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ABSTRACT
This research investigates the feasibility of using Cirq, a Python
framework, to implement the BB84 quantum key distribution proto-
col, using model-based testing. Additionally, this paper covers how
such implementation performs under different noise models. There-
fore, this research begins with by briefly recalling research on the
BB84 protocol, model-based testing, Cirq and noise models. Next,
formal models, adapter and the implementation used by TorXakis, a
model-based testing tool, are described in detail. Then, experiment
setup and results are covered, supplied by multiple graphs, visual-
izing test results. This research concludes with the implementation
passing all the initial tests, validating the ability of Cirq to simulate
BB84. Additionally, the implementation in Cirq can reliably handle
depolarizing noise under 10% probability and amplitude dampening
noise under 12% probability. However, phase dampening noise has
minimal effect on the performance of the implementation. Finally,
future work describes how, due to the limited scope of the study,
additional research and testing on both model and implementation
could be beneficial.
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1 INTRODUCTION
Online communication is an unavoidable part of our daily lives,
making it necessary to develop ways to secure and protect the
exchanged information. A way to carry this out is to encrypt all
messages between the parties using a key, known only to them.
Therefore, even if the message is intercepted by a third party, it
cannot be comprehended without directly knowing the secret key.
The task becomes more complicated as the secret key must, in
turn, be agreed upon and communicated without the third party
knowing about it. Multiple algorithms were created to privately
exchange secret keys, such as the Diffie-Hellman key e xchange [1]
and RSA [2]. However, these methods rely on the computational
difficulty of mathematical problems that can become obsolete with
the advancement in quantum computing. Hence, quantum key
distribution can be a promising solution for the future.
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Quantum key distribution is a communication method that uses
quantum mechanics combined with cryptographic protocols to
ensure security. One such protocol is the BB84 developed by Charles
Bennett and Gilles Brassard in 1984 [3]. The BB84 protocol is based
on the principle of quantum signals mot being reproducible once
measured. This property makes it theoretically possible to detect
the presence of an eavesdropper, if one is attempting to intercept
the exchange.

However, real-world implementations of BB84 can be affected
by other factors, such as noise in the quantum channel [4]. These
factors might compromise the correctness and robustness of the
protocol in both normal and eavesdropper scenarios. Thus, finding
ways to simulate and reaffirm such protocols before they are imple-
mented in real world is essential. This can validate if the protocol is
indeed correct, as well as determine the levels of noise under which
it can retain its security property.

Therefore, this research focuses on testing and validatingwhether
Cirq [5], a Python-based quantum computing framework developed
by Google, can be used to simulate the BB84 protocol. Addition-
ally, this research also finds how different quantum noise affect the
security of the protocol.

2 RESEARCH QUESTION
The objective of the research can be summarized into the following
research question: To what extent can the Cirq library effectively
implement the BB84 quantum key distribution protocol with and
without an eavesdropper and how do different noise models affect
its Quantum Bit Error Rate.

To address the second part the research question comprehen-
sively, the study focuses on three sub questions related to the noise
models.

• How does the BB84 implementation perform under Depolar-
izing Noise.

• How does the BB84 implementation perform under Phase
Damping Noise.

• How does the BB84 implementation perform under Ampli-
tude Dampening Noise.

3 RELATEDWORK
This sections analyses different works related to the research. Vari-
ous studies have assessed the security and correctness of the BB84
protocol implemented in different environments.

Khaleel and Tawfeeq [6] conducted a real-time performance
test of a BB84-based quantum cryptographic system. They used
polarized laser setup with a receiver to simulate a quantum channel.
The work analyzed the influence of hardware parameters, such as
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avalanche photo-diodes, laser diode power, and temperature, on
the Quantum Bit Error Rate of the system.

Another physical implementation of the BB84 protocol was done
by Molotkov [7]. To make it practically applicable, a simpler fiber-
optic implementation without phase modulators or polarization
adjustments was created. Molotkov tries to address practical chal-
lenges like dark counts and quantum efficiency.

