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Abstract

In this paper, we introduce a game-theoretic model that represents the facility
location problem where clients need to choose two facilities. This is based on the
classic Hotelling-Downs model, with the change from choosing one facility to choos-
ing two facilities. We develop tools that state that if one facility, or two facilities
on the same location, are on the outside, that this strategy profile cannot be an
equilibrium. This is useful for characterizing the possible equilibria for two, three
and four facilities, and for the result that there does not exist an equilibrium for
five facilities.

Keywords: Choosing Two Facilities, Hotelling-Downs model, equilibria, game-theoretic,
facility location problem

1 Introduction

When a facility chooses a location, it wants to make sure that this location will maximize
their own profit. For example, the clothing business STING wants to open a new facility
in the center of Enschede. What is the best location to place this facility? That depends
among others on the behavior of the clients and the location of other similar facilities.
This is an example of facility location problems, which are studied in Economics, Math-
ematics, Operations Research, Theoretical Computer Science and Artificial Intelligence
[5]. To solve these kinds of competitive situations, we can use methods from Game
Theory, and represent these situations using mathematical location models.

1.1 Related work

The first model that was introduced in this research field is the Hotelling-Downs model,
which was first found by Hotelling [4] and later by Downs [2]. In this model there are two
facilities and infinitely many clients on a continuous line. These clients have to choose
between these two facilities, only based on the shortest distance. They have shown that
the only stable situation, which is the case when the facilities cannot move for their own
benefit, also called equilibrium, is when both facilities are placed in the middle of the
line.
Later, Lerner [7] has shown that in the Hotelling-Downs model there is an equilibrium for
any number of facilities at a line, except if there are three facilities. Eaton and Lipsey [3]
introduced the principle of local clustering in the Hotelling-Downs model, where a new
facility (or when a facility relocates) has a strong tendency to locate as close as possible
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to the other firm(s). This results in local clusters in many situations. A little more than
a decade later, Cox [1] showed in the Hotelling-Downs model that in equilibria, there
can be no more than two facilities at any given point.

1.2 My contribution

Most of the research that is currently done in this research field includes the assumption
that every client chooses exactly one facility. But there are also situations where clients
need to choose two facilities. For example, a factory where a certain product needs to be
made and there are two similar machines (which refer to the facilities in our situation)
which can make this product. We can choose to let them both work, to avoid the situation
that you do not have a working machine left if one of the machines breaks down. This
is an application of the situation we will investigate and this can be translated into a
lot of different areas. In all these different areas, the goal is still that facilities want
to maximize their own profit. The question then arises, how can the facilities do that?
That brings me to my main research question: “What happens when clients have to
choose two facilities?”. To answer this main research question, I will first answer two
sub-research questions, namely: “Do equilibria exist while choosing two facilities?” and
“Can we translate the existing results directly to the two-facility case?”. The overall
objective in this field is to extend and improve the existing models and this research is
a small piece of this goal.

The model that will be described in this paper, is a game-theoretic model for non-
cooperative facility location and is based on the Hotelling-Downs model. The model
will be explained in the next chapter. After that, the results regarding this model will
be explained. We developed two tools that are useful for characterizing the possible
equilibria for two, three, four and five facilities. The results of Cox [1] and Eaton and
Lipsey [3] are related to these tools and Lerner [7] is related to the equilibria. This paper
will end with a conclusion and recommendations for further research.

2 Model and notation

We consider a non-cooperative facility location model, which is similar to the Hotelling-
Downs model [4, 2], but in this new model, clients have to choose two facilities instead
of one. We call this model the Choosing Two Facilities Hotelling Model. In this model
we have the set of m facilities M ∶= {1, ...,m}. The facilities will choose strategically a
location on the interval I ∶= [0,1], and we have infinitely many clients that are uniformly
distributed over this interval. The facilities are non-cooperative, so they do not choose
a location together, but on their own. We define the strategy profile to be the vector
f = (f1, ..., fm) where fi ∈ I represents the location of facility i. If we want to remove
the location of facility i and replace this by a new location, we can represent this new
strategy profile with the vector (f ′i , f−i), where f−i means that the location of facility i
is removed, and f

′

i is the new location of facility i.

The payoff for facility i is defined as the amount of clients that choose facility i when
facility i has strategy profile f , which is denoted by πi(f). This is the sum of the payoffs
from the first choice and second choice of the clients, i.e. πi(f) = π1

i (f) + π2
i (f), where

π1
i (f) represents the first choice payoff for facility i and π2

i (f) represents the second
choice payoff for facility i. The total payoff per facility has a maximum of 1, since each
client chooses a facility at most once.
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Every client c ∈ I chooses the closest two facilities, where the facility that is the closest
will be the first choice. When there are k ≥ 2 facilities on the same location, such that
for an amount of clients, let us call this x, this is the closest location, then the payoff
for facility i per choice of the clients is equal to π1

i (f) = 1
k ⋅ x = π2

i (f) for all 2 ≤ m ≤ k
where i ∈M .

Now that we have introduced the model, let us first define an equilibrium properly and
give an example of what can happen in this model, see Figure 1, before diving into the
results.

