each of the genome hyperparameters in the NASCTY
algorithm.

Parameter name Possible values

Number of convolutional blocks {x ∈ N | 0 ≤ x ≤ 5}
Number of dense layers {x ∈ N | 1 ≤ x ≤ 5}
Number of convolutional layers {x ∈ N | 2 ≤ x ≤ 128}
Filter size {x ∈ N | 1 ≤ x ≤ 50}
Batch normalization layer True, False
Pooling type Average pooling, Max pooling
Pool size {x ∈ N | 2 ≤ x ≤ 50}
Pool stride {x ∈ N | 2 ≤ x ≤ 50}
Number of dense neurons {x ∈ N | 1 ≤ x ≤ 20}

The approach for generating the initial population employed by NASCTY is random
initialisation, where each of the genomes are generated with random values within the
limitations as set in Table 2.1 as to ensure diversity in the initial population. Other possible
initialisation strategies could have been: Heuristic-based Initialisation where genomes are
generated using domain specific heuristics to ensure a possible better performing initial
population, and Population Seeding where the initial population (in part) consist of known
performant (partial) genomes.

2.6.2 Selection

The selection strategy for selecting the parents of future offspring in use by NASCTY is
a tournament selection with three participants. In a tournament selection, a number of
(in our case three) participants is randomly sampled from the population. These three
participants then duke it out, the one with the best fitness score winning the tournament.
The fitness score is determined by constructing the blueprints (genomes) into the neural
network models called phenotypes, then evaluating these phenotypes by training them on
the training dataset for ten epochs followed by an evaluation using a fitness function. The
fitness function of a genetic algorithm evaluates the effectiveness of a potential solution in
satisfying certain goals.

NASCTY makes use of the categorical cross-entropy (CCE) fitness function to estimate
the genomes’ performance. With the winner of this tournament decided, this process then
is repeated till all the required slots of possible parents are filled up.

2.6.3 Crossover

With the parents selected, the offspring can be generated using crossover. The crossover
stage performs the generation of two genomes as the result of its parents genomes com-
bination. An example NASCTY genome as depicted in Figure 2.8 could be one of the
two parents of the offspring. Both new solutions carry a part of the selected genes of the
parents from the other. Each of the new genomes the having the inverse selection of genes
from the parents. For the crossover strategies two options have been evaluated for the
NASCTY algorithm:

18

Figure 2.8: A NASCTY genome encoding example (sourced from Schijlen et
al. [16]).

1. one-point crossover, where a single point is selected in the genome after which the
genetic material is swapped in both parents. This is done for both the convolutional
blocks and the dense layers block separately.

2. parameter-wise crossover, in which the offspring consists of the parameter-wise ran-
dom selection of genes from both parent genomes.

The NASCTY algorithm ended up using the one-point crossover strategy, promising a
more consistent run of the algorithm [16].

2.6.4 Mutation

Next is the mutation stage in which the offspring off the crossover stage are mutated.
NASCTY makes use of three possible mutation strategies each with a uniform probability
of selection [16]: adding randomly initialized blocks and layers, removing blocks and layers
from the genome, or mutating the hyperparameters of the genome through polynomial
mutation. All the genomes hyperparameters have the chance of being modified by the
polynomial mutation algorithm with a probability of 1

n with n representing the total
number of hyperparameters in a given genome.

The polynomial mutation is a mutation algorithm that transforms an input variable
x ∈ R into the mutated output variable x′ by modifying it with mutation function δ.
Mutation function δ is influenced by two variables: uniform random number u ∈ [0, 1],
and mutation distribution index η which controls the shape of the distribution. Higher
values of η result in smaller perturbations of the input value x. The mutation function δ
is defined as:

δ =

{
(2u)

1
η+1 − 1, u < 0.5

1− (2(1− u))
1

η+1 , u ≥ 0.5
(2.12)

Allowing the output variable x′ to be defined as:

x′ = x+ δ · (xmax − xmin) (2.13)

Where xmin and xmax represent the lower and upper bounds of the variable x.

2.6.5 Replacement

The last step is replacement, where the population of the algorithm is replaced by com-
bination of parents and offspring while maintaining the population size. From here the
algorithm returns to selection step. The steps are executed again in an iterative fashion

19

until either the maximum generation is upon us or another goal has been reached. These
alternative goals can be made of arbitrary requirements. As an example, the genetic al-
gorithm can be made to stop searching if a certain fitness threshold has been found in a
genome of the population.

2.6.6 Limitations

The NASCTY algorithm has been shown as an effective approach to break the fixed
key ASCAD dataset. However, the NASCTY algorithm has not been able to surpass
the state-of-the-art neural network models and neural network search algorithms in either
performance or the complexity of models themselves as seen in Table 2.1. The performance
of a model is measured as the number of needed traces to obtain a key rank of 0 over 100
folds. The complexity is a measure of the size of a neural network, namely the number
of layers and hyperparameters. Commonly in other works as in this case the complexity
measures the total number of parameters of models.

From these complications a number of limitations have arisen that may hold back the
performance of the NASCTY algorithm:

1. Complexity, the NASCTY algorithm does not sufficiently discourage the generation
of models with redundant model complexity [16]. The algorithm may be prone
to adding unneeded layers and unintuitive layer components. Examples given by
Schijlen et al. point to possible: unneeded dense or convolutional layers, unintuitive
large numbers of convolutional filters, and pooling layers with strides larger than the
inputs’ sizes.

2. Local optima, the NASCTY algorithm stagnates in the best runs of the algorithm
for desynchronisations 0, 10, 30, and 50 earlier than what might be desired. In
these best runs they stagnate after around the 25, 35, 20, and 10 generation mark.
This implies that these runs get stuck in what are called local optimum. A local
optimum is a point where the evaluation function reaches a minimum or maximum
value higher than nearby points in the region but, which might not be the highest
or lowest value overall. The premature loss of diversity in a search converging on a
local optimum is a common problem of genetic algorithms [50, 51]. This problem
is known as premature convergence. To combat this problem two approaches exist:
increasing mutation rate and mutation range, or by maintaining higher diversity of
the population.

20

Chapter 3

Research goal

With this research we hope to contribute to the existing NASCTY framework and discover
possible design choices or limitations that may hold back the performance of the system.
The NASCTY algorithm does not beat or match the current state-of-the-art systems, the
two earlier mentioned limitations in Section 2.6.6 are two hurdles which we aim overcome.

To answer this problem we have formulated the following main research question:

To what extent does a complexity-minimising approach influence the efficacy
of the generated neural network architecture?

Further, we have devised a set of three sub-questions to answer our research question.
In order to answer these three sub-questions and the main question, there is a need to
do quick iterative tests and changes to the underlying genetic algorithm of NASCTY.
Unfortunately, a single run of the NASCTY algorithm might take up to multiple days of
computing time. At this speed each iterative change to hyperparameters of the NASCTY
genetic algorithm will take too much time, before any conclusions can be drawn as to the
effectiveness of the changes within a reasonable time span. This brings us to our first
sub-research question:

1. RQ1: How do different configurations of NASCTY hyperparameters influence the
trade-off between runtime and performance?

With the knowledge gained by having an arena for the experiments, the questions
related to the limitations of the original NASCTY algorithm can be answered. This brings
us to the first limitation of NASCTY, complexity. The genetic algorithm has the tendency
to not discourage the selection of possible solutions whose genomes contain unneeded
complexity. Unneeded complexity in this context does not solely refer to a surplus of the
number of model parameters but also to the more general addition of ineffective layers or
layer components.

However, we assume that we are able to capture the unneeded complexity of a neural
network in a function. With this assumption the next sub-research question becomes:

2. RQ2: How can we design a fitness function that effectively balances algorithmic
efficacy with complexity in genotype evaluation?

Solving the above question will give us answers to the first of the two limitations.
The third research question is mainly concerned with the second of the two limitations,

local optima, or the observed early stagnation seen in the observed runs of the algorithm.
In this research three strategies are considered: lowering the distribution index η as to
increase the mutation range –which in turn might be beneficial in escaping local optima–,

21

implementing an adaptive mutation rate which dynamically adapts the mutation rate of a
genome based upon current population metrics, and the implementation of a partial reset
policy for when the genetic algorithm’s performance stagnates, replacing the population
partially with new randomly generated genomes. Chapter 4 stipulates the stagnation
strategies considered in this research and in our last sub-research question:

3. RQ3: What is the impact on the behaviour and performance of the algorithm from
the strategies combatting early stagnation?

22

Chapter 4

Methodology

To answer the main research question and the stipulated sub-questions, an overview of
all methodologies used has been set up. Section 4.1 describes the global overview of the
research design approach used for this thesis.

Section 4.4 then goes into detail of the used research hardware and the total compu-
tational time needed. The global outlines to where the experimental raw data originates
from and what forms of pre-processing the data has been exposed to is discussed in Sec-
tion 4.2. With the data defined, Section 4.3 reviews the NASCTY genetic algorithm that
serves as the base upon which most of our experiments are conducted. Then, Section 4.5
lays out the experiments in larger detail for each of the research questions. For each re-
search question, a separate overview is written. Each overview details: the goals of the
experiments; how each of the experiments contributes to achieving that goal; presenting
a hypothesis regarding the expected results; and the parameters that define the bound-
aries of the experiment. Finally, we surmise this section and the individual experiments
in Table 4.4. The techniques used for analysing the data from experiments are discussed
in Section 4.6. Section 4.7 then discusses the ethical considerations made when designing
and executing this research. Alongside the methodology framework described, the changes
made and the limitations of the methodology are discussed in Section 4.8.

4.1 Research design

This research aims at improving upon the NASCTY algorithm by investigating strate-
gies to overcome its limitations. It makes use of experiments in order to investigate the
effectiveness of proposed improvements to the NASCTY genetic algorithm.

The research is divided up into four parts. The first three of these parts are concerned
with modifications to the existing genetic algorithm. In short, the alterations investigated
and experimented with are:

1. Genetic algorithm hyperparameters (discussed in Section 4.5.1) with the goal of both
reducing the run time of the algorithm while maintaining the quality of the results.

2. Custom fitness function (discussed in Section 4.5.2), with the aim of reducing the
complexity of the end result.

3. Anti-premature convergence strategies (discussed in Section 4.5.3), it lays out the
methodology used for evaluating anti-premature convergence strategies with goal of
reducing early stagnation.

23

Each of the experiments modify the genetic algorithm, and have their changes applied
to the NASCTY algorithm. These modifications do not carry onto the following experi-
ments unless stated explicitly. This is done with the intent of being able to compare each
change to the baseline genetic algorithm without running into the possibility of previous
modifications influencing current results.

Lastly, the most suitable of these modifications are collected and all applied to the
NASCTY algorithm. Section 4.5.4 concerns itself with the methodology applied for eval-
uating the modified genetic algorithm.

4.2 Data source

All the research done in this thesis sources its data from the ASCAD [22] dataset. The
ASCAD dataset serves as a publicly available side-channel analysis benchmark available
in three flavours:

� The ATMEGA fixed key AES dataset, containing 60,000 traces of 700 data points
from a single secret key. Of these 60,000 traces, 50,000 traces are marked as training
traces and a 10,000 are marked as attack traces. This dataset is available in three
distinct desynchronisation levels 0 or synchronised, 50, and 100. Higher levels of
desynchronisation allow the neural networks to be evaluated against jitter by intro-
ducing unpredictable variations in the timing [22]. Even though, more and different
levels of desynchrisation are able to be created from the raw traces, this research
will limit itself to the pre-generated 0, 50, and 100 levels.

� The ATMEGA variable key AES dataset, containing 300,000 traces of 1400 samples
from multiple different secret keys. These 300,000 traces are split up into a 200,000
traces large profiling dataset and a 100,000 large attack dataset. This dataset is
available with three levels of desynchronisation 0, 50, and 100. From these three
versions only the non-desynchronised dataset is used in this thesis.

� The STM32 variable key AES dataset, containing 1,000,000 traces of 15,000 data
points from random secret keys. This dataset is part of the ASCADv2 version and
was introduced to be a more challenging public benchmarking dataset to defeat [52].

This research limits itself to the two datasets introduced in ASCADv1 as it is the most
common of the used datasets in other related research. An overview of the performance
of other research on these datasets alongside the performance of the end product of this
thesis can be seen in Appendix A. Assume for the experiments that unless specified ex-
plicitly otherwise that for the training and evaluation the non-desynchronised fixed key
date set is used. Each additionally used dataset would at least double the time needed for
collecting and evaluating the results of experiments.

Any training of neural networks is done on balanced datasets as to avoid overfitting on
the dominant classes [53]. Each profiling dataset is split up into a training and validation
traces dataset to a ratio of 90% to 10%. The balanced datasets are created by randomly
undersampling. The act of undersampling is done by reducing the size of each class to
the size smallest class. In the case of the fixed key dataset this will reduce the number
of training and validation traces available from 50,000 to 35,584 training traces and 3,840
validation traces. Similarly, for the random key dataset the training and validation traces
are reduced from a total of 200,000 to 162,048 training traces and 18,176 validation traces.

24

None of the input data will undergo any data pre-processing activities before or during
any of the experiments.

4.3 Base genetic algorithm

This section means to serve as a short review of the NASCTY algorithm. As the algorithm
has previously been introduced in depth in Section 2.6, this section will mainly mention
the algorithm from a global overview. The NASCTY algorithm is a genetic algorithm
whose phases can be surmised as:

1. Initialisation, the initial population consist of 100 randomly generated genomes;

2. Selection, selection is done by means of a three-contestant tournament selection
algorithm that bases its individual contestant scores on the fitness score of a genome
after ten epochs;

3. Crossover, one-point crossover between the parents;

4. Mutation, three equal chance mutation strategies: removal, adding, and polynomial
mutation with mutation distribution index η strength equal to 20.

5. Replacement, the population is replaced by an equal split of parents and mutated
offspring.

These five phases are repeated till either an artificial limit or the maximum number of
generations is reached. When the final generation has been evaluated, the end result will
be the genome with the best fitness score.

The genome structure that the genetic algorithm uses –as defined in Table 2.2– is not
modified in any of the experiments and should remain a constant. The genome structure
remaining constant allows for an easier comparison of the genetic algorithms and removes
a possible unknown. Lastly, all genomes’ phenotype when evaluated are initialised with
the same random seed as to inhibit the influence of random initialisation on the fitness
score.

4.4 Experimental setup

For conducting all the experiments access has been granted to the high performance com-
pute cluster of the University of Twente. All systems and experiments are implemented
and run on top of the Julia [54] programming language (v1.10) with the help of the
Flux [55, 56] library for enabling machine learning. All the experiments will be run on a
Dell R750xa server with two Intel Xeon Silver 4314 processors, 256 gigabytes of working
memory, and four NVIDIA L40 graphics processor units. However, as the experiments are
mostly making use of the GPU for evaluating the genomes, each experiment was limited
to a single core, four gigabytes of ram, and a single GPU. Lastly, as per cluster user limi-
tations access was only granted for two graphics cards most experiments required multiple
days to get a full and reliable result. The total time used to conduct all the experiments
comes down to 3,140 processing hours.

25

4.5 Experiments

This section discusses the experiments in a global overview. The evaluation and deeper
in depth exploration of the experiments and their results are discussed in their respective
chapters.

4.5.1 Hyperparameters

To answer the first research question we need to find hyperparameters for the genetic
algorithm that satisfy that best satisfy the requirements of balancing the trade-off between
runtime and performance. In order to be quickly able to iterate on research while still
being able to translate the findings four hyperparameters have been identified as of being of
interest: evaluation epochs; an early termination policy; training data size; and population
size. From these four different experiments have been set up. Section 4.5.1.1 investigates
the viability of reducing the number of epochs that a possible solution is trained before
evaluation and what the impact it has on the accuracy of the evaluation.