The paper by Guitouni et al. [8] explored the BB84 protocol in
the context of IoT networks. Their research focused on the practi-
cal deployment of BB84. By evaluating the protocol’s feasibility in
resource-constrained IoT environments, they identified critical met-
rics like entropy variation to assess its adaptability to IoT-specific
challenges.

These studies provide valuable empirical data on BB84 perfor-
mance in hardware systems, while also being vastly different from
this research. Their focus is on the hardware implementation, while
this research focuses on the quantum channel simulation in Cirq.
Additionally, it uses probabilistic model-based testing to test for
correctness and robustness of the system.

The paper byWatanabe [9] focuses on improving the BB84 proto-
col’s noise tolerance using random privacy amplification. It demon-
strates that tolerable error rates can increase from 7.5% to 11%. By
providing a theoretical foundation for noise resilience, it can di-
rectly complement noise impact on the BB84 implementation tested
in this research. However, it is purely theoretical and does not test
implementations under realistic noise models.

Lee et al. [10] propose advanced eavesdropping detection algo-
rithms for the BB84 protocol. Their introduction of the grouped
BB84 protocol and combinatorial detection algorithms allows ac-
curate eavesdropping detection despite noise and other variables.
Lee uses a statistical and simulation-based analysis, making it a
theoretical extension rather than a physical implementation. This
makes it different from this research, as it tries it test a Cirq BB84
implementation, rather than just a theoretical model.

In their paper Elboukhari et al. [11] explore PRISM probabilistic
model checker to analyze the security of BB84. They created a prob-
abilistic state model of the BB84 specification in PRISM and verified
if it retained the security properties of the algorithm, including
under noisy conditions. They concluded that the probability of de-
tecting an eavesdropper increases with photon count and channel
noise.

While this work, being the closest to this research, contributes
to the evaluation of the BB84 algorithms, their approach and fo-
cus significantly differ. Elboukhari et al used a verification-driven
approach, using model checking to theoretically verify the secu-
rity properties under controlled conditions. Their work primarily
focused on the PRISM model of the BB84 algorithm and provided
limited exploration of specific noise models.

In contrast, this research focuses on model-based testing to vali-
date an implementation of the BB84 in Cirq, under different noise
models, including depolarizing, phase dampening, and amplitude
damping. Therefore, this research attempts to reproduce the results
of previous papers, while also exploring a novel aspect of a BB84
being implemented and tested in Cirq.
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4 METHODOLOGY
This section describes key concepts used in this research, such as
the BB84 protocol, Cirq and model-based testing. Lastly, research
methodology is mentioned, summarizing the implementation and
experiment process.

4.1 BB84
The BB84 encryption protocol was developed by Charles Bennett
and Gilles Brassard in 1984. In it, the sender generates a random key
and passes it, by using photons for individual bits, through a fiber
optic channel. By using polarizing filters, each individual photon
takes an orientation, which the receiver then has to guess. In the
end, the sender and receiver compare their used orientations, or
bases, and the bits with the matching ones become the actual key.
The security of it becomes clear, if a malicious eavesdropper decides
to intercept the photons in the middle. If an eavesdropper inter-
cepts the photons, they must guess the correct measurement basis.
Incorrect guesses disturb the photon states, introducing detectable
errors when the sender and receiver compare their keys.

Table 1 depicts a simplified version of the BB84 protocol with
only a sender and a receiver. It uses + and X as the two type of
basis. Sender polarization being a combination of the sender bit
value and its basis type. If the receiver matches the sender basis -
the bit is received correctly. As the secret key is formed only from
the matched basis between the sender and receiver, only those are
shown.

In order to determine, if the exchange was secure and was not
compromised, the Quantum Bit Error Rate(QBER) can be used,
which is a number of total bits matched with matched basis divided
by total number of matched basis.

