BSc Thesis Applied Mathematics

Supervisor: Clara Stegehuis

January, 2025

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

UNIVERSITY OF TWENTE.

The most powerful theorem

R. van der Graaf*

January, 2025

Abstract

We are given a large dataset including all theorems, axioma’s, definitions and more
that exist within mathematics. This dataset is represented as a directed graph.
In this graph, the theorems, axioma’s and definitions are the vertices. There is a
directed edge from vertex a to vertex b if vertex a is used to proof the existence of
vertex b. This graph will be called the LPG.

We are interested in finding the strongest vertex in this graph. We first construct a
measure to score each vertex which consists of the Pagerank, Betweenness centrality
and Degree score. Additionally, we define the Pareto Front to identify undominated
vertices.

Every vertex in the LPG has a certain category. We reduce the LPG to a graph that
only contains these categories. This way, we first find out that the category ‘Func-
tion’ performs best in the designed statistic. We now look specifically in the sub
graph that only contains vertices of the category ‘Function’. We find that there are
4 vertices are performing equally good in the sub graph, of which the vertex ‘Func-
tion.Injective.addMonoid’ performs slightly better in the designed statistic than the
other 3 vertices.

*Email: r.vandergraaf@student.utwente.nl

1 Introduction

As long as mathematics exists, formal proofs have been the corner stone of the existence
of theorems. Only a correct proof can turn a proposition into a theorem. Whilst this
is normally done by hand and without assistance, the technological era that we live in
gives room for more assistance. An example of technological assistance is LEAN, an
online programme that assists in proving mathematical theorems|1]. One can also refer
to it as the LEAN Proving Assistant. For this programme to function, a large data set
is created including all theorems, mathematical symbols, definitions and axioma. Every
theorem in mathematics depends on other theorems via its proof. With this in mind,
this dataset can be interpreted as a directed graph. In this directed graph, the theorems,
symbols and every thing else that is found in the dataset is a vertex. There is a directed
edge between vertices if the beginning vertex is necessary for the existence of the end
vertex. The resulting graph will be referred to as the Lean Proof Graph(LPG).

Th >

\ - w4 \ - w4
R R
Vertices 1 and 2 are used to Vertex Th is used in the proofs
prove vertex Th. of vertex A, vertex B and vertex C.

FIGURE 1: An example of the general build of the LPG

From this graph, it is interesting to find out which vertices can be said to be most impor-
tant, or even which single vertex is most important. By analyzing the most important
vertices in this graph, we can gain insights into the complexity and potential bottlenecks
within the proof generation process. This analysis can help in optimizing the perfor-
mance of proof generators but also provides a deeper understanding of the underlying
mathematical principles.

The organization of LEAN already has tried to find out which theorem is most important.
In their effort, they found that the equality sign is most important in the LPG. Here
they only looked at one graph statistic, namely the degree. Common sense implies that
the equality sign is not an interesting result, although justifiable when only looking at
the degree of every vertex. Therefore, to determine what vertex is most important, it
is first essential to define what properties of a vertex are of importance in this specific
graph. Once we have defined what is important in the LPG, we can construct a measure,
based on existing graph statistics, that will rank vertices on their importance.

All vertices in the LPG are placed in a category. Therefore, we will first reduce the
LPG to a graph that only contains the categories and find out what the most important

category is. After this, we can zoom in on the most important category and find out what
vertex is the most important in this category. Since this vertex is the most important
vertex of the most important category, we can say that this vertex is the most important
over the whole LPG.

These four steps can be written out as a research question and three sub research ques-
tions.

Research question
What is the most important vertex in the ‘LEAN Proof Graph’?
Sub research questions

1. What does it mean for a vertex to be important in the ‘LEAN Proof Graph’?

2. What measure is most effective at finding the most important vertex in the ‘LEAN
Proof Graph’?

3. What is the most important category in the reduced ‘LEAN Proof Graph’?

2 Existing graph statistics

There exist several graph statistics that indicate how important a certain vertex is in a
graph. We will provide a small summary of the graph statistics to get an idea how the
statistic works and what the statistic actually measures. For all graph statistics, we will
be looking at a directed graph G = (V, E') where V is the set of vertices and F is the set
of directed edges. Also, we will say that |V| =n and |E| = m.

2.1 Betweenness centrality

Betweenness centrality is a graph statistic that exists both for directed and undirected
graphs|7|. Betweenness centrality gives a value of vertex importance for a vertex j. We
get this value by looking at the amount of shortest paths from vertex i to vertex k that
include vertex j: g;r(vj). Relative to all the shortest paths from vertex i to vertex k:
i~ This gives

9ik(v5)
bi(vg) = = (1)
ik
We need to do this for every combination of vertices to get a good understanding of how
important vertex j is. We do this by first defining how important vertex j is to vertex ¢
by summing over all the vertices k. This gives

n
di; = bi(v),i #j # k. (2)
i=k
We can interpret this as a matrix with entries d;‘,j on the spot (i,7) where we can see
how dependent vertex ¢ is on vertex j in reaching all the other vertices. From this we
can finally compute the Betweenness centrality of vertex j by summing over all vertices
1, which gives

Cp(vj) =) _d;;. (3)
=1

The value of Cg(v;) becomes large once a graph becomes large. Therefore, we normalize
(3) with the maximal Betweenness centrality that is possible for a graph with the same
properties as the graph that is analyzed. To compute this we need the number of vertices
with incoming arcs, Ny, the number of vertices of with outgoing arcs, Np, and the number
of vertices with incoming and outgoing arcs, Ng. With these three values, the maximal
Betweenness centrality C'5 is defined as follows.

Ch = (N;r—1)(No —1) = (Ng — 1). (4)

This formula comes from the fact that a star-like graph has the highest Betweenness
centrality, which is proved by R. White and P. Borgatti[7]. Therefore, if you can create
a star-like graph with the same Ny, Np and Ng as the graph that is analysed, you can
calculate the maximal Betweenness centrality. Next, we get the relative Betweenness
centrality Cp of a vertex 7.

o C B (Uj) C B (Uj)

Cp(vj) = cy (N—1)(No—1)— (Ns—1)’ ?

For a large graph like the LPG, it might be very time costly to compute the Betweenness
centrality. This mostly comes from counting all the possible shortest paths between
every pair of 2 vertices. There are exactly n-n — n pairs. This becomes extremely large
for large n, which is the case for the LPG with around a million vertices.

In the LPG; if a vertex has a high Betweenness centrality it means that this vertex is used
in relatively many shortest paths from one theorem to another theorem. A path from
a theorem to another theorem can be interpreted as the beginning theorem indirectly
also being needed in the final theorem. Being in this shortest path, it implies that this
theorems needs the beginning theorem for its proofs and indirectly helps proving the
final theorem. Therefore, we can say that this theorem is important. Since we look
at every combination of theorems, a theorem with high Betweenness can be considered
important in the LPG. Therefore, vertices with high Betweenness centrality are strong
in the LPG.

2.2 Katz Centrality

Katz centrality is a measure that looks not only at the immediate connections but also
at connections that are further away from the vertex that is analysed[4|. This means
that a certain vertex will get a higher score is the vertices around it also have a high
score.

Katz centrality is calculated as follows. First you need to calculate the Katz Matrix KC.
This is done as follows:

KC=(I—-aA)™ -1 (6)

In equation (6), A represents the adjacency matrix of the given graph. The damping
value a should be chosen to be greater than zero and smaller than the maximal eigenvalue
of A, Anaz- In simple sense, the damping value determines how much further into the
graph we are looking when calculating the centrality of a vertex. The identity matrix is
given by I. To get the Katz centrality of a vertex v;, you simply sum over the row i of

the Katz Matrix KC' as follows.
KC(v;) = KCy;. (7)

In the LPG, it might be interesting to investigate vertices with high Katz centrality. If
a vertex has high Katz centrality, it means that the theorem itself can be considered
important because the theorems that are close to it in the graph are also considered im-
portant. Katz centrality stands out as a measure since it looks not only at the immediate
connections but also at vertices that are further away.

2.3 Vertex degree

The vertex degree might be one of the easier methods. In a directed graph, the degree
d(i) of a vertex v; consists of an in-degree, d;, (i), and an out-degree, dyy: (7). This gives
that de degree of an vertex v; is d(i) = (din(7), dout(7)).

For our graph, if a vertex has a high in-degree, it means that a lot of theorems were
needed to complete the proof of this theorem. This may imply that this theorem was
hard to prove.

If a vertex has a high out-degree, it means that this theorem is used to prove a lot of
different other theorems. This might imply that this theorem is important, but we still
need to be careful. Since the LPG has some "theorems" that are used in every day
practice and almost every proof, these theorems have high out-degree, whilst not being
interesting as the strongest theorem.

From the degree, we can construct part of the final measure used to score vertices in the
LPG. Before we will construct this part of the final measure, we need to investigate how
the in- and out-degrees are distributed over all the vertices. Later, we will set up a valid
measure.

2.4 Eigenvector centrality

Eigenvector centrality works almost the same as Katz centrality. The only difference is
the fact that eigenvector centrality looks only at the first neighbour of the vertex instead
of looking further than one vertex|4|. It is calculated as follows:

Amaz® = TA. (8)

Here, just like the Katz centrality, A is the adjacency matrix and A\;,q; is the maximal
eigenvalue of A. When solving this equation for x, z; is the eigenvector centrality for
vertex 4.

In literature, it can be found that the eigenvector centrality does not give a proper indi-
cation of centrality if the graph is acyclic[4]. The LPG is an acyclic graph by definition.
Therefore, the eigenvector centrality is not that useful.