Definition 1. The strategy profile f is called an equilibrium if πi(f) ≥ πi(f ′i , f−i) for all
i ∈ {1, ...,m} and f

′

i ≠ fi.

(a) Example of m = 3 in an unstable situ-
ation where f = (f1, f2, f3) = ( 5

12
, 5
12
, 2
3
).

(b) Example of m = 3 in an equilibrium
where f = ( 5

12
, 5
12
, 5
12
).

Figure 1: Examples of strategy profiles in the Choosing Two Facilities Hotelling
Model with three facilities. Figures a and b show an example where the facilities
are in an unstable situation and an example where the facilities are in an equilib-
rium, respectively. The horizontal colored lines represent the payoff per facility
per different color. The highest colored line represents the first choice payoff and
the lower colored line represents the second choice payoff. Facility 1 is green,
facility 2 is blue and facility 3 is red. Facility 3 can move to the left in Figure a
to maximize his own payoff. This payoff is maximized if facility 3 is at the same
location as the other two facilities, as we have shown in Figure b. The maximized
payoff is then equal to πi(f) = 2

3 for all i ∈ {1,2,3}.

3 Results

Our first result already shows that our situation is fundamentally different from the
classical Hotelling-Downs model, where for two facilities the only equilibrium is both
facilities exactly in the middle of the interval I. In our model, there are infinitely many
equilibria when there are two facilities at the interval I.

Theorem 1. For m = 2, every f is an equilibrium.

Proof. Let f be arbitrary and let x ∶= π1
1(f), which represents the amount of clients

who choose facility 1 first. That means that x = π2
2(f), which represents the amount of

clients who choose facility 2 as second, since that is the only other choice. Then 1 − x
clients choose facility 2 as first and facility 1 as second, i.e., π1

2(f) = 1 − x = π2
1(f).

Therefore, both facilities get a payoff of 1, i.e., πi(f) = 1 for all i, and it is clear that
this is independent of the location of the facilities. Therefore, π1(f) = π1

1(f) + π2
1(f) =

x+1−x = 1 and π2(f) = π1
2(f)+π2

2(f) = 1−x+x = 1. Because 1 is the maximum payoff
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per facility, πi(f) = πi(f ′i , f−i) for all i and f
′

i ≠ fi, thus by definition we can state that
f is an equilibrium. Since f was chosen arbitrarily, every f is an equilibrium.

Now that we have proved the first result, it is interesting to study cases of more than two
facilities placed on the interval I. Before we state and proof various theorems regarding
more facilities, we first need the following tools. These are useful for characterizing the
equilibria for cases with more than two facilities. The first tool describes that it is not
possible to have one facility on the outside in an equilibrium.

Lemma 1. For m ≥ 3, if for the strategy profile f there is one facility outside, i.e., if
∃k ∈M , such that fk > fi (or fk < fi) for all i ≠ k, then f is not an equilibrium.

Proof. Let m ≥ 3, assume that there is one facility k ∈ M such that fk > fj (the case
fk < fj is equivalent) for all j ∈ M and j ≠ k, and assume that f = (f1, ..., fk, ..., fm) is
an equilibrium. From the equilibrium condition it follows that πi(f) ≥ πi(f ′i , f−i), where
f
′

i ≠ fi, for all i ∈M .

There is at least one facility located in I, let us call it l ∈ M , such that ∣fk − fl∣ is the
smallest. Then ∣fk − fl∣ is the distance between facility k and facility l and represents
the amount of clients between these two facilities. Because fk > fl, all clients c, for
which it holds that c ≥ fk, choose facility k as their first choice, which is the amount
1 − fk. Half of the clients that are in between fk and fl, that are closest to facility
k, also choose for facility k as their first choice. This results in the following payoff,
π1
k(f) = 1 − fk + fk−fl

2 = 1 − fk+fl
2 . Now we make a case distinction. First, the case where

there are two facilities located at the location of facility l, and second the case where
facility l is alone at this location.

Case 1. If fl = fj for at least one j ∈M and j ≠ l, the second choice payoff for facility k
is zero, i.e., π2

k(f) = 0. This is because the distance between the clients and facility l is
the same as the distance between the clients and facility j, so ∣c− fl∣ = ∣c− fj ∣. So clients
that chose facility l as first choice, because it is the closest, choose facility j as second
choice and vice versa.
Now let facility k move δ ∶= fk−fl

2 to facility l and let this be the new location of k, i.e.,
f
′

k = fk − δ. For the new location of facility k the second choice payoff is still zero by the
same argument as above, so π2

k(f
′

k, f−k) = 0. Therefore, we are only interested in the new

payoff of the first choice of facility k. This is π1
k(f

′

k, f−k) = 1 −
f
′

k+fl
2 . Since f

′

k = fk − δ,
this implies that π1

k(f
′

k, f−k) = 1 − fk−δ+fl
2 . The payoff of the first choice for the original

location of facility k was π1
k(f) = 1 − fk+fl

2 . Note that since δ > 0, fk−δ+fl
2 < fk+fl

2 and
we can conclude that 1 − fk−δ+fl

2 > 1 − fk+fl
2 . Therefore, π1

k(f
′

k, f−k) > π1
k(f) and since

π2
k(f

′

k, f−k) = π2
k(f) = 0 this implies that πk(f ′k, f−k) > πk(f), which is a contradiction.