The ability of an early termination policy in reducing training time by cutting short
non-promising is explored in Section 4.5.1.2. Section 4.5.1.3 then in turn investigates the
different training data partition sizes in order to find the configuration that reduces the
runtime while roughly maintaining the same evaluation accuracy. Lastly, Section 4.5.1.4
investigates the possibility of reducing the population size for later experiments and if
reducing the population size might be a more optimal choice when running the algorithm.
The findings of this review will be instrumental in answering our next questions.

4.5.1.1 Required number of evaluation epochs

The first experiment was concerned with the number of epochs a possible solution had to
be trained before an accurate estimation of the solution’s final fitness score compared to
other possible solutions could be made. Each of the genomes in the population used in the
genetic algorithm must be evaluated before or during the selection stage. This evaluation
phase calculates the fitness of the potential solution by training the genome’s phenotype
for an x amount of epochs and calculating the fitness score on the validation dataset. From
this arises a question, if the fitness function’s goal is to predict the quality of the end solu-
tion –a genome whose phenotype has been trained for 50 epochs–, what number of training
epochs are required for accurately predicting which genome would win in the tournament
selection process? By finding the minimum required number of training epochs the aim
is to reduce the number of training epochs set (i.e. ten epochs) by the NASCTY algorithm.

With the aim of finding the minimum required number of training epochs an exper-
iment has been set up. Firstly, a collection of 500 genomes was generated. The larger
number of genomes should counter the possible low success rate of a randomly sampled
genome. A genome is considered unsuccessful if the fitness score during training does not
improve. This collection of genomes will serve as the sampling population. These genomes
follow the structure as set out in Table 2.2. The structure and values of a genome is ran-
domly generated. Each of the genomes is trained for a number of epochs on the fixed key
non-desynchronised ASCAD dataset. Then, every epoch the fitness score is calculated.
The fitness score is calculated by applying the CCE fitness function (see Equation 2.6) on
the validation dataset.

Lastly, the collected data is analysed by calculating the selection accuracy at each

26

epoch to the final recorded epoch. To do this calculation all the possible combinations
of contestant that may occur enter a three contestant-sized tournament selection. That
means each possible combination of input genomes and their fitness scores will enter our
tournament selection and compare their winners at a certain epoch with those found at
the 50th epoch.

The choice to limit the training time to 50 epochs was done for two reasons. Firstly,
this limitation allows for the quality of the neural network models to shine through, if the
neural networks had been trained with too few epochs the performance capabilities of the
design might not be clear enough. As training a neural network design for more epochs
allows the design to more-so if able diverge from the starting point’s fitness score. The
second reason for limiting the training of the neural network designs to 50 epochs is the
time constraints one must consider. Any increase in training time in epochs also reduces
the number of test samples we can acquire and process.

We expect that genomes trained for ten epochs might give us the most ideal trade-off
in our situation, for accuracy per needed time to train. This is in line with the chosen
number of epochs used in the selection process for calculating the fitness of a genome used
in the original NASCTY paper [16].

4.5.1.2 Early termination

The second experiment’s goal is to discern if it is possible to predict if a solution is a
non-promising solution. Thereby, reducing the time needed for validation by excluding
non-promising solutions from further evaluation. A solution is promising if its fitness value
decreases over time. Solutions whose designs allow not for enough of generalization, and
therefore suffer from overfitting the model on the training dataset. These possible solu-
tions are uninteresting for the genetic algorithm, as it is solely focused on finding the best
possible solution for a specific problem.

For this experiment an additional 2000 random genomes will be trained while being
evaluated on a validation dataset every epoch. Both the training traces and validation
traces come from the non-desynchronised fixed key dataset. The number of epochs these
genomes will be trained for during evaluation is fully depended on the found results in
experiment I. Because of the random nature of selecting the genomes, the number of well
performing genomes will be but a fraction of the evaluated genomes. For this reason the
number of genomes evaluated has been enlarged to 2000 genomes as to include enough
well performing genomes. From each genome the training loss is recorded every epoch.

Then these recorded training values serve as the base from which the fitness thresh-
olds come. These determine if a genome is considered to be of a promising nature. If
a possible solution in an epoch has been weighted and art found wanting, its evaluation
will be terminated prematurely before reaching the full standard evaluation time in epochs.

Two strategies for calculating the weights for early termination by fitness threshold
are considered: a conservative and an optimised approach. The conservative approach
considers all data points that improve over time more than the stated threshold. This
approach, while possibly training more unpromising solutions for longer, most likely does
not miss out on any possible solution outside the most common validation fitness score
progressions. The second so-called optimised approach, optimises for including most of

27

the promising solutions and reducing the training time by disregarding outliers.

To analyse the results, the recorded genome data points will be subjected to the pro-
posed fitness thresholds. These findings will be the basis of calculating the runtime savings
and loss of promising solutions for each approach.

Our expectations for this experiment are a noticeable improvement in the speed of the
genetic algorithm. We believe that for the conservative approach the number of missed
interesting solutions is close to zero and the saved number of epochs needed for training
all the selected genomes should hover around a 10% for any of the different threshold
categories. This prediction of a 10% reduction stems from the expectation that from
the starting point the longer that one trains the neural networks the more they will
diverge from the starting point in both of the extremes directions. For the more optimised
approach we expect a reduction of needed epochs to be trained of 25% across the lower
of the thresholding categories while for the highest thresholding category we expect a
reduction of 30%. The higher expectations here stem from the belief that with ignoring the
outliers the remaining solutions will diverge in a more extreme way, thereby discounting a
larger number of solutions from further training. This expected higher reduction in needed
training epochs comes with the trade-off of a 5% chance on missing potential interesting
solutions. This is based upon an assumption that around a 5% of measurements are
outliers.

4.5.1.3 Training data partition size

The third experiment explores the viability of restricting the access to training as to reduce
the time needed for evaluating a possible solution. By limiting the amount of data used
in each epoch, the hope is that the time needed for training and in turn evaluating the
genomes’ phenotype will be reduced without significant loss of fitness performance. This is
done by shuffling the complete training dataset before each epoch and selecting a limited
partition of it. The size of the partition is chosen before the training of the solution and
remains unchanged during the complete evaluation phase of a genome.

The finding of a possible faster, although still reliable evaluation phase by limiting the
amount of training data each epoch will be done using a grid search. The variables con-
sidered for this grid search for the training data partition size are displayed in Table 4.1.
The considered partition sizes in this design where broadly chosen to represent a mostly
gradual increase by doubling the previous size. The smallest possible partition size is 100
data points, consequent options are roughly double the previous value until reaching the
maximum possible data points of 35 6000.

Table 4.1: Parameters used in experiment two on the impact of training dataset
size on the performance of the fitness evaluation.

Parameter name Values

Model Wouters et al.[42], NASCTY[16]
Partition size 100, 200, 500, 1 000, 2 500, 5 000,

7 500, 10 000, 20 000, 30 000, 35 600

Twenty random genomes’ phenotype is evaluated for 50 epochs. Twenty genomes

28

should be enough of a spread to gain a good estimation of the impact on different sized
and performing random genomes. The fixed key non-desynchronised ASCAD dataset is
used for training and evaluating the genomes. Each genome is trained for 50 epochs, al-
lowing for the time and space needed to diverge from its origin. At every epoch trained a
snapshot is created of the containing the training fitness and the training time. Next, for
each partition size parameter as defined in Table 4.3 the process is repeated.

Once all configurations have been evaluated, the time metrics are collected and anal-
ysed. These metrics give insight on the impact the partition size has on the time needed
to train a possible solution. This is followed by a consultation of the fitness score metrics
to gain an insight on the impact over a 50 epoch long time window.

We expect that for this experiment that the training time per epoch will be directly
changed to the size of the partition in relation to the full training dataset. This is done
with the expectation that the quality of the evaluation will change in related amounts
compared to the usage of the full training dataset each training epoch.

4.5.1.4 Population size

The fourth and final experiment of the first research question’s goal is to see if it is possible
to reduce the population size of the genetic algorithm without impacting the convergence,
diversity, and coverage too much. Taking the population size of 100 as baseline, with what
sizes of population can there still be made reliable enough predictions of the networks’
performance, compared when the genetic algorithm runs with a population size of 100?

Table 4.2: Parameters used in experiment three on the performance impact of
population size used in the NASCTY algorithm.

Parameter name Values

Population size 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

This is the first experiment to build on top of the NASCTY genetic algorithm. The
modifications made to it pertain to the population size used during operation.

The considered population size values shown in Table 4.2 are all lower than the default
configuration of 100. These options were chosen with the intent of reducing runtime. To
achieve that aim the values run back from the default of 100 to the minimum extreme in
ten sized steps.

Each configuration is run for a total of ten times. This should allow for strong enough
results not marred too strongly by the inherent random nature of the algorithm. Each
run ‘run’ of the algorithm consist of reading in the dataset before following the phases of
the algorithm as set out in Chapter 4 for a maximum of 50 generations. The dataset used
in this experiment is the fixed key non-desynchronised ASCAD dataset.

At the start of every generation including the initialisation moment a snapshot is taken
of the current population. This includes for each of the genomes in the population its fit-
ness score.

29

When all runs have been completed and the data collected, an analysis of the con-
vergence, diversity, and coverage is made. The convergence metrics give an indication of
the progress the system is making upon converging on a (local) optimum. The diversity
metrics are used to gain insight into the how homogeneous the population is. Lastly, the
coverage metrics are meant to show the possible solutions explored in the search space.
The metrics used for the convergence, diversity, and coverage are based in turn upon the:

� Convergence, the lowest fitness score in the population;

� Diversity, the mean distance between the individual genomes in the population;

� Coverage, the number of uniquely discovered and evaluated genomes.

Our expectations of this experiment are that for each decrease in population size, a
small decrease in effectiveness will be found in the convergence of the genetic algorithm.
For the diversity of the population each generation, we believe the population will indeed
see a slightly reduced diversity with each increase in the limitations imposed upon the
population size. In contrast, we expect the coverage to be influenced in line with the
decreases in the population size. Given a population size, we expect that each generation
a similar amount of newly minted genomes should be explored and evaluated.

4.5.2 Complexity

The second research question will be answered by enumerating the different possible indi-
cators of unneeded complexity: parameter count, unintuitive architectural design choice
penalties, or a combination of the two. For this matching custom loss functions for the
evaluation of the different solution in the selection process will be designed building upon
the CCE loss function. Two different functions will be defined in combination with a
parameter to regulate the strength and impact of each function on the resulting fitness
score. The first function f calculates the number parameters of the phenotype of genome
x. The second function g tallies the number of unintuitive design choices occurrences. For
a design choice to be counted as an unintuitive one, the stride of a pooling layer must be
larger or equal to the size of the pooling layer. The parameter count function f is used
together with the parameter α. As for the unintuitive penalty function g, it is influenced
by parameter β. As seen in Equation 4.1.

fitness(x) = CCE + α · f(x) + β · g(x) (4.1)

For finding the optimal parameters for α and β to in use in Equation 4.1, a grid search
will be conducted. The values considered in this grid search can be found in Table 4.3.

Table 4.3: Parameters used in the experiment on the impact of using custom fitness
functions tailored to limiting the complexity for the evaluation phase.

Parameter name Values

α 0, 1e-7, 5e-7, 10e-7, 50e-7, 100e-7
β 0, 0.001, 0.005, 0.010, 0.050, 0.100, 1.000

The ranges for each of the variables has been carefully chosen to encompass a range
of change within reasonable bounds. The values considered for the variable α are directly

30

related to the codomain of function f , which are the number of parameters of a neural
network based upon the genomes as defined in Table 2.2. The size of genomes as measured
in number of parameters is at minimum 527 parameters small and at maximum 902 763
parameters large. As a response the values of α for the experiment are between the range
of 1e-7 and 100e-7. Similarly, the codomain for penalty function g is a vector of values
{1, 2, 3, 4, 5}. From these values, the values of parameter β are selected to be within the
range of 0.0001 and 1.0000.

Each combination of custom fitness function parameters is evaluated 35 times. Every
configuration is run with the minimum experiment population size. This is the minimum
value possible for reliable translatable results for experiments from research experiment
IV. Each run has a runtime of 10 generations and uses the fixed key non-desynchronised
ASCAD dataset. Every generation a snapshot of the genome population plus their fitness
scores are made.

Then, results are analysed with the genome serving as the origin for the complexity
metrics –both parameter count and unintuitive design choice count– and the fitness score
giving insight into the impact on convergence.

Our expectations of this experiment are that higher values for both α and β will result
in better genome fitness in the long run. We base this expectation on the belief that
smaller neural network designs might be better at generalizing and might be less prone
to overfitting for this dataset. Regardless of the eventual effect on performance, both
custom fitness function penalty functions should reduce the complexity of the end results.
However, fears do exist that high values for β (e.g. 1.0000) might exclude possible good
performing genomes in the initial generations of the population. If in the initial generations
well performing genomes with unintuitive design choices are significantly discounted, the
selection process might focus on in comparison sub-par genomes. If instead the penalty
strength β is of a lower value, these genomes might still carry on to newer generations and
be refined into less complex genome designs.

4.5.3 Premature convergence

To answer the third research question we will first implement some of the anti-stagnation
strategies commonly used in genetic algorithms, namely the following ones:

4.5.3.1 Distribution index η

The lowering the distribution index η results in larger perturbations. The current distri-
bution index η has been tested as the most performant when it is equal to 20. However,
as the original NASCTY paper only tested for the higher values 20 and 40 with smaller
mutations, lower values for the distribution index η might help in escaping local optima
and reducing the premature convergence. The implementation considered in the thesis
will be based upon a distribution index η equal tot 10.

4.5.3.2 Adaptive mutational rate

The adaptive mutational rate, the mutational probability values of the genetic algorithm
will be adjusted dynamically for each of the offspring. The specific strategy that will
be implemented for this experiment is rank-based mutation probability based upon the

31

methodology described by Basak in [57]. This approach assigns the mutation probability
of the hyperparameters of individuals based on the relative ranking in the population based
upon the fitness scores of the genomes [58, 59]. The average mutation probability of a gene
in a genome in this strategy matches the mutation probability of the original algorithm.
To calculate the mutation probability p of a genome, the defined in Equation 4.2 rank
based adaptive mutation probability function can be used. Before one can calculate the
probability p, the size of the population N and the rank r the genome occupies in that
population must be known. Then together with the maximum mutation probability pMAX

the individual mutation probability of a genome can be calculated.

p = pMAX · (1 =
r − 1

N − 1
) (4.2)

4.5.3.3 Partial replacement

The last strategy considered is Partial replacement. Whenever the genetic algorithm
threatens to stagnate for longer periods of time, a partial replacement of the current
population will occur. In this partial replacement a portion of the total population will
be culled and a new group of randomly generated genomes equal to the number of culled
ones will migrate into the population, keeping the total number of individuals stable. The
moment when a partial replacement of the population is applied can be dependent upon
any of the genetic algorithm’s metrics. In this experiment the partial replacement action
will be tied to the stagnation for five generations of the best fitness score currently in
the population. The method for the selection of genomes to be culled will be done by
tournament selection similar as to the selection step of the NASCTY genetic algorithm as
described in Section 2.6.2.