2.5 Pagerank

Pagerank is a measure created to rank the importance of a webpage|6]. It can be seen as
a score based on how often a certain vertex is passed through during a random walk in

the graph in combination with the chance of randomly jumping in the graph. In some
sense it is another variant of eigenvector and Katz centrality. The Pagerank vector P
satisfies|2]:

1—
p:VATPjLT”l. (9)

Here A is once again the adjacency matrix. The equation is split up in two parts. The
first part accounts for the random walk that is being done on the graph. The second part
accounts for the random jump to another vertex in the graph. We set v as the damping
value. This value gives the distribution between the random walk and the random jump.
That is, with probability -, the random walk chooses a neighbor and with probability
1 —~ we jump to a random vertex. Generally, this value is set to 0.85. Solving equation
(9) gives a 1 by n vector P. The Pagerank of a vertex i is equal to the value in position
i in P.

Due to the possibility of a random jump, vertices that are normally not that central in
the graph still get the chance to get a score in the Pagerank. In the end, if a certain
vertex is more central, they will still get the higher score since they will appear more
often in the random walks. Pagerank gives a well distributed score to each vertex based
on how important the vertex is. The Pagerank does favor the in-degree of vertices over
the out-degree of vertices.

3 Basic dataset Analysis

To get a better understanding of how the LPG behaves and what the LPG looks like,
we perform some general analysis on the data. This includes getting an idea of how
big the dataset is, looking into the distribution of in- and out-degrees of all the vertices
and looking into the different categories the data is split up in. The LPG has 1.146.768
vertices and 14.889.516 directed edges. Since the LPG is a large graph, we will not give
a visual representation of the LPG.

3.1 In- and out-degree

We can visualize the distribution of in- and out-degrees of all vertices. For the in- and
out-degree, we will look at the degree of a vertex against the probability that a certain
vertex has higher or equal degree. That is, on the z-axis all possible in- and out-degrees
and on the y-axis P(z > d;y, /oyt), see Figure 2 and 3.

Figure 2 and 3 give us some insight on how the graph and its vertices behave. Note that
in the LPG, an in-degree of x means that this theorem needs x theorems to be proven
and an out-degree of x means that this theorem is used in x different proofs. In Figure
2 we can see that the minimal in-degree of a vertex is 0 and the maximal in-degree of a
vertex is 570. This means that there exists a theorems that uses 570 different theorems
in its proof. Interestingly, about 18% of all theorems in the LPG have an in-degree of 0.
This means that 18% of the dataset is accepted as true without requiring a proof. When
looking at the theorems that fall in this 18%, you can see that this generally consists
of axioma and objects that are needed for completeness of the LEAN program, like the

vertex called ‘obj .

0.8

)
E 0.7
(o))
Z o6
1
-% 0.5
L o
> :
o3 %
S
a8 0.2]
O
&0 \\\\‘--___
0 wmem s e
0 100 200 300 400 500 600
in-degree
FIGURE 2: In-degrees against probability of the LPG

0.5
[
@
j .
o 0.4
[0)
e}
o
2 03
I
A
x
> 0.2
2
a !
Bo1 .
o .
|
L

0 —cnsse =

0 50k 100k 150k 200k 250k 300k 350k 400k
out-degree

FIGURE 3: Out-degrees against probability of the LPG

The out-degrees of the vertices have larger variance. The minimal out-degree of a vertex
is 0 and the maximal out-degree of a vertex is 380.000. When looking closely at the data,
this distribution does kind of make sense. About 50% of all vertices have an out-degree
of 0. This means that half of all the theorems in the LPG do not contribute in any of the
proofs. These are probably theorems that are specific for a certain problem and therefore
are not needed in the proof of any other theorems. Moreover, 95% of all theorems have
an out-degree of 8 or less. On the other hand, the remaining 5% of vertices have a degree
between 8 and 380.000. This means that a small percentage of the theorems are needed
in many general proofs within mathematics. This could for example be the Triangle
inequality, a theorem that is used in many proofs across different fields of mathematics.
There are some outliers in this. For example, when looking at how many vertices have
an out-degree of 50.000 or higher, we only get a list of 22 vertices. Giving this list a
closer look, we notice quickly that it is not very odd that there are vertices with such a
high out-degree. For example, the equality sign ‘=" has a out-degree of around 270.000.
This simply means that the equality sign is used in about a quarter of all the theorems.

This of course makes sense, but is not an interesting result as ‘most powerful theorem’
whilst looking at the out-degree. There are a lot of ‘theorems’ in the LPG that are in
literal sense important to have in mathematics but ultimately don’t give an interesting
result. This is something to consider whilst constructing the measure for the LPG.

To get some final insight in the distribution of the degree of all vertices, we have made
a scatterplot of the in- and out-degree combination of every vertex in Figure 4. The z-
and y-axis are on a logarithmic scale. Since a logarithmic scale does not allow an entry
of zero, an in- or out-degree of zero is replaced by 0.1 such that it is shown.

out-degree

.
L]
I
[}
[}
1000
100

10

0.1

0.1 2 5 1 2 5 10 2 5 100 2 5
in-degree

FIGURE 4: Scatterlogplot of (din, doyt) of all vertices of the LPG

In Figure 4 we can see wether there is a correlation between high in-degree and low
out-degree and vice versa. Of course, you do have to keep in mind that the x-axis goes
from 0 too 600 and the y-axis goes from 0 to 400.000. When calculating the correlation
between the in- and out-degree, we find that there actually is no clear correlation with
a score of -0.0059.

3.2 Categories

All the vertices in the LPG are divided into several categories. This can be seen by
the names given for the vertices. Take for example the vertex called ‘CategoryThe-
ory.Sum.inl_.proof 2’°. In the name of this vertex, we can see that the name is separated
with a dot. We will define the string of text before the first dot as the main category.
This way, we can split up all vertices in their own respective category. For the example
vertex, the category would be ‘CategoryTheory’. When doing this, we find out that there
are 27.813 different categories in the LPG. On average, this would mean that there are
around 40 vertices per category. When looking more closely at the different categories,
we find out that this is not the case. In Figure 5 you can find a similar figure that we
also used for the distribution of the in- and out-degrees of the graph. On the z-axis
you can find the size of a category and on the y-axis you can find the probability of a
category size being larger or equal than x.

I
)
]

size of category
o
A o
(] [\

0.1

mmrsss s e 89 @

0.05

probability x>

o

50k 100k 150k 200k
Size of category

FIGURE 5: Category size against probability

From here we can see that around 25% of the different categories have a category size
of 2 or more. This means that 75% of all categories have a size of 1. These are singular
categories, that is categories that only consist of one theorem. This makes up for around
20.500 of the 27.000 different categories. When looking more closely at these singular
categories, we see that once again most of these ‘theorems’ are actually objects that are
needed for completeness of the LEAN program.

’ Range category size ‘ Number of categories ‘

1-10 24588
11-100 2491
101-1.000 629
1.001-10.000 93
10.001 or more 12

TABLE 1: How many categories are in the range of category sizes

In Table 1 we have divided the sizes of categories in bins and see how many categories
have a size that falls into the respective bin.

4 Methods

Now that we have more insights of the properties of the graph, we will create the methods
of finding the strongest vertex in the LPG. Included in the methods is the way of ranking
vertices and reducing the graph to a size that manageable for computation time. We will
reduce the graph to a graph that only contains the categories. Doing this, we can find
the strongest category of the LPG, after which we can find the strongest vertex within
the strongest category.

4.1 Measure

To find the strongest vertex in our directed graph, we will have to set up a function
that scores each vertex. From the existing graph statistics that we have investigated,
we will use the Pagerank, Betweenness centrality and vertex degree. We will calculate
the total score in pycharm using the available package networkx to work with the graph.
Betweenness centrality and Pagerank are fairly straightforward using networkx.

4.1.1 Betweenness centrality

There is a function in networkx that can calculate the Betweenness centrality for a
given weighted and unweighted directed graph. The one sidenote here is the fact that
the calculation of the Betweenness centrality has a quadratic complexity. This implies
that the computation time increases drastically when increasing the amount of vertices.
Therefore, we can only use Betweenness centrality if our graph is ’small’ enough such
that we can still do the calculation in reasonable time. Small enough in this context
means that the graph should have at most around 5.000 vertices to do the calculation
within around 15 minutes. After the calculation is done, we normalize all scores with the
highest score that is given. This way, all scores for Betweenness centrality are between
zero and one. The normalized Betweenness centrality of vertex i will be called BC'(7).

4.1.2 Pagerank

Just like Betweenness centrality, there is also a build in function that calculates the
Pagerank for a given weighted and unweighted directed graph. The time complexity of
Pagerank is not quadratic or worse and therefore the computation time should not be a
problem for the graphs that we will use during the research. There is one adjustment that
we will have to make in the calculation of the Pagerank. Recall that Pagerank favors the
in-degree of a vertex over the out-degree of a vertex. In our graph, the in-degree means
how many theorems were needed to prove the theorem and the out-degree means for how
many different proofs this theorem is used. In the context of the LPG, a theorem can
be considered to be stronger based on how many different theorems it helps prove. This
means that we would need to favor the out-degree instead of the in-degree of a vertex in
the calculation of the Pagerank. This is easily arranged by creating a ‘placeholder graph’
that is exactly inversed of the graph of which we want to calculate the Pagerank. With
inversed it is meant to flip all the directions of the edges such that all the in-degrees
become out-degrees and vice versa. Now we can calculate the Pagerank of the inversed
graph such that we get a score that favors the out-degree of the original graph. Once
again, we normalize all scores that are given with the maximal score that is given such
that all scores will be between zero and one. The normalized Pagerank of a vertex 4 will
be called Pr(i).

4.1.3 Degree score

Lastly, we will include a measure that scores the vertices based on there in- and out-
degree. We want to construct a measure that scores the vertices based on how close the
in- and out-degree are to each other. There are some vertices that have very low in-
degree and very high out-degree. In context, that would mean that this theorem is very
easy to prove or even requires no proof after which it helps in many proofs. From the
dataset analysis, we know that this would be the case for example for axioma or overly

10

simple element of mathematics like the equality sign. This would not be interesting as
most important vertex. The other extreme would also not be interesting, namely very
high in-degree and low out-degree. This would mean a vertex would be very hard and
complex to prove or at least needs a lot of elements to prove after which it does not
contribute in any other proofs, which would also not qualify as a strong or important
theorem. If a theorem needs a reasonable amount of theorems to be proven and this
theorem would then also help in a lot of other proofs, it qualifies to be considered strong.
With this in mind we have constructed the following measure.

