Wagon Number Localization Using a Vision-Language Model

IVAN MITEV, University of Twente, The Netherlands

This research explores the feasibility of using the Contrastive Language-
Image Pretraining (CLIP) Vision-Language Model (VLM) for reading Unique
Identification Codes (UICs) off of train wagons. The paper examines state
of the art solutions to the problem of localizing wagon numbers on trains
and tests CLIP’s capabilities to be fine tuned for text localization. More
specifically, it explains how four different fine-tuned versions of CLIP were
trained and presents the results of their evaluation for the UIC localization.
In the end, it is evaluated if CLIP shows promise in solving this task and
should be pursued further or other methods are better suited.

Additional Key Words and Phrases: Computer Vision, Vision-Language
Model, CLIP, Object Detection, Transformers

1 INTRODUCTION

With the large amount of trade between EU member-states, trans-
porting goods in a fast and cost-effective manner has always been
of key importance. Freight trains are one of the most prominent
transportation methods, accounting for more than 360 billion tonne-
kilometers per year [8]. Because freight wagons are often switched
between trains, at different stations and different times, each wagon
has a unique identifier code (UIC) [10] to keep track of it and its
cargo. While there is a standardized UIC code structure, 11 digits,
a dash and a check digit, formatting of the code and its placement
on the wagon are open for interpretation. Figure 1 explains the
structure of the code and presents one option for formatting it, the
interoperability on the first line, the country code on the second
and the rest of the code on a third line. On the other hand, Figure
2 presents an alternative format in which all of the digits are on
the same line. This has led to the manual scanning and recording
of UIC codes, costing countries and companies countless human-
hours yearly [8]. The problem of efficiently scanning UIC codes,
combined with the drive for a more sustainable industry has sparked
research on an efficient and accurate method of solving the task.
Many of the proposed solutions use Al models based on a residual
network (ResNet) architecture, a variation of the Convolutional Neu-
ral Network (CNN) architecture [12][20]. Others are using a more
hardware-heavy approach, for example, automated video gates [11].
However, one area of vision Al, vision-language models (VLMs)[5],
has not been sufficiently explored. This paper will be concerned
with testing if the Contrastive Language-Image Pretraining (CLIP)
VLM model[18] has a competitive chance of solving the problem.

ROQ: Do contrastive Visual Language Models offer a viable so-
lution to the task of UIC code localization when compared with
existing solutions?

SQ1: What are some state of the art solutions to reading wagon
numbers?

TScIT 42, January 31, 2025, Enschede, The Netherlands

© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

FREsd
Interoperability Code (alpha)

37 TENRY
s‘. HL'EES VKM (Vehicle Keeper Marking)
- Serial Number

L667 019-2 Check Digit
Sfhimmns

Interoperability Code (numeric)

Country Code (numeric) i
CountryCodle (alpha) l

Number Block (Class, ¥ l
Categi Lielter

Type Code
Ly Index Letters

Fig. 1. UIC Format [10]

Fig. 2. Alternative UIC format

S$Q2: What performance metrics can be used to evaluate the
performance of a VLM model on UIC code localization tasks?

$Q3: Can CLIP’s UIC code recognition capabilities be translated
through different datasets with varying data.

This study will first examine already existing methods for reading
wagon numbers in order to gauge the performance and efficiency
required for a competitive alternative. Reading wagon numbers is a
scene-text recognition (STR) task. This type of task is typically split
into two sequential subtasks. First comes text localization which
often includes drawing a bounding box around the edges of the
text region. Then, the region is analyzed and the text is inferred
from the shape of the characters [14]. This study will be mainly
focused on the localization aspect. Multiple versions of CLIP will be
trained on real-world data, provided by a Dutch railway company
to classify between images containing UIC codes and images which
don’t. Each version will use the same pretrained base model but will
be fine-tuned using a different dataset, varying in the number and
type of images. After training, the fine-tuned versions will be tested
both on data similar to the training data and data which is not.

The next chapter starts with a literature review, containing an
explanation of VLMs and an overview of the inner workings of the
CLIP mode. The third section discusses both state of the art solutions
to wagon number reading and other fine-tuned versions of CLIP
for scene-text recognition (STR). After that, the methodology of the
experiment is described, complete with a description of the dataset,
training method and how the model is evaluated. In the fifth section,
the results are presented and in the sixth section the experiment is

TScIT 42, January 31, 2025, Enschede, The Netherlands

discussed as a whole. The last section is a conclusion, answering the
research questions and suggesting directions for future research.

2 LITERATURE REVIEW
2.1 VLMs

Convolutional Neural Networks (CNNs) have been the cornerstone
of deep learning for vision tasks, known for their ability to hierarchi-
cally learn features from images [18]. With advancements in hard-
ware technology, Vision Transformers (ViTs) have gained promi-
nence due to their capability to capture global context through
self-attention mechanisms. However, ViTs are computationally ex-
pensive and energy-inefficient, posing sustainability challenges [6].
This high computational cost and energy consumption make ViTs
less viable for widespread, environmentally sustainable applications.