Matched Bits with matched basis
Matched Basis = QBER

If the resulting QBER is higher than a theoretical security threshold
of 11% [12], the channel can be considered to be compromised.

4.2 Cirq
Cirq [5] is an open source Python software library for writing,
manipulating, optimizing quantum circuits, and for executing them
on both quantum computers and simulators. Its core functionality
includes simulators for testing small circuits with all the operations.
Cirq’s operations are built around the concept of Gates, which
represent transformations that can be applied to aQubit, an abstract
circuit object representing a unit of quantum information.

These tools can be used to effectively simulate the behavior of the
BB84 encryption protocol, by modifying the Qubit state as required
and running simulations to observe the results.

4.3 Model-Based Testing
In order to test if Cirq can be used to simulate BB84 behavior, Model-
Based testing (MBT) was chosen for its ability to test a system
against a specification. With MBT a System Under Test (SUT) is
tested against an abstract model of its required behavior. The Model
describes how the system should behave, and what it should and
should not do, that is, the behavior of the SUT shall conform to the
behavior prescribed in the model. The model itself is assumed to be
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Sender Bit 0 1 1 0 1 0
Sender Basis + + X X + X

Sender Polarization Horizontal (|⟩) Vertical (| ↑⟩) Diagonal (|/⟩) Anti-Diagonal (|\⟩) Vertical (| ↑⟩) Anti-Diagonal (|\⟩)
Receiver Basis + X + X + X
Secret Key 0 - - 0 1 0

Table 1: Simplified BB84 Protocol Example

correct and valid; this assumption is fundamental, as the accuracy
of the tests relies entirely on the correctness of the model [13].

Themain advantage ofMBT is its ability to automate test creation
and execution, in contrast to the traditional manual way of testing
a system. This allows for testing of more varied, longer, and more
diversified test cases with less effort. However, due to the inherent
limitations of testing, such as the limited number of tests that can
be performed in a reasonable time. As Edsger W. Dijkstra observed,
"Program testing can be used to show the presence of bugs, but
never to show their absence!" [14].

There are different kinds of testing, and thus of model-based test-
ing. It depends on the kind of models being used, the quality char-
acteristics being tested, the level of formality involved, the degree
of accessibility and observability of the system being tested, and
the kind of system being tested. Because the goal is to validate the
ability of a program to conform to an algorithm or a specification,
black-box testing was used. Black-box as a testing methodology
implies that the inner-workings of the SUT are unknown to the
tester and the focus is solely on observing the system’s behavior
and outputs in response to external inputs or interactions. This
goes in contrast with white-box testing, which involves designing
and executing tests based on the internal structure, logic, or code
of the system.

In this research, to formally define a model, as well as to automat-
ically generate and execute tests against the SUT, the TorXakis [15]
MBT tool was used. TorXakis is an academic, research tool that is
being developed. It implements the ioco-test generation algorithm
for symbolic transition systems, and it uses a process-algebraic
modelling language Txs inspired by the language LOTOS [16]. The
ioco (Input-Output Conformance) relation is a formal testing the-
ory used to verify whether the behavior of SUT conforms to the
expected behavior of a model. At its core, it ensures that the SUT
produces outputs that are consistent with the model’s specifications
when given specified inputs and does not produce any outputs that
the model does not allow. Usually ioco is non-deterministic, mean-
ing the specification allows for multiple acceptable outputs for one
input, however it is not relevant for this research.

4.4 Research Methodology
In order to research the extent to which the Cirq library can ef-
fectively implement the BB84 quantum key distribution protocol
under ideal, eavesdropped and noisy conditions, several key steps
had been taken.

First, two formal models were created using TorXakis model
definition language in accordance with the literature definition
of the BB84 protocol. One model defining the specification for
BB84 behavior under ideal and eavesdropped conditions, testing

the correct sender (Alice) and receiver (Bob) outputs. The other,
testing for noise impact, only confirming if the resulting QBER
conforms to the security threshold of 11%.