_ ‘din(i) - dout(i)|
din (1) + dout (7)

Let us first look at the fraction in equation (10). In the numerator, we find the absolute
value of the difference of the in- and out-degree. If the in- and out-degree are close
to each other, the numerator will become smaller and the whole fraction will become
smaller. Given that we subtract the fraction of one, it would imply that the closer the
degrees are to each other, the higher the score will be. Note that when the in- and out-
degree are equal, the degree score will be equal to one. The denominator of the fraction
is the two degrees added to each other. This is done to take the size of these values into
account. Take for example the degree combination (10,11) and (100,101). The difference
of degrees in both these cases are 1. Relatively, the combination (100,101) is closer to
each other than (10,11). When calculating the score, we find that the degree score of
(10,11) is 0,952 and the degree score of (100,101 is) 0.995. Another property of this
measure are that when one of the degrees is zero, the degree score will also be zero.
Once again, if the in- and out-degree are equal, the degree score will be 1. That would
mean that the combination (2,2) would get the same maximal score as (100,100), whilst
(100,100) is clearly more interesting. This flaw will be fixed since the complete measure
gives a combination of the three presented measures and in Pagerank and Betweenness
centrality, (100,100) would get higher score than (2,2). If the in- and out-degree are both
equal to zero, we define the ds..c to be also equal to zero.

dscore (Z) =1 (10)

4.1.4 Complete measure

We will construct the complete measure with a linear combination of the three statistics
that are presented above. This complete measure will look as follows.

TotalScore(i) = B - dscore (i) + B2 - Pr(i) + B3 - BC(4) (11)

Where (1, 82, B3 are values between zero and one and the sum off these is equal to 1.
Since the degree score, Pagerank and Betweenness centrality all lie between zero and one
and the TotalScore is a linear combination of these three, we know that the TotalScore
is also a value between zero and one. The vertex that gets a higher TotalScore than
another vertex can considered to be more important.

The three variables 31, 82, 83 can be adjusted. To get an evenly divided T'otalScore, we
can set all these values to %, but we can also adjust these variables if we for example
find that the Betweenness centrality is less important then the Pagerank of a vertex.

4.1.5 Pareto Front

There is also another way of finding vertices with a good score. This way is based on
the Pareto Front[5]. The Pareto Front is based on the dominance of a combination A

11

over a combination B. If you can find a combination that is not dominated by any other
combination, we can say that this combination is in the Pareto Front. A combination
A is said to be dominated by a combination B if B is as least as good as A in every
objective.

We want to compare all the vertices with each other based on the three graph statistics
that a vertex is given, which are the degree score, the Pagerank and the Betweenness
centrality. For this we have defined three objectives in which the vertices can be compared
to each other. The three objectives are

0bj1(i) = dscore(t) + Pr(i),
0b]2(l) = dscore(i + BC(Z)a
objs(i) = Pr(i) + BC(i).

~— ~—

A vertex 7 is dominated if there exist a vertex ¢* in the graph such that:

objk(i) < obji(i*), ¥ k=1,2,3 (12)

All vertices that are not dominated can be considered to be the vertices with the best
combination of scores. After doing this, we found that there are some vertices that were
undominated but still have one or even two of the three scores quite small. Therefor, from
the list of undominated vertices, we remove these outliers. A vertex 7 in the undominated
vertices is an outlier if at least one of the three scores, dscore(7), Pr(i) or BC(i) is 0.1 or
less.

This way, we can find the best vertices before we determine how we set up the linear
combination of the three statistics.

4.2 Creating Category Graph

Since we have knowledge of how the different categories of the graph behave, we can
construct the reduced graph that only contains the different categories in the LPG.

The structure of the category graph(CQG) is defined as follows. From the LPG, we take
all the vertices of one category and turn it into a single vertex. All the edges that would
go from a vertex to a vertex in the same category are disregarded. All the edges that
would go from a vertex of one category to a vertex of a different category remain in
the graph. Since the LPG will be heavily reduced, it is very possible that there will
be multiple edges from one category to another category. Instead of keeping multiple
edges, we will turn this into one edge with a weight equal to the amount of edges. This
way, we can reduce that LPG to the CG. More formally, let C,...,C); be the vertex
categories. Then the CG has vertices 1,...,k. The weight of a egde ¢,j in the CG is
|{{u, U} € Erpa:ueC;ve Ck}|

When originally creating the CG, we only used this rule. This gave an CG of around
27.000 vertices. From this graph, we removed the categories with a size of 25 or lower,
resulting in a graph with around 1.100 vertices. After doing a calculation of the three
different statistics, we found that the scores of Pagerank were highly scewed. This
category with the highest score was ‘Eq’. Due to this high score, we found that ‘Eq’ is
not a singular category, but a category with size at least 25 vertices. We first assumed
that this is a singular category, since the vertex name ‘Eq’ has no separating dot in

12

its name. In fact, the size of the category is 67. For example, there is also a vertex
with the name ‘Eq.substr’. This category got such a relatively high Pagerank since the
weighted out-degree was very high. This is due to the individual vertex ‘Eq’ that is also
included in the category ‘Eq’. Due to this individual outlier, the whole category became
an outlier. Therefore, we found that we need to make a distinction between two types
of outliers.

The first type of outliers are the vertices that have a high degree in the original LPG.
The second type of outliers are the categories with a small enough size such that we will
not have to consider them. The reason why we have to consider these both is the fact
that the one may not imply the other.

Take for example the vertex ‘Eq’ again. This vertex has an out-degree of around 270.000.
We thought that this vertex was a singular category since the vertex name has no sep-
arating dot and would therefor be disregarded when only looking at the second type of
outliers. We discovered that the category ‘Eq’ has a size of 67, which means that this
category would probably not be labeled as an outlier of the second type. If the vertex
‘Eq’ would be entered in the category ‘Eq’, this category would suddenly have a very
high weighted out-degree which would strongly influence the Pagerank of this category
and all the other categories as well. Therefore, it is important to first exclude the outliers
of type 1 and afterwards the outliers of type 2 in creating the CG.

Due to this reduction of the graph, we will be able to calculate the the score of each
vertex in reasonable time.

FIGURE 6: Reduction of the LPG to the Category Graph shown in an example graph.

5 Results Category Graph

Now that we have a properly defined graph and a properly defined measure in the
TotalScore(i) and the Pareto Front, we can start calculating the results.

For these results, all vertices with an out-degree of 50.000 or higher in the original LPG
are considered type 1 outliers. Doing this, we get a list of 24 vertices that have been
disregarded in the creation of the CG. Next, the CG is created. Now that we have the
complete CG, we look at all the different sizes of the categories and remove all type

13

2 outliers. That is, all categories with a category size of x or below. To establish if
the results are consistent, or are heavily dependent on the inclusion of small categories,
different values for x will be considered. More specifically, we will look at x ranging
from 5 to 100, where we will take steps of 5. This gives us a total of 20 cases that are
considered.

There are also four categories that are significantly larger than the rest of the categories.
These are the categories that have a category size of 50.000 or higher. These are the
categories ‘Lean’, ‘Mathlib’,‘CategoryTheory’ and ¢ private’. We have done the calcu-
lation once including these categories and once excluding these categories. This gives 20
cases when including the large categories and 20 cases when excluding the categories,
giving a total of 40 cases that are considered. The complete results for each individual
case can be found in the Appendix 10. Below we will give the most important findings.

In general, we find that the vertices that are undominated defined by the Pareto front
are also vertices that are almost always in the top 5 vertices when the vertices are
ranked based on there TotalScore. You can find these results in the Appendix 10.1.
This gives good confidence that the Pareto front and the TotalScore are both good
ways of finding the strongest vertex in the CG. The only exception here is the vertex
‘CategoryTheory’. This category is in de Pareto Front when the category size removed
below is 55 (Figure 25) until 100 (Figure 34). This vertex is only in the top 10 vertices
based on the T'otalScore when the category size removed below is 55 (Figure 25) until
65 (Figure 27).

To give some more validation of the different measures that are used in the calculation,
we can take a look at the correlation matrix which includes the different statistics we
have for each vertex. If there is a low correlation between various statistics, we validate
that every statistic calculates a different property of a vertex. These different properties
are explained in section 4.1. The statistics that are included in the correlation matrix
are the dseore, Pagerank, Betweenness centrality, weighted in- and out-degree and the
category size. This gives Figure 7.

dscore

Pagerank
Betweenness
weighted diy

weighted doyt

Category size

FiGURE 7: Correlation matrix of different graph statistics based on the CG

14

Note that this is a symmetric matrix. Also, in the diagonal we see that there is a
correlation of 1. This is the case since in the diagonal, the statistics are compared with
themselves, which logically results in a full correlation. We are mostly interested in the
correlation between the dgs.ore, Pagerank and Betweenness, since these are the three main
statistics that are used. We find that there is practically no correlation with the dscore,
which means that this statistic calculates a different importance of a vertex in comparison
with the Pagerank and Betweenness. Between the Pagerank and the Betweenness, we
find a correlation of 0.456, which indicates a correlation between vertices that receive a
high Pagerank and a high Betweenness. This is not that surprising, since both statistics
are generally used to calculate the importance of a vertex. Still it is good to see that
there is no complete correlation, which shows that the two measures do rank the vertices
in a different way.

Furthermore, we see a high correlation between the Pagerank and the weighted out-
degree, being 0.852. This does not come as a surprise since the Pagerank was manipulated
to favor the out-degree of a vertex, as seen in section 4.1.2. Here we see the validation
of the manipulation.