Visual Language Models (VLMs) are a multimodal family of
models, meaning they can learn from multiple types of inputs si-
multaneously, in this case images and text [5]. More specifically,
these models take a visual and textual input and based on them
generate a text output. They have shown very good generalization
and zero-shot capabilities[15]. The four major families of VLMs in-
clude contrastive, masking, pretrained backbones and generative. In
this paper, we will be focusing on the contrastive family, the recom-
mended type when trying to teach a model representations which
have a meaning both in the text and visual modalities[5]. In the
case of UICs, these meaningful representations can be the different
formats used for writing the codes. In simple terms, the contrastive
approach trains a model with positive and negative image-text pairs.
It teaches the model to associate similar images with the textual
pairing of the positive example and disassociate them with text from

the negative examples[5].
I A photo of a bird
Text
Encoder
I Aphoto of acat

Fig. 3. Contrastive Model explanation

Image
K Encoder

{ Contrastive

Transformers are a type of model architecture which focuses
on keeping as much attention as possible. A transformer starts
by turning its input into tokens by splitting it according to some
parameter. Sentences might be tokenized into words by splitting
the string on every sentence or into letters by splitting on every
character. After a text is tokenized, each token is contextualized,
meaning that it is made to store its relation to all other tokens in the
input and this is how the token’s tensor, also called a feature vector,
is created[2]. This means that in a transformer model, the same word
will have different representations, depending on where it is in the
text and how it is used in a sentence. Vision Transformers (ViT)
operate in a similar way, splitting an image into many segments and
contextualizing each segment in the transformer’s representation
space[7]. Many versions of CLIP use this architecture[18].

Encoders are a part of the transformers architecture. They work
by taking the input, splitting it into tokens and then transform-
ing each token into a feature vector, also called tensor. There is

Author

exactly one tensor per token and each tensor is a contextualized
representation of the token[1]. This means that it stores not only
information about the token itself but also about its relation to all of
the surrounding tokens in the input and is called self-attention[1].
The encoding of a simple textual input may look something like
this: “From NYC to NYC” — {[0.1, 0.2], [0.1, 0.4], [0.3, 0.1], [0.2, 0.3]}.
Each one-dimensional vector is a tensor representation of one of
the words. These vectors are different, even when the words are the
same, as they also store information not only about the contents
of the word but also its context in the sentence, its position and
relation to other words.

Decoders operate in much the same way as encoders, turning
input into tensors. However, they operate on a masked self-attention
principle, meaning that they carry context only for some of the sur-
rounding tokens. While encoders are good at classification, question
answering and understanding natural language, decoders are better
at causal tasks such as generation[1].

A basic understanding of these concepts is required to understand
how CLIP works. The CLIP version discussed in section 2.2 uses
a transformer architecture with multimodal encoders, while the
CLIP4STR modification discussed in section 3.2 also uses additional
decoders.

22 CLIP

CLIP is a contrastive VLM which has many versions with differ-
ent underlying architectures, but this study is concerned with a
version, based on ViTs. This choice stems from ViTs’ ability to gen-
eralize across different datasets and to make few and zero-shot
predictions[6]. These qualities are important since some of the test
data will differ from the training data in ways which are discussed
in section 4.2. The model uses two separate encoders, one for im-
ages and one for text. After generating the tensors for the visual
and textual tokens, it calculates their dot product and stores the
result in a joint representation space, shown in Fig 4. This means
that for N total images with N total text labels, the representation
space will hold N*N products[16]. During training, the model tries
to maximize the cosine similarity between the N correct pairings,
represented by a blue diagonal in Fig 4. At the same time, it tries
to minimize the similarity between the N*(N-2) incorrect pairings.
A cosine similarity is a way of calculating similarity between two
items, represented by vectors. By minimizing the cosine similarity,
related objects move closer together on the representation space
and unrelated objects move further away from each other. CLIP
uses a symmetric loss function to minimize the similarity scores[18].
For the sake of simplicity, the only thing we need to know about
symmetric loss is that when using it if the input changes by x units,
the output also changes by x units. CLIP was trained in 8 different
configurations, five of which are ResNets and three are ViTs. The
model which is relevant for this paper is CLIP-ViT-B/32 which is
a vision transformer which splits the input images into patches of
32x32 pixels. The model was trained on around 400 million (image,
text) pairs taken from the internet [18]. After training, the model
showed state of the art performance on zero-shot transfer, the task
of being able to correctly classify previously unseen categories of
images [3], for example classifying a new species as a type of beetle

Wagon Number Localization Using a Vision-Language Model

(1) Contrastive pre-training

Photo of a cute T ‘
HedgeHog Encoder ‘ i l l i‘
— T, | T, | Ty e Ty
I, LT | LTy | 1Ty 1Ty
Iy LTy | Ty | Ty | . IyTy
3 — Elr'::]:?:%t:r 1) LTy | 13Ty | 1Ty | L IgTy
Iy IvT) | InTy | InTs InTn

Fig. 4. CLIP’s encoders

since it has the most in common with previously recorded beetles.
On some datasets, it achieved an accuracy increase of more than
50%[18]. Other zero-shot experiments demonstrated that CLIP is
able to correctly classify images without having seen them before
based purely on text descriptions with accuracy up to 78.9% [17]. It
also showed good scores on representation learning and robustness
to natural shifts.

