
1

How does the integration of syntactic features (POS tags

or dependency parsing) during BERT fine-tuning

influence the performance of semantic parsing?

Jinrui Zhang, University of Twente, The Netherlands

BERT has achieved outstanding performance in many NLP tasks, but its
implicit handling of syntax may limit its effectiveness in shallow
semantic parsing. This study explores incorporating explicit syntactic
features, such as POS tags and dependency parsing labels into BERT.
This is completed through two approaches: addition or concatenation
either at the input embedding layer or after transformer layers.
Experiments have been conducted, and results show that the additive
approach with dependency parsing labels at input embedding layer
achieves the highest F1 score, improving performance by 1.24%. This
work provides insights into the integration of syntactic features in
BERT.

Additional Key Words and Phrases: BERT, Semantic Parsing, Large
Language Model, BIO tagging, Dependency Parsing, POS tagging.

1 INTRODUCTION

1.1 Context and Motivation
Shallow semantic parsing identifies the roles of words or phrases
in a sentence and represents them in a structured format [1]. In
semantic parsing, capturing syntactic and semantic relationships,
such as grammatical roles and word dependencies among words
in a sentence, is essential to understanding its meaning
[2]. BERT, a Large Language Model (LLM), learns syntactic and
semantic meanings of sentences using self-attention
mechanisms and contextualized embeddings from large datasets
during pre-training [3]. Instead of incorporating syntactic
features like grammatical roles and word dependencies, BERT
implicitly learns syntactic relationships during pre-training [4].
While BERT has achieved impressive results, its design of not
explicitly incorporating syntactic information may constrain its
performance. Research has shown that incorporating explicit
syntactic information with contextual embeddings can improve
performance [2]. Therefore, adding explicit syntactic features to
BERT may enhance its ability to capture syntactic and semantic
relationships.

1.2 Specific Problem

Understanding grammatical roles and sentence structures are
critical for shallow semantic parsing. The limitation of (learning
syntax implicitly) can cause it to underperform in such tasks. For
example, understanding whether a word is the subject or object
is essential for identifying its role in a sentence.

POS tags and dependency parsers could help address this issue.
POS gives each word in a sentence a grammatical category, such
as nouns, verbs, adjectives, and adverbs [5]. Dependency parsers
provide the dependencies between the words of a sentence such
as conjunct, determinant, and nominal modifier [6].

POS tags and dependency parsers (explicit syntactic features)
can complement BERT’s implicit learning during fine-tuning.
This research explores the potential of integrating POS tags and
dependency parsing labels into BERT to improve its ability to
capture grammatical and semantic relationships in shallow
semantic parsing.

1.3 Research Questions
This study addresses the following questions:

1. How does adding explicit syntactic features, such as POS
tags or dependency labels, during BERT fine-tuning affect
performance in shallow semantic parsing?

2. Which strategy for adding syntactic features (additive at
input embeddings, additive post-transformer layers, or
concatenation) works best for shallow semantic parsing
tasks?

3. Which syntactic feature, POS tags or dependency parsing
labels, has a greater impact on the performance of shallow
semantic parsing?

2 RELATED WORK
The study Syntax-Infused Transformer and BERT models for
Machine Translation and Natural Language Understanding
discusses incorporating syntactic features like POS tags, case,
and subword positions into the Transformer and adding explicit
syntactic features (POS tags) to BERT’s token embeddings. Two
approaches are introduced for the integration of syntactic
features like POS tags into BERT. One is through addition, the
trainable POS embeddings with the same dimensions as the
token embedding are added. The other is implemented by
concatenating POS embeddings with the token embeddings.
Unlike in addition, concatenation increases the size of the
dimensions of the resulting embeddings. To resolve this, the
resulting embeddings are passed to a trainable affine
transformation that maps the dimensions back to the required

TScIT 42, January 31st, 2025, Enschede, The Netherlands
© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

TScIT 42, January 31st, 2025, Enschede, The Netherlands Jinrui Zhang

2

size. It has concluded that the approach achieved performance
improvements in machine translation (MT) and natural
language understanding (NLU) tasks. The study focused on low-
resource settings (as few as 2.5k sentences) [7].

However, this study limited the potential benefits of
incorporating syntactic features at different stages of the model
such as after transformer layers. Additionally, the reliance on
only POS tags may also limit the understanding of semantic
structures and relationships since POS tags only help identify the
roles of words in a sentence but cannot represent grammatical
relationships or dependencies in a sentence [6].