5.1 Results including large categories

First we will look at the results that include the large categories. To get some insight
in the results, we have made a table that includes the vertices that have appeared in
the Pareto Front, how often they have appeared in the Pareto Front, their average
TotalScore and the size of the category. The TotalScore is calculated with 51 = B =
B3 = % Note that a category appear a maximal of 20 times in the Pareto Front.

’ Category In Pareto Front ‘ Average Totalscore ‘ Category size ‘
Lean 20 0.6650 189.049
Function 20 0.4792 3.952
Mathlib 18 0.5390 81.236
Array 2 0.3954 25.418
CategoryTheory 10 0.3556 132.763

TABLE 2: Results of categories that appeared in the Pareto Front at least once when
large categories are included. 81 = B2 = 3 = %

When looking at the individual results which can be found in the Appendix 10.1, we
see that ‘Lean’, ‘Mathlib’ and ‘Function’ occupy the top 3 spots 85% of the time when
looking at the TotalScore, with an exeption when the category size removed below is 5
(Figure 15), 95 (Figure 33) or 100 (Figure 34). ‘Array’ can always be found in the top
10, mostly varying between the 5t and the 8" place. Even though ‘CategoryTheory’
appears more often in the Pareto Front then ‘Array’, the average TotalScore of ‘Array’
is better then that of ‘CategoryTheory’.

To get even more insight on how the scores of the different categories behave, we can
make a rankplot. In a rankplot, we can see how different categories rank relative to
each other regarding different statistics. For the rankplot that we will make, we will
look at the statistics dscore, Pagerank, Betweenness centrality and the TotalScore. The
categories that are included in the rankplot are categories that appear in the top 5 at

15

least once in the statistic Pagerank, Betweenness centrality and TotalScore. The dgcore
is not included within the selection of the categories, since there are many vertices with
dscore €qual to 1 and therefor there is no clear top 5. Furthermore, these vertices generally
have low degree, like (5,5), and will therefor also not score high in the other categories.
We will only make the rankplot for the case where the category size removed below is
50 to provide some general insight.

Lean
Preorder

List

Bool

Nat
Mathlib
Function
—e— DivinvMonoid
Array

EXX:

Relative ranking statistic

| |

dscore Pagerank Betweenness TotalScore

FIGURE 8: Rank plot of the vertices that are in the top 5 of at least one statistic when
including large categories. Category size removed below is 50 and 51 = B2 = (3 = %

As defined above, we see that every category is at least once in the top 5. Now we
see that some categories that have not been mentioned before are also included. For
example the category ‘Bool’ relatively has the 4th highest Pagerank, but in the dscore
and Betweenness centrality it scores very poorly, which gives it a final relative 8 place
in the TotalScore. Categories that we already saw before, like ‘Lean’, ‘Function’ and
‘Mathlib’ are seen to be scoring relatively good in more than one statistic, which in turn
helps in scoring good in the TotalScore.

5.2 Results excluding large categories

Now we will look at the result when excluding the large categories. First, we will look at
a table that is similair to Table 2 that gives the vertices that have appeared in the Pareto
Front, how often they have appeared in the Pareto Front, there average TotalScore and
the size of the category. The TotalScore is calculated with g1 = By = 3 = % Note

that a category appear a maximal of 20 times in the Pareto Front.

’ Category | In Pareto Front ‘ Average Totalscore ‘ Category size ‘

List 20 0.6198 20.269
Function 20 0.7017 3.952
Nat 13 0.5725 9.679
Filter 3 0.3970 5.796

TABLE 3: Results of categories that appeared in the Pareto Front at least once when
large categories are excluded. 81 = 2 = 3 = %

16

Something that we notice is that the category ‘Function’ shows up again. When compet-
ing with the big categories, the category already showed how important it is. When the
larger categories are not in the picture anymore, this category does an even better job.
Together with the category ‘List’, the categories show up in every Pareto Front. These
two categories are consistently in the top 3 of the TotalScore which can be seen in the
Appendix 10.2. The category ‘Function’ beats ‘List’ in the cases where the category size
removed below is 5 (Figure 35) until 80 (Figure 50). The category ‘List’ manages to get
in front of of ‘Function’ when the category sizes removed below get to 85 (Figure 51)
until 100 (Figure 54). The Category ‘Nat’ is in 85% of the cases present in the top 3.
The category ‘Filter’ can only be found in the top 10 when the category sizes removed
below are between 45 (Figure 43) and 60 (Figure 46).

We will also take a look at the rankplot when we exclude the large categories. The
rankplot will have the same structure as Figure 8, only including categories that appear
at least once in the top 5 of the Pagerank, Betweenness centrality or TotalScore. The
category size removed below is 50.

T T

Preorder
Set
List
AddMonoid
Nat
Function
DivInvMonoid
Pi
Substring
Subsingleton

EXX:

Relative ranking statistic

XX

© 0 N O Ot s W NN

—
]

| |
dscore Pagerank Betweenness TotalScore

FI1GURE 9: Rank plot of the vertices that are in the top 5 of at least one statistic when
excluding large categories. Category size removed below is 50 and 81 = B2 = B3 = %

Here we can see the behaviour of the various categories and there relative scores. As
defined, every category appears in a top 5 at least once. We see that the category ‘Subsin-
gleton’ is barely included in this rankplot with just a relative 5" spot in the Betweenness
centrality. Categories that we have looked at before in Table 3, like ‘Function’, ‘Nat’
and ‘List’ all do relatively well in every statistic, which gives more validation to these
categories being stronger than other categories.

5.3 General result

The category ‘Function’ shows up in the Pareto Front for all 40 cases. Furthermore, this
category finds itself in the top 3 based on the TotalScore in 38 of the cases, where in
the other two cases ‘Function’ be found on the 4** spot (Figure 33 and Figure 34). In
the 20 cases including the big categories, the average TotalScore of ‘Function’ is 72%
of the maximal average TotalScore, which is ‘Lean’. In the 20 cases excluding the big

17

categories, ‘Function’ itself has the highest average TotalScore. Also, from the rankplots
we find that ‘Function’ does relatively well in all different statistics, instead of having
one strong statistic that carries the TotalScore. From these insights we can conclude
that ‘Function’ is the strongest category in our statistic.

6 Analysis category ‘Function’

Now that it is established that ‘Function’ is the strongest category in our statistic, we now
will look at the graph that only contains the category ‘Function’. We will call this graph
the Function Graph(FG). The FG will have vertices that are in the category ‘Function’.
The edges that are included in the FG are only edges where the starting- and endpoint of
the edge is a vertex of the category ‘Function’. More formally, the FG will have the vertex
set Vrg = {v € VLpg : v € Function} and edge set Erpg = {{u,v} : u € Vrg,v € Vra}.
We know from the category size, which can be found in Table 3, that this graph has
3.952 vertices. Besides that, their are 7.486 edges in the FG. To get some insight on how
the FG behaves and is constructed, we will do a similar analysis as seen in Section 3.

F1GURE 10: Reduction of the LPG to the Function Graph shown in an example graph.

To get some insight in the distribution of the in- and out-degrees of the vertices, we once
again will look at the degree of a vertex against the probability that a certain vertex has
higher or equal degree. That is on the z-axis all possible in- and out-degrees and on the
y-axis P(ZE 2 din/out)'

In Figure 11 and Figure 12 we see that there is less variance in the in-degree than in the
out-degree, just as we saw in the LPG. It is again important to understand what the
in- and out-degree mean in this sub graph. If a vertex has an in-degree of x it means
that this vertex needs x vertices within the category ‘Function’ in its proof. Note that
this is slightly different than the LPG, since the vertex might need more theorems to be
proven, but these are from a different category that is not included in the sub graph.
The same reasoning holds for the out-degree. An out-degree of x means that a certain
vertex is used in z proofs within ‘Function’. It might be that the vertex is used in even
more proofs, but that might be of vertices that are not included in this sub graph.

18

0.7

0.6

0.5

0.4

0.3

0.2

Probability x>=in-degree

0.1

in-degree

FIGURE 11: In-degrees against probability for the Function Graph

0.4

0.3

out-degree

0.2

0.1

0 100 200 300 400 500 600 700
out-degree

probability x>

FIGURE 12: Out-degrees against probability for the Function Graph

From Figure 11 we find that the in-degree lies between 0 to 30. About 29% of the
vertices have an in-degree of 0. From figure 12 we find that the out-degree of the vertices
is ranging from 0 to 713. Moreover, around 55% of all vertices have an out-degree of
0. This means that more than half of the vertices does not contribute in a proof within
the category ‘Function’. About 9% of the vertices have an out-degree between 3 and 31.
From this figure we can see vertices that have a significant higher out-degree than the
rest of the vertices. These are the vertices with out-degree of 100 or more, which are 5
vertices in total.

Next we will see how the combination of in- and out-degrees are distributed in the FG.

19

700

600

500

400

300

out-degree

200

100

0 5 10 15 20 25 30
in-degree

FIGURE 13: In- and out-degree of all vertices in the Function Graph

Here we find that the vertices of very high out-degree also have a low in-degree, being the
combinations (0,713),(0,383),(1,250),(0,192) and (3,160). Since these high out-degrees

will give a skewed result in the measure, we will consider them outliers.

Furthermore, interestingly there are vertices that have an in- and out-degree of 0. These
are isolated vertices in the FG. This is due to the definition of the FG. In the LPG,
these vertices are not isolated. Since we only include edges that have the starting- and
endpoint within the category ‘Function’, edges that have only the starting- or endpoint
in the category ‘Function’ are not included. In total there are around 450 vertices that
are isolated.

7 Results category ‘Function’

Now that we have some insight in the category ‘Function’, we can calculate the different
statistics and Pareto Front.