4.5.3.4 Anti-early stagnation strategies

Now that the anti-early stagnation strategies have been defined and implemented, the
experiment can start. On top of the NASCTY algorithm, each of the anti-premature
convergence strategies is run for a maximum of 75 generations. The maximum number
of generations is greater as the goal is to combat pre-mature convergence. Because the
original algorithm suffered from pre-mature convergence and had long plateaued at the
50th generation, the effectiveness of a modification can only be measured after that point.
The experiments use the fixed key non-desynchronised ASCAD data set for its training
and evaluation of genomes. The population size for this experiment is wholly depended
on the results found in experiment IV. Each generation the population and runtime are
collected as metrics. This process is repeated 30 times for each configuration.

The efficacy of these strategies then is determined by a combination of metrics. Mainly,
the convergence and diversity metrics of a run are combined. The runtime cost is factored
in too when determining the feasibility of an approach.

We expect that the most interesting results of this experiment will come from the
second and third strategy. When the first option of lowering the distribution index η
is used to increase the mutation range used within the algorithm, we expect that the
heightened mutation range will also come with its own trade-offs and in turn might make
certain movements within the genetic algorithm overshoot more easily. So, while the
total run time of the genetic algorithm is not impacted negatively, there might be more

32

of a difficulty in finding an optima. Our expectation is that by increasing the mutation
rate for lower performing offspring more area and possibly more diverse options might
be discovered, increasing the number of local optima discovered in its runs, giving a
better overall solution at the end of the runs. The final strategy of replacing part of the
population when the genetic algorithm stagnates for multiple generations seems to us as
a great way to reintroduce fresh blood into the system. Therefore, our main estimation
and hypothesis will be that the second and third strategy will bring in a steady defence
against premature convergence and early stagnation. With the first strategy potentially
being an improvement for the genetic algorithm, it might also impede the finding of better
solutions with its stronger mutation range.

4.5.4 Combined result

Having implemented each of the experiments and gathered their results, the next step
in this research would be to combine the best elements of the different experimental al-
terations to the genetic algorithm. The results found when answering research questions
RQ1, RQ2, and RQ3 have been done by individually making changes to the NASCTY
genetic algorithm. The modifications that promise improved performance and reduced
complexity of their end results, will then all individually be applied with the goal of over-
coming the shortcomings of the original algorithm. From RQ1 the following modifications
to the NASCTY algorithm are taken:

� Experiment I, the minimum required training epochs for accurately evaluating po-
tential solutions;

� Experiment II, the early termination policy and either the conservative or optimised
approach’s fitness threshold values, if and only if found to be an adequate trade-off
between training time reduction and missed potential novel solutions;

� Experiment III, the training data partitions size that gives a suitable trade-off be-
tween a reduction of training time needed for evaluating a genome and the accuracy
penalty a smaller partition size may carry;

The population size is not something that will carry over from experiment IV, the explicit
choice has been made to stick to the same population size of 100 used in the NASCTY [16]
paper. This has been done with the goal of being closer and therefore more reliable in the
comparison between the stock genetic algorithm and the modifications proposed in this
thesis.

From RQ2 the custom fitness function together with the best performing values for
α and β parameters will be carried on and implemented. The best values for α and β
will represent the combination that reduces the complexity in parameters and unintuitive
design choices while simultaneously not negatively impacting the fitness score. Lastly, the
modifications taken from RQ3 will be the best performing anti-premature convergence
strategy when viewed from the perspective of convergence.

With this new algorithm whose summation is all the best alterations, the new algo-
rithm shall be evaluated against a common side-channel analysis benchmark.

For each benchmark dataset a number of runs have been done for both the stock
NASCTY configuration and the modified algorithm. The number of runs done for a
benchmark is wholly dependent on the complexity and as a consequence the time needed

33

to benchmark. The benchmark was run ten times for the fixed key non-desynchronised
ASCAD dataset, five times for the fixed key 50 and 100 desynchronised ASCAD dataset,
and 3 times for the random key dataset Of each run the population every generation plus
the overall runtime was collected.

To analyse the efficacy of the modification regarding the two main limitations of the
original NASCTY algorithm, the data was consulted in both the convergence and com-
plexity metrics.

To get an accurate overview of the performance of our best performing genome, the
genome is trained for a total of 75 epochs. From the fully trained model performance
characteristics are then calculated. These are then compared to the results found by the
other papers with respect to the ASCAD dataset as laid out in Table 2.1.

Our hypothesis on the effectiveness of our new altered genetic algorithm in finding the
most performant neural network design for the synchronized traces will be that it is going
to be an improvement upon the original NASCTY algorithm by a non-significant but
measurable level. Alongside this, we deal with two possible scenarios fully dependent on
the effectiveness of the premature convergence combat strategies. If the strategies outlined
in Section 4.5.3 pertain to be effective strategies, then so too will the level of improvement
of the genetic algorithm. We do expect the impact of all the changes to be greater for the
higher level of desynchronisation, since the original NASCTY seems to suffer more greatly
of unneeded complexity when dealing with the more difficult desynchronised traces.

4.6 Data analysis

This section explores the metrics used in this thesis and the used data analysis methods.
It follows the chronological order that the metrics and methods show up.

4.6.1 Selection accuracy

The selection accuracy represents how much one population’s fitness scores x would reflect
the selection choices based upon the baseline’s fitness scores y.

To find the selection accuracy for the results vector x compared to the baseline results
vector y, the number of correct findings is divided by the number of combinations possible
for a vector. For this the number of k combinations of a random vector x consisting of n
elements can be denoted as a binomial coefficient (

(
n
k

)
) as seen in Equation 4.3.

(
n

k

)
=

n!

k!(n− k)!
(4.3)

Next, the number of correct values must be found. Let us denote all possible combi-
nations Ck(x) of k elements per combination of vector x as:

Ck(x) = {(xi1 , xi2 , . . . , xik) | 1 ≤ i1 < i2 < . . . < ik ≤ n} (4.4)

Ck(x) = {y | y ⊆ x, |y| = k}
Then, lets denote m as shorthand for the index of the lowest value in a possible

combination vector.

m = Index of min((xi1 , xi2 , . . . , xik)) in x (4.5)

34

With these we can denote the equation for calculating the accuracy of tournament
selection at a certain point compared to the baseline in Equation 4.6.

Accuracy =
|{(xi1 , xi2 , . . . , xik) ∈ Ck(x) | m = yim}|(

n
k

) (4.6)

4.6.2 Convergence

In short, convergence is the metric used for an algorithm to describe its performance as it
converges on (local) optima. It is the point where the algorithm stabilises on (seemingly)
optimal neural network architectures.

This progress is tracked in this research by recording the population’s best performing
genome’s fitness score. Against what one might expect, the best performing genome is the
one with the lowest fitness score.

When analysing the convergence, the fitness score together with the generation or
epoch is plotted. Giving a brief overview of the progress or lack of when seen over a longer
time frame.

4.6.3 Diversity

Diversity as a metric represents the sameness of all solutions. In this thesis the choice
was made to represent the diversity of a population as the mean distance between each
genome. The more similar the genomes the lower the distance between the genomes, the
more dissimilar the larger the distance.

To calculate the genomes distance to each other, the genomes are then transformed into
a n-dimensional Euclidean coordinate where each dimension represents one of the genomes’
genes as a value between 0 and 1. With these coordinates it is then simply a matter of
applying the Euclidean distance formula for multidimensional coordinates. Equation 4.7
stipulates the formula for finding the distance function d between two coordinates p and
q in a multidimensional coordinate system of n dimensions.

d(p,q) =
√

(p1 − q1)2 + (p2 − q2)2 + . . .+ (pn − qn)2 (4.7)

4.6.4 Complexity

The second of the most important metrics for this research next to the convergence are
the complexity metrics. These metrics come in two forms, the parameter count of a neural
network model and the number of unintuitive design choices in the genome structure.

The goal of the neural architecture search is to find the most optimal solution to the
question of neural network architecture design. This is mainly measured in two metrics
one for attack performance and one for complexity. Appendix A shows the comparison of
different approaches by measuring the traces to obtain mean key rank 0 (TGE0) and the
number of model parameters for estimating the complexity of a solution.

This research uses next to the parameter count of the neural network solution also
the number of unintuitive design choices. These design choices add parameters to neural

35

network model that seemingly serve no purpose. By limiting these design mistakes the
idea is to reduce complexity without harming the performance.

To demonstrate the effects of certain experiments, the spread of results is shown with
the help of box plots.

4.6.5 Statistical tests

When presented with data distributions one might not be able to reliably determine the
impact of experiments. If this is the case, statistical tests help to clarify results.

4.6.5.1 Kruskal-Wallis

When faced with uncertainty if the experiments have made any impact on a metric, the
Kruskal-Wallis [60] test should help clarify this. It determines if the different sample re-
sults share the same distribution.

The Kruskal-Wallis rank sum tests the null hypothesisH0 that states that all the groups
in group G come from the same distribution. For a thesis to be rejected the probability
that the difference between the group is due to chance, this is the p-value. The p-value
has to be less then 0.05 in order to reject a thesis. This low of a p-value suggest that at
least one group is significantly different.

4.6.5.2 Mann-Withney

When faced with the question if two samples share the same distribution. A question
relevant when testing if a modification to the genetic algorithm has made any impact on
metric compared to the default. The Mann-Withney U [61] test is used.

This test is similar to the earlier mentioned Kruskal-Wallis test, which is an extension
of this test. It poses the null hypothesis H0 that two samples share the same distribution
and have no significant difference in medians. To prove the null hypothesis H0, the chance
(p-value) of it being a coincidence must be less than 0.05. If the p-value is larger than this
threshold, one may assume that they do not share the distribution.

4.6.6 Performance

To measure the performance of the genetic algorithm’s results, the traces needed to obtain
key rank 0 are calculated.

Calculating the traces to obtain mean key rank 0 (TGE0) is normally done over 100
folds. In general lines, the attack dataset is first split up in 100 equally sized subsets,
called folds. Then each fold calculates the number of traces needed before the key rank is
for the first time equal to 0. Then the average of the minimum number of required traces
is the TGE0.

4.7 Ethical considerations

This research samples it data from an open-source dataset free from personal identifiable
information. The absence of data that could be used to identify individuals, ensures com-
pliance with ethical privacy standards.

36

The dataset itself originates as condensed measurements from an existing open plat-
form implementation. The aim of this work is to improve upon automated side-channel
analysis methods. Research like this lowers the barrier to entry for validating and improv-
ing the robustness of implementations against side-channel analysis. It thereby contributes
to the development of stronger and more resilient systems.

4.8 Limitations

This section describes the limitations we ran into when conducting this research and what
changes were made to address them.

The largest limitation of the conducted experiments has to do with usage of only the
fixed key non-desynchronised dataset. This limitation was set in place as there was simply
not enough time to conduct the experiments with the more complex and time-consuming
dataset. By limiting ourselves to only one set the results and approaches mostly refer
to that set. There is no guarantee that the results are generalisable to other sets, and
may not perform in the same manner or with the same strength on other more difficult
datasets.

This is in part addressed in Chapter 8 were the modifications are benchmarked on other
datasets. However, even those suffer from an unequal treatment in regards to results. The
more easier datasets allow for quicker gathering of results, and the more complex datasets
require too much computing time.

Additionally, some smaller changes were made to experiment I and II after witness-
ing the low success rate of random genomes. The sampling pool was enlarged for both
experiments to counter this limitation.

37

Table 4.4: Parameters used in the experiment on the impact of using custom fitness
functions tailored to limiting the complexity for the evaluation phase.

Topic Experiment Methodology

RQ1 Hyperparameters I Training 500 genomes for 50 epochs to
discover the minimum required of training
epochs for accurate fitness predicting.

II Training 2000 genomes for the minimum
required training epochs with the goal of
implementing an early termination policy.

III Training the Wouters et al. [42] and
Schijlen et al. [16] alongside 15 random
genome designs with different training data
partition sizes for the goal of reducing
training time.

IV Running the NASCTY algorithm 20 times
for 50 generations with different population
sizes with the goal of reducing the
population size used for experiments and
thereby speeding up the experiments.

RQ2 Complexity I Run the genetic algorithm 35 times
for 10 generations for each of the α and β
value combinations of the custom fitness
function with the aim of reducing the
complexity of the end results.

II Run the most promising α and β value
combinations for 20 generations as to
allow the results to diverge and see
the impact on the longer time span.

RQ3 Premature convergence I Running the genetic algorithm 30
times for 75 generations and a population
size of 50 for three separate anti-premature
stagnation strategies.

Combined results I Run the modified genetic algorithm 30
times for 50 generations with a population
of 100 and compare the effectiveness to the
original NASCTY algorithm on the level 0,
50, and 100 (non-)desynchronised fixed key
ASCAD dataset.

38

Chapter 5

Hyperparameters

This chapter together with Chapter 6 and Chapter 7 describe and relate the findings of
the experiments and methodology described in Chapter 4 whose goals are to answer the
research questions posed in Chapter 3. The results below follow the same order as the
experiments described in Chapter 4. The results described in this chapter are used af-
terward in the discussion of the results in Chapter 9 and in turn inform the conclusions
drawn in this research, as seen in Chapter 10.

These findings below are the results of experiments with the goal of answering the
research question RQ1. Each of the below experiments tries to illuminate a part of the
problem and in turn give us the needed information to answer our question. The exper-
iments and their results have been split up in three separate parts. The first results are
directly related to the relation between epochs trained and the accuracy of predicting the
future fitness of the genome. The second experiment results try to convey the possible
saved training time by implementing a fitness threshold policy. The third experiment then
tries to alternate on the amount of received data points in the training and evaluation pe-
riod of the genome. Lastly, the fourth experiment hopes to highlight the effect of the
population size on the convergence, diversity, and coverage of the genetic algorithm.

5.1 Accuracy fitness

The first experiment will be testing for the number of epochs a phenotype of a genome
that has to be trained before an accurate indication of the 50 epochs trained genome’s
fitness becomes clear.

For this experiment a set of 500 randomly generated genomes were trained for 50
epochs. During the training period of each genome’s phenotype, every epoch the neural
network model was evaluated on the validation set, saving the fitness score and total time
needed for the training the model. These genomes and their progression can be seen in
Figure 5.1.

Since the goal of the genetic algorithm is to select for the best performing genomes
–meaning the genomes whose fitness scores are of lower value– two separate comparisons
were made. One comparison includes all genomes tested and trained, and the other two
comparisons consider only genomes whose phenotypes’ fitness score improves compared to
the starting fitness score with two different thresholds: ≥ 0.00 and ≥ 0.01.

Two interesting findings can be discerned from this figure. The first thing that jumps
out is the high number of non-improving examples. These seem to initially either stay at

39

Figure 5.1: The validation fitness of 500 random genomes over 50 epochs.

the same fitness score or worsening the more epochs they are trained. Of the 500 randomly
generated only 43 genomes managed to improve their fitness score at all, with 43 genomes
only improving 0.01 or more over the span of 50 epochs.

(a) Improvement ≥ 0.00 (76) (b) Improvement ≥ 0.01 (65)

Figure 5.2: The validation fitness of random genomes over 50 epochs that improve
with a ∆ of 0.00 for (a) and a ∆ 0.01 for (b).

Filtering those groups out leaves us with the results seen in Figure 5.2, a stark con-
trast to the 500 genomes originally recorded. These three groups have been selected to
emphasize the effectiveness of the changes at those three levels in regard to improving the

40

genetic algorithm’s selection stage. The selection stage and as a consequence the genetic
algorithm’s goal is to select the best genomes to carry on to the next generation. The
best genomes are those most suited to the task of predicting the values of belonging to
the correct dataset. In general, as can be seen in Figure 5.1, all of what can be considered
good genomes improve in their fitness score over time. Conversely, the same observation
can be made about the worst performing genomes.