Second, a SUT was created that, in theory, implements the be-
havior of the BB84 protocol using Cirq circuits, gates, qubits, and
simulators. To make the SUT compatible with TorXakis, an adapter
was made, which would pass the data from the model to the SUT
and back. The adapter works as both the synchronization layer as
well as a converter, enabling the SUT to be compared against the
model specification.

Finally, multiple tests were executed, using both models, in ac-
cordance with the experimental setup. The noise results, including
the QBER values, were visualized in a graph to improve clarity.

5 IMPLEMENTATION
We briefly highlight crucial parts of our implementation, such as
the TorXakis model, the implementation of BB84 in Cirq itself and
the adapter.

5.1 Model
To test whether the SUT correctly implements the BB84 protocol,
first a formal model is needed specifying the algorithm. To do that
2 formal models were created [17] in txs, TorXakis’ formal model
definition language. One model testing for normal behaviour of
BB84 and the other was slightly adjusted see the impact of noise
on the BB84 algorithm.

The models consist of several logic blocks: type definition, func-
tion definition, channel definitions, model definition, process defi-
nition and connection definition.

Txs has default types such as Int, String or Bool. However, in
order to describe the flow of information from Alice to (possibly)
Eve and Bob, bit and basis types were defined.

1 TYPEDEF Bit ::= Zero | One ENDDEF

2 TYPEDEF Basis ::= Rectilinear |

3 Diagonal

4 ENDDEF

To combine them, for ease of use another type was created.
1 TYPEDEF Qubit ::= Qubit {bit :: Bit;

2 basis :: Basis}

3 ENDDEF

When creating compound types, TorXakis automatically creates
access functions to access the head and tail of such objects.

For the model to retain information of what qubits were present
before, a list type was created. Where head contains a qubit object
and tail links to another list object, which if empty, ends the list.

1 TYPEDEF List_Qubit ::=

2 CNil_Qubit

3 | Cstr_Qubit { head :: Qubit;
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4 tail :: List_Qubit }

5 ENDDEF

Several functions have been defined that are mainly used to
manage and transform data. For example, QList_Append is used to
add a new qubit to an existing list object.

1 FUNCDEF QList_Append

2 ( x :: List_Qubit;

3 q :: Qubit ) :: List_Qubit ::=

4 ...

5 ENDDEF

The others are used for different output calculations and transfor-
mations.

In the context of TorXakis, channels are the primary means
through which components of the system interact and exchange
data. Channels provide an abstraction that allows input and output
to the model facilitating the flow of information. In txs, a channel
has to be defined inside a CHANDEF block with a type associated
with it to ensure consistency.

1 CHANDEF CommunicationChannels ::=

2 InputAliceQubit :: Qubit;

3 QBERResult ,

4 AliceConf , BobQConf , BobBConf ,

5 EveQConf , EveBConf ,

6 OutputAliceTrigger ,

7 OutputBobTrigger :: Bool;

8 InputBobBasis ,

9 InputEveBasis :: Basis;

10 InputEveBit , InputBobBit :: Bit;

11 OutputAlice , OutputBob :: String;

12 ENDDEF

The Model itself is defined inside the MODELDEF block. This
block encapsulates the entire model and specifies its channels and
behaviour. The channels that are used for data input are placed in
the CHAN IN section, while the CHAN OUT section is used for the
model data output channels. The BEHAVIOUR section specifies the
behaviour of the model when it is initiated. In both models, this
behavior begins by invoking the Alice[]() process.

The logic of the model is divided into separate processes: Alice,
Eve and Bob. A process is a logic component of the model that
specifies interactions with channels and other logic components.
In TorXakis, a process has specified channels and local variables.
Channels are specified inside square brackers [] and are used for
outside communication, while variables are specified inside () and
are used for local calculations and decisions.