Thus, our assumption was wrong and therefore f is not an equilibrium.

Case 2. Let fl ≠ fj for all l ≠ j. The first choice payoff for facility k is the same as in
Case 1, namely π1

k(f) = 1 − fk + fk−fl
2 . On the other hand, the second choice payoff for

facility k is different from Case 1. Since m ≥ 3 and we already have facility k and l, we
know that there must be at least one other facility on I, let us call this facility h. Since
fk > fj for all j ∈M and j ≠ k and fl ≠ fj for all l ≠ j, facility h is located somewhere at
the left of facility l, i.e., fh ∈ [0, fl). Facility h is the next facility, so there is no other
facility between fl and fh.
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Let us look at the clients. Clients who will choose facility k as their second choice are
clients who chose facility l as their first choice. The amount of clients that choose facility
k as their second choice is half of the amount that is between facility k and h, is closest
to facility k, and depends on the distance between them. In other words, the location
that is exactly at the middle of facility h and k is equal to fk,h = fh + fk−fh

2 = fk+fh
2 .

Therefore, it is at least π2
k(f) = fk−fh

2 . But the payoff is not complete yet, because part
of this amount of clients overlaps with part of the clients that chose facility k as their
first choice, which is half of the amount of clients between fl and fk (the half that is
closest to fk). Therefore, the correct amount of clients that choose facility k as their
second choice is π2

k(f) = fk−fh
2 − fk−fl

2 = fl−fh
2 . To get the total payoff for facility k we

add the payoff of the first and second choice, which results in: πk(f) = π1
k(f) + π2

k(f) =
(1 − fk + fk−fl

2 ) + (fl−fh2 ) = 1 − fk+fh
2 .

Now, let facility k move δ ∶= fk−fl
2 to facility l and let this be the new location of k, i.e.,

f
′

k = fk − δ. The new payoff of the first choice for facility k is the same as in Case 1,
so π1

k(f
′

k, f−k) = 1 − fk−δ+fl
2 . Since facility k moved towards facility l, and therefore also

moved closer to facility h, the distance between facility k and h has become smaller,
i.e., f

′

k − fh < fk − fh. This implies that the location that is exactly at the middle of

facility h and k moves to the left, i.e., f
′

k,h =
f
′

k+fh
2 < fk+fh

2 = fk,h. Since the original
second choice payoff of facility k is independent of the location of fk, the new second
choice payoff with f

′

k is the same, i.e. π2
k(f

′

k, f−k) = fl−fh
2 . To get the new total payoff

for facility k we add the payoff of the first choice and of the second choice, which results
in: πk(f ′k, f−k) = π1

k(f
′

k, f−k)+π2
k(f

′

k, f−k) = (1− fk−δ+fl
2 )+ (fl−fh2 ). When we rewrite this,

we end up with πk(f ′k, f−k) = 1 − fk+fh−δ
2 . Since δ

2 > 0 and πk(f) + δ
2 = πk(f

′

k, f−k), we
can conclude that πk(f ′k, f−k) > πk(f). This is a contradiction which implies that our
assumption was wrong. Therefore, f is not an equilibrium.

Now that we know that one facility cannot be on the outside in an equilibrium, the
second tool will describe that it is also not possible to have two facilities, which are on
the same location, on the outside.

Lemma 2. For m ≥ 3, if for the strategy profile f there are two facilities k ≠ l outside,
i.e., fk = fl > fi (or fk = fl < fi) for all i ≠ k, l, f is not an equilibrium.

Proof. Let m ≥ 3, assume that there are two facilities k ≠ l such that fk = fl > fj (fk = fl <
fj , respectively) for all j ∈M and j ≠ k, l, and assume that f = (f1, ..., fk, ..., fl, ..., fm) is
an equilibrium. From the equilibrium condition it follows that πi(f) ≥ πi(f ′i , f−i), where
f
′

i ≠ fi, for all i ∈M .

There is at least one facility located in I, let’s call it h ∈ M , such that ∣fk − fh∣ is the
smallest. Then ∣fk − fh∣ is the distance between facility k (and facility l) and facility h
and represents the amount of clients between these two facilities. Because fk > fh, all
clients c, for which it holds that c ≥ fk (and c ≥ fl), choose one of these facilities for the
first choice, which is the amount 1−fk

2 per facility. Half of the clients that are in between
fk (and fl) and fh, that are closest to facility k (and l), also choose for facility k (or l)
for the first choice. This results in the following payoff, π1

k(f) = 1−fk
2 + fk−fh

4 = π1
l (f).