3 PREVIOUS WORK
3.1 Other Methods for Wagon Number Localization

3.1.1 CNN Approach. One approach to reading unique wagon codes
is using a convolutional network (CNN). In short, CNNs leverage
matrix multiplication to detect features in images, with each layer
detecting goin more in-depth, starting from colours and edges and
continuing with finer details. Ultimately, the image is converted
into numerical values, through a feature extractor kernel, enabling
the CNN to extract all of those details [6]. This approach splits the
code reading task into two portions: a character localization task
and a character recognition task. The model is trained on a set of
5000 code patches with labelled ground truths for a total of 800
epochs. An ADAM optimizer is used with a learning rate of 1e-3,
decaying one-tenth for every ten epochs, until a lower limit of 1e-5.
In the end, another CNN is trained to check the last digit of the
code, which is a check digit. After testing, the model performed
with an accuracy of 93.98% and is able to process at a rate of 0.1s
per frame [12]. It is important to note that the containers used in
this research were under the chinese container numbering format
which is different from the european UIC standard and includes
letters as well as numbers.

3.1.2 ResNet Approach. Another approach used for counting wag-
ons and efficiently reading wagon identification codes is utilizing a
residual network (ResNet) based model [20]. Residual networks aim
to address the problem, stemming from the addition of too many
layers to a CNN in order to increase performance, which causes

TSclIT 42, January 31, 2025, Enschede, The Netherlands

training progress to plateau. ResNets solve this by skipping blocks
of layers in the CNN, turning them into a “residual” block [9]. This
approach focuses on recognition from video data, analyzing the
video frame by frame. It works in three stages: classifying if there is
a wagon in the image, detecting a bounding box for the numbers
and finally recognizing the numbers. A different ResNet model is
used for each of the stages (ResNet-18, ResNet-34 and ResNet-50
respectively). Since the experiment uses video data, each wagon
appears on multiple frames of the video, leading to high accuracies
both on wagon counting and number recognition, 97.15% and 99.4%
respectively. Another noteworthy feature of this approach is that
it can process up to 11 frames per second even without utilizing a
GPU[20].

3.2 CLIP4STR

Traditionally, scene text recognition (STR) has been a task, primarily
handled by models which have a backbone trained on a single modal-
ity, despite multimodal models like CLIP being able to understand
text[22]. Experiments showed that when CLIP was presented with
an image containing text, unrelated to the contents of the image,
it was often opted to select the text as a more probable label than
the image itself[22]. This motivated researchers to develop a new
version of CLIP which is able to retrieve text from images called
CLIP4STR. This was done by adding an image decoder and a cross-
modal decoder to the model’s architecture and partially freezing the
already existing text encoder. The resulting model first retrieves a
visual prediction through the image encoder and then passes it to
the image decoder which outputs the visual prediction. This predic-
tion is used as an input to the partially frozen text encoder. Then,
the output from the text encoder is combined with the output of
the image encoder, concatenated and passed onto the cross-modal
decoder which outputs the final text prediction. By utilizing the
textual and visual modalities together, CLIP’s text encoder is able
to correct the predictions of the image decoder if they don’t make
sense. This is specifically useful in situations where text is occluded.
Different versions of CLIP4STR were then trained with anywhere
between 155 million to 1 billion parameters and 3.3 million - 6.5 mil-
lion training data examples. After training, CLIP4STR was tested on
10 common benchmarks and achieved state-of-the art results when
compared to other str models such as PARSeq and ViTSTR-S[22].

3.3 Object localization using CLIP

There have been multiple studies on fine-tuning CLIP for object
localization. This task is very similar to UIC localization, as long as
the model is able to learn thoroughly enough the concept of a UIC.
One of the models which has best implemented object detection
using CLIP is OWL-VIiT [13]. It uses CLIP as the base model in order
to leverage its extensive knowledge of different text labels and all of
their possible image representations. However, the architecture of
the image encoder is altered to turn it from a classification model to
a detection one. Also, the text encoder is altered to feed text tokens
into the image encoder. By doing this, it is possible to convert the
model for Open Vocabulary Object Detection, a version of object
detection, where the model can predict classes, outside of the based
ones used during training [13]. Both of the modified encoders are

TScIT 42, January 31, 2025, Enschede, The Netherlands

then trained from scratch on a dataset of 3.6 billion image-text pairs
and are then further fine-tuned on a dataset of 2 million images.
After testing, the model proved to achieve state-of- the art zero-shot
object detection on the LVIS dataset [13].

4 METHODOLOGY

The CLIP version that was chosen for training was CLIP-ViT-base-
patch32. This was mainly done because Res-Net like architectures
have already been explored for wagon number reading[20] and

patch32 is the best-performing classifier out of the CLIP ViT models[18].