Alice specifies the logic of the sender which should prepare a bit
and its basis and send along a communication channel to Bob. First,
Alice has a local variable n which specifies the number of cycles
the model will take, similar to bits in a the secret key. Whenever a
bit reaches Bob, one cycle passes and n gets decremented by 1, until
it reaches 0. If n is 0 when Alice is called, final information is sent,
based on what model it is and process is finished. Otherwise, Alice
uses InputAliceQubit channel to prepare a qubit (bit and basis) to
send.

In TorXakis, a model can request an input from a channel which
prompts TorXakis to generate data within specified data type restric-
tions. Therefore the following randomly creates a qubit x that can
have bit value One or Zero and basis value Rectilinear or Diagonal.

1 InputAliceQubit ? x

Additionally, sending an output through a channel works in a sim-
ilar way, with a difference of having to provide the exact data to
send.

1 AliceConf ! True

With a generated qubit, Alice, based on a local variable eve_flag
decides on whether to send it to Eve or to Bob. Then after after
updating the the sent qubit list with QList_Append, Alice calls the
the next process - Eve if the flag is True and Bob otherwise.

If Eve is present, it generates a basis through InputEveBasis. If the
generated basis matches with the basis of the qubit sent by Alice,
Eve sends the same qubit along to Bob. Hovewer, if the basis did
not match, Eve additionally generates a bit through InputEveBit,
mimicking measuring a qubit under an incorrect basis and getting
a random bit, in the result. In this case Bob receives a qubit with
the randomly generated but value and Eve’s measurement basis.

Bob’s process work in a similar way to Eve. It first generates
basis with InputBobBasis. Then compares the incoming qubit basis
to his generated one, if it matches, Bob updates his received qubit
list with his generated basis and the received bit value. If the basis
did not match, Bob generates a random bit value with InputBobBit
and updates the received qubit list using it. In the end, Bob calls
Alice again, but with a decremented n by 1, ending one cycle.

The key difference between the 2 models is the final output. The
first model was made to test the general behaviour of the BB84
algorithm, therefore at the end, when n reaches 0. Alice outputs all
qubits that were sent by alice, where QList_to_Str function is used
to transform a list into String where bits can be 0 or 1 and basis C
and H.

1 OutputAlice ! QList_to_Str(qa)

The same is done with bits received by Bob:
1 OutputBob ! QList_to_Str(ql)

The other model tests if the QBER of the SUT surpasses the
security threshold. This is calculated based on the Quantum Bit
Error Rate, which is a number of total bits matched with matched
basis divided by total number of matched basis. The resulting QBER
is then compared to 11%, which would indicate if the channel is
compromised or not. The actual output is True if the QBER is bellow
11% and False if above.

1 QBERResult ! Compare_QBER(bitNum , baseNum)

Finally, the communication with an SUT or an adapter is de-
fined in the CNECTDEF block. The communication is done through
sockets, enabling TorXakis to send or receive data as defined by
the model. CHAN OUT defines channels which data, generated by
TorXakis, needs to be sent to the SUT. CHAN IN is the opposite,
where it is the information that is received from SUT and is checked
against what is expected by the model. Each such channel must
specify a local port over which the information will be sent over
and the model channel that the information will be taken from. One
port can be used for one in and one out channel.

1 CHAN OUT InputAliceQubit

2 HOST "localhost" PORT 7891

3 ENCODE InputAliceQubit ? qA

4 -> ! toString(qA)

5

6 CHAN IN AliceConf

7 HOST "localhost" PORT 7891
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8 DECODE AliceConf !

9 fromString(s) <- ? s

Since TorXakis’ SUT output await time is limited, it is essential
to manage input-output logic carefully. To synchronize the model
with an adapter, sync and trigger channels have been introduced,
making the testing less prone to synchronization errors.

5.2 System Under Test
The SUT is a BB84 algorithm implemented in Python using the Cirq
library [17]. It was coded specifically for this research, to find if it
is possible to use Cirq circuit to simulate full BB84 functionality
under normal, eavesdropped and noisy conditions.