However, since our goal is with finding the most suitable possible solution, two addi-
tional categories have been initiated. is calculated The groups consist of potential solutions
that have either seen improvements in their training time (i.e. any genome with a ∆ ≥ 0.0
in their fitness score), and those that have improved at least with a ∆ of 0.01 in the
same time span, neatly separating the weed from the chaff by doing so. This gives us a
good indication of the accuracy of the selection process when only training a genome for
a selected amount of epochs during their training.

To calculate the accuracy of selection method at a certain point in time, all possible
combinations of genomes used in the selection process are compared to a baseline set
at epoch 50. The selection accuracy of the tournament selection with three contestants
as used in the original NASCTY algorithm are shown in Figure 5.3. Additionally, the
selection accuracy was also calculated for tournament selections with only two contestants,
analogue to more conventionally used metrics for defining accuracy. These accuracy results
can be found in the appendix under item Appendix B.

5.2 Early termination

The second experiment is concerned with the usage of a fitness threshold in the evaluation
stage of a possible solution. This is done with expectation that such a fitness threshold
will reduce the number of training epochs needed to evaluate all the genomes. Thereby,
meaningfully reducing the needed runtime of the genetic algorithm.

Table 5.1: The threshold value categories used on the expected improvement of
possible solutions from the first epoch to the last epoch measured.

Parameter name Values

Threshold categories ≥ 0.00, ≥ 0.01, ≥ 0.05

The two fitness thresholding approaches –conservative and optimised– will be calcu-
lated for all the different threshold categories as defined in Table 5.1. These categories
have been defined as to highlight certain characteristics of the data. The goal of the ≥ 0.00
category is to highlight all the genomes who improve over time. The ≥ 0.01 categories’
goal is to see the impact on all genomes that improve at least a little bit and aren’t a
random deviation from the baseline. Lastly, the ≥ 0.05 category was created to focus on
the genomes that improve significantly over their starting point.

With these trained data points collected and the fitness thresholding approaches de-
fined, the following metrics and values will be calculated to display the impact of these
approaches on:

1. the number of possible solutions meeting the thresholds;

2. the number of promising solutions not meeting the thresholds;

41

(a) All genomes.

(b) Improvement ≥ 0.00 (53). (c) Improvement ≥ 0.01 (43).

Figure 5.3: The accuracy of the selection function with different training periods
for the phenotypes –measured in epochs– in the evaluation stage of the genomes.

3. the time saved training in epochs with these fitness threshold strategies compared
to not implementing an early termination policy.

Table 5.2: Thresholds values for fitness scores each epoch for the conservative
approach.

1 2 3 4 5 6 7 8 9 10

≥ 0.00 5.601 5.589 5.593 5.568 5.598 5.556 5.557 5.554 5.552 5.545
≥ 0.01 5.601 5.589 5.593 5.568 5.598 5.554 5.553 5.554 5.548 5.535
≥ 0.05 5.602 5.589 5.593 5.568 5.598 5.553 5.552 5.545 5.536 5.425

42

Figure 5.4: The validation fitness of 2009 random genomes over 10 epochs.

Table 5.3: Thresholds values for fitness scores each epoch for the optimised ap-
proach.

1 2 3 4 5 6 7 8 9 10

≥ 0.00 5.601 5.589 5.593 5.568 5.598 5.556 5.557 5.554 5.552 5.545
≥ 0.01 5.601 5.589 5.593 5.568 5.598 5.554 5.553 5.554 5.548 5.535
≥ 0.05 5.555 5.552 5.593 5.568 5.598 5.553 5.552 5.545 5.536 5.425

Such a fitness threshold will terminate the training of a possible at an intermediate
training epoch if the improvements of the fitness of a solution compared to the starting
fitness does not meet the requirements set by the threshold.

Table 5.4: The number of solutions considered for further training per epoch de-
pending on the requirements set on the improvement in the fitness evaluation from
the starting point when making use of the conservative fitness threshold policy.

1 2 3 4 5 6 7 8 9 10 Total

Baseline 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 22099
≥ 0.0 1999 1977 1974 1925 1925 1735 1684 1552 1344 99 18223
≥ 0.01 1999 1977 1974 1925 1925 1657 1537 1473 607 77 17160
≥ 0.05 1999 1977 1974 1925 1925 1518 1375 85 68 27 15075

For this we have selected certain threshold levels of required improvement of the fitness

43

Figure 5.5: The validation fitness of 2009 random genomes over 10 epochs, showing
the extremes and the population dispersion.

(a) Conservative (216). (b) Optimized (65).

Figure 5.6: The fitness thresholds projected on graph for both the conservative (A)
and optimised (B) threshold values.

of selected possible solutions. These thresholds are selected upon the findings presented
in Figure 5.1 and Figure 5.2 that mark, that any interesting solutions for the generic
algorithm –those solutions whose fitness score are lower– exhibit two characteristics. First
over time with training the quality of the fitness score improves, and secondly that any
of the more interesting solutions, that are those who see at least an improvement greater
than 0.01, start improving their fitness score before the tenth training epoch.

44

Table 5.5: The number of solutions considered for further training per epoch de-
pending on the requirements set on the improvement in the fitness evaluation from
the starting point when making use of the optimised fitness threshold policy.

1 2 3 4 5 6 7 8 9 10 Total

Baseline 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 22099
≥ 0.0 1749 1613 1612 1610 1610 1513 1476 1387 1229 91 15899
≥ 0.01 1749 1593 1592 1590 1590 1446 1363 1315 569 70 14886
≥ 0.05 1839 1708 1707 1705 1705 1434 1308 84 67 26 13023

The goal of setting a fitness threshold in one of the epochs before the final evaluation
is to reduce the time spend on training solutions one might be considered as undesirable
while not excluding novel solutions that would fit the considered interesting. Table 5.4
and Table 5.5 show the number of solutions meeting the fitness threshold improvement
requirements for each of its training epochs respectively for the conservative and optimised
approach. According to the numbers as found in Table 5.6 the gains one gets in time saved
training –an approximate ∼10% additional saving–, comes with an approximate similar
loss of around ∼10% of potential interesting candidates in most situations.

Table 5.6: Percentage of saved training epochs when applying an early stoppage
policy for training when evaluating possible solutions when applying the conserva-
tive approach (I) and the optimised approach (II).

Threshold level False negatives Total epochs Percentage

Baseline 0 22099 1.000
≤ 0.00 (I) 0 18223 0.825
≤ 0.01 (I) 0 17160 0.777
≤ 0.05 (I) 0 15075 0.683
≤ 0.00 (II) 8 15899 0.719
≤ 0.01 (II) 7 14886 0.674
≤ 0.05 (II) 1 13023 0.590

For ease of readability and ease of reasoning about the results, the time saved by
implementing early termination with the help of fitness thresholds will be expressed in
training epochs in Table 5.6 and from here on out. For the time needed by a machine
to train a machine learning for a single epoch differs highly on the configuration and
system used, while the number of epochs required to evaluate a possible solution should
be constant.

5.3 Training dataset size

This experiment is split up in two segments, where in the first segment it is limited to
two proven designs of neural network architectures. These limitations are set in place to
have selections on which the impact on fitness score can be more easily observed. The
second segment in contrast considers a number of randomly generated genomes whose
performance is not known in advance.

In this first segment of this experiment two types of machine learning models will
be evaluated. A CNN and an MLP style genome, both genomes are based upon proven

45

(a) Wouters et al.[42]. (b) Schijlen et al.[16].

Figure 5.7: The time needed per epoch to train a neural network model depending
on the size of the partition of the training dataset used each epoch.

designs with good results. This is done in order to more clearly discern the impact of
limiting the number of data points used in each training epoch on both the performance
and training time in seconds. However, if instead for this part of the experiment random
genomes had been used to study the impact on performance there would be no guarantee
that these random genomes would evolve in a meaningful way over time during training.
For the MLP style genome the design will be that of the MLP as proposed by Wouters et
al. in [42]. The CNN style genome in turn is based upon the findings found in the original
NASCTY paper [16].

For the third experiment first segment two neural network architectures were trained
for 50 epochs and the fitness measured after each training session in their respective epochs.

This was repeated with different sized training data partitions as defined in Table 4.1,
limiting the number of unique random data points used from the original complete training
dataset with the goal of improving the time needed for evaluating a genome’s fitness score.

The needed time per epoch for a model to train the model as seen in Figure 5.7 gives
us two distinct results. Both results have been found on a machine by training the models
on the GPU, as this is the primary way we expect that others would evaluate neural net-
work architectures and run the NASCTY algorithm. The results for Wouters et al. [42]
shows that as an MLP style neural network architecture, the needed time per epoch for
training is shown to scale linearly with the size of training dataset partition. The neural
network architecture proposed by Schijlen et al. [16] shows a similar behaviour for the time
needed to train the network for a single epoch. Both therefore seem to scale and behave in
an identical manner if not only for the difference in the amount changed per step up in size.

The second category of results collected in this experiment are the fitness score per
epoch for the neural network models. This information is collected with the intention
of highlighting the impact of reducing the partition size of training data on the fitness
score achieved in the evaluation of the neural network models. They show the impact
of changing the training set partition size used in evaluating the neural network archi-
tecture. For both Wouters et al. [42] and Schijlen et al. [16] seem to be sensitive to any
of the changes made to the size of training dataset partition sizes, and also reflect these
immediately within the fitness score. This causes linearly longer training times for similar

46

(a) Wouters et al.[42]. (b) Schijlen et al.[16].

Figure 5.8: Evaluation fitness per epoch with different partition sizes for the train-
ing dataset size.

results. While also having trouble reaching the same values as the complete dataset when
not making use of the complete dataset each training epoch.

With these two well performing neural network examples, a twenty additional random
generated genomes have been trained for 50 epochs with differing sized partitions. The
impact of the size the partition used for training each possible solution on the time needed
for evaluating such a possible solution, can be seen in Figure 5.9.

Figure 5.9: The time needed per epoch to train a neural network model depending
on the size of the partition of the training dataset used each epoch for twenty
random neural network designs.

These show a similar image to the results begotten earlier for the two proven designs
with an increase in the time needed for training scaling equally to the number of data
points in the training partition.

However, any decrease in time spending training with the reduced training dataset

47

(a) 10 epochs. (b) 50 epochs.

Figure 5.10: The evaluation fitness dispersion of twenty random neural network
designs at the end of 10 (A) and 50 (B) epochs when trained with different partition
sizes.

partition comes at the cost of the potential and performance of the different genetic algo-
rithm. Figure 5.10 shows us the dispersion of the different neural networks when trained
with different partition sizes, and show that the more one limits the number of data points
available in the training of the neural network the more limited its resulting performance
will be.

48

5.4 Population size

For the third experiment, we collected metrics of ten different population size constraints
for the NASCTY genetic algorithm. These ten different population size follow the values
defined in Table 4.2, we ran the NASCTY algorithm ten times per population size param-
eter option. The metrics recorded allow us to contrast and inspect the results in the areas
of convergence, diversity, and coverage.

Figure 5.11: The mean validation fitness per generation of the best genome in the
current population.

The convergence in these measurements are measured as the improvement in fitness
score over each of the generations of the genetic algorithm. While the mean best solution
in the population each generation as seen in Figure 5.11 gives a fine rough overview of the
improvement in convergence. This is most visible in the speed of how larger populations
descent and stagnate at an earlier generation compared to the other smaller populations.
Two interesting outliers are the two smallest population options, with population sizes of
10 and 20 respectively, these seem to struggle with converging upon a single solution a lot
more than those with greater population numbers.

A box plot of the dispersion found of the different fitness values at the end of the
50th epoch is presented in Figure 5.12 shows the different dispersion of twenty runs with
different population sizes and their general effect and spread on the resulting quality of
the final solutions produced.

An important metric for making sure that the complete population is converging upon
a single optima is the usage of diversity metric. From such a metric one can infer multiple
statements regarding the genetic algorithm. For a normal genetic algorithm the general
form of these metrics are an indication of how the initial completely random population

49

Figure 5.12: The validation fitness of the best genome in the current population at
the 50th generation.

moves closer to each other over time. It is also an indication of the ability of the genetic
algorithm to diversity its population and maintain enough of a diversity within a popula-
tion as to be more able to escape local optimum. The findings seen in Figure 5.13 show
the diversity of the genetic algorithms over time measured in generations. The diversity
measured is the mean distance between each of the genomes in a population.

One interesting fact that stands out is the steep reduction of the diversity among all
population sizes in the first twenty generations. This seems to somewhat stabilise after
that point, this coincides with the witnessed stagnation of the convergence around the
same time.

The coverage metrics of these runs collect and enumerate the number of unique genomes
visited in the population. This too is done by converting all the genomes into points on
an Euclidean space. With the genomes converted into coordinates, the next step then is
removing all duplicate coordinates and tallying the amount. These measurements have
been moved to Appendix D as they are more of a safeguard for checking that the ge-
netic algorithm is actually exploring the search space in a non-predictable manner and
not repeatedly visiting the same genome designs.

50

Figure 5.13: The population diversity measured as the mean distance between
genomes per generation.

51

Chapter 6

Complexity

These findings below are the results of experiments with the goal of answering the research
question RQ2.

Each of the below experiments explore one of the possible given directions for a custom
fitness function whose job it is to limit unneeded complexity in the results of the genetic
algorithm. For the two definitions given in Section 4.5.2 of the unneeded complexity of the
genetic algorithm three different custom fitness functions have been designed. All three
function are influenced by the parameters α and β denoting the strength of the modifiers
used in the function. Custom fitness function I makes solely use of the α parameter and
custom fitness function II is only concerned with parameter β, with custom fitness function
III combining both indicators for unneeded complexity in the same function, and in turn
makes use of both the α and β parameters.

For this the experiments then too follows the same order of custom fitness function
and will discover the impacts and effectiveness of both custom fitness function I and II for
both improving on the fitness scores and more importantly on the complexity metrics of
the population.

Therefore, this experiment is split up into two steps. In the first step, each of the two
custom penalty functions parameters will be evaluated as defined in Table 4.3 while the
other parameter is set to 0. This is to test and see the effect of only one of the penalty
functions on the custom fitness function. For this 35 runs of the genetic algorithm will be
held for 10 generations.

After comparing both ranges of parameters and custom fitness functions on their own
to the baseline where both α and β are equal to 0, the second step of the experiment will
commence. In the second step of this experiment, all possible combinations of parameters
for both α and β will be evaluated by running 30 times the genetic algorithm with a 10
generations time limit.

Having found our best performing custom fitness function parameters for both the α
and β values, the most promising of parameter combinations will be extended to a 20
generation run of the algorithm. This extension from 10 to 20 generations is to highlight
the growing divergence between the results.

6.1 Parameter count

Figure 6.1 displays the final fitness performance of the best performing solutions in the then
current genetic population. These numbers have been acquired after running the genetic
algorithm for 10 generations with a custom fitness function as defined in Equation 4.1 and
substituting all values for α as described with those in Table 4.3 with β being equal to

52

Figure 6.1: The fitness score of the genetic algorithm after 10 generations with the
use of custom fitness function I.

0 in all tested cases. This experiment has been performed for 35 individual times for all
different values for α.

Aiming to disprove the hypothesis that all custom fitness parameter α measurements
are the same as the baseline values for convergence, parameter count, and unintuitive
design choices. A Kruskal-Wallis [60] test will be conducted on the measurements in order
to gauge if any of the measurement distributions differ from the complete group. If found
to be the case that there are differences between all the measurement sets in the group,
a post-hoc pairwise comparisons using the Mann-Whitney [61] test will be conducted to
find and prove if results are (dis)similar.