Also, a smaller model is more computationally efficient to fine-tune
as less parameters need to be stored in memory. This model was then
fine-tuned for the task of binary image classification, to determine
whether or not an image contains a UIC code.

4.1 Experiment Schema

Figure 5 shows the experiment schema and how the data was pro-
cessed, used for training and also for testing.

Fig. 5. Experiment Schema

4.2 Data

The data used for fine-tuning was a set of labeled images, taken
with a line-scan camera, provided by a railway company. Line-scan
cameras are often used to take images of moving trains, producing
a high-quality picture of the train, where static parts of the photo
such as the background appear blurred. The dataset contained 8283
images with a height of 2048 pixels and width from 6536 to 12846
pixels. The images were all taken from the same distance with the
same camera but on different days and hours, causing a variety of
lightning conditions. The labels, relevant to this experiment, were
the coordinates of a bounding box around the location of UIC codes
and the transcribed UIC codes themselves.To be used as training
data, the images and labels needed some preprocessing. While all
of the images contained train wagons, some data sanitization was
required. First of all, not all of the images contained UIC codes
and some of them contained multiple UIC codes, leading to a very
large bounding box, spanning multiple wagons. These images were
pruned from the dataset to ensure uniformity in the training data.

Author

The remaining dataset was split into parts of 80 and 20 percent
to create the training and testing sets. Then, the UIC codes were
cropped from the private dataset, according to the bounding box
labels, and from each image a batch of completely and semi-random
images with the same size as the UIC bounding box were also
cropped. Additionally, an intersection test was conducted in or-
der to ensure that the crops didn’t include any part of the area
within the bounding box. To ensure variety and sufficient difference
between the training data in the multiple versions of the model, de-
scribed in the next section, the random and semi-random crops were
combined in the five datasets, described in table 1. The "cropped"
dataset includes the cropped UIC bounding boxes. The "cropped-
negative-1" includes 1 random crops from the original photos. One
crop per original photo. The images are less than the “cropped”
dataset because some crops didn’t meet the no-overlap with bound-
ing box condition. The "cropped-negative-1-semirandom" dataset
includes random crops from a distance of (50+n) pixels from the
bounding box, where n is the largest dimension of the box. These
types of crops will be referred to as semi-random. The "cropped-
negative-1-semirandom-1" includes a combination of random and
semi-random crops as described in the previous two datasets with
two crops per original photo. Finally the "cropped-negative-5x" in-
cludes completely random crops from the original images with five
crops per image.

Dataset Number of images
cropped 6626
cropped-negative-1 6607
cropped-negative-1-semirandom 6405
cropped-negative-1-semirandom-1 13015
cropped-negative-5x 33035

Table 1. The training datasets

The models will be tested on two datasets, labeled as "Testing
split" and "Testing data" in Figure 5. One of them is the 20 percent
of the private dataset which was not used for training. This dataset
contains about 1800 images. The other is a public wagon dataset
with around 750 labeled images. This public dataset contains pairs
of jpg-json files, with the json file containing labeled bounding
boxes and transcriptions for all UIC or tonnage signs found on the
image, if any. The images were taken with a handheld camera and
therefore have a lesser quality than the line-scan images, at 1024x768
pixels. Unlike the line-scan images, they vary in distance from the
wagon, angle, blurriness and type of wagon being photographed.
This means that compared to the private dataset, the public one has
a wider range of both the types of images and the UIC placement
and formatting.

4.3 Model Training

The model chosen for fine-tuning was CLIP’s ViT-B/32 version, due
to the fact that it shows state of the art performance on classification
tasks [18] and the larger patches will result in faster training time.
To solve the task of UIC localization, four different versions of the
model were developed to distinguish between images containing a

Wagon Number Localization Using a Vision-Language Model

(h]
Model "negative-" | Precision | Recall | Accuracy | F1 | Loss
1-random 0.990 0.939 0.964 0.964 | 0.099
1-semirandom 0.972 0.947 0.960 0.959 | 0.158
1-semirandom-1 0.988 0.928 0.958 0.957 | 0.117
-5x 0.989 0.978 0.984 0.984 | 0.044

Table 2. Validation metrics

UIC and images which don’t contain one [14]. The “cropped” dataset
was used as the positive class and all images in it were labeled “An
image of a UIC code”, while the images in all of the other datasets
were classified as negative and labeled “An image which doesn’t
contain a UIC code”. Each version used only one of the “cropped._-
negative” datasets as negative data and therefore we can name the
versions after their negative datasets. Training four versions on
different types of clearly defined data makes it easier to determine
what type of data can successfully be used to fine-tune the model
for this task.

During training, the standard 80/20 split into training and valida-
tion data was performed. The models are all trained with batch sizes
of 32, learning rates of 5e-5[4] and weight decay of 0.1. Also, an
AdamW optimizer was used to implement a learning rate scheduler
which reduced the learning rate decay by a factor of 0.5 when f1
score plateaued for 2 epochs or more. All of the versions were trained
for 10 epochs, except the “cropped_negative_5x” version which was
trained for 7 epochs due to the higher number of data-points.