Now we make a case distinction. First the case where there are more than one facility
located at the location of facility h (only possible when m > 3), and second the case
where facility h is alone at this location.
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Case 1. If fh = fj for at least one facility j ∈ M such that j ≠ h, the second choice
payoff for facility k does not depend on the clients that chose facility h or j as their first
choice. This is because ∣c − fh∣ = ∣c − fj ∣, which is the distance from client c to a facility.
Therefore, clients that chose as first choice for h, because it is the closest, choose for j
as their second choice and vice versa.
Because there are two facilities at location fk, the clients that chose for facility k the
first time, now choose facility l and vice versa (because these are still the closest), i.e.,
π1
k(f) = π2

k(f) = 1
2(1 − fk + fk−fh

2 ) = 1
2 − fk+fh

4 = π1
l (f) = π2

l (f). This implies that
πk(f) = 2(12 − fk+fh

4 ) = 1 − fk+fh
2 .

Now let facility k move δ ∶= fk−fh
2 to facility h and let this be the new location of k, i.e.,

f
′

k = fk −δ. Therefore, f
′

k < fl, which implies that all clients for which it holds that c ≥ fl,
choose for facility l as their first choice, instead of half of these clients, like in the original
situation. This amount is 1 − fl. Also half of the clients that are in between f

′

k and fl,
that are closest to facility l also choose for facility l for the first choice. This amount

is fl−f
′

k

2 . This implies that π1
l (f

′

k, f−k) = 1 − fl +
fl−f

′

k

2 = 1 − fl+f
′

k

2 . The other half of the
clients that are between (the new location of) facility k and facility l, that are closest to
facility k, choose for facility k as their first choice. Similar holds for the clients between

facility h and k. Therefore, π1
k(f

′

k, f−k) =
fl−f

′

k

2 + f
′

k−fh
2 = fl−fh

2 .

The second choice payoff still does not depend on the clients that chose facility h or j as
their first choice, because of the same argument as before moving. Since fl > fi for all
i ≠ l, ∣fk − fh∣ is the smallest and facility k moves towards facility h, clients who chose
for facility l in their first choice, choose for facility k in their second choice, since that

is the closest one. That implies that π2
k(f

′

k, f−k) = 1 −
fl+f

′

k

2 . To get the total new payoff
for facility k, we add the first and the second choice, which results in: πk(f ′k, f−k) =
π1
k(f

′

k, f−k)+π2
k(f

′

k, f−k) = fl−fh
2 +1− fl+f

′

k

2 = 1− fh+f
′

k

2 . Since f
′

k = fk − δ, that implies that
πk(f ′k, f−k) = 1 − fh+fk−δ

2 = 1 − fh+fk
2 + δ

2 . Since δ
2 > 0 and πk(f ′k, f−k) = πk(f) + δ

2 , we can
conclude that there exists an f

′

k such that πk(f ′k, f−k) > πk(f). This is a contradiction
thus our assumption was wrong. Therefore, f is not an equilibrium.

Case 2. Let fh ≠ fj for all h ≠ j. The first choice payoff for facility k is the same as
in Case 1, namely π1

k(f) = 1
2 − fk+fh

4 . For the second choice, it still holds from Case 1
that for two facilities at location fk, the clients that chose for facility k the first time,
now choose facility l and vice versa (because these are still the closest), but there is also
something different for the second choice. Therefore, we make a case distinction. The
first case is that there are two or more facilities next to facilities k and l (for which the
prove will follow) and the second case that there is exactly one more facility next to
facilities k and l, which is a special case and we will prove in Case 3.

Let g, h, k, l ∈M where fk = fl still holds and fg < fh < fk. Because there are two facilities
at location fk, clients c for which it holds that c ≥ fk, that chose facility l the first time,
now choose facility k and vice versa. This is the amount 1−fk

2 . Therefore, the second
choice payoff for facility k is at least 1−fk

2 . Since facility h is the first next facility if we
look from facility k (and l), for a part of the clients that chose facility h as their first
choice, since it is the closest, facility k and l are the second closest and are the facilities
that will be chosen for their second choice. This amount depends on the distance between
the next facility, which is facility g, and facility k. Half of the clients that are in between
these facilities, that are closest to facility k and l, also choose either for facility k or for
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facility l as their second choice. This is the amount fk−fg
4 , since we divide by two to get

half of the clients, and again by two to get the amount per facility. This results in the
following second choice payoff for facility k, π2

k(f) = 1−fk
2 + fk−fg

4 = 1
2 −

fk+fg
4 . Add this

to the first choice payoff of facility k (or l) and we get the total payoff of facility k, i.e.,
πk(f) = π1

k(f) + π2
k(f) = 1

2 − fk+fh
4 + 1

2 −
fk+fg

4 = 1 − fk
2 −

fh+fg
4 .

Now let facility k move δ ∶= fk−fh
2 to facility h and let this be the new location of k,

i.e., f
′

k = fk − δ. The new payoff for facility k of the first choice is the same as in Case
1 : π1

k(f
′

k, f−k) = fl−fh
2 . The new payoff for facility k of the second choice is different.