The Kruskal-Wallis calculated p-value for the convergence metrics is 0.0110 for the
custom fitness function I, suggesting that the custom parameter α has for certain values
enough of an impact to shift the distribution.

Table 6.1: The two-sided p-values for the fitness measurements of custom fitness
function I calculated with the Mann-Whitney U test against the baseline.

α p-value H0 rejected

1 0.3813 Failure
5 0.0116 Success
10 0.9679 Failure
50 0.3625 Failure
100 0.0302 Success

53

Making use of the Mann-Withney test allows us to test the individual α parameter
values with the baseline against the hypothesis H0 stating that both groups of measure-
ments share the same distribution and therefore have no significant difference in medians.
Table 6.1 contains the p-values calculated for the α parameter values against the baseline,
showing that for both α parameter values 5e-7 and 100e-7 the impact is great enough to
reject H0. Comparing that with the values shown in Figure 6.2 it can be easily surmised
that for α being equal to 5e-7 the fitness score is positively impacted and shows better
performing numbers. In contrast, when α is equal to 100e-7 the fitness score is seen to be
shifted negatively enough to reject the hypothesis.

(a) Parameter count. (b) Unintuitive design choices.

Figure 6.2: The unneeded complexity metrics after 10 generations when making
use of custom fitness function I of the population.

The effectiveness of the usage of using custom fitness function I in curbing some of the
tendencies to not reduce the amount of unneeded complexity in the genome population
can be best described by measuring and comparing the metrics of unneeded complexity. In
Figure 6.2 both the number of parameters in the models for each genome in the population
at the final generation was calculated and recorded, and the number of unintuitive design
choices were recorded.

Table 6.2: The two-sided p-values for the parameter count (A) and unintuitive
design choice (B) measurements of custom fitness function I calculated with the
Mann-Whitney U test against the baseline.

α p-value H0 rejected

1 0.0000 Success
5 0.0000 Success
10 0.0000 Success
50 0.0000 Success
100 0.0000 Success

(a)

α p-value H0 rejected

1 0.0055 Success
5 0.9204 Failure
10 0.0000 Success
50 0.0000 Success
100 0.0000 Success

(b)

Both the p-values calculated for the parameter count and unintuitive design choices
measurements when calculated for the Kruskal-Wallis was 0. The individual measurements
for the Mann-Withney tests can be found in Table 6.2. The values calculated in Figure 6.2

54

show that lower values for α (i.e. 1e-7, 5e-7, and 10e-7) seem to give better values for the
parameter count metrics while incidentally also reducing the number of unintuitive design
choices. The larger values for α (i.e. 50e-7 and 100e-7) do not seem to benefit either the
parameter count, unintuitive design choice, and convergence metrics.

(a) Parameter count. (b) Unintuitive design choices.

Figure 6.3: The unneeded complexity metrics after 10 generations when making
use of custom fitness function I of the best performing genomes in the population.

The same calculations were then repeated for the single best performing solution in the
population at the end of 10 generations. This limits our number of data points available
and lets us focus on the most important genome and final result in a genetic algorithm.
The results of which can be found in Figure 6.3 showing similar but more concentrated
results. Reducing the number of outliers.

The figure shown in Figure 6.2 for the unintuitive design choice metric shows all the
options considered for parameter value. However, the values presented in the figure related
to the median are either very close or similarly close to zero. To distinguish which of the
custom fitness function I measurement distributions can be considered the best in reducing
the unintuitive design choices in the global population, the different populations where
pitted against each other. First, the α′ confidence is the modified Bonferroni correction
confidence, done so to account for the multiple groups used in the calculation of the best
performing group. The overall significance level α of 0.05 in use for rejecting the m null
hypothesis’s for each of the groups. This results in the following equation for calculating
the corrected significance level α′:

α′ =
α

m
(6.1)

Then each of the groups is pitted against the others comparing the one-sided lesser p-value
against the corrected α′ tallying the number of rejections of the lesser null hypothesis. This
results in a table as seen in Table 6.3 where the time that a measurement group could be
considered as having rejected the hypothesis on the lesser side with a singe-sided p-value
less than the corrected significance level α′.

From the values displayed in Table 6.3 the higher values for α (i.e. 10e-7, 50e-7, and
100e-7) stand out as better performing as their peers. Surprisingly, the baseline value zero
scored the worst of all options with the lower α values scoring but in one metric some
improvement over the baseline.

55

Table 6.3: The tallied number of better performing instances per parameter α when
compared to all other options including the baseline value of zero with (I) signifying
the population metrics and (II) denoting the metrics for the best performing genome
in the population.

0 1 5 10 50 100

Parameter count (I) 0 0 0 3 4 5
Parameter count (II) 0 0 0 0 4 4
Unintuitive designs (I) 0 1 1 3 4 5
Unintuitive designs (II) 0 0 0 3 4 5

6.2 Unintuitive design choices

Figure 6.4: The fitness score of the genetic algorithm after 10 generations with the
use of custom fitness function II.

Similarly to the findings for custom fitness function I, for custom fitness function II the
Figure 6.4 displays the final fitness performance of the best performing solutions in the then
current genetic population. These numbers have been acquired after running the genetic
algorithm for 10 generations with a custom fitness function as defined in Equation 4.1 and
substituting all values for β as described with those in Table 4.3 with α being equal to
0 in all tested cases. This experiment has been performed for 35 individual times for all
different values for β. The values for α have been chosen for extended runs in order to
better observe the impact on the convergence metrics. The β parameter values have not
been selected as the impact on convergence was found to be negligible and could be said
to originate from the same distribution.

Unlike the measurements obtained for custom fitness function I, the impact as seen
in Figure 6.4 on the fitness score does not seem to differ when confronted with custom

56

Table 6.4: The two-sided p-values for the fitness measurements of custom fitness
function II calculated with the Mann-Whitney U test against the baseline.

α p-value H0 rejected

1 0.9016 Failure
5 0.4062 Failure
10 0.4590 Failure
50 0.5606 Failure
100 0.8924 Failure
1000 0.2822 Failure

fitness function II. The p-value of 0.6222 acquired after running the fitness scores through
the Kruskal-Wallis test then too is not enough to reject the null hypothesis H0 stating
that the groups are from the same distribution. Therefore, the individual Mann-Withney
p-values as seen in Table 6.4 are also not able to reject the null hypothesis H0.

(a) Parameter count. (b) Unintuitive design choices.

Figure 6.5: The complexity metrics after 10 generations when making use of custom
fitness function II of the population.

The parameter values for β impact on the complexity metrics can be seen in Figure 6.5.
They show that the impact on the intended goal of reducing unintuitive design choices
for the lower options (i.e. 1e-3, 5e-3, and 10e-3) is palpable with some outliers on the
complete population. For the smallest β values (i.e. 1e-3 and 5e-3) they seem to have an
impact on the parameter count of the model in the population after 10 generations.

The measurements gathered of the complete population have also been considered for a
null hypothesis to ascertain a difference in all the complexity metrics. The Kruskal-Wallis
tests for both complexity metrics returned 0.0000, and the individual low scoring p-values
for the individual groups have been collected in Table 6.5.

Figure 6.5 and Figure 6.6 display the complexity metrics for both the complete pop-
ulation and the best genome in each of the data point population. These result show an
overall lesser impact at all to the overall fitness progression of the genetic algorithm and
a minimal impact on the unneeded complexity of the population.

The numbers presented in the figures of Figure 6.5 and Figure 6.6 show for some of the
parameter choices β similar scores. As done with custom fitness function I, the groups were

57

Table 6.5: The two-sided p-values for the parameter count (A) and unintuitive
design choice (B) measurements of custom fitness function II calculated with the
Mann-Whitney U test against the baseline.

α p-value H0 rejected

1 0.0320 Success
5 0.0000 Success
10 0.0000 Success
50 0.0000 Success
100 0.0000 Success
1000 0.0000 Success

(a)

α p-value H0 rejected

1 0.0000 Success
5 0.0000 Success
10 0.0000 Success
50 0.0000 Success
100 0.0000 Success
1000 0.0000 Success

(b)

(a) Parameter count. (b) Unintuitive design choices.

Figure 6.6: The unneeded complexity metrics after 10 generations when making
use of custom fitness function II of the best performing genomes in the population.

Table 6.6: The tallied number of better performing instances per parameter β when
compared to all other options including the baseline value of zero with (I) signifying
the population metrics and (II) denoting the metrics for the best performing genome
in the population.

0 1 5 10 50 100 1000

Parameter count (I) 0 0 4 1 4 6 4
Parameter count (II) 0 0 0 0 0 2 0
Unintuitive designs (I) 0 1 1 2 4 5 5
Unintuitive designs (II) 0 0 0 0 0 5 5

pitted against each other in order to highlight the better scoring groups on the metrics.
These tallied rankings can be found in Table 6.6 and from their the impression can be
gathered that once more the better scoring metrics come from the higher β values. The
β value of 100 seems to score the most reliably and best over the different metrics and
measurements.

58

6.3 Composite custom fitness function

As with custom fitness function I and II for custom fitness function III results are composed
of 35 runs for 10 generations of the genetic algorithm. The complete overview of complexity

(a) α = 0e-7. (b) α = 1e-7.

(c) α = 5e-7. (d) α = 10e-7.

(e) α = 50e-7. (f) α = 100e-7.

Figure 6.7: The number of model parameters in the end result of the genetic
algorithm after 10 generations with the use of custom fitness function III.

59

impact for all combinations of α and β can be seen in Figure 6.7 and Figure 6.8 where
each of the combinations are laid out per plot such that each plot represents a constant for
α and the differing values are from the β parameter options. The figures for the genetic
algorithm related to both the convergence and complexity of the population metrics can
be found in the Appendix E.

Figure 6.7 showcases the impact of parameter β when taken together with parameter
α. The higher values of β (i.e. 50e-3 and 100e-3) consistently give stronger results than the
lower values and extremes. However, while more predictable over the scala of α options
the lower values for β (i.e. 5e-3 and 10e-3) seem to score better on the higher values of α
when scoring it on the numbers of parameters of the end result.

Figure 6.8 presents the combined impact of the α and β parameter values on the
number of unintuitive design choices in the end result of the genetic algorithm when run
for ten generations. The higher values of β (i.e. 50e-3, 100e-3, and 100e-3) seem to have
significant impact on reducing the number of unintuitive design choices regardless of the
α parameter chosen.

60

(a) α = 0e-7. (b) α = 1e-7.

(c) α = 5e-7. (d) α = 10e-7.

(e) α = 50e-7. (f) α = 100e-7.

Figure 6.8: The number of unintuitive design choices in the end result of the genetic
algorithm after 10 generations with the use of custom fitness function III.

61

6.4 Most promising parameters continued

From the results provided in the above sections regarding the different custom fitness
functions, a number of most interesting custom fitness function combinations have been
selected for extended review. Those selected have been chosen on criteria of most promis-
ing in increasing the quality of best genomes in the population in both the unneeded
complexity and fitness score metrics.

Figure 6.9: The fitness score of the genetic algorithm after 20 generations with the
use of custom fitness function I.

Figure 6.9 shows a more in depth exploration of certain parameter combinations taken
from 35 runs of the genetic algorithm for 20 generations. From these guidelines stated
above, the custom fitness functions parameters of custom fitness function I were chosen
as the most interesting to explore further. The parameter α of custom fitness function I
deals with the impact of the size of the neural network in parameter count. As both seen
in Figure E.1 and Figure 6.4 the second custom fitness function (II) parameter β is stable
when viewed as the fitness score over time. Whereas, custom fitness function I does have
some variation in the fitness scores based on what value has been chosen for parameter α.

The fitness score of the best performing genome in the population experiences a neg-
ative shift up when dealing with high α values of 50e-7 and 100e-7.

Figure 6.10 in contrast does show that the higher values for α do impact the parameter
count and unintuitive design choices. From this one can deduct that while custom fitness
function I does not aim to directly reduce the unintuitive design choices, higher values
for α do definitely reduce the probability that genomes with unintuitive design choices
are propagated. This also suggest that because the size of neural networks in layers (and
therefore parameters) is often related to the number of possible unintuitive design choices.

62

(a) Parameter count. (b) Unintuitive design choices.

Figure 6.10: The unneeded complexity metrics after 20 generations when making
use of custom fitness function I of the population.

(a) Parameter count. (b) Unintuitive design choices.

Figure 6.11: The unneeded complexity metrics after 20 generations when making
use of custom fitness function I of the best performing genomes in the population.

63

Chapter 7

Premature convergence

These results in this section were collected as part of experiments conducted with the goal
of answering research question RQ3. The three anti-early stagnation strategies defined in
Section 4.5.3 have been implemented for this experiment and research question. With the
three scenarios implemented, 30 runs of the genetic algorithm for all three scenarios were
conducted for the length of 75 generations and a population size of 50.

Figure 7.1: The fitness score of the genetic algorithm after 75 generations with
differing anti-stagnation strategies employed.

The fitness scores as recorded –and seen in Figure 7.1– of the genetic algorithm after
75th generations give the impression that all of them belong to the same distribution.
That would mean that the anti-premature convergence strategies have been unsuccessful
in improving fitness scores. In order to test if this null hypothesis is indeed correct a test
has been done in order to reject this hypothesis. The Kruskal-Wallis test was conducted
and the resulting p-value of 0.3109 for the different strategies and the baseline fail to reject
the null hypothesis with a confidence level of 95%.

This is in contrast with the expectations set by Figure 7.2, these do give the impression

64

Figure 7.2: The mean fitness score of the genetic algorithm over 75 generations
with differing anti-stagnation strategies employed.

of having an sizable impact on the best performing fitness score.

Unlike the impact on convergence metrics the different anti-premature convergence
combatting strategies do seem to excel in maintaining the diversity levels. The upkeep of
diversity levels using the anti-premature convergence strategies can be seen in Figure 7.3.

However, this claim requires the statistical assurance that indeed these samples do not
share the same distribution. The diversity results too were subjected to the Kruskal-Wallis
test to prove that they do not belong to the same distribution. The diversity scores at
the 75th generation –as seen in Figure 7.3– represent the mean distance between genomes,
and serve as the basis for our analysis. These values show how well the genetic algorithm
has been able to maintain diversity. If the Kruskal-Wallis test is not able to disprove null
hypothesis H0, and that they share a distribution.

The calculated p-value for the diversity of measurements is 0.0625. While unable to
prove that all samples do not share the same distribution, the p-value itself here is rather
low. This might hint that a single strategy might differ enough from the baseline config-
uration.

The final part of this chapter concerns itself with the scoring of the individual anti-
premature convergence strategies against the baseline configuration for both the conver-
gence and diversity metrics. For this each of the individual results belonging to an anti-
premature convergence strategy was compared to the baseline configurations for both the
convergence and diversity. The Mann-Whitney U test performs each of the comparisons.
Table 7.1 displays these results from the test. For the convergence metrics, none of the
strategies would result in string enough metrics. Metrics able to reject the null hypothesis
H0 claiming that they share the same distribution. Although, the p-value for the partial

65

Figure 7.3: The population diversity measured as the mean distance between
genomes per generation after 75 epochs with differing anti-stagnation strategies
employed.

restart strategy was substantially lower than the other strategies.