4.4 Model Evaluation

During training, the models recorded the metrics of precision, recall,
f1 score, accuracy and loss for each epoch. Table 2 shows the values
of these metrics after the final epoch.

Precision is a measure of the total number of true positives, di-
vided by the sum of true positives and false positives and represents
and reflects the ability of a model to correctly predict positives.Recall
is the number of true positives, divided by the sum of true posi-
tives and false negatives and reflects how often the model correctly
identifies positive instances. Accuracy is all of the correct guesses
divided by the sum of all guesses and reflects how often the model
makes correct predictions, no matter if negative or positive. The F1
score is two times the precision multiplied by the recall and divided
by the sum of the precision and the recall and again is a measure of
how often the model is expected to make a correct prediction [19].
Loss is a metric that computes how far off predictions are from the
actual value in the model’s representation space.

To evaluate the performance of the fine-tuned models, two tests
were developed. The tests were then performed on two datasets.
The 20 percent part of the images which was not used for cropping
and a publicly available dataset of train wagon photos.

Firstly, a UIC detection test is performed using a sliding window
protocol. A bounding box region of NxM pixels, shaped like a rec-
tangle, is created at the corner of the image and is then moved in
steps. For the private dataset, the window was 500x400 pixels with
a step of 50 pixels because the images are of very high pixel rate
and sometimes the uic codes are on multiple lines. For the public

TSclIT 42, January 31, 2025, Enschede, The Netherlands

dataset, the sliding window was 500x200 pixels in size with a step of
40 pixels as the images are lower quality but are taken from closer
distances and they are more often on a single line. On each step, bi-
nary classification is performed with the same prompts as those used
in training the models and the probability scores for the positive
and negative labels are recorded. In the end, the bounding box with
the highest confidence level and the bounding box with the highest
Intersection over Union (IoU) are selected if the image contains a
UIC label. The IoU is a measure of how much two bounding boxes
in an image overlap and is defined as the area of overlap divided by
the area of their union. The coordinates, confidence intervals and
IoUs of the two windows are recorded.

These results are then converted to a confusion matrix, which
doesn’t have a true negative. The decision to not record true nega-
tives is intentional as with a sliding window protocol, there would
be way more true negatives than any other results as most of the
sliding windows would not contain a UIC code in them. If the two
bounding boxes match, the result is counted as a true positive. If the
boxes don’t match and the confidence interval of the window with
highest IoU is less than 50%, the result is a false negative. If both of
the windows have a confidence interval of more than 50% but their
IoUs with the original bounding box differ by more than 10%, this
suggest that only a part of the UIC is included in one of the windows
and it has wrongly categorized the area as containing a code, so it
is a False Positive. If both windows have a confidence above 50%
but their IoUs differ by less than 10%, this suggests that the missing
part of the bounding box is not so significant as to harm the model’s
inference capabilities and the result is still counted. After recording
the results, precision, recall and f1-score will be calculated.

The second test examines successful classification of the labeled
UIC regions. Here, inference will be run on the cropped areas within
the UIC regions. The datasets used will be the 20% split from the
private dataset which was not used in training and the public dataset.
For each image within the bounding box, the models will also be
asked to classify one randomly cropped image, taken from the same
original photo, with the same dimensions as the bounding box
but which does not overlap with it. Again, a confusion matrix will
be Here, every correct classification of a cropped UIC region will
be counted as a true positive, every incorrect classification as a
false negative. Also, every correct classification of the randomly
cropped area will be counted as a true negative and every incorrect
classification as a false positive. After recording the results, precision,
recall, accuracy and f1-score will be calculated.

5 RESULTS AND DISCUSSION
5.1 Test 1 Results

Test 1 was conducted successfully as described in section 4.4 and its
results are presented in tables 3 and 4. Figures 6 and 7 are examples
of the visualized results from the public dataset. Note that Figure 7 is
still an example of a True Positive as there are two sliding windows
with an equally large IoU with the bounding box. In the end, 405 files
were examined as a portion of the images didn’t contain UIC codes.
The model “negative_1_random” had a pretty even distribution of
positives and negatives but they were made randomly and resulted in
more than half of the predictions being false negatives. On the other

TScIT 42, January 31, 2025, Enschede, The Netherlands

hand, “negative_1_semirandom” tended to over-predict for the
negative, resulting in over 85% of the positive predictions being True
Positives. The other two had zero false negatives, but a precision
score which suggests they were predicting positively during the
whole test.

With the private dataset, the test was only conducted on 71 im-
ages, as the processing time per image was in magnitudes larger
than with the public dataset. This happened because the images
were larger, of higher quality and taken from further away, resulting
in a relatively small sliding window which had to perform a lot of
steps. On this dataset, “negative_1_random”, outputted 74% false
negatives and 26% false positives without any true positives, result-
ing in no precision, recall and F1 values. “Negative_1_semirandom”
had a single true positive, while the other two models predicted
only false positives.