In Cirq, a circuit is a structured representation of quantum op-
erations applied to qubits over discrete moments in time. It uses
gates and measurements to define behavior of the system. Gates are
operations that modify the state of qubits, while measurements read
out the state of qubits in a specified basis, collapsing their quantum
state into classical information. In this SUT, 2 gates are used: X and
H gates. The cirq.X gate applies a Pauli-X (NOT) gate, flipping the
qubit state. The Cirq.H gate applies a Hadamard gate, putting the
qubit into a superposition. To read a state of qubit, measurements
are used, collapsing their quantum state into classical information.

1 circuit = cirq.Circuit ()

2 circuit.append(cirq.X(qubits [0]))

3 circuit.append(cirq.H(qubits [0]))

4 circuit.append(cirq.measure(qubits [0],

5 key="eve_measure"))

6 result = cirq.Simulator ().run(circuit)

To simulate BB84 using gates, both gates would be applied ac-
cording to the bit and basis values chosen. The cirq.X gate is applied
if the bit value is 1; for a bit value of 0, no gate is applied, leaving
the qubit unchanged. Similarly, the cirq.H gate is applied only when
the diagonal basis is selected. This way, if Alice sends a qubit in one
basis and it is being measured in another, only one cirq.H gate will
be present in the circuit. As a result, the qubit collapses randomly
into bit value 0 or 1 during measurement.

Similar to the model, the SUT contains repeated cycles involving
Alice, Eve, and Bob. Alice prepares the circuit according to the
original qubit. Eve, if present, measures the circuit and prepares a
new one based on her measurement results. Like Eve, Bob measures
the circuit and saves the results for later. These cycles are repeated
for the number of bits set in the key.

Normally, all qubit bit and basis values for Alice, Eve and Bob
would be chosen randomly. However, this would prevent comparing
the SUT to the model specification. Therefore, a decision was made
to treat all these values, as user inputs, which would be taken from
the model and converted by the adapter. Furthermore, as one of the
models tests for normal behavior of the protocol, it requires the
qubits sent by Alice and received by Bob to match the model specifi-
cation. This makes it necessary to change the way the SUT handles
the measurement state collapse when the basis do not match. For
this, two SUTs were created: one for testing the impact of noise
on BB84 performance (which retains the random measurement col-
lapse), and the other for testing the core BB84 behavior. The second
SUT was modified to treat the random measurement outcome also
as a user input, which would be passed from the model.

1 if eve_b != alice_b:

2 last_state = eve_state

3 circuit.append(cirq.H(qubits [0]))

4 if eve_state != alice_s:

5 circuit.append(cirq.X(

6 qubits [0]))

Finally, Alice’s and Bob’s bit and basis values, along with the cal-
culated QBER, are printed. The adapter reads this information and
passes it to the TorXakis model for comparison with the expected
result.

5.3 Adapter
The adapter serves as an intermediary layer between the TorXakis
model and the SUT. The primary function of the adapter is to con-
vert the signals and data given by the TorXakis model for the SUT.
As well as transform the SUT outputs into correct data forms to
send back to the model for comparison with the expected outputs.
In this case, the adapter is a Python application, that uses sockets to
connect to the TorXakis model and starts the SUT as a sub-process
[17]. Threading is used to ensure seamless and synchronous com-
munication between TorXakis, adapter and the SUT. Additionally,
the adapter also collects execution data from the SUT, including
the QBER, which is later analyzed for statistical purposes.

5.4 Noise Models
To test the performance of the BB84 implementation under noisy
conditions, Cirq noise models were used. In total three different
noise models were applied to simulate realistic quantum system
behavior under imperfect conditions.

• Amplitude Damping Noise - this noise describes the dissipa-
tion of energy in the quantum system. This causes the qubit
to return from the excited state to the ground state [18].

• Phase Damping Noise - this noise describes the loss of quan-
tum information in the system. Which causes the qubit to
fall back from the superposition state to the collapsed state
[19].