In contrast, when analysing the diversity metrics in the same way, the partial restart
strategy can claim improvements over the baseline. The other strategies fail to reject the
null hypothesis with values higher than 0.0500. The partial restart strategy is able to
reject the null hypothesis with a p-value of 0.0106. Thereby, proving the partial restart
strategy as a viable method of maintaining diversity within the population.

Table 7.1: The two-sided p-values for the fitness score (A) and mean distance (B)
measurements of the anti-premature convergence strategies, calculated with the
Mann-Whitney U test against the baseline.

Strategy p-value H0 rejected

η = 10 0.7620 Failure
Ranked mutation 0.9607 Failure
Partial restart 0.1264 Failure

(a)

Strategy p-value H0 rejected

η = 10 0.7089 Failure
Ranked mutation 0.2395 Failure
Partial restart 0.0106 Success

(b)

66

Chapter 8

Combined result

This last chapter of the results, will combine the best elements of the alterations made
in the previous selection into one new genetic algorithm. These alterations based upon
the previously collected results to the genetic algorithm will be tested against the original
NASCTY algorithm. For this 10 runs of 75 generations with a population size of 100 will
be conducted on the synchronized ASCAD dataset before moving onto the desynchronised
dataset at desynchronisation level 50 and 100. The choice to test the modified algorithm
on the fixed key dataset on desynchronisation level 0, 50, and 100 together with the
synchronised variable key ASCAD dataset, comes down it being common datasets. From
these runs the best end results will be filtered from the results and trained for a longer
period of time. The best possible solution for each situation is then evaluated on the
attack section of the ASCAD dataset.

8.1 Selected modifications

The selected alterations for the modified NASCTY genetic algorithm come as a result from
the findings of Chapter 5, Chapter 6, Chapter 7 along with the discoveries done discussing
the results in Chapter 9.

From Chapter 5 the early termination policy and the accompanying threshold values
for the conservative approach are taken.

From Chapter 6 the custom fitness function as defined in Equation 4.1 is taken and
implemented. The chosen values for parameter α 5e-7 and β 100e-3 based upon the
complexity minimising - convergence cost trade-off. Chapter 9 delves into the reasoning
behind the parameter value choices in further detail.

From Chapter 7 the partial replacement is taken as the anti-premature convergence
strategy. None of the proposed strategies for combatting premature convergence performed
well enough –or worse enough– for the results to be considered significantly better than
the baseline. However, the partial replacement does seem to maintain a higher level of
diversity than the baseline. In theory a higher level of diversity might make it easier for a
genetic algorithm to escape a local optimum. For the full array of augments and reasons,
Chapter 9 contains the more points of discussion.

67

8.2 Synchronised fixed key ASCAD dataset

(a) Fitness. (b) Parameter count.

Figure 8.1: The algorithm end result’s fitness score (A) and number of parameters
(B) when dealing with the fixed key non-desynchronised ASCAD dataset.

The first benchmarking dataset considered is the fixed key non-desynchronised ASCAD
dataset. It is the easiest of the datasets to attack from benchmarking datasets considered.

This benchmark has served as the source dataset for ten runs. These ten runs, were
run both using the stock configuration of the NASCTY algorithm and contrasted against
the proposed modified algorithm.

Every run the population over time was recorded. From these the most important
gene for our purposes is the best performing gene in the last generation.

Figure 8.1 shows us the fitness score and number of model parameters. It shows a slight
sacrifice in fitness score stability while gaining a great reduction of the model parameters.

(a) Baseline.

(b) Modified.

Figure 8.2: The best genome designs produced by (A) baseline configuration and
(B) modified algorithm for the non-desynchronised ASCAD dataset.

From the ten benchmarkings, the best performing (i.e. the lowest fitness score value)
end result is selected for further training. Figure 8.3 shows the two runs from the end
result was chosen. These genomes get an additional 40 training epochs, for a total of 50.
The same figure shows a difference in run time characteristics. The original algorithm
displays a stable progression plateauing just after the twentieth generation. In contrast,
the modified configuration is more likely to have temporary regressions in the its run. It
is not in comparison with the original algorithm as likely to get stuck in local optima.

68

Figure 8.3: The fitness progressions of the best runs for the stock and modified
configuration for the non-desynchronised ASCAD dataset.

Figure 8.2 two best performing genomes and their design. The baseline configuration
algorithm came up with a multilayer perceptron design with 7953 model parameters. In
the testing done in this paper this model was able to obtain a key rank of 0 after 150
traces.

The genome proposed by the modified algorithm is a smaller convolutional algorithm
coming in with a 6716 model parameters. It requires only 88 traces to obtain a mean key
rank of 0.

Figure 8.4 shows similar findings with the convolutional neural network achieving the
key rank 0 quickly and the baseline proposed solution failing to do so.

Figure 8.4: The mean performance of the best performing neural network result
over 100 folds for the non-desynchronised ASCAD dataset.

69

8.3 Desynchronised level 50 fixed key ASCAD dataset

(a) Fitness. (b) Parameter count.

Figure 8.5: The algorithm end result’s fitness score (A) and number of parameters
(B) when dealing with the fixed key level 50 desynchronised ASCAD dataset.

The benchmark runs for level 50 desynchronised fixed key ASCAD dataset measure-
ments number five total. These runs show the modified algorithm struggling.

As with the previous measurements for the non-desynchronised dataset, the modified
algorithm is successful in the reduction of model parameters in the end result. However,
as seen in Figure 8.5 the modified algorithm struggles with finding promising solutions.
The original algorithm did not have any problems in finding solutions for this problem.
It is as also rather uncaring as to the size of the end result. This is tendency is displayed
in both the results for non-desynchronised dataset and the easier synchronised fixed key
dataset.

Figure 8.6: The fitness progressions of the best runs for the stock and modified
configuration for the level 50 desynchronised ASCAD dataset.

Figure 8.6 reflects similar as the previous results. The modified algorithm over its best

70

runs is barely able to improve its fitness scores.

(a) Baseline. (b) Modified.

Figure 8.7: The best genome designs produced by (A) baseline configuration and
(B) modified algorithm for the fixed key level 50 desynchronised ASCAD dataset.

The genomes of that best run –seen in Figure 8.7– give a hint as to the nature of the
modified algorithms struggles. The design chosen by the baseline configuration consists of
four convolutional blocks before leading into but a single dense layer of eight neurons. It
is able to achieve a mean key rank of 0 in 300 traces using 214 850 model parameters. The
end result genome of the modified algorithm is the smallest possible multilayer perceptron
design possible within the constraints of the NASCTY genome design. It fails to achieve
a mean key rank of 0.

71

Figure 8.8: The mean performance of the best performing neural network result
over 100 folds for the fixed key level 50 desynchronised ASCAD dataset.

8.4 Desynchronised level 100 fixed key ASCAD dataset

(a) Fitness. (b) Parameter count.

Figure 8.9: The algorithm end result’s fitness score (A) and number of parameters
(B) when dealing with the fixed key level 100 desynchronised ASCAD dataset.

As with the fixed key level 50 desynchronised ASCAD dataset benchmark, the bench-
mark was run for five times. Figure 8.9 shows both configurations of the algorithm struggle
with producing promising end results.

72

Figure 8.10: The fitness progressions of the best runs for the stock and modified
configuration for the fixed key level 100 desynchronised ASCAD dataset.

The best runs –seen in Figure 8.10– of both configurations make almost no progress
over time. Figure 8.11 shows two designs, the greatest commonality between the designs is
the rather larger number of dense layer blocks. The modified algorithm’s design has 1338
model parameters and the original algorithm’s design has 32937. The larger model of the
baseline configuration is able to obtain a mean key rank of 0 in 4962 traces. In contrast,
the smaller modified algorithm’s genome is unable to achieve a mean key rank of 0.

Figure 8.12 show that the performance expressed as key rank per trace count is poor
when evaluated on the attack dataset. Both models hovering around the start position.

73

(a) Baseline. (b) Modified.

Figure 8.11: The best genome designs produced by (A) baseline configuration and
(B) modified algorithm for the fixed key level 100 desynchronised ASCAD dataset.

74

Figure 8.12: The mean performance of the best performing neural network result
over 100 folds for the fixed key level 100 desynchronised ASCAD dataset.

8.5 Synchronised variable key ASCAD dataset

(a) Fitness. (b) Parameter count.

Figure 8.13: The algorithm end result’s fitness score (A) and number of parameters
(B) when dealing with the variable key non-desynchronised ASCAD dataset.

The final dataset up for benchmarking is the variable key non-desynchronised ASCAD
dataset. The benchmark was run for three full runs for both configurations. As with the
other datasets and benchmarks, the modified is able to reliably create significantly smaller
end results. Figure 8.13 shows the reduction in both end result size and performance.

Figure 8.14 also repeats similar findings. The baseline configuration is able to find well
performing designs according to the validation set. The modified algorithm is unable to
find any improvements over its runtime.

The design –as laid out in Figure 8.15– for both the original algorithm and for the

75

Figure 8.14: The fitness progressions of the best runs for the stock and modified
configuration for the variable key non-desynchronised ASCAD dataset.

modified algorithm betray something of the internal turmoil and origin of the modified
algorithms problems. The convolutional genome design seems to be formed directly as a
response to the quest of finding the best performing algorithm. It is a 128 524 parameter
design and unable to obtain a mean key rank of 0. In contrast, the multilayer perceptron
design of the modified algorithm seems to be a direct response from the difficulty of finding
a solution coupled with a strong complexity penalty. It is a 783 parameter design also
unable to attain a mean key rank of 0.

From the numbers presented in Figure 8.16 the modified algorithm’s design seems to
outperform the original algorithm’s design. This while the original convolutional network
design scored much better in with the training and validation datasets.

76

(a) Baseline. (b) Modified.

Figure 8.15: The best genome designs produced by (A) baseline configuration and
(B) modified algorithm for the variable key ASCAD dataset.

77

Figure 8.16: The mean performance of the best performing neural network result
over 100 folds for the variable key non-desynchronised ASCAD dataset.

78

Chapter 9

Discussion

This chapter discusses and interprets the findings of the experiments results from Chap-
ter 5, Chapter 6, Chapter 7, and Chapter 8 which where described in Chapter 4. The
experiments in turn hoped to shine a light upon the research questions posed in Chapter 3.
These discussions are to the basis from which the conclusions of this research are to be
made in Chapter 10.

9.1 Hyperparameters

The results found in Chapter 5 are mainly concerned with improving upon the genetic al-
gorithm hyperparameters with the goal of speeding up the time needed to conduct future
experiments and runs in general. These findings came from four different experiments,
and in turn were concerned with: evaluation time, implementing early stoppage policy for
evaluating genomes, reducing the training data partition size, and reducing the size of the
population of the genetic algorithm.

The first experiment shows that for accurately predicting the evaluation fitness score
of a genome after 50 epochs, ten epochs are needed. The space between the tenth and
twentieth epoch in prediction accuracy can be spoken of as plateauing. Continuing training
for more than ten epochs would lead to a high increase of time spent evaluating for almost
no gain.

Any reduction from the ten training epochs to less lead to a sharp decline in the pre-
diction accuracy.

The second experiment was mainly concerned with reducing the wasted training epochs.
For this it was conducting test to implement an early termination policy along with find-
ing fitness threshold values triggering an early termination. For this two approaches were
defined: a conservative approach which tries to limit the number of wasted training epochs
without missing any promising solutions; and an optimised approach geared toward more
strongly reducing training epochs by sacrificing the outliers.

The prospective reduction in training time measured in epochs aimed at the genomes
which have at least an improvement ∆ ≥ 0.01 is respectively ≈ 23% and ≈ 33% for the
conservative and optimised approach. The results also show that for 10% improvement in
time savings one loses ≈ 9% of promising solutions.

The third experiment is related to reducing the training time per epoch. It tries to
do this by limiting the training dataset partition size the neural network has access to.

79

The smallest of the partition sizes of 100 and 200 large produce unpredictable results.
The larger partition size seems to scale in a linear fashion to the divergence from the
starting training fitness score as they get larger. Ultimately, a partition size of 35600
matching the full size of the dataset is the most preferred choice. As any lower of a
value scales the possible improvement down, this reduced divergence allows for less of an
accurate prediction of performance. So, while smaller partition sizes promise significant
reductions in training time in seconds per epoch it comes at the cost of losing fitness
accuracy, predictability of results, and reliability making this not a worthwhile endavour
to consider.

9.2 Complexity

The results found in Chapter 6 paint a complex picture. Ultimately, the right combination
of α and β parameter values must be selected for the custom fitness function that reduce
the redundant complexity while not impacting the convergence and search abilities of the
genetic algorithm.

For the first parameter α higher values (i.e. 50e-7 and 100e-7) have shown to have
a negative impact on the fitness score. The impact on parameter count scales with the
strength given to α, with the strongest values also impacting the unintuitive choices metric.
One can deduce from these metrics that the impact of the higher α values is so strong
that it has a strong bias for selecting small networks that have few layers and therefore
in turn fewer possible unintuitive choices. It hints at the possibility that the solutions
considered for propagation into the next generation are significantly reduced. The lower
values considered values for α in turn do not seem to reduce the search space in a fashion
akin to the higher α values.

Therefore, the values considered for α as the improving the genetic algorithm in a pos-
itive manner while reducing the parameter count are on the lower end of the considered
spectrum (i.e. 1e-7, 5e-7, and 10e-7).

All the values considered for parameter β, in contrast with the α parameter values
considered seem not to posses enough strength to sway the fitness score of the genetic
algorithm. The aimed for impact on unintuitive design choices can be seen reliably by
all the β values excluding 1e-3 when viewed for the complete population. However, when
zoomed in on only the best performing genome in the population only the β values of
100e-3 and 1000e-3 seem to have any significant impact. From the overview of the better
solution the β value of 100e-3 seems to score the strongest on the metrics.

The trade-off of minimising the complexity on one hand and not degrading the con-
vergence performance on the other hand steers us to certain preferred α and β parameter
combinations for the custom fitness function.

All values for α have a visible impact on the parameter count recorded. Additionally,
the higher values of α have noticeable negative impact on the convergence of the genetic
algorithm. Therefore, the values 50e-7 and 100e-7 are discounted from further considera-
tion as suitable parameter choices. For the β value, the choice is set on the dependable
100e-3 which scores in a predictable manner across any of the α combinations for the
unintuitive design choice metric. This leaves the parameter count metric as the one to
score the α choices on. One can turn to the custom fitness function III results collected
to get a global overview of all the metrics of associated with these unknowns.

80

Taking in account these findings, the recommendation for the α parameter falls to 5-e7
and for the β parameter to 100e-3.

9.3 Premature convergence

The main point of discussion for the anti-premature convergence is the lack of success for
improving on the genetic algorithm’s ability to discover better solutions compared to the
baseline. Even though the figures (as seen in Figure 7.2 and Figure 7.1) seem to suggest
that the partial restart strategy is a successful avenue for improving the fitness score as
a result of more easily being able to escape local optima. The statistical test performed
on the results failed to reject the null-hypothesis. However, while the strategies failed
to achieve provable improved convergence fitness score metrics, the diversity of the pop-
ulation maintained a higher level of diversity. Statistical tests proved that one strategy
does not share a distribution with the baseline configuration. Proving it to be a successful
strategy for maintaining the diversity in a population. The partial replacement strategy
performed the best of the strategies in this metric followed by the ranked mutation strat-
egy and lastly the strengthening of the mutation strength η from 20 to 10. The ranked
mutation is not considered a good enough solution to the premature-convergence tenden-
cies of the genetic algorithm as its requires an additional evaluation phase of the offspring
in order to calculate the mutation rate of the genomes. It is discounted as a solution as
the additional time spend ranking the offspring far outweighs any of the improvements
seen to the diversity levels.