As concluded in section 6, we will consider the vertices with an out-degree of 100 or more
outliers. Furthermore, the isolated vertices will remain in the graph. These vertices will
only have a slight influence on the Pagerank due to the random jump property of the
Pagerank, but this influence will be minimal.

In the results for the Category Graph, we were able to look at different cases to obtain
a wide spread of data after which a clear conclusion could be drawn. These cases were
distinguished by removing categories with a certain category size. We will not be able
to make a similar distinction for the Function Graph. The only variables that we will
be able to adjust in the results is the linear combination of the graph statistics that are
calculated. That is, we will be able to calculate a different TotalScore of a vertex by
adjusting the variables 1, B2 and (3. Note that, when only adjusting these variables,
the values for the dseore, Pagerank and Betweenness centrality will remain the same.
This means that the Pareto Front will also be the same for all the different cases by its
definition found in section 4.1.5.

With this in mind, we can look at different cases adjusting the variables 51, 82 and [3

20

and thus the TotalScore, whilst only looking at vertices that appear in the Pareto Front.

There are 4 vertices that appear in the Pareto Front. These vertices can be found in
Table 4 together with their respective dgeore, Pagerank and Betweenness centrality.

Vertex dscore | Pagerank | Betweenness
Function.Injective.addMonoid 0.1290 0.2728 0.5057
Function.Injective.monoid 0.2222 0.2872 0.4168
Function.instEmbeddingLikeEmbedding | 0.6667 0.3193 0.1216
Function.Embedding.trans.proof 1 1.0000 | 0.2169 0.1275

TABLE 4: Vertices of the category ‘Function’ that appear in the Pareto Front

As said, the values presented in Table 4 will not change when 31, 82 and B3 change.
Furthermore, for convenience, from now on we will refer to the vertices only by the
name after the last dot. That is, we will have the vertices ‘addMonoid’, ‘monoid’,
‘instEmbeddingLikeEmbedding’ and ‘proof 1’.

As seen in Section 6, we find that all vertices have a relative low degree when comparing
Figure 13 to Figure 4. Furthermore, we find that if vertices have an in-degree equal to
the out-degree, these degrees are generally 10 or lower. From the definition of the degree
score found in section 4.1.3, this gives a degree score of 1. In the Category Graph, the
variance in degree is much higher than in the Function Graph. Therefor, in the CG the
Pagerank and Betweenness centrality would balance the TotalScore out appropriately
with a distribution of g1 = B2 = B3 = % In the FG, the balancing out will be done less
heavily. Therefor, the dseore Will be counted less heavily in the different TotalScore’s
that will be calculated.

The distribution of the variables 51, 85 and 3 in the different cases is as follows.

[(Case| 1 [2 [3[4]5]6] 7 [8[9[10]11]12]13]14]15]
B [[01]01]01]01][01[01][02][02[02]02][02[03[03][03]0.3
B2]02[03]04[05[06[07][02]03[04]05[06]02][03]04]05
Bs]0.7[06]05[04]03[02]06]05[04]03[02]05][04]03]0.2

TABLE 5: Distribution (81, 82, 83) for the TotalScore

In Table 5 we see that 51 ranges from 0.1 to 0.3, whilst 83 and (3 range from 0.2 tot
0.7. This ensures that the dseore still has a place to show its worth in the cases 12 to 15,
but also makes sure that at least one of the Pagerank or Betweenness centrality has a
stronger contribution in the TotalScore.

To get a clear overview of how the 4 vertices in Table 4 perform against each other in the
different 15 cases, we will look at a rank plot. In this rankplot, we find on the y-axis the
relative rank of the 4 compared vertices and on the z-axis the case that is considered.

21

—_
®o—
® |
® |
® |
®
®
® -
®
®
*—

S
=
S)
Q
A
3
s 20
&~
[
o
o0 3
k=
=~
=1
Z 4 o
| | |

1 2 3 4) 6 7 8 9 10 11 12 13 14 15

—--— Function.Injective.addMonoid - Function.Injective.monoid

—e— Function.Embedding.trans.proof 1 —e—= Function.instEmbeddingLikeEmbedding

FIGURE 14: Rank plot of the vertices in Table 4 using the cases in Table 5

In Figure 14 we see that there is clear shift in the ranking when looking at the different
cases. It is not surprising that the vertex ‘proof 1’ scores well in the cases 12 to 15, as
these are the cases where the dgeore has a higher contribution. This vertex also ranks
first in the cases 9, 10 and 11. In these cases, the dscore contributes 0.2 and the Pagerank
contributes more or equal than the Betweenness.

There is no vertex that ranks strictly worse than another vertex. This partly due to the
fact that the compared vertices are in the Pareto Front and therefor are undominated in
at least one objective by definition. Still, when comparing the vertices with each other,
we see that one is scoring better than the other. When comparing the ranks of the vertex
‘addMonoid’ to the other three vertices ‘monoid’, ‘instEmbeddingLikeEmbedding’ and
‘proof 1’, we find that ‘addMonoid’ outranks all vertices with a score of 11-4, 9-6 and
8-7 respectively. Next, we can compare ‘monoid’ to the vertices ‘instEmbeddingLikeEm-
bedding’ and ‘proof 1’. In these two cases, ‘monoid’ outranks both vertices with a score
of 9-6 and 8-7 respectively. Lastly, when comparing ‘instEmbeddingLikeEmbedding’ to
‘proof 1’, we find that ‘proof 1’ wins with a score of 11-4.

We can also take a look at the average rank of each vertex based on these 15 cases. This
average rank can been seen in the following table.

’ Vertex H addMonoid ‘ monoid ‘ instEmbeddingLikeEmbedding ‘ proof 1 ‘
| Averagerank || 213 [260 | 2.93 | 233 |

TABLE 6: Average rank over the cases in Table 5

A higher average rank means that a vertex did well on average over all the 15 cases
defined in Table 5. We saw that ‘addMonoid’ outranked every vertex and here we see
that this vertex also has the highest average rank. Only ‘monoid’ and ‘proof 1’ have
swapped places when compared to the outranking. ‘monoid’ outranks ‘proof 1’ with a
score of 8-7, but ‘proof 1’ has a clear higher average rank.

From this analysis, we find that the vertex ‘addMonoid’ is performing the best, looking at
the determinded 15 cases. Nevertheless, all four vertices that are in the Pareto Front are

22

performing well against each other and therefor we can argue that all these four vertices
are the best, with a slight edge towards the vertex ‘Function.Injective.addMonoid’.

8 Conclusion

In this paper, we first compared different graph statistics to get an insight on what prop-
erties of a vertex a specific statistic ranks. We find that for the LPG, the Pagerank and
the Betweenness centrality are two statistics that rank important properties. Further-
more, we design a statistic based on the in- and out-degree of a vertex, giving a vertex
a higher score when the in- and out-degree are relatively close to each other.

From these three statistics, we construct two measures to find the strongest vertex. The
two measures are the TotalScore and the Pareto Front. The TotalScore ranks a vertex
via a linear combination of the three statistics. The Pareto Front finds undominated
vertices via objective functions based on the three statistics.

Using the measures that we have defined, we showed that there are 5 categories when
large categories are included to be strong, and 4 categories when large categories are
excluded to be considered strong. Since there is one vertex overlap in these two sets, we
obtain eight categories to be considered strong out of approximately 27.000 categories in
the LPG. These eight categories are ‘Lean’, ‘Function’, ‘Mathlib’, ‘Array’, ‘CategoryThe-
ory’, ‘List’, ‘Nat’ and ‘Filter’. From these eight, we found that the category ‘Function’
is the strongest considering all cases based on the statistic.

Within the category ‘Function’, we once again looked at what vertices are the strongest.

Of the 3.952 vertices that are within this category, we considered four vertices to be the
strongest. These four vertices are ‘Function.Injective.addMonoid’, ‘Function.Injective.monoid’,
‘Function.instEmbeddinglLikeEmbedding’ and ‘Function.Embedding.trans.proof 1’. The
scores of these four vertices are all very close over 15 cases that were considered. The

best score is given to the vertex ‘Function.Injective.addMonoid’. Nevertheless, since the
scores are close there is some room for interpretation and therefore all four vertices are
considered the strongest.

When looking at the meaning of all vertices on the website of LEAN]3], we find that the
vertex ‘Function.Injective.addMonoid’ has something to do with the additivity property
of a function. That is, f(z +vy) = f(z) + f(y). For more information, you can go to the
website of LEAN|3] and typing in the vertex name in the search bar.

9 Discussion

There are many options for further research regarding the analysis of the LPG. First of
all, there are several options too look at whilst still using the same measure that has
been presented. In the research, we applied the measure only on reduced versions of
the LPG, namely the Category Graph and the Function Graph. This was mainly done
to reduce the computational time significantly. With the use of a supercomputer and a
more optimized code, one would be able to perform the measure on the complete LPG
in one go. Next, instead of only looking at the category ‘Function’, you can also take a
look at how the vertices perform in the other categories that were in consideration for
the strongest category to gain more general insight on how these categories perform.

23

Another adjustment that can be made in my research lies in the definition of the Function
Graph. The only edges that were included in this graph were edges which had their
beginning- and endpoint incident with a vertex of the category ‘Function’. As a result,
vertices that had high out-degree to vertices in a different category had an out-degree
of 0 in the Function Graph. In further research, It would be interesting to see what
happens with the results when these edges are also included in the graph, whilst only
applying the measure to the vertices of the category ‘Function’.

The data that was provided by LEAN included everything that is used to make the
proving assistant work. This means that there are not only theorems in the dataset, but
for example also definitions. On the website of LEAN|3], we see that every vertex has a
‘type’. This type can for example be ‘def’, ‘theorem’, ‘abbrev’ or many more. This meant
that finding the strongest ‘theorem’ was harder, since a lot of different types of vertices
also performed well due to being central in the graph. In further research it would be
interesting to only include vertices from the graph that are of the type ‘theorem’. In this
new graph, we would than certainly find the strongest theorem instead of the strongest
vertex.