• Depolarizing Noise - representing errors that occur when a
qubit’s state is replaced with a completely mixed state. It gen-
eralizes random disturbances in the qubit’s state, affecting
both amplitude and phase [20].

In order to apply the noise to the circuit, existing Cirq noise mod-
els were used. cirq.depolarize(𝜌: float) is used for Depolariz-
ing Noise, cirq.phase_damp(𝛾: float) for Phase Damping Noise
and cirq.amplitude_damp(𝛾: float) for Amplitude Damping
Noise. The 𝜌 and 𝛾 values represent the chance with which the
noise will be applied. Additionally, when testing for noise, the the
simulator was replaced with another, to be able to handle noise
simulations.

1 simulator = cirq.DensityMatrixSimulator ()

6 EXPERIMENTAL SETUP
The testing was divided into 2 parts: testing the BB84 implemen-
tation under ideal and eavesdropped conditions, and testing its
performance under different noise models. For all the tests, the
total number of bits transferred per test was set to n = 1000, in
order to minimize the effect of random outliers on the results.
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First, it is important to verify whether the BB84 implementation
in Cirq conforms to a the standard, non-eavesdropped model. Then,
the eavesdropper was enabled both in the model and in the SUT
to test whether the model handles an eavesdropper appropriately.
Both tests (ideal and eavesdropped conditions) were repeated 10
times for consistency.

Second, after testing behavior of the SUT under ideal and eaves-
dropped conditions, noise was introduced. For this, the other model
was used to compare the QBER to the 11% threshold. Both the model
and the SUTwere setupwithout an eavesdropper. Noise was applied
by adding cirq.depolarize(𝜌: float), cirq.phase_damp(𝛾:
float) and cirq.amplitude_damp(𝛾: float) to the SUT and
changing the simulator accordingly. Each noise model was tested
individually. The error probability parameters (𝜌 and 𝛾 ) were var-
ied from 0% to 20%, in increments of 2%. Each 𝜌 and 𝛾 value was
tested 5 times and the average was taken to reduce the inherent
randomness of the system. Additionally, if any of the 5 tests for
a given 𝜌 and 𝛾 value resulted in a QBER exceeding the 11%, this
result would be noted alongside the average.

Finally, all the resulting noise data would be collected and visu-
alized in a graph, representing how much noise can the Cirq BB84
implementation can tolerate.

7 RESULTS
Following the procedure described in section 6, the results gathered
during model-based testing were documented and visualized in
two graphs. First, tests conducted in the initial phase. These tests
validated whether the Cirq implementation of the BB84 protocol
adheres to the specified behavior in both ideal (non-eavesdropped)
and eavesdropped scenarios. Figures 1 and 2 illustrate the impact of
different noise models on the QBER of the SUT without an eaves-
dropper. Figure 1, however, depicts the average documented result
for each noise probability. On the other hand, Figure 2 highlights
the highest QBER result for each noise probability.

For the initial phase, 10 tests were conducted with and without
an eavesdropper. In both cases, all the tests passed.

Figure 1 contains five plots, each representing the average QBER
value of the five results taken for each noise probability. The color
scheme is as follows: orange for phase dampening noise, green for
amplitude dampening noise, and dark blue for depolarizing noise.
Additionally, the 11% constant security threshold and the identity
plots were added for visualization, colored light blue and purple,
respectively.

Both depolarizing and amplitude dampening noises closely fol-
low each other, with depolarizing noise generally making slightly
larger impact on the QBER. Both plots exceed the 11% threshold
at probability of 0.14. However, depolarizing noise reaching QBER
of 10.976, without surpassing the threshold. Both depolarizing and
amplitude dampening noise plots are linear, with a slight downward
deviation from the identity line.

On the other hand phase dampening noise is distinctly different
from the other noise models. It still retains a linear nature, but never
reaches the 11% security threshold, with the highest average value
being 2.899% at 0.16 noise probability.