The partial restart strategy is the solution with the strongest impact on both metrics.
It is therefore, the recommended strategy for maintaining diversity within the population.

9.4 Combined results

The benchmarking results clearly showcase the success and the improvements of the new
algorithm design while simultaneously presenting the downsides of the new approach.

The first benchmark gives us strong results in both complexity and performance. The
custom fitness function contributes to the improved end results.

It is the same custom fitness function that when dealing with more difficult datasets
struggles. The smaller improvements of possible promising solutions are offset by the
complexity penalties received. The modified algorithm then stops giving good and ac-
ceptable results. When it cannot optimise for the best solution in conjunction of reducing
complexity it will settle for just reducing complexity. Figure 8.7 perfectly represents this
conundrum, where the end result is simply the smallest possible design instead an accept-
able performing design.

In case the other modifications made to the new algorithm might help outperform the
original algorithm. Such opportunities might arise when dealing with more complicated
datasets. The results found in such cases are not able to disclose the effectiveness of the
anti-premature convergence on its own on those benchmarks.

81

Chapter 10

Conclusion

This is the final chapter of this thesis. In it the context of the thesis is discussed along
with the limitations of this research. Followed by possible avenues for future work to
investigate. The last part concludes this thesis with the main takeaways of this thesis’
research.

10.1 Context

This thesis is written as an extension of the NASCTY algorithm. In it the aim was to
explore the usage of automated search algorithms for designing neural network architec-
tures matching or even outdoing the previously researched manually constructed neural
networks. Specifically, this thesis is tries to overcome the limitations of the NASCTY al-
gorithm respect to redundant complexity of its end results and the premature convergence
tendencies of the algorithm.

To answer and solve these limitations a custom fitness function has been designed to
combat the redundant complexity of the end results and a strategy has been implemented
and tested to combat the premature convergence tendencies.

10.2 Limitations

This section discusses the limitations this thesis was faced with and in what forms it
manifested. The greatest limitations came forth from the lack of computational time
allotted to conducting the experiments. Even though the time allocated for this thesis is
on the larger side, it does not take away the consumptive nature of this research.

One limitation of this thesis is in regard to the numerous α and β parameter combi-
nations considered. If given more time, the certainty of the impact on convergence might
be stronger if it had been possible to experiment for more generations.

Similarly, if more time had been available for testing an additional anti-premature
convergence strategy, more strategies might have been implemented and tested.

Lastly, the modified genetic algorithm together with the unmodified NASCTY algo-
rithm might have been able to run on the different ASCAD datasets for more than ten
runs. That would allow for more and better end results, together with the establishing of
a more clear and expected view of performance.

The limitations of the modified NASCTY algorithm are twofold. Starting with the
smallest one, the current method of reducing the time spent evaluating genomes’ pheno-

82

types is dependent on the used dataset. The fitness thresholding policy requires of the
user that they calculate these thresholds before running the algorithm.

The second and more important limitation is that the complexity minimising approach
proposed has not been as generalisable as aimed for. The algorithm when run with different
datasets needs the optimal parameters for the custom fitness function. These must be
acquired before running the algorithm. Currently, this is a tedious and time consuming
activity.

10.3 Future work

As a compliment to the limitations section, this section will discuss the possible avenues
if further future research works.

The newly proposed implementation suffers a large limitation. Its importance stems
from its reliance on previously calculated values for the custom fitness function. The
discovered parameter values for the fitness function seemed not as easily transferred to
other datasets. One possible direction that could be taken to reduce the complexity of
end results in a more dependable and generalisable way would by making use of a multi-
objective optimization.

In addition, further research in the area of using genetic algorithms for automating
neural network designs might focus on implementing other premature convergence com-
batting strategies.

10.4 Takeaways

This thesis has shown that a complexity-minimising approach is feasible direction for im-
proving upon the exiting NASCTY algorithm.

Additionally, we have been able to implement a method for minimising the complexity
of our results that still respects the efficacy of the algorithm. However, the custom fitness
function has turned out to be not the ideal solution. It suffers from not being as gener-
alisable to other problem sets as much as hoped. This is a possible point of improvement
in further research.

The research put into alleviating the problems of premature convergence have deliv-
ered us a successful strategy. Partial replacement of the population when confronted with
a plateauing run has shown to be good for maintaining population diversity.

Finally, benchmarking the modified algorithm against the baseline configuration has
shown that this approach is an improvement in performance and complexity when in-
stantiated with the proper custom fitness function parameters. In case of the fixed key
non-desynchronised ASCAD, the reduction of needed traces for obtaining mean key rank
0 was roughly 71% while using 36% less neural network model parameters. Parameter
combinations that have been proven on one dataset do not translate to another. These
require careful selection for each new dataset. If not properly selected the algorithm per-
formance will suffer greatly and select not for quality of solutions but for the complexity
parameters of the possible solutions.

83

Bibliography

[1] G. S. Tranquillus, De vita Caesarum. 121 (cit. on p. 1).

[2] K. Goyal and S. Kinger, “Modified caesar cipher for better security enhancement,”
International Journal of Computer Applications, vol. 73, no. 3, pp. 0975–8887, Jul.
2013. doi: 10.5120/12722-9558 (cit. on p. 1).

[3] N. P. Smart, Cryptography Made Simple (Information Security and Cryptography),
1st ed. Springer International Publishing, 2016, isbn: 9783319219356. doi: 10.1007/
978-3-319-21936-3. [Online]. Available: http://dx.doi.org/10.1007/978-3-
319-21936-3 (cit. on p. 1).

[4] M. Rejewski, “An application of the theory of permutations in breaking the enigma
cipher,” Applicationes mathematicae, vol. 16, no. 4, pp. 543–559, 1980. doi: 10.
4064/am-16-4-543-559 (cit. on p. 1).

[5] B. Randell, “The colossus,” in A History of Computing in the Twentieth Century, N.
Metropolis, J. Howlett, and G. Rota, Eds., Academic Press, 1980, pp. 47–92, isbn:
9780124916500. doi: 10.1016/c2009-0-22029-0 (cit. on p. 1).

[6] O. Goldreich, Foundations of Cryptography: Volume 1. USA: Cambridge University
Press, 2006, isbn: 0521035368 (cit. on p. 1).

[7] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second Edition, 2nd.
Chapman & Hall/CRC, 2014, isbn: 1466570261 (cit. on p. 1).

[8] X. Wang and H. Yu, “How to break md5 and other hash functions,” in Advances
in Cryptology – EUROCRYPT 2005, R. Cramer, Ed., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 19–35, isbn: 978-3-540-32055-5 (cit. on p. 1).

[9] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems,” in Advances in Cryptology—CRYPTO’96: 16th Annual International
Cryptology Conference Santa Barbara, California, USA August 18–22, 1996 Proceed-
ings 16, Springer Berlin Heidelberg, 1996, pp. 104–113, isbn: 9783540686972 (cit. on
p. 2).

[10] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in
Cryptology—CRYPTO’99: 19th Annual International Cryptology Conference Santa
Barbara, California, USA, August 15–19, 1999 Proceedings 19, Springer Berlin Hei-
delberg, 1999, pp. 388–397, isbn: 9783540484059. doi: 10.1007/3-540-48405-1_25
(cit. on p. 2).

[11] M. Backes et al., “Acoustic Side-Channel attacks on printers,” in 19th USENIX Secu-
rity Symposium (USENIX Security 10), ser. USENIX Security’10, Washington, DC:
USENIX Association, Aug. 2010. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity10/acoustic- side- channel- attacks- printers

(cit. on p. 2).

84

https://doi.org/10.5120/12722-9558
https://doi.org/10.1007/978-3-319-21936-3
https://doi.org/10.1007/978-3-319-21936-3
http://dx.doi.org/10.1007/978-3-319-21936-3
http://dx.doi.org/10.1007/978-3-319-21936-3
https://doi.org/10.4064/am-16-4-543-559
https://doi.org/10.4064/am-16-4-543-559
https://doi.org/10.1016/c2009-0-22029-0
https://doi.org/10.1007/3-540-48405-1_25
https://www.usenix.org/conference/usenixsecurity10/acoustic-side-channel-attacks-printers
https://www.usenix.org/conference/usenixsecurity10/acoustic-side-channel-attacks-printers

[12] D. Genkin, A. Shamir, and E. Tromer, “Rsa key extraction via low-bandwidth acous-
tic cryptanalysis,” in Advances in Cryptology–CRYPTO 2014: 34th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I
34. 2014, pp. 444–461, isbn: 9783662443712 (cit. on p. 2).

[13] B. Nassi et al., “Video-based cryptanalysis: Extracting cryptographic keys from video
footage of a device’s power led captured by standard video cameras,” in 2024 IEEE
Symposium on Security and Privacy (SP), Los Alamitos, CA, USA: IEEE Computer
Society, May 2024, pp. 166–166. doi: 10.1109/SP54263.2024.00163. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.
00163 (cit. on p. 2).

[14] W. Van Eck, “Electromagnetic radiation from video display units: An eavesdropping
risk?” Computers & Security, vol. 4, no. 4, pp. 269–286, Dec. 1985. doi: 10.1016/
0167-4048(85)90046-x (cit. on p. 2).

[15] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic implementa-
tions using deep learning techniques,” in Security, Privacy, and Applied Cryptog-
raphy Engineering: 6th International Conference, SPACE 2016, Hyderabad, India,
December 14-18, 2016, Proceedings 6. 2016, pp. 3–26, isbn: 9783319494456. doi:
10.1007/978-3-319-49445-6_1 (cit. on pp. 2, 15).

[16] F. Schijlen, L. Wu, and L. Mariot, “Nascty: Neuroevolution to attack side-channel
leakages yielding convolutional neural networks,”Mathematics, vol. 11, no. 12, p. 2616,
2023, issn: 2227-7390. doi: 10.3390/math11122616 (cit. on pp. 2, 16, 17, 19, 20,
27, 28, 33, 38, 46, 47, 89, 90).

[17] W. Diffie and M. E. Hellman, “Multiuser cryptographic techniques,” in Proceedings
of the June 7-10, 1976, National Computer Conference and Exposition, ser. AFIPS
’76, New York, New York: Association for Computing Machinery, 1976, pp. 109–112,
isbn: 9781450379175. doi: 10.1145/1499799.1499815 (cit. on p. 5).

[18] N. I. of Standards et al., “Specification for the advanced encryption standard (aes),”
Nov. 2001. doi: 10.6028/NIST.FIPS.197 (cit. on p. 6).

[19] J. Daemen and V. Rijmen, “The block cipher rijndael,” in International Conference
on Smart Card Research and Advanced Applications, Springer, 1998, pp. 277–284
(cit. on p. 6).

[20] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999 (cit. on p. 6).

[21] J. Daemen and V. Rijmen, The Design of Rijndael: AES – the Advanced Encryption
Standard. Springer Berlin Heidelberg, 2002, isbn: 978-3-540-42580-9. doi: 10.1007/
978-3-662-04722-4 (cit. on p. 6).

[22] P. Emmanuel, S. Remi, B. Ryad, C. Eleonora, and D. Cecile, “Study of deep learning
techniques for side-channel analysis and introduction to ascad database,” IACR
Cryptol. ePrint Arch., pp. 1–45, 2018. [Online]. Available: http://eprint.iacr.
org/2018/053 (cit. on pp. 7, 15, 16, 24, 89, 90).

[23] M. Randolph and W. Diehl, “Power side-channel attack analysis: A review of 20
years of study for the layman,” Cryptography, vol. 4, no. 2, 2020, issn: 2410-387X.
doi: 10.3390/cryptography4020015. [Online]. Available: https://www.mdpi.com/
2410-387X/4/2/15 (cit. on p. 7).

[24] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing the secrets
of smart cards. Springer Science & Business Media, 2008, vol. 31, isbn: 978-0-387-
38162-6. doi: 10.1007/978-0-387-38162-6 (cit. on p. 8).

85

https://doi.org/10.1109/SP54263.2024.00163
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00163
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00163
https://doi.org/10.1016/0167-4048(85)90046-x
https://doi.org/10.1016/0167-4048(85)90046-x
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.3390/math11122616
https://doi.org/10.1145/1499799.1499815
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
http://eprint.iacr.org/2018/053
http://eprint.iacr.org/2018/053
https://doi.org/10.3390/cryptography4020015
https://www.mdpi.com/2410-387X/4/2/15
https://www.mdpi.com/2410-387X/4/2/15
https://doi.org/10.1007/978-0-387-38162-6

[25] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep learning for
side-channel analysis and introduction to ascad database,” Journal of Cryptographic
Engineering, vol. 10, no. 2, pp. 163–188, 2020. doi: 10.1007/s13389-019-00220-8
(cit. on pp. 9, 16, 89, 90).

[26] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework for the analysis of
side-channel key recovery attacks,” in Advances in Cryptology-EUROCRYPT 2009:
28th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings 28, Springer,
2009, pp. 443–461, isbn: 9783642010019. doi: 10.1007/978-3-642-01001-9_26
(cit. on p. 9).

[27] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain.,” Psychological review, vol. 65, no. 6, pp. 386–408, 1958,
issn: 0033-295X. doi: 10.1037/h0042519 (cit. on p. 10).

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org (cit. on p. 10).

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,
vol. 25, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., 2012. [Online].
Available: https://proceedings.neurips.cc/paper_files/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf (cit. on p. 10).

[30] C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine Learning.
Springer, 2006, vol. 4, isbn: 9780387310732 (cit. on p. 10).

[31] K. P. Murphy, Probabilistic Machine Learning: An introduction. MIT Press, 2022.
[Online]. Available: probml.ai (cit. on p. 10).

[32] S. Picek, I. P. Samiotis, J. Kim, A. Heuser, S. Bhasin, and A. Legay, “On the perfor-
mance of convolutional neural networks for side-channel analysis,” in Security, Pri-
vacy, and Applied Cryptography Engineering: 8th International Conference, SPACE
2018, Kanpur, India, December 15-19, 2018, Proceedings 8, Springer International
Publishing, 2018, pp. 157–176, isbn: 978-3-030-05072-6. doi: 10.1007/978-3-030-
05072-6_10 (cit. on p. 11).

[33] M. Shaikh, Q. A. Arain, and S. Saddar, “Paradigm shift of machine learning to deep
learning in side channel attacks-a survey,” in 2021 6th International Multi-Topic
ICT Conference (IMTIC), IEEE, 2021, pp. 1–6. doi: 10.1109/IMTIC53841.2021.
9719689 (cit. on p. 11).

[34] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position,” Biological cybernetics,
vol. 36, no. 4, pp. 193–202, Apr. 1980. doi: 10.1007/bf00344251 (cit. on p. 12).

[35] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex,” The Journal of physiology, vol. 160, no. 1,
pp. 106–154, Jan. 1962. doi: 10.1113/jphysiol.1962.sp006837 (cit. on p. 12).

[36] Y. LeCun et al., “Handwritten digit recognition with a back-propagation network,”
Advances in neural information processing systems, vol. 2, pp. 396–404, 1989 (cit. on
p. 12).

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
Dec. 1998. doi: 10.1109/5.726791 (cit. on p. 12).