A whole different approach that can be done is looking at longest directed paths in the
LPG. The endpoint of this longest path can be considered to contain all the information
of the vertices that came before in the path.

What remains to be done is continuing obtaining interesting data from the LPG. Since
the LPG is very large, there are likely many more different statistics that can be obtained
from the LPG. This can for example be done by one of the approaches which we refer
to above, or even a completely different approach.

24

References

[1] https://lean-lang.org/theorem_proving_in_lean4/introduction.html. Ac-
cessed: 2024-12-17.

[2] https://towardsdatascience.com/pagerank-algorithm-fully-explained-dc794184b4af.
Accessed: 2024-11-10.

[3] https://leanprover-community.github.io/mathlib4_docs/. Accessed: 2025-01-
09.

[4] Seyed Mojtaba Hosseini Bamakan, Ildar Nurgaliev, and Qiang Qu. Opinion leader
detection: A methodological review. Ezpert Systems with Applications, 115:208-209,
2019.

[5] Naru Okumura, Keiki Takadama, and Hiroyuki Sato. Pareto front estimation model
optimization for aggregative solution set representation. In 2024 IEEE Congress on
Evolutionary Computation (CEC), page 2. IEEE, 2024.

[6] Lawrence Page. The pagerank citation ranking: Bringing order to the web. Technical
report, Technical Report, 1999.

[7] Douglas R. White and Stephen P. Borgatti. Betweenness centrality measures for
directed graphs. Social Networks 16, pages 335-346, 1994.

25

https://lean-lang.org/theorem_proving_in_lean4/introduction.html
https://towardsdatascience.com/pagerank-algorithm-fully-explained-dc794184b4af
https://leanprover-community.github.io/mathlib4_docs/

10 Appendix

10.1 Results Category Graph including large categories

Top 108 vertices with highest total score:

Rank Category Total score d_score Pagerank Betweenness

Function
Mathlib
List
IsOpen
Array
Nat
Set

10 Finset

0O 0 0 0 0 O 0 0 R O
0O 0O 0 0 0 0O P O o0 0

The undominated vertices are ['Lean', 'Function']
Data of the undominated categories:
Category d_score Pagerank Betweenness

0.8191 0.8041 0.4659
Function 0.9730 0.1304 0.5424

F1GURE 15: Result Category Graph when large categories are included. Category size
below 5 removed

Top 10 vertices with highest total score:
Rank Category tal score d_score Pagerank Betweenness

.808
Function .5664
Mathlib .4918
Array L4096
IsOpen .3907
List .3874
Rat .3691
Finset .3661
Nat .3655
Set .3513

. 7983
.9623
.3602
.9399
o CHTALS
.7219
9955

0O 0 0 0 0 0 0 0 0 @
O 0 0 0 O O 0 O 0 K

The undominated vertices are ['Lean', 'Function']

Data of the undominated categories:

Category d_score Pagerank Betweenness
Lean 0.7983 1.0000

Function 0.9623 0.1535

FIGURE 16: Result Category Graph when large categories are included. Category size
below 10 removed

26

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Function .5592
Mathlib .5641
Array .4213
IsOpen .3945
List .3927 .6939
Rat .3652 .9754
Finset .3645 .9711
Nat .3611 .6102
Set .3577 .5998

1
P
3
4
5
6
7
8
9

0 0 0 O 0 @ O @ @ K
0 0 0 @ 0 @ @ P 0 @

i
(=]

The undominated vertices are ['Lean', 'Function', 'Mathlib']
Data of the undominated categories:
Category d_score Pagerank Betweenness

0.7800
Function 0.9158
Mathlib 0.3689

F1GURE 17: Result Category Graph when large categories are included. Category size
below 15 removed

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Function
Mathlib
Array
IsOpen
List
Rat
Finset
Nat

10 Filter

Q0 0 0 0 0O 0 @ ©@ O
0 0O 0 0 0O @ 0 P O O

Q0 0 0 0 0O 0 @0 © © 0

The undominated vertices are ['Lean', 'Function', 'Mathlib']

Data of the undominated categories:
Category d_score Pagerank Betweenness

0.7820 1.06000
Function 0.8601 0.1908
Mathlib 0.3704 0.1625

F1GURE 18: Result Category Graph when large categories are included. Category size
below 20 removed

27

Top 10 vertices with highest total score:
Rank Category

Mathlib

Function

Array

IsOpen

List

Rat

Nat

Finset
10 NNReal

Total score d_score Pagerank

s
0.
0.
0.
0.
0.
0.
0.
0.
0.

O O 0 0 O 0 0 O @ KL

.1733
.2030
.1337
.0101
.3284
.0171
.2983
.1287
.0080

The undominated vertices are ['Lean', 'Function', 'Mathlib', 'Array'l]

Data of the undominated categories:

Category d_score Pagerank

. 7845
Function .8404
Mathlib .3712
Array

Betweenness

Betweenness

O 0O 0 0O ®© 0 0 O kB O

FIGURE 19: Result Category Graph when large categories are included. Category size

below 25 removed

Top 10 vertices with highest total score:
Rank Category

Mathlib
Function
Array
List
IsOpen
Rat

Nat
Finset
NNReal

Total score

.3715
8035
.9580
6852
.9385
9564
.5804
.9181
.9977

0O 0 0 0 0 0 @ 0 0 @

O 0 0 0O 0O 0O 0 60 O K

d_score Pagerank

.1957
.2250
.1378
.3480
.0113
.0185
.3384
.1361
.0891

The undominated vertices are ['Lean', 'Function', 'Mathlib', 'Array']

Data of the undominated categories:

Category d_score Pagerank

. 7885
Function .8035
Mathlib oAk
Array .9580

F1GURE 20: Result Category Graph when large categories are included

below 30 removed

28

Betweenness

Betweenness

0O 0 0 0 0 0 @ 0 L e

. Category size

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Mathlib
Function
List
IsOpen
Array
Nat

Rat
Finset

0O 0O 0O O 0 OO 0 0 Bk
0O @ 0O 0 @ @O @ @ P e

10 CategoryTheory

The undominated vertices are ['Lean', 'Function', 'Mathlib']
Data of the undominated categories:
Category d_score Pagerank Betweenness

0.7848
Function 0.7749
Mathlib 0.3749

F1GURE 21: Result Category Graph when large categories are included. Category size
below 35 removed

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Mathlib
Function

List

IsOpen

Array

Nat

Filter

Rat
CategoryTheory

.3770
.7500
L6673
.9194
.9589
.5309
.9618
.9243
.6924

0 0 NN DN W N
0 0 0 O 0 @ O @ @ @
0O 0 0 0O 0O @ 0O @ @ @
0O 0O 0 0O 0O @ 0 0 0 K

=
(=]

The undominated vertices are ['Lean', 'Function', 'Mathlib']
Data of the undominated categories:

Category d_score Pagerank Betweenness

0.7809 1.0000
Function 0.7500 0.1804
Mathlib 0.3770 0.2296

FI1GURE 22: Result Category Graph when large categories are included. Category size
below 40 removed

29

Top 10 vertices with highest total score:

Rank Category Total score d_score Pagerank Betweenness
Lean .6382
Mathlib .5427
Function L4436
List .3976
Filter .3811
Array .3809
CategoryTheory .3721
IsOpen .3677
] .3676

10 repr .3553

L7775
.3823
7164
.6545
9996
.9592
6961
.9033
5114
.9909

0O 0O 0O 0 0O O O 0 0 O
0 0 0 0 0O 0 @ 0 @
0O 0 0 0 O O 0 0 R O

The undominated vertices are ['Lean', 'Function', 'Mathlib']
Data of the undominated categories:
Category d_score Pagerank Betweenness

0.7775 1.0000 0.1386
Function 0.7164 0.1895 0.4251
Mathlib 0.3823 0.2444 1.0000

FIGURE 23: Result Category Graph when large categories are included. Category size
below 45 removed

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Mathlib = .3841
Function . .7048
List : L6469
Array - .9623
Filter . .9924
CategoryTheory . .6943
Nat . L4957
IsOpen . .9009
repr . .99@9

0 00 0NN
0 0 0 0 0 @ @ © 0 Bk
0O 0 0 0 0 @ @ @ P 0

[y
@

The undominated vertices are ['Lean', 'Function', 'Mathlib']

Data of the undominated categories:
Category d_score Pagerank Betweenness

0.7749
Function 0.7048
Mathlib 0.3841

FIGURE 24: Result Category Graph when large categories are included. Category size
below 50 removed

30

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Mathlib . .3846
Function . .6989
List . .6454
CategoryTheory . L7171
Array . .9685
Filter . .9872
Nat . .4950
Substring . .7750
10 repr c .9909

.2638
.1981
L4274
.2523
.1549
.0806
L4037
.0104
.0030

g
0
0
0
0
0
0
0
0
0

O 0O O 0 0 0O O 0 L 6

The undominated vertices are ['Lean', 'Function', 'CategoryTheory', 'Mathlib']
Data of the undominated categories:
Category d_score Pagerank Betweenness

1.0000
Function . 0.1981
CategoryTheory . 0.2523
Mathlib - 0.2638

F1GURE 25: Result Category Graph when large categories are included. Category size
below 55 removed

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

.2925
1933
L4240
1577
.4165
.0974
.1907
.0183
.0031

Mathlib . .3890
Function . .6800
List 5 .6412
Array . .9816
Nat 5 L4871
Filter 5 .9531
CategoryTheory . .7270
Substring . .7781
repr . .9909

0 0 NN N R
0O 0 0 0 0 0 0 0 O K
0 0 0 0O 0 @ @O @ R O

=
@

The undominated vertices are ['Lean', 'Function', 'CategoryTheory', 'Mathlib']

Data of the undominated categories:
Category d_score Pagerank Betweenness

Function
CategoryTheory
Mathlib

F1GURE 26: Result Category Graph when large categories are included. Category size
below 60 removed