Clients that chose facility l as their first choice, choose facility k as their second since

it is the second closest. This amount is 1 − fl+f
′

k

2 . Since fh < f ′k < fl, part of the clients
that chose facility h as their first choice, also choose facility k as their second. This
amount depends on the distance between the next facility, which is facility g, where

fg < fh, and facility k and is equal to f
′

k−fg
2 . But in this amount, part overlaps with

clients who have already chosen facility k as their first choice. That amount is half of the
clients that are in between facility k and h, which are closest to facility k. If we subtract

this amount we get f
′

k−fg
2 − f

′

k−fh
2 = fh−fg

2 . This results in a new payoff for facility k

for the second choice of π2
k(f

′

k, f−k) = 1 −
fl+f

′

k

2 + fh−fg
2 . To get the new total payoff for

facility k we add the payoff of the first choice and of the second choice, which results in:

πk(f ′k, f−k) = π1
k(f

′

k, f−k)+ π2
k(f

′

k, f−k) = fl−fh
2 + 1− fl+f

′

k

2 + fh−fg
2 = 1− f

′

k+fg
2 . If we plug in

f
′

k = fk − δ and δ = fk−fh
2 we get πk(f ′k, f−k) = 1 − fk−δ+fg

2 = 1 − fk−
fk−fh

2
+fg

2 . If we rewrite
this we get πk(f ′k, f−k) = 1 − fk+fh

4 − fg
2 .

The only thing that is left to prove is that πk(f ′k, f−k) > πk(f), i.e., 1 − fk+fh
4 − fg

2 >
1− fk

2 −
fh+fg

4 . Let us first rewrite the new payoff of facility k; πk(f ′k, f−k) = 1− fk+fh
4 − fg

2 =
1− fh

4 − fk
2 + fk

4 −
fg
4 −

fg
4 . Then, 1− fh

4 − fk
2 + fk

4 −
fg
4 −

fg
4 = πk(f)+ fk

4 −
fg
4 . Since fk > fg,

we can state that fk
4 −

fg
4 > 0. This implies πk(f ′k, f−k) = πk(f)+ fk

4 −
fg
4 > πk(f). This is

a contradiction, which implies that our assumption was wrong. Therefore, f is not an
equilibrium.

Case 3. Let M = {h, k, l} where fk = fl still holds and fh < fk. Like mentioned in Case
2, this is a special case. Still, the first choice payoff for facility k is the same as in Case
1, namely π1

k(f) = 1
2 − fk+fh

4 . The second choice is different, which we will explain now.

Clients who chose facility h as their first choice do not have any other choice for their
second choice than facility k or l. Since fk = fl, we know that ∣c−fk∣ = ∣c−fl∣. Therefore,
the second choice payoff for facility k (or l) is at least half of the first choice payoff
of facility h, which is independent of the location of facilities k and l, as long as these
facilities are at the same location. This amount is 1

2(1−2π1
k(f)) = 1

2 −(12 − fk+fh
4 ) = fk+fh

4 .
Besides this, there are still clients for which facilities k and l are the closest. Because
there are two facilities at location fk, the clients that chose facility k the first time, now
choose facility l and vice versa. This is the amount π1

k(f) = 1
2 − fk+fh

4 . Therefore, the
total second choice payoff of facility k (or l) is equal to π2

k(f) = fk+fh
4 + 1

2 − fk+fh
4 = 1

2 .
Add this to the first choice payoff of facility k (or l) and we get the total payoff of facility
k, i.e., πk(f) = π1

k(f) + π2
k(f) = 1

2 − fk+fh
4 + 1

2 = 1 − fk+fh
4 .

Now let facility k move δ ∶= fk−fh
2 to facility h and let this be the new location of k, i.e.,

f
′

k = fk − δ. The new payoff for facility k of the first choice is the same as in Case 1 :
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π1
k(f

′

k, f−k) = fl−fh
2 . The new payoff for facility k of the second choice is different. Since

fh < f ′k < fl, the clients that chose facility h as their first choice, choose facility k as their
second, since it is the closest, and clients that chose facility l as their first choice, also
choose facility k as their second since it is the closest. This results in a new payoff for

facility k for the second choice of π2
k(f

′

k, f−k) = π1
h(f

′

k, f−k)+π1
l (f

′

k, f−k) =
fh+f

′

k

2 +1− fl+f
′

k

2 =
1 − fl−fh

2 . To get the new total payoff for facility k we add the payoff of the first choice
and of the second choice, which results in: πk(f ′k, f−k) = π1

k(f
′

k, f−k) + π2
k(f

′

k, f−k) =
fl−fh

2 +1− fl−fh
2 = 1. Since 1 > 1− fk+fh

4 we can conclude that there exists an f
′

k such that
πk(f ′k, f−k) > πk(f). This is a contradiction thus our assumption was wrong. Therefore,
f is not an equilibrium.

Now that we have developed the two tools in the Choosing Two Facilities Hotelling Model,
we will use these tools to characterize the equilibria for three facilities on the interval
I. The main difference with the Hotelling-Downs model [4, 2] is that in the Choosing
Two Facilities Hotelling Model there exist equilibria for three facilities, in contrast to
the Hotelling-Downs model. Next to the proof, there is an example below, see Figure 2,
to also get a visual idea of this situation.

Theorem 2. For m = 3, if f = (f, f, f) where f ∈ [13 , 23], then f are all possible equilibria.