Model Precision | Recall | F1
negative-1-random 0.365 0.263 | 0.305
negative-1-semirandom 0.877 0.126 | 0.220
negative-1-semirandom-1 0.393 1.000 | 0.564
negative-5x 0.304 1.000 | 0.466
Table 3. Test 1 Public

Model Precision | Recall | F1
negative-1-random 0.000 0.000 | 0.000
negative-1-semirandom 0.125 0.016 | 0.028
negative-1-semirandom-1 0.000 0.000 | 0.000
negative-5x 0.000 0.000 | 0.000
Table 4. Test 1 Private

Fig. 6. Test 1 example of a False Positive

Author

Fig. 7. Test 1 example of a True Positive

5.2 Test 1 Discussion

The discrepancy in the results between the two datasets suggest that
the model gained some understanding of how to interpret the public
data correctly but didn’t do the same for the private data. However,
several factors can disprove this theory. First of all, the private data
much more closely matches the validation data on which the model
achieved correct predictions. As the private testing data and the
validation data are a subset of the same dataset, the fact that the
models achieved better performance on a more varied dataset raises
some alarms. Secondly, the images in the private dataset are a lot
larger and thus require more sliding window steps to be processed.
As we know, the models tend to over predict the presence of a UIC
code. On the smaller, public images this partially random prediction
can yield them successful lucky guesses. On top of that, the public
dataset had more images, raising the total number of attempts the
model has to make a lucky guess during the test. Last but not least,
the work done on OWL-ViT suggests that even with architectural
modifications, CLIP needs to be fine-tuned on millions of labeled
images to successfully detect objects [13].

5.3 Test 2 Results

In the second test, all models except “negative_1_semirandom” pre-
dicted only positive values. “negative_1_semirandom” also showed
a heavy bias for predicting positive values but sometimes predicted
negative values as well. Also, in more than 85% of the times it pre-
dicted a negative value, the value was actually negative. In this
test, the number of positive and negative examples for the public
and the private datasets were not equal but were within 7% of each
other. These results are presented in tables 5 and 6, while figures 8
and 9 show examples of two crops from the public dataset.

5.4 Test 2 Discussion.

The results from test 2, combined with the validation metrics from
the last epochs of training show that the models overfit the dataset.
The models have learned to correctly classify their training data

Wagon Number Localization Using a Vision-Language Model

Model Accuracy | Precision | Recall | F1
negative-1-random 0.503 0.000 1.000 | 0.000
negative-1-semirandom 0.534 0.502 0.973 | 0.662
negative-1-semirandom-1 0.503 0.503 1.000 | 0.669
negative-5x 0.503 0.503 1.000 | 0.669

Table 5. Test 2 Public

Model Accuracy | Precision | Recall | F1
negative-1-random 0.487 0.487 1.000 | 0.655
negative-1-semirandom 0.531 0.509 1.000 | 0.675
negative-1-semirandom-1 0.487 0.487 1.000 | 0.655
negative-5x 0.487 0.487 1.000 | 0.655

Table 6. Test 2 Private

Fig. 9. Test 2 Negative Example

but have not learned how to identify images containing a UIC. A
possible explanation, as mentioned in the discussion of test 1 might
be that the model was not trained on enough data. However, the
prevailing positive classifications show that the negative data used
in training was not varied enough and was too different from the
positive examples. This is further supported by the fact that the semi-
random model achieved the best performance, since the negative
data in this dataset is most likely to include characters, digits and
other closely related UIC pictures. The idea of training the model on
negative examples closely related to the positive data is supported
by research and is referred to as “hard negative examples” [21]. Also,
the models demonstrated similar on both datasets, even showing
marginally better performance on the public dataset. This suggests
that their performance was not dependent on the variety of test
data, but on the training methodology.

6 CONCLUSION

This paper explored the visual-language model CLIP and its ability
to detect UIC codes on train wagons. It discussed state of the art
solutions based on different architectures such as ResNet and CNNs
which have achieved accuracies of up to 99% . Based on the exper-
iments made during this research and the explored literature, it
can be inferred that CLIP shows potential for UIC localization. The
research demonstrated that traditional performance metrics such as

TSclIT 42, January 31, 2025, Enschede, The Netherlands

ToU can be used to effectively evaluate CLIP for code localization. It
also showed that CLIP’s performance can be successfully translated
across varying datasets as long as the model has been properly
trained. Based on the findings of this paper, future work should fo-
cus on determining clear criteria for data selection when fine-tuning
CLIP such as the amount of data and the variance between positive
and negative examples

ACKNOWLEDGMENTS

I would like to extend my gratitude towards Melissa Tijink for
providing her guidance, technical expertise and invaluable dataset,
and to both Melisa and Shunxin Wang for their advice and pa-
tience during our progress meetings. I would also like to thank Luuk
Spreeuwers for his contribution and analysis in the final weeks of
the research.