Figure 2 closely resembles Figure 1, with the key difference being
that the QBER data in this figure represents the highest value of

the five results taken for each noise probability, rather than the
average. All the plots maintain their linear nature, with slightly
higher values. Depolarizing noise surpasses the security threshold
at noise probability of 0.1, reaching QBER of 11.594%. Amplitude
dampening noise approaches close to the 11% threshold at 0.12
mark, with a QBER value of 10.806%. Phase dampening noise, as in
Figure 1, never reaches 11%, with the highest value of 4.374 at 0.16
noise probability.

8 CONCLUSIONS
The primary objective of this research was to validate whether
the Cirq library can be used to implement BB84 protocol using its
quantum channel. Additionally, this research aimed to evaluated
the performance of the BB84 Cirq implementation under three
different noise models - depolarizing noise, phase damping noise
and amplitude dampening noise.

To achieve these objectives, Model-Based Testing was used to
test if the implementation correctly follows the BB84 protocol spec-
ification. Two TorXakis specification models were created, along
with the actual Cirq BB84 implementation that underwent testing.

The findings from the executed tests, as shown in Figure ??,
demonstrate that the Cirq implementation of BB84 performs well
in ideal and non-eavesdropped conditions. All 20 tests passing with
no issue, which, assuming the model is correct, confirms that the
Cirq library can successfully implement the BB84 quantum key
distribution protocol.

Results gathered after executing test under different noise mod-
els, depicted in Figure 1 and Figure 2, show that the performance is
significantly affected by noise beyond certain thresholds.

• Depolarizing Noise: Under the depolarizing noise model, the
Cirq BB84 implementation was secure until the noise level
reached 10%, indicating a potential vulnerability.

• Amplitude Dampening Noise: Under the amplitude dampen-
ing model, the Cirq BB84 implementation was secure until
the noise level reached 12%, indicating a potential vulnera-
bility.

• Phase Dampening Noise: Phase dampening noise showed
little impact on the QBER, with highest value only reaching
4.374% at noise probability of 16%.

The results indicate that Cirq’s BB84 implementation correctly
behaves in ideal and eavesdropped conditions, making it complete,
but its performance is significantly influenced by the type and
level of noise introduced. Specifically, the implementation in Cirq
can reliably handle depolarizing noise under 10% probability and
amplitude dampening noise under 12% probability. However, phase
dampening noise has minimal effect on the performance of the
implementation.

Additionally, this research can be considered a case study of
model-based testing, as it was the primary tool used to verify an
implementation of an algorithm. By successfully comparing the
Cirq implementation against the specification model, which was as-
sumed to be correct, we concluded that model-based testing was the
proper tool in this context and can be used for the future research.
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Figure 1: Noise test results with average QBER

Figure 2: Noise test results with highest QBER

9 FUTUREWORK
The scope of this research was rather limited. Thus, future work
can be done to build on this foundation in several key areas:

First, while the implementations created in this research were
intended to be correct, future research could explore the results
of testing faulty implementations that deviate from the intended
BB84 specification. Such tests can be used to assess the soundness,

proving that upon an incorrect implementation, the testing would
fail, as intended.

Second, this research is based on the assumption that the speci-
fication models created in TorXakis correctly describes the BB84
protocol. This should be further tested and validated, in order to en-
hance confidence in the current research and ensure the reliability
of the findings.

Third, the conclusions cover the quantum noise level at which
the implementation fails and surpasses the security threshold. This
can be expanded upon by doing further research to determine what
quantum noise levels are realistic in practical quantum communi-
cation systems. Additionally, an aspect worth exploring, is testing
for multiple noise models applied simultaneously, which can better
simulate real-world conditions.

Finally, as the scope of this research excluded testing the proba-
bilistic properties of BB84, future research can be done to include
probabilistic model-based testing on an implementation of BB84 in
Cirq.
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