Proof. Let us first prove that all facilities should be placed at the same location. As-
suming this is not the case, the possibilities of placing three facilities in the interval I
are as follows. Either each facility at a different location (i) or two facilities at the same
location and the one at a different location (ii).

In Case (i), there are two different places that have a facility on the outside. By Lemma 1
this cannot be an equilibrium. In Case (ii), there is one facility located outside and there
are two facilities together located outside. By Lemma 1 and by Lemma 2, respectively,
this cannot be an equilibrium. Therefore, we proved that f = (f, f, f).
What is left to prove is that if f ∈ [13 , 23], that f are all the possible equilibria. Before
we do that, note that because f = (f, f, f), the payoffs for all facilities are the same.
For the first choice, every facility gets a third of the clients c for which it holds that
c ≤ f , which is equal to f

3 , and a third of the clients c for which it holds that c > f ,
which is equal to 1−f

3 . The same holds for the second choice. Therefore, the payoff is
equal to πi(f) = π1

i (f) + π2
i (f) = (f3 + 1−f

3 ) ⋅ 2 = 2
3 for all i ∈ {1,2,3}. We see that this is

independent of the specific location of f , as long as the three locations are the same.

Assume that f ∈ [13 , 23]. Let, without loss of generality, facility 1 move an arbitrary
distance, call it δ, away from the other two facilities and let this be the new location of
facility 1, i.e., f

′

1 = f + δ such that f
′

1 ∈ I. Note that if δ is positive, f
′

1 > f and if δ is
negative, f

′

1 < f . For now, we assume that δ is positive and thus f
′

1 > f . The other case is
equivalent. We are now in the Case 1 of the proof of Lemma 1. Therefore, the new payoff

for facility 1 is equal to π1(f ′1, f−1) = π1
1(f

′

1, f−1) + π2
1(f

′

1, f−1) = 1 − f
′

1+f
2 + 0 = 1 − f

′

1+f
2 .

Since f
′

1 = f + δ, this implies that π1(f ′1, f−1) = 1 − f+δ+f
2 = 1 − f − δ

2 . Since f ∈ [13 , 23],
if we rewrite the new payoff, we get 1

3 − δ
2 ≤ π1(f

′

1, f−1) ≤ 2
3 − δ

2 . Since δ is positive, the
new payoff is always smaller than 2

3 , which was the original payoff. This means that
there does not exist an f

′

1 such that π1(f ′1, f−1) > π1(f). Therefore, if f ∈ [13 , 23] for
f = (f, f, f), then these are possible equilibria.
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The only question that is left, is if these possible equilibria are the only equilibria, or
if there are more. Assume that for the strategy profile f = (f, f, f) where f < 1

3 and
assume that f are possible equilibria. The payoff is the same as above, namely πi(f) =
π1
i (f)+π2

i (f) = (f3+ 1−f
3 )⋅2 = 2

3 for all i ∈ {1,2,3}. Let, without loss of generality, facility 1

move δ ∶=
1
3
−f

2 , away from the other two facilities and let this be the new location of facility
1, i.e., f

′

1 = f +δ. We are now in the Case 1 of the proof of Lemma 1. Therefore, the new

payoff for facility 1 is equal to π1(f ′1, f−1) = π1
1(f

′

1, f−1)+π2
1(f

′

1, f−1) = 1− f
′

1+f
2 +0 = 1−

f
′

1+f
2 .

Since f
′

1 = f + δ where δ =
1
3
−f

2 , this implies that π1(f ′1, f−1) = 1−
f+

1
3−f

2
+f

2 = 1− f −
1
3
−f

4 =
1− 3

4f − 1
12 . Since f < 1

3 , we can state that 1− 3
4f − 1

12 > 1− 3
4 ⋅ 13 − 1

12 = 2
3 . Since the original

payoff is equal to 2
3 , we can conclude that π1(f ′1, f−1) > π1(f) and this is a contradiction.

Therefore, our assumption was wrong and thus f where f < 1
3 is not an equilibrium.

The case where f > 2
3 is equivalent. This concludes that f = (f, f, f) are all the possible

equilibria if f ∈ [13 , 23].

(a) Example of m = 3 in an unstable situ-
ation where f = (f1, f2, f3) = ( 3

12
, 3
12
, 2
3
).

(b) Example of m = 3 in an unstable sit-
uation where f = ( 3

12
, 3
12
, 3
12
+ ϵ).

(c) Example of m = 3 in an unstable sit-
uation where f = ( 3

12
, 3
12
+ 2ϵ, 3

12
+ ϵ).

(d) Example of m = 3 in an equilibrium
where f = ( 1

2
, 1
2
, 1
2
).

Figure 2: Examples of strategy profiles in the Choosing Two Facilities Hotelling
Model with three facilities. The horizontal colored lines represent the payoff per
facility per different color. The highest colored line represents the first choice
payoff and the lower colored line represents the second choice payoff. Facility
1 is blue, facility 2 is green and facility 3 is red. Figure a is an example of an
unstable situation. Here, facility 3 can improve his own payoff by moving to the
left. An example of this is shown in Figure b. Since all facilities want to maximize
their own profit, it is beneficial for the other two facilities to move to the right of
facility 3. An example where one of the two facilities moves to the right of facility
3 is shown in Figure c. This process can be repeated with all facilities, until all
facilities are at the same location within the interval [13 , 23]. An example of this
is shown in Figure d. The maximized payoff is then equal to πi(f) = 2

3 for all
i ∈ {1,2,3}.