31

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Mathlib .5566
Function L4482
List .4102
Array 5927
Nat .3845
Substring .3725
Multiset .3711
Order .3707
10 repr .3668

.3922
6555
L6245
9824
L4639
.7699
.9630
.9815
.9909

.2761
2004
L4374
1592
.4310
.0103
.0659
.0282
.0031

0.
]
0.
]
8.
]
]
0
]
]

O 0 0 0 O @ @ @ @ K
0 0 0 0 O @ @ @ B o

The undominated vertices are ['Lean', 'Function', 'CategoryTheory', 'Mathlib']
Data of the undominated categories:

Category d_score Pagerank Betweenness

0.1187
Function . 0.4887
CategoryTheory . 0.2035
Mathlib . 1.0660

F1GURE 27: Result Category Graph when large categories are included. Category size
below 65 removed

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Mathlib .5584
Function L4679
List .4156
Array SIS
Nat .3857
order 25795
Multiset .3774
Substring .3762
10 repr .3711

.3929
.6455
.6241
.9827
.4620
.9949
9727
L7716
9909

.2810
.2043
L4387
.1575
L4266
.0280
.0679
.0103
.0032

0O 0 O 0 @ 0O 0 0 0 O
0O 0O O 0O @ OO0 0 O
0O O O O @ OO 0 P O

The undominated vertices are ['Lean', 'Function', 'CategoryTheory', 'Mathlib']
Data of the undominated categories:
Category d_score Pagerank Betweenness

0.1185
Function . 0.5537
CategoryTheory . 0.2106
Mathlib . 1.0000

F1GURE 28: Result Category Graph when large categories are included. Category size
below 70 removed

32

Top 10 vertices with highest total score:

Rank Category Total score d_score Pagerank Betweenness

Mathlib .5587
Function 4728
List .4201
Nat -3925
Array .3918
Multiset .3799
Substring .3759
Order .3759
10 repr .3717

.3921
.6442
.6246
L4594
.9827
.9727
L7734
.9803
.9909

.2825
.2042
. 4401
L4299
.1578
.0684
.01083
.0249
.0033

0O 0 0 0 0 0 0 0 @ O
O 0 0 0 0@ 0O & O @ KL
O 0O 0 O O O 60 O R O

The undominated vertices are ['Lean', 'Function', 'CategoryTheory', 'Mathlib']
Data of the undominated categories:
Category d_score Pagerank Betweenness

Function
CategoryTheory
Mathlib

F1GURE 29: Result Category Graph when large categories are included. Category size
below 70 removed

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank
Lean .6285
Mathlib N5592
Function .4518
List L4227
Nat . 4004
Array .3925
Multiset .3812
Substring L3791
repr .3763
10 Order L3714

.7683
&L
.6427
.6245
.4586
.9825
.9720
.7723
.9909
.9636

.0000
.2845
.2056
-4435
L4334
.1581
.0691
.0105
.0034
.0234

0O 0 0 0 @ 0O @ © 0 @
0 0 0O 0O 0 OO O 0 K
0O 0 0O 0O 0 0O 0 O R O

The undominated vertices are ['Lean', 'Function', 'CategoryTheory', 'Mathlib']

Data of the undominated categories:
Category d_score Pagerank Betweenness

0.7683 0.1188
Function 0.6427 0.5069
CategoryTheory 0.74080 0.2126
Mathlib 0.3917 1.0000

F1GURE 30: Result Category Graph when large categories are included. Category size
below 80 removed

33

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank

Lean .6268 .7689
Mathlib .5612 .3939
Function L4476 .6150
List .4290 .6239

.0oes
.2885
.2083
L4447

Multiset .3928 .9958
Nat .3887 . 4490
Substring .3848 L7729
repr .3798 .9909
10 Order .3728 .9622

.0718
.3989
.0185
.0034
.0246

1
]
]
]
Array .3929 .9825 0.1579
0
]
]
]
]

0O 0O 0O 0 O @ O O kL O

The undominated vertices are ['Lean', 'Function', 'CategoryTheory', 'Mathlib']
Data of the undominated categories:
Category d_score Pagerank Betweenness

0.7689 1.0000
Function 0.6150 0.2083
CategoryTheory 0.7417 0.1447
Mathlib 0.3939 0.2885

F1GURE 31: Result Category Graph when large categories are included. Category size
below 85 removed

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Mathlib
Function
List
Multiset
Array
Nat
Substring
repr

10 Order

.3910 .2916
.6164 .2107
6246 . 4486
.9949 .0727
23 .1585
L4493 .4041
L7741 .01086
.9909 .0035
L9617 .0248

0O 0O O O 0 O @ OO0 O
o 0 ®O O 0 O 0 0 R O

The undominated vertices are ['Lean', 'Function', 'CategoryTheory', 'Mathlib']
Data of the undominated categories:
Category d_score Pagerank Betweenness

Function
CategoryTheory
Mathlib

F1GURE 32: Result Category Graph when large categories are included. Category size
below 90 removed

34

Top 10 vertices with highest total score:

Rank Category Total score d_score Pagerank Betweenness

Mathlib . .3909
List . .6247
Function . .6115
Multiset = .9928
Array . .9823
Nat . L4491
repr - .9909
Order - .9747
10 Substring . .7763

.2999
.4554
.2141
.0740
-1599
40857
.0B37
.0259
.0107

0O 0 0 0 0 O 0 0 O KB
0O 0 0 0 0 O 0 0 kB O

The undominated vertices are ['Lean', 'Function', 'CategoryTheory', 'Mathlib']
Data of the undominated categories:
Category d_score Pagerank Betweenness

Function
CategoryTheory
Mathlib

F1GURE 33: Result Category Graph when large categories are included. Category size
below 95 removed

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

.108
.0000
-2311
.3759
.0443
.1102
.1697
. 3069
.1454
.2591

Mathlib .5699
List L4494
Function L4012
Array .3963
Multiset .3943
repr .3879
Nat .3874
Order .3851
nsmulRec .3749

.3170
.4988
.2196
.1634
.0755
.0037
L4162
.0253
.0096

.9909
.4392
.9853
.8562

0O 0 0 O O 0 @ O @
O 0 0 O O 0O 0 O 0 K
0O 0 0 O @ @ @ @ P e

The undominated vertices are ['Lean', 'Function', 'CategoryTheory', 'Mathlib']

Data of the undominated categories:
Category d_score Pagerank Betweenness

0.1085
Function . 0.3759
CategoryTheory . 0.1706
Mathlib . 1.0000

F1GURE 34: Result Category Graph when large categories are included. Category size
below 100 removed

35

10.2 Results Category Graph excluding large categories

Top 10 vertices with highest total score:
Rank Category al score d_score Pagerank Betweenness

Function
List
IsOpen
Nat

Set

Pi

Equiv
IsUnit
Algebra

0 ilc
0 0.
0 0.
0 0.
0 0.
0 0.
0 0.
0 0.
0 0.
0 0.

0 0 0 0O 0 O 0 @ @ B

The undominated vertices are ['List', 'Function']
Data of the undominated categories:
Category d_score Pagerank Betweenness

0.96%94 0.1977 0.3089
Function 0.9442 0.1365 0.7411

F1GURE 35: Result Category Graph when large categories are excluded. Category size
below 5 removed

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

.9896
.9392
.0032
-7195
.9864
.6588
.9215
.8562
.8129
.9373

Function
List

Eq

Nat
IsOpen
Set
Substring
Equiv

Pi

Rat

V0 N 00NN
0O 0O 0O 0 0O 0 60 0 O K

0O 0 0 @ O 0 0 @ @ 0
0O 0O 0 0 0O 0 0 @ @ 0

=
o

The undominated vertices are ['List', 'Function']
Data of the undominated categories:
Category d_score Pagerank Betweenness

0.9392 0.3993 0.2531
Function 0.9896 0.2476 1.0000

FIGURE 36: Result Category Graph when large categories are excluded. Category size
below 10 removed

36

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Function . . .2846
List . . L4160
Eq . . .7510
Nat . .68 .3343
Set . . .3972
IsOpen . .98 .0127
Substring . . .0179

Equiv . . .2114
Rat . . .0217
10 Finset . .948 1524

0O 0 0O 0 O 0 O 0 O Rk

The undominated vertices are ['List', 'Function']
Data of the undominated categories:
Category d_score Pagerank Betweenness

0.9056 0.4160 0.2749
Function 0.9418 0.2846 1.0000

F1GURE 37: Result Category Graph when large categories are excluded. Category size
below 15 removed

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Function .7185
List .5371
Nat L4666
Substring L4604
Eq .4521
IsOpen L4454
Set . 4402
Rat L4200
Equiv L4025
10 Finset .3935

0O 0 0O 0 0O 0 0 0 O K

The undominated vertices are ['List', 'Function']
Data of the undominated categories:
Category d_score Pagerank Betweenness

0.2889
Function . 0.2707 1.0000

F1GURE 38: Result Category Graph when large categories are excluded. Category size
below 20 removed

37

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Function
List

Nat
Substring

IsOpen

Rat

Set

Finset

Equiv
10 Pi

0O 0O 0O 0 O 0 00 0 0
0O 0O 0O 0 O 0 00 0 0
0O 0O 0O 0 0O 0 0 0 Ok

The undominated vertices are ['List', 'Function']
Data of the undominated categories:
category d_score Pagerank Betweenness

Function

FIGURE 39: Result Category Graph when large categories are excluded. Category size
below 25 removed

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Function
List

Nat
Substring
IsOpen
Set

Rat
Finset
Equiv

10 Pi

0O 0O 0O 0 0O 00 0 0 o
0O 0 0O 0 0 0 @ 0 @ B

The undominated vertices are ['List', 'Function']

Data of the undominated categories:
Category d_score Pagerank Betweenness

0.2844
Function . 0.2806 1.0000

FI1GURE 40: Result Category Graph when large categories are excluded. Category size
below 30 removed