86

https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1037/h0042519
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
probml.ai
https://doi.org/10.1007/978-3-030-05072-6_10
https://doi.org/10.1007/978-3-030-05072-6_10
https://doi.org/10.1109/IMTIC53841.2021.9719689
https://doi.org/10.1109/IMTIC53841.2021.9719689
https://doi.org/10.1007/bf00344251
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1109/5.726791

[38] E. Cagli, C. Dumas, and E. Prouff, “Convolutional neural networks with data
augmentation against jitter-based countermeasures: Profiling attacks without pre-
processing,” in Cryptographic Hardware and Embedded Systems–CHES 2017: 19th
International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, Springer,
2017, pp. 45–68, isbn: 978-3-319-66787-4 (cit. on p. 15).

[39] H. Maghrebi, “Deep learning based side channel attacks in practice,” Cryptology
ePrint Archive, 2019. [Online]. Available: https://eprint.iacr.org/2019/578
(cit. on p. 15).

[40] L. Masure, C. Dumas, and E. Prouff, “A comprehensive study of deep learning for
side-channel analysis,” IACR Transactions on Cryptographic Hardware and Embed-
ded Systems, pp. 348–375, 2020. doi: 10.13154/tches.v2020.i1.348-375 (cit. on
p. 15).

[41] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, “Methodology for efficient cnn
architectures in profiling attacks,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2020, no. 1, pp. 1–36, Nov. 2019. doi: 10.13154/tches.
v2020.i1.1-36 (cit. on pp. 15, 16, 89, 90).

[42] L. Wouters, V. Arribas, B. Gierlichs, and B. Preneel, “Revisiting a methodology for
efficient cnn architectures in profiling attacks,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 147–168, 2020. doi: 10.13154/TCHES.V2020.
I3.147-168 (cit. on pp. 15, 16, 28, 38, 46, 47, 89, 90).

[43] S. Picek, G. Perin, L. Mariot, L. Wu, and L. Batina, “Sok: Deep learning-based
physical side-channel analysis,” ACM Computing Surveys, vol. 55, no. 11, pp. 1–35,
2023. doi: 10.1145/3569577 (cit. on p. 15).

[44] L. Wu, “The circle of dl-sca: Improving deep learning-based side-channel analysis,”
Ph.D. dissertation, Delft University of Technology, Netherlands, 2023. doi: 10.4233/
UUID:66F0C152-65A0-45BC-B542-BA9799D6A0C1 (cit. on p. 15).

[45] L. Wu, G. Perin, and S. Picek, “I choose you: Automated hyperparameter tuning for
deep learning-based side-channel analysis,” IEEE Transactions on Emerging Topics
in Computing, vol. 12, no. 2, pp. 546–557, 2024. doi: 10.1109/TETC.2022.3218372
(cit. on pp. 16, 89, 90).

[46] J. Rijsdijk, L. Wu, G. Perin, and S. Picek, “Reinforcement learning for hyperpa-
rameter tuning in deep learning-based side-channel analysis,” IACR Transactions
on Cryptographic Hardware and Embedded Systems, vol. 2021, no. 3, pp. 677–707,
2021. doi: 10.46586/TCHES.V2021.I3.677-707 (cit. on pp. 16, 89, 90).

[47] R. Y. Acharya, F. Ganji, and D. Forte, “Infoneat: Information theory-based neu-
roevolution of augmenting topologies for side-channel analysis,” 2021. doi: 10 .

48550/arXiv.2105.00117. arXiv: 2105.00117 [cs.CR] (cit. on pp. 16, 17, 89,
90).

[48] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network architectures
using reinforcement learning,” arXiv preprint arXiv:1611.02167, 2016. arXiv: 1611.
02167 (cit. on p. 16).

[49] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting
topologies,” Evolutionary computation, vol. 10, no. 2, pp. 99–127, 2002. doi: 10.
1162/106365602320169811 (cit. on p. 17).

87

https://eprint.iacr.org/2019/578
https://doi.org/10.13154/tches.v2020.i1.348-375
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.13154/tches.v2020.i1.1-36
https://doi.org/10.13154/TCHES.V2020.I3.147-168
https://doi.org/10.13154/TCHES.V2020.I3.147-168
https://doi.org/10.1145/3569577
https://doi.org/10.4233/UUID:66F0C152-65A0-45BC-B542-BA9799D6A0C1
https://doi.org/10.4233/UUID:66F0C152-65A0-45BC-B542-BA9799D6A0C1
https://doi.org/10.1109/TETC.2022.3218372
https://doi.org/10.46586/TCHES.V2021.I3.677-707
https://doi.org/10.48550/arXiv.2105.00117
https://doi.org/10.48550/arXiv.2105.00117
https://arxiv.org/abs/2105.00117
https://arxiv.org/abs/1611.02167
https://arxiv.org/abs/1611.02167
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811

[50] Z. Michalewicz, Genetic algorithms + data structures = evolution programs. Springer
Science & Business Media, 1996, isbn: 978-3-540-60676-5. doi: 10.1007/978-3-
662-03315-9 (cit. on p. 20).

[51] L. Booker, “Improving search in genetic algorithms,” Genetic algorithms and simu-
lated annealing, 1987 (cit. on p. 20).

[52] L. Masure and R. Strullu, “Side-channel analysis against anssi’s protected aes imple-
mentation on arm: End-to-end attacks with multi-task learning,” Journal of Cryp-
tographic Engineering, vol. 13, pp. 1–19, Mar. 2023. doi: 10.1007/s13389-023-
00311-7 (cit. on p. 24).

[53] S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni, “Tipping the balance: Im-
balanced classes in deep-learning side-channel analysis,” IEEE Design Test, vol. 41,
no. 2, pp. 32–38, 2024. doi: 10.1109/MDAT.2023.3288808 (cit. on p. 24).

[54] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to
numerical computing,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017. doi: 10.1137/
141000671 (cit. on p. 25).

[55] M. Innes et al., “Fashionable modelling with flux,” CoRR, vol. abs/1811.01457, 2018.
arXiv: 1811.01457. [Online]. Available: https://arxiv.org/abs/1811.01457 (cit.
on p. 25).

[56] M. Innes, “Flux: Elegant machine learning with julia,” Journal of Open Source Soft-
ware, 2018. doi: 10.21105/joss.00602 (cit. on p. 25).

[57] A. Basak, “A rank based adaptive mutation in genetic algorithm,” International
Journal of Computer Applications, vol. 175, no. 10, pp. 49–55, Aug. 2020, issn:
0975-8887. doi: 10.5120/ijca2020920572 (cit. on p. 32).

[58] S.-H. Jung, “Rank-based control of mutation probability for genetic algorithms,”
International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 2, pp. 146–
151, 2010. doi: 10.5391/IJFIS.2010.10.2.146 (cit. on p. 32).

[59] M. Sewell, J. Samarabandu, R. Rodrigo, and K. McIsaac, “The rank-scaled mutation
rate for genetic algorithms,” International Journal of Information Technology, vol. 3,
no. 1, pp. 32–36, 2006 (cit. on p. 32).

[60] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,”
Journal of the American statistical Association, vol. 47, no. 260, pp. 583–621, 1952.
doi: 10.1080/01621459.1952.10483441 (cit. on pp. 36, 53).

[61] H. B. Mann and D. R. Whitney, “On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other,” The Annals of Mathematical
Statistics, vol. 18, no. 1, pp. 50–60, 1947. doi: 10.1214/aoms/1177730491 (cit. on
pp. 36, 53).

88

https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1007/s13389-023-00311-7
https://doi.org/10.1007/s13389-023-00311-7
https://doi.org/10.1109/MDAT.2023.3288808
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
https://doi.org/10.21105/joss.00602
https://doi.org/10.5120/ijca2020920572
https://doi.org/10.5391/IJFIS.2010.10.2.146
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1214/aoms/1177730491

Appendix A

NAS performance comparison

Table A.2 and Table A.3 show the recorded performance and complexity of the resulting
neural architecture design found. The traces to obtain mean key rank 0 (TGE0) represent
the performance and the number of parameters gives an indication of the complexity. If
a particular design failed to obtain a mean key rank of 0, it is represented with a ∞.
Compared to Table 2.1 they may miss some records not found in the papers they originate
from. The NASCTY [16] algorithm in its paper misses the performance for traces with
a desynchronisation level of 100. Instead, the findings found in establishing a baseline
level of performance in Chapter 8 have been used. The found baseline results are marked
with a †, and the modified results have received the moniker NASCTY2. Additionally,
these tables and the updated table for non-desynchronised traces Table A.1 have gained
the results (as seen in Chapter 8) of the modified NASCTY algorithm developed in this
thesis.

Table A.1: Comparison of performance and parameter size of different hyperpa-
rameter tuning methods on the synchronized fixed key ASCAD [25] dataset.

Model Type Traces to obtain mean key rank 0 Parameters

ASCAD[22] MLP 410 393 936
ASCAD[22] CNN 480 66 652 444
AutoSCA[45] MLP 129 478 656
AutoSCA[45] CNN 158 54 752
Zaid et al.[41] CNN 191 16 960

Wouters et al.[42] CNN ≈ 200 [46] 6 436
MetaQNN[46] CNN 202 79 439
MetaQNN[46] CNN 242 1 282
InfoNEAT[47] InfoNEAT 130 15 107
NASCTY[16] CNN 314 10 470
NASCTY† MLP 150 7 953
NASCTY2 CNN 88 6 716

89

Table A.2: Comparison of performance and parameter size of different hyperpa-
rameter tuning methods on the desynchronized fixed key ASCAD [25] dataset with
the desynchronized level of 50.

Model Type Traces to obtain mean key rank 0 Parameters

ASCAD[22] MLP - -
ASCAD[22] CNN - -
AutoSCA[45] MLP - -
AutoSCA[45] CNN - -
Zaid et al.[41] CNN 244 87 279

Wouters et al.[42] CNN ≈ 250 [46] 41 052
MetaQNN[46] CNN 313 2 100
MetaQNN[46] CNN 443 41 052
InfoNEAT[47] InfoNEAT - -
NASCTY[16] CNN 531 68 427
NASCTY† CNN 300 214 850
NASCTY2 MLP ∞ 529

Table A.3: Comparison of performance and parameter size of different hyperpa-
rameter tuning methods on the desynchronized fixed key ASCAD [25] dataset with
the desynchronized level of 100.

Model Type Traces to obtain mean key rank 0 Parameters

ASCAD[22] MLP - -
ASCAD[22] CNN - -
AutoSCA[45] MLP - -
AutoSCA[45] CNN - -
Zaid et al.[41] CNN 270 142 044

Wouters et al.[42] CNN - 42 652
MetaQNN[46] CNN - -
MetaQNN[46] CNN - -
InfoNEAT[47] InfoNEAT - -
NASCTY† CNN 4 962 32 937
NASCTY2 CNN ∞ 1 338

Table A.4: Comparison of performance and parameter size of different hyperpa-
rameter tuning methods on the synchronized variable key ASCAD [25] dataset.

Model Type Traces to obtain mean key rank 0 Parameters

AutoSCA[45] CNN 1 568 [46] 2 076 744 [46]
AutoSCA[45] CNN 496 [46] 1 314 009 [46]
MetaQNN[46] CNN 490 70 492
InfoNEAT[47] InfoNEAT 120 317 408
NASCTY† CNN ∞ 128 529
NASCTY2 MLP ∞ 783

90

Appendix B

Accuracy

Chapter 5 contains Figure 5.3 describing the selection accuracy in a three contestant
tournament. As a complementary overview of accuracy Figure B.1 shows the selection
accuracy at each epoch for only two contestants in a tournament. Allowing for a more
straight-forward overview of the accuracy.

91

(a) All genomes.

(b) Improvement ≥ 0.00 (53).

(c) Improvement ≥ 0.01 (65).

Figure B.1: The accuracy of selection function consisting of only two contestants
compared with different training periods for the phenotypes –measured in epochs–
in the evaluation stage of the genomes.

92

Appendix C

Early termination

Figure C.1 is a complementary figure to Figure 5.5 showcasing the rough distribution of
fitness values over time meeting a certain threshold.

(a) ≥ 0.01.

(b) ≥ 0.05.

Figure C.1: The validation fitness of 2009 random genomes over 10 epochs, showing
the extremes and the population dispersion for all genomes ≥ 0.01 (A) and ≥ 0.05
(B).

93

Appendix D

Population size

Figure D.1: The total number of unique genomes evaluated per generation.

94

Appendix E

Composite custom fitness function

This appendix contains the figures created from the metrics of custom fitness function III.
Because of the large number of figures and metrics collected the less important figures
have been moved here.

The main goal of custom fitness function III is to select for the better α and β parameter
combinations for combatting the complexity of the genetic algorithms output. The findings
of custom fitness function I and II show that only the α values have significant impact
on the end results fitness score. Therefore, Figure E.1 with its convergence metrics show
similar movements across the sub-figures.

Figure E.3 and Figure E.2 are gathered from the complete population after ten gener-
ations show similar results to the metrics collected for the best results.

95

(a) α = 0e-7. (b) α = 1e-7.

(c) α = 5e-7. (d) α = 10e-7.

(e) α = 50e-7. (f) α = 100e-7.

Figure E.1: The fitness score of the genetic algorithm after 10 generations with the
use of custom fitness function III.

96

(a) α = 0e-7. (b) α = 1e-7.

(c) α = 5e-7. (d) α = 10e-7.

(e) α = 50e-7. (f) α = 100e-7.

Figure E.2: The mean number of model parameters in the population of the genetic
algorithm after 10 generations with the use of custom fitness function III.

97

(a) α = 0e-7. (b) α = 1e-7.

(c) α = 5e-7. (d) α = 10e-7.

(e) α = 50e-7. (f) α = 100e-7.

Figure E.3: The mean number of unintuitive design choices in the population of
the genetic algorithm after 10 generations with the use of custom fitness function
III.

98

	Introduction
	Thesis structure

	Background
	Cryptography
	Advanced Encryption Standard (AES)

	Side-channel attacks
	Countermeasures
	ANSSI SCA Database (ASCAD)
	Side-channel analysis evaluation
	Machine learning
	Machine learning techniques

	Classification

	Neural Networks
	Multilayer Perceptron (MLP)
	Convolutional Neural Networks (CNN)
	Convolutional layers
	Pooling layers
	Flatten layers

	Deep Learning Side-channel Analysis (DL-SCA)
	Neural Architecture Search (NAS)
	Neuroevolution to attack side-channel traces yielding convolutional neural networks (NASCTY)
	Initialisation
	Selection
	Crossover
	Mutation
	Replacement
	Limitations

	Research goal
	Methodology
	Research design
	Data source
	Base genetic algorithm
	Experimental setup
	Experiments
	Hyperparameters
	Required number of evaluation epochs
	Early termination
	Training data partition size
	Population size

	Complexity
	Premature convergence
	Distribution index
	Adaptive mutational rate
	Partial replacement
	Anti-early stagnation strategies

	Combined result

	Data analysis
	Selection accuracy
	Convergence
	Diversity
	Complexity
	Statistical tests
	Kruskal-Wallis
	Mann-Withney

	Performance

	Ethical considerations
	Limitations

	Hyperparameters
	Accuracy fitness
	Early termination
	Training dataset size
	Population size

	Complexity
	Parameter count
	Unintuitive design choices
	Composite custom fitness function
	Most promising parameters continued

	Premature convergence
	Combined result
	Selected modifications
	Synchronised fixed key ASCAD dataset
	Desynchronised level 50 fixed key ASCAD dataset
	Desynchronised level 100 fixed key ASCAD dataset
	Synchronised variable key ASCAD dataset

	Discussion
	Hyperparameters
	Complexity
	Premature convergence
	Combined results

	Conclusion
	Context
	Limitations
	Future work
	Takeaways

	NAS performance comparison
	Accuracy
	Early termination
	Population size
	Composite custom fitness function