The result for four facilities, which we will prove below, is quite similar to the result for
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three facilities. After the proof, there is an example, see Figure 3, to get a visual idea of
this situation.

Theorem 3. For m = 4, if f = (12 , 12 , 12 , 12), then f is the only equilibrium.

Proof. Let us first prove that all facilities should be placed at the same location. As-
suming this is not the case, the possibilities of placing four facilities in the interval I are
as follows. Each facility at a different location (i), two pairs of two facilities where the
pairs are at different locations (ii), three facilities at one location and one at a different
location (iii) or all four facilities at the same location (iv).

In Cases (i) and (iii), there is a facility outside. By Lemma 1 these cases do not contain
equilibria. In Case (ii), there are two pairs of two facilities together located outside. By
Lemma 2 this cannot be an equilibrium. Therefore, we proved that all facilities should
be placed at the same location, i.e., f = (f, f, f, f).
What is left to prove is that f is the only equilibrium if f = 1

2 . Before we do that,
note that because f = (f, f, f, f), the payoffs for all facilities are the same. For the
first choice, every facility gets a fourth of the clients c for which it holds that c ≤ f ,
which is equal to f

4 , and a fourth of the clients c for which it holds that c > f , which
is equal to 1−f

4 . The same holds for the second choice. Therefore, the payoff is equal
to πi(f) = π1

i (f) + π2
i (f) = (f4 + 1−f

4 ) ⋅ 2 = 1
2 for all i ∈ {1,2,3,4}. We see that this is

independent of the specific location of f , as long as the four locations are the same.

Assume that f = 1
2 . Let, without loss of generality, facility 1 move an arbitrary distance,

call it δ, away from the other two facilities and let this be the new location of facility 1,
i.e., f

′

1 = f+δ such that f
′

1 ∈ I. Note that if δ is positive, f
′

1 > f and if δ is negative, f
′

1 < f .
For now, we assume that δ is positive and thus f

′

1 > f . The other case is equivalent. We
are now in the Case 1 of the proof of Lemma 1. Therefore, the new payoff for facility 1 is

equal to π1(f ′1, f−1) = π1
1(f

′

1, f−1)+π2
1(f

′

1, f−1) = 1− f
′

1+f
2 +0 = 1−

f
′

1+f
2 . Since f

′

1 = f+δ, this
implies that π1(f ′1, f−1) = 1− f+δ+f

2 = 1− f − δ
2 . Since f = 1

2 , if we rewrite the new payoff,
we get π1(f ′1, f−1) = 1

2 − δ
2 . Since δ is positive, the new payoff is always smaller than

1
2 , which was the original payoff. This means that there does not exist an f

′

1 such that
π1(f ′1, f−1) > π1(f). Therefore, if f = 1

2 for f = (f, f, f, f), then this is an equilibrium.

The only question that is left, is if this is the only equilibrium. Assume that the strategy
profile f = (f, f, f, f) where f < 1

2 and assume that f is an equilibrium. The payoff is
the same as above, namely πi(f) = π1

i (f)+π2
i (f) = (f4 + 1−f

4 ) ⋅2 = 1
2 for all i ∈ {1,2,3,4}.

Let, without loss of generality, facility 1 move δ ∶=
1
2
−f

2 , away from the other three
facilities and let this be the new location of facility 1, i.e., f

′

1 = f + δ. We are now in
the Case 1 of the proof of Lemma 1. Therefore, the new payoff for facility 1 is equal to

π1(f ′1, f−1) = π1
1(f

′

1, f−1) + π2
1(f

′

1, f−1) = 1 − f
′

1+f
2 + 0 = 1 −

f
′

1+f
2 .

Since f
′

1 = f + δ where δ =
1
2
−f

2 , this implies that π1(f ′1, f−1) = 1−
f+

1
2−f

2
+f

2 = 1− f −
1
2
−f

4 =
1− 3

4f − 1
8 . Since f < 1

2 , we can state that 1− 3
4f − 1

12 > 1− 3
4 ⋅ 12 − 1

8 = 1
2 . Since the original

payoff is equal to 1
2 , we can conclude that π1(f ′1, f−1) > π1(f) and this is a contradiction.

Therefore, our assumption was wrong and f where f < 1
2 is not an equilibrium. The case

where f > 1
2 is equivalent. This concludes that f = (12 , 12 , 12 , 12) is the only equilibrium.
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(a) Example of m = 4 in an unstable
situation where f = ( 3

4
, 3
4
, 3
4
, 3
4
). When

one facility moves slightly to the left,
the payoff for that facility will be higher
than 1

2
, which is the payoff of all facili-

ties in the current situation.

(b) Example of m = 4 in an unstable sit-
uation where f = ( 1

2
, 1
4
, 1
4
, 1
4
). When fa-

cility 1 moves to the left, and stays on
the right of the other three facilities, the
payoff will get larger the more it moves
and thus this situation is unstable.