38

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Function
List

Nat
Substring
IsOpen
Rat

Set
Finset

Pi

Equiv

1
2
3
4
5
6
7
8
9

0O 0O 0O 0 0 @ @ 0 @ O

[y
=]

The undominated vertices are ['List', 'Function']
Data of the undominated categories:
Category d_score Pagerank Betweenness

0.8931 0.4346 0.2797
Function 0.7948 0.3131 1.0000

FI1GURE 41: Result Category Graph when large categories are excluded. Category size
below 35 removed

Top 10 vertices with highest total score:
Rank Category

.7686
.8759
.5842
8661
.9353
9926
.5074
.6288
.9392
L7471

Function
List

Nat
Substring
IsOpen
Rat

Set

Pi

Finset

[~ I o T o B < i < T B B o I <> i <)
0O 0O 0 0 0 0 O 0 O P

10 Equiv

The undominated vertices are ['List', 'Function', 'Nat']

Data of the undominated categories:
Category d_score Pageran Betweenness

List 0.8759 0.5080
Function 0.7686 0.2408
Nat 0.5842 0.4570

FIGURE 42: Result Category Graph when large categories are excluded. Category size
below 40 removed

39

Top 10 vertices with highest total sc

Rank Category

Function
List

Nat
Substring
Set

Rat
IsOpen

Pi

Finset
Filter

The undominated vertices are ['List',
Data of the undominated categories:
Category d_score

List 0.8586
Function 0.7330
Nat 0.5586

FIGURE 43: Result Category Graph when large categories are excluded

below 45 removed

ore:

Total score d_score Pagerank

.6589
.5433
.5141
.4908
L4497
.4450
L4434
L4193
.4030
.3995

'Function', 'Nat'l]

Pagerank Betweenness

Top 10 vertices with highest total score:

Rank Category
Function
List

Nat

Set
Substring
IsOpen
Rat

Pi
Finset
Filter

NV 00 NN NN

[y
@

The undominated vertices are ['List',

Data of the undominated categories:

Category d_score

.8483
Function .7207
Filter .9647
Nat .5376

FIGURE 44: Result Category Graph when large categories are excluded

below 50 removed

Total score d_score Pagerank

.6794
.5737
.5402
.4818
.4806
L4343
L4332
L4294
L4263
.4152

'Function', 'Filter',

Pagerank

40

.7207
.8483
.5376
. 4485
.8684
.9168
.9514
.5847
.8964
.9647

'Nat']

0 0 0O 0O 0 O @ 0 0 K

0O 0 0 0 0 0 0 0 6 B

Betweenness

. Category size

enness

. Category size

Top 10 vertices with highest total sc

Rank Category

Function
List
Nat
Substring
Set
Rat
Finset
Pi
Filter

10 Equiv

The undominated vertices are ['List',
Data of the undominated categories:
Category d_score

Function
Filter
Nat

ore:

Total score d_score Pagerank

.6816
.5794
-5475
.4910
-4756
L4364
.4306
L4237
.4214
L4146

'Function', 'Filter',

0O @ 0O 0 0 @ O @ 0 e

.8469
.5369
.8636
L4399
.9499
.8846
.5638
.9697
.7308

Pagerank Betweenness

0.2588
1.0000
0.1622
0.4822

'Nat']

0O O 0O O 0 O 0O 0 0 O

0O 0O 0O O 0 O O 0 O KL

Betweenness

FIGURE 45: Result Category Graph when large categories are excluded. Category size

below 55 removed

Top 10 vertices with highest total score:

Rank Category

Function
List

Nat

Set
Substring
Finset
Filter
Equiv

Pi

Eq

The undominated vertices are ['List',
Data of the undominated categories:
Category d_score

Function
Filter
Nat

FIGURE 46: Result Category Graph when large categories are excluded

below 60 removed

Total score

'Function', 'Filter',

d_score Pagerank

o 0O 0 0O 0O O 0O 0 0 0

.8416
.5264
L4115
.8568
.8578
.9929
L7297
.5395
.0011

Pagerank Betweenness

41

'Nat']

o 0 0 0O 0 O PP 0 0 o

O 0 0 0O 0O O O 0 O 8k

Betweenness

. Category size

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

.4880
.9377
.0000
.9408
0229
.5598
1292
.0682
4457
.3148

Function
List

Nat

Set
Substring

Finset
Pi
Rat
Equiv
10 AddMonoidHom

0O 0 0 0 @ @ @ P 0 e

The undominated vertices are ['List', 'Function', 'Nat']
Data of the undominated categories:
Category d_score Pagerank Betweenness

0.8170 0.9377
Function 0.6680 0.4880
Nat 0.4946 1.0000

FIGURE 47: Result Category Graph when large categories are excluded. Category size
below 65 removed

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Function
List

Nat

Set
Substring
Finset

Equiv

Rat

Pi
AddMonoidHom

O 0 0 0 06 6 @ P © O
o
0O 0 0 0O 0O 0 O @ O KL

The undominated vertices are ['List', 'Function', 'Nat']

Data of the undominated categories:
Category d_score Pagerank Betweenness

0.8171 0.9457
Function 0.6574 0.5047
Nat 0.4923 1.0000

FIGURE 48: Result Category Graph when large categories are excluded. Category size
below 70 removed

42

Top 10 vertices with highest total score:
Rank Category 1 score d_score Pagerank
Function .7190
List .6847
Nat .6616
Set .5544
Finset .4938
Substring .4899
Equiv .4400
Rat .4348
AddMonoidHom .4301
Multiset .4251

1
2
3
4
5
6
7
8
9

0O 0O O 0 0 0 @ @ O @
0O 0O O 0 0O 0 @ P O 6
0O O 0O O O O 0 O O KB

[y
@

The undominated vertices are ['List', 'Function', 'Nat']
Data of the undominated categories:

Category d_score Pagerank

L 0.8183

Function 0.6561

Nat 0.4889

FIGURE 49: Result Category Graph when large categories are excluded. Category size
below 75 removed

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

Function

List

Nat

Sei

Substring .5234
Finset .5020
Rat L4672
Pi L4611
Equiv . 4480
AddMonoidHom L4378

.4983
.9328
.0000
.9413
.0221
.5789
.0720
.1332
. 4486
.3239

0O 0 0 0 0O 0 0 P oo
0O 0 0O 0 0O 0 0 O O R

The undominated vertices are ['List', 'Function', 'Nat']
Data of the undominated categories:

Category d_score Pagerank Betweenness

0.8187
Function 0.6545 0.4983
Nat 0.4878 1.0000

FiGURE 50: Result Category Graph when large categories are excluded. Category size
below 80 removed

43

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

List 0.7293
Function 0.7203
Nat 0.6843
Set 0.5804
Substring .5275
.50845
L4534

Finset
Multiset

Rat
10 nsmulRec

.4511
L4430

0 0O 0 0 0O @ @O 0 0 0
0O 0O 0O 0 0O OO0 0 P O

0

o]

c]
Equiv 0.4518

¢]

0

The undominated vertices are ['List', 'Function', 'Nat']
Data of the undominated categories:
Category d_score Pagerank Betweenness

0.8181 0.9864 0.3845
Function 0.6246 0.5355 1.0000
Nat 0.4746 0.9753 0.6033

FIGURE 51: Result Category Graph when large categories are excluded. Category size
below 85 removed

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank Betweenness

.9787
.5349
.9762
.0000
.0227
.6240

51
.0720
.4832
.0248

Function
Nat

Set
Substring
Finset
Multiset
Rat

Equiv
nsmulRec

0O 0 0 0 O @ @ @ 0 6
0O 0 0O 0 © O P O 0 6
o 0 0 0 O @ @ © B e

The undominated vertices are ['List', 'Function', 'Nat']

Data of the undominated categories:
Category d_score Pagerank Betweenness

0.8196 0.9787
Function 0.6262 0.5349
Nat 0.4752 0.9762

FIGURE 52: Result Category Graph when large categories are excluded. Category size
below 90 removed

44

Top 10 vertices with highest total score:

Rank Category Total score d_score Pagerank Betweenness

Function L7174
Nat .6931
Set .5851
Substring .5217
Finset .5041
Rat L4691
nsmulRec L4666
Equiv . 4649
10 Multiset L4631

0 0 0 0 0 0 0 @ @ 6
0
O 0O 0 0O O 0O P 0O O O

0 0 06 0 O 0O O 0 R O

The undominated vertices are ['List', 'Function', 'Nat']
Data of the undominated categories:
Category d_score Pagerank Betweenness

0.8204
Function 0.6209
Nat 0.4749

F1GURE 53: Result Category Graph when large categories are excluded. Category size
below 95 removed

Top 10 vertices with highest total score:
Rank Category Total score d_score Pagerank

Nat
Function
Set
Substring
Rat
Finset
nsmulRec
Multiset
10 Equiv

0O 0 0 0O 0 0 0 0 O kR
0O 0O 0 O 0O 0O O 0 0 e

The undominated vertices are ['List', 'Function', 'Nat'l]
Data of the undominated categories:

Category d_score Pagerank Betweenness

0.8123
Function 0.6173
Nat 0.4612

FIGURE 54: Result Category Graph when large categories are excluded. Category size
below 100 removed

45

	Introduction
	Existing graph statistics
	Betweenness centrality
	Katz Centrality
	Vertex degree
	Eigenvector centrality
	Pagerank

	Basic dataset Analysis
	In- and out-degree
	Categories

	Methods
	Measure
	Betweenness centrality
	Pagerank
	Degree score
	Complete measure
	Pareto Front

	Creating Category Graph

	Results Category Graph
	Results including large categories
	Results excluding large categories
	General result

	Analysis category `Function'
	Results category `Function'
	Conclusion
	Discussion
	Appendix
	Results Category Graph including large categories
	Results Category Graph excluding large categories