REFERENCES
[1] Kyle Aitken, Vinay V Ramasesh, Yuan Cao, and Niru Maheswaranathan.
2021. Understanding How Encoder-Decoder Architectures Attend.

arXiv:2110.15253 [cs.LG] https://arxiv.org/abs/2110.15253

Amanatullah. 2023. Transformer architecture explained. https://medium.com/

@amanatulla1606/transformer-architecture- explained- 2c49e2257b4c

[3] Dave Bergmann. 2024. What is zero-shot learning? https://www.ibm.com/think/

topics/zero-shot-learning

Vrunda Bhattbhatt. 2024. Learning rate and its strategies in neural network

training. https://medium.com/thedeephub/learning-rate-and-its-strategies-

in-neural-network- training-270a91ea0e5c#:~:text=The%20choice%200f%
20learning%20rate,become%20stuck%20in%20local%20minima

Florian Bordes, Richard Yuanzhe Pang, Anurag Ajay, Alexander C. Li, Adrien

Bardes, Suzanne Petryk, Oscar Maiias, Zhiqiu Lin, Anas Mahmoud, Bargav Ja-

yaraman, Mark Ibrahim, Melissa Hall, Yunyang Xiong, Jonathan Lebensold, Can-

dace Ross, Srihari Jayakumar, Chuan Guo, Diane Bouchacourt, Haider Al-Tahan,

Karthik Padthe, Vasu Sharma, Hu Xu, Xiaoging Ellen Tan, Megan Richards, Samuel

Lavoie, Pietro Astolfi, Reyhane Askari Hemmat, Jun Chen, Kushal Tirumala, Rim

Assouel, Mazda Moayeri, Arjang Talattof, Kamalika Chaudhuri, Zechun Liu, Xilun

Chen, Quentin Garrido, Karen Ullrich, Aishwarya Agrawal, Kate Saenko, Asli

Celikyilmaz, and Vikas Chandra. 2024. An Introduction to Vision-Language

Modeling. arXiv:2405.17247 [cs.LG] https://arxiv.org/abs/2405.17247

Luca Deininger, Bernhard Stimpel, Anil Yuce, Samaneh Abbasi-Sureshjani, Simon

Schénenberger, Paolo Ocampo, Konstanty Korski, and Fabien Gaire. 2022. A

comparative study between vision transformers and CNNs in digital pathology.

arXiv:2206.00389 [eess.IV] https://arxiv.org/abs/2206.00389

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,

Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,

Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An

Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.

arXiv:2010.11929 [cs.CV] https://arxiv.org/abs/2010.11929

European Rail Freight Association (ERFA). 2022. The European Rail

Freight Market Competitive Analysis and Recommendations. https:

//www.erfarail.eu/uploads/The%20European%20Rail%20Freight%20Market%20-

%20Competitive%20Analysis%20and%20Recommendations- 1649762289.pdf

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun. 2015. Deep Residual

Learning for Image Recognition. arXiv:1512.03385 [cs.CV] https://arxiv.org/abs/

1512.03385

[10] Aaron Hoore. 2009. https://nl.dbcargo.com/resource/blob/1430008/
9767e97bb070ccbbf77efd84e7d64948/freight_wagon_catalog_v2011-data.pdf

[11] Behzad Kordnejad, Martin Kjellin, Martin Aronsson, Guillermo Garcia, Santiago
Vilabella, Rico Wohlrath, Ingrid Nordmark, Roald Lengu, Mats Akerfeldt, and Jan
Bergstrand. 2022. Intelligent Video Gate -Automated Detection of Wagons and
Intermodal Loading Units for Image Processing and Sharing and Exploitation of
Data. (06 2022).

[12] Chenghao Li, Shuang Liu, Qiaoyang Xia, Hui Wang, and Haoyao Chen. 2019.
Automatic Container Code Localization and Recognition via an Efficient Code
Detector and Sequence Recognition. In 2019 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM). 532-537. https://doi.org/10.1109/
AIM.2019.8868819

[13] Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weis-
senborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa
Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil

[2

—

[4

o

[5

[

G

=

%

—

[8

[

[o

—

https://arxiv.org/abs/2110.15253
https://arxiv.org/abs/2110.15253
https://medium.com/@amanatulla1606/transformer-architecture-explained-2c49e2257b4c
https://medium.com/@amanatulla1606/transformer-architecture-explained-2c49e2257b4c
https://www.ibm.com/think/topics/zero-shot-learning
https://www.ibm.com/think/topics/zero-shot-learning
https://medium.com/thedeephub/learning-rate-and-its-strategies-in-neural-network-training-270a91ea0e5c#:~:text=The%20choice%20of%20learning%20rate,become%20stuck%20in%20local%20minima
https://medium.com/thedeephub/learning-rate-and-its-strategies-in-neural-network-training-270a91ea0e5c#:~:text=The%20choice%20of%20learning%20rate,become%20stuck%20in%20local%20minima
https://medium.com/thedeephub/learning-rate-and-its-strategies-in-neural-network-training-270a91ea0e5c#:~:text=The%20choice%20of%20learning%20rate,become%20stuck%20in%20local%20minima
https://arxiv.org/abs/2405.17247
https://arxiv.org/abs/2405.17247
https://arxiv.org/abs/2206.00389
https://arxiv.org/abs/2206.00389
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://www.erfarail.eu/uploads/The%20European%20Rail%20Freight%20Market%20-%20Competitive%20Analysis%20and%20Recommendations-1649762289.pdf
https://www.erfarail.eu/uploads/The%20European%20Rail%20Freight%20Market%20-%20Competitive%20Analysis%20and%20Recommendations-1649762289.pdf
https://www.erfarail.eu/uploads/The%20European%20Rail%20Freight%20Market%20-%20Competitive%20Analysis%20and%20Recommendations-1649762289.pdf
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://nl.dbcargo.com/resource/blob/1430008/9767e97bb070ccbbf77efd84e7d64948/freight_wagon_catalog_v2011-data.pdf
https://nl.dbcargo.com/resource/blob/1430008/9767e97bb070ccbbf77efd84e7d64948/freight_wagon_catalog_v2011-data.pdf
https://doi.org/10.1109/AIM.2019.8868819
https://doi.org/10.1109/AIM.2019.8868819

TScIT 42, January 31, 2025, Enschede, The Netherlands

(14]

[15]
[16]
(17]

(18]

[19]

Houlsby. 2022. Simple Open-Vocabulary Object Detection with Vision Transform-
ers. arXiv:2205.06230 [cs.CV] https://arxiv.org/abs/2205.06230

Lukas Neumann and Jifi Matas. 2015. Efficient Scene Text Localization and
Recognition with Local Character Refinement. arXiv:1504.03522 [cs.CV] https:
//arxiv.org/abs/1504.03522

Merve Noyan and Edward Beeching. 2024. Vision language models explained.
https://huggingface.co/blog/vlms

Szymon Palucha. 2024. Understanding openai’s clip model. https://medium.com/
@paluchasz/understanding- openais- clip-model-6b52bade3fa3

Qi Qian and Juhua Hu. 2024. Online Zero-Shot Classification with CLIP.
arXiv:2408.13320 [cs.CV] https://arxiv.org/abs/2408.13320

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Mod-

els From Natural Language Supervision. arXiv:2103.00020 [cs.CV] https:
//arxiv.org/abs/2103.00020
Koo Ping Shung. 2020. Accuracy, precision, recall or F1? https://

towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37¢5cb9

[20]

[21]

[22]

A

Author

Andrey Vavilin, Andrey Lomov, and Titkov Roman. 2022. Real-time Train Wagon
Counting and Number Recognition Algorithm. In 2022 International Workshop on
Intelligent Systems (IWIS). 1-4. https://doi.org/10.1109/TWIS56333.2022.9920835
Hong Xuan, Abby Stylianou, Xiaotong Liu, and Robert Pless. 2021. Hard negative
examples are hard, but useful. arXiv:2007.12749 [cs.CV] https://arxiv.org/abs/
2007.12749

Shuai Zhao, Ruijie Quan, Linchao Zhu, and Yi Yang. 2024. CLIP4STR: A Simple
Baseline for Scene Text Recognition With Pre-Trained Vision-Language Model.
IEEE Transactions on Image Processing 33 (2024), 6893-6904. https://doi.org/10.
1109/tip.2024.3512354

Al DISCLOSURE

During the writing of this thesis, the author used the AI chatbot
Claude to suggest ideas and troubleshoot coding errors. After using
this tool, the author reviewed and edited the responses as needed
and takes full responsibility for the content of the work

https://arxiv.org/abs/2205.06230
https://arxiv.org/abs/2205.06230
https://arxiv.org/abs/1504.03522
https://arxiv.org/abs/1504.03522
https://arxiv.org/abs/1504.03522
https://huggingface.co/blog/vlms
https://medium.com/@paluchasz/understanding-openais-clip-model-6b52bade3fa3
https://medium.com/@paluchasz/understanding-openais-clip-model-6b52bade3fa3
https://arxiv.org/abs/2408.13320
https://arxiv.org/abs/2408.13320
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://doi.org/10.1109/IWIS56333.2022.9920835
https://arxiv.org/abs/2007.12749
https://arxiv.org/abs/2007.12749
https://arxiv.org/abs/2007.12749
https://doi.org/10.1109/tip.2024.3512354
https://doi.org/10.1109/tip.2024.3512354

	Abstract
	1 Introduction
	2 Literature Review
	2.1 VLMs
	2.2 CLIP

	3 Previous Work
	3.1 Other Methods for Wagon Number Localization
	3.2 CLIP4STR
	3.3 Object localization using CLIP

	4 Methodology
	4.1 Experiment Schema
	4.2 Data
	4.3 Model Training
	4.4 Model Evaluation

	5 Results and Discussion
	5.1 Test 1 Results
	5.2 Test 1 Discussion
	5.3 Test 2 Results
	5.4 Test 2 Discussion.

	6 Conclusion
	Acknowledgments
	References
	A AI Disclosure