(c) Representation of m = 4 in their only equilibrium, which is f = ( 1
2
, 1
2
, 1
2
, 1
2
).

Figure 3: Examples of strategy profiles in the Choosing Two Facilities Hotelling
Model with four facilities. Figures a and b show examples of unstable situations.
The horizontal colored lines represent the payoff per facility per different color.
The highest colored line represents the first choice payoff and the lower colored
line represents the second choice payoff. Facility 1 is red, facility 2 is blue, facility
3 is green and facility 4 is purple. Figure c shows the only equilibrium with four
facilities, where all facility locations are equal to 1

2 and the payoff is equal to
πi(f) = 1

2 for all i ∈ {1,2,3,4}.

The proofs regarding three and four facilities are quite similar to each other. But with
five facilities, something interesting happens. This result is similar to the result of the
three facilities in the Hotelling-Downs model [4, 2].

Theorem 4. For m = 5, there does not exist an f which is an equilibrium.

Proof. The options for placing five facilities on the interval I are as follows. Case 1. All
facilities are at the same location, i.e., f = (f, f, f, f, f). Case 2. Four facilities are at the
same location and one is at a different location, i.e., f = (f, f, f, f, f ′) where f ≠ f ′ . Case
3. Three facilities are at the same location and two are at the same different location,
i.e., f = (f, f, f, f ′ , f ′) where f ≠ f ′ . Case 4. Two pairs of two facilities at two locations
f ≠ f ′ and one at a different location, i.e., f = (f”, f, f, f

′

, f
′) where f” ≠ f, f ′ . Case 5.

All facilities are at a different location, i.e., f = (f1, f2, f3, f4, f5) such that fi ≠ fk for all
i ≠ k where i, k ∈ {1, ...,5}. All these possibilities can be proved by the following three
cases:

Assume that we are in Case 1 and let ϵ > 0. Then the payoff of every facility is 2/5,
because all clients choose two facilities out of the five facilities. If one of the facilities
moves ϵ to the larger side of the interval, i.e., if f < 1

2 , f
′

i = f + ϵ and if f > 1
2 , f

′

i = f − ϵ,
the payoff of this facility will be at least 1/2−ϵ/2, since this facility gets at least 1/2−ϵ/2
of the first choices and zero second choices. Since ϵ is small, 1/2 − ϵ/2 > 2/5, and thus
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there exists at least one f
′

i ≠ fi in Case 1 such that πi(f ′i , f−i) > πi(f), which implies
that this case cannot be an equilibrium.

Assume one facility is on the outside. This is true in Case 2 and Case 5. Then by
Lemma 1 these two cases cannot be equilibria.

Assume two facilities are on the outside. This is true in Case 3 and Case 4. Then by
Lemma 2 these two cases cannot be equilibria.

Now that we proved the situations where the number of facilities was two, three, four
and five, it would be interesting to generalize the results of this paper. We think that
this can be generalized in three different cases.
The first case will be the number of facilities that is divisible by three. Then we think
that the stable situation is that the facilities are placed at a location in groups of three.
The second case will be the number of facilities that results in groups of three and one
facility left. We think the stable situation is that the facilities are again placed at a
location in groups of three with one facility somewhere between these groups. It has to
be between the groups, because otherwise this facility is on the outside and that cannot
be an equilibrium by Lemma 1.
The third case will be the number of facilities that results in groups of three and two
facilities left. We think that the stable situation is that the facilities are again placed at
a location in groups of three with two facilities somewhere between these groups, either
together or separate. Again, these two facilities have to be in between the groups of
three, by Lemma 1 and Lemma 2.

4 Conclusion and further research

In this paper it became clear that the Choosing Two Facilities Hotelling Model is funda-
mentally different from the classical Hotelling-Downs model. The principle is the same
as the classical Hotelling-Downs model but the results are different. Therefore, we could
not translate the existing results literally to our model, but we could use the basis. Fur-
thermore, we developed tools which were useful to show that there exist equilibria in our
model.

For further research, these tools can also be used in generalizing our model, which was
mentioned in the last paragraph of previous section. Further, in our model, clients
only choose based on the distance. It would be interesting to add an assumption and
investigate what will happen. For example, let clients choose based on the distance and
the waiting time.

A different approach is, for example, to let go of the distance and the fact that the
clients are uniformly distributed. There are models where this is the case, like the Two-
Sided Facility Location Game [5] and the Two-Stage Facility Location Fame with atomic
clients [6]. In these models, the clients are modeled as vertices of a graph and have
a certain weight which they can spread between facilities. This makes the client itself
deterministic, which is closer to reality, but the weight can be treated continuously. The
facilities also have to be placed at a vertex, which makes it possible to let go of the
distance like it was modeled in the classical Hotelling-Downs model, and replace it with
the neighborhood of the client.
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In this approach, also the line in the classical Hotelling-Downs model has changed to a
graph. This also gives the possibility to translate the problem to a three-dimensional
space instead of a two-dimensional, like in our model. Three-dimensional is interesting
for further research, since this is closer to reality.
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