Another study introduces a local attention mechanism that uses
syntactic distances from dependency trees to restrict attention
to syntactically relevant tokens. BERT with Syntax-Aware Local
Attention (SLA) leads BERT to focus more on local syntactic
relevance, meaning it emphasizes relationships between words
that are close to each other in the syntactic structure of a
sentence. The approach improves performance on single-
sentence classification and sequence labeling tasks [8]. However,
SLA separates local and global attention computations. The
attention scores are later combined with a gated unit thus it may
lead to a limitation of the synergy between local and semantic
information [8]. In contrast, adding dependency parsers at the
input embedding level of BERT directly into token embeddings
enables better integration of syntactic and contextual
information.
These limitations in the existing solutions address the gaps and
highlight the need for other approaches.

3 BACKGROUND

3.1 BERT
BERT, or Bidirectional Encoder Representations from
Transformers, is a large language model built on transformer
architecture to process text. Its name indicates that BERT uses a
bidirectional approach to analyze text. This approach allows
BERT to consider a word's context by examining its preceding
and succeeding words [3]. The model is pre-trained on massive
text datasets, such as BooksCorpus and English Wikipedia.
Masked Language Modeling (MLM) and Next Sentence
Prediction (NSP) are applied during pre-training. In Masked
Language Modeling (MLM), 15% of the tokens in the input
sequence are masked at random, and the model learns to predict
them using the surrounding context. NSP, where the model is
provided with pairs of sentences and learns to predict whether
the second sentence follows the first logically [3]. The self-
attention mechanism evaluates how much focus should be
placed on each word relative to others in the sentence [9]. In self-
attention, each word is converted into query, key, and value
vectors first, then compared with the vectors of other words in
the sentence [9]. The comparisons are used to compute attention
scores. These scores show how strongly one word relates to
another. BERT uses these scores to produce weighted
representations of each word in the context of the sentence. This
self-attention mechanism is applied across multiple layers in
BERT and implicitly allows BERT to learn syntactic and semantic
information [3]. BERT can be fine-tuned for specific downstream

tasks, and a task-specific layer can be added to the model. For
instance, a classification head can be added for token
classification tasks such as shallow semantic parsing, where
each token in the input sequence is assigned a label that
represents its semantic role (e.g., predicate, argument, or
modifier). Fine-tuning typically requires much less data than
training, making BERT adaptable to various NLP tasks, including
shallow semantic parsing [3].

3.2 POS Tagging

Figure 1: An example of POS tagging.

Part-of-speech (POS) tagging assigns a tag to each word in a
sentence. Each tag represents a word's grammatical role [10].
POS tagging is done by splitting the sentence into individual
words and then analyzing each word using lexical information
and context to determine the appropriate tag [10]. For example,
in the sentence "She owned a wonderful mirror." each word gets
assigned a tag based on its syntactic role in the sentence (See
Figure 1).

3.3 Dependency Parsing
Dependency parsing identifies relationships between words,
known as dependencies. These dependencies are shown in a
dependency tree, where words are represented as nodes, and
dependencies are represented as directed edges [10]. For
example, in the sentence “She owned a wonderful mirror”,
“owned” is the head of “she”, and the dependency between them
is labeled as nsubj (nominal subject). The nsubj relationship
indicates that "she" is the grammatical subject of the verb
"owned". In other words, "she" is the entity performing the
action of owning something (See Figure 2). In addition,
dependency parsing builds on syntactic roles to identify
grammatical dependencies in a sentence.

Figure 2: An example of dependency parsing.

How does the integration of syntactic features (POS tags or dependency parsing) during BERT fine-tuning influence the performance of semantic parsing? TScIT 42, January
31st, 2025, Enschede, The Netherlands

3

4 NEW ARCHITECTURE

4.1 Objective
The objective of this task is to perform shallow semantic parsing
by predicting semantic roles in a sentence, represented using
BIO tagging. BIO tagging assigns tags to tokens or words with
their corresponding semantic roles in a sentence. Ultimately, the
aim is to identify the main action and determine who did what to
whom, where, and when, represented in BIO format.

In BIO tagging:

B-TAG: Indicates that the token is the first word of a specific
entity or semantic role chunk.
I-TAG: Indicates that the token is inside the entity or chunk and
follows a "B-" tag.
O-TAG: Indicates that the token does not belong to any semantic
role or entity chunk.

4.2 Approach 1: Incorporating Syntactic Features into
the Input Embedding Layer
Integrating POS/DEP embeddings alongside traditional input
embeddings extends the standard BERT model for token
classification (See Figure 3). This integration adds an additional
embedding layer designed to encode Part-of-Speech (POS) or
dependency parsing (DEP) labels (Each child in the dependency
tree gets the corresponding dependency relation to its parent
word.). The embedding layer maps POS tags or DEP labels into
dense representations with the same dimensionality as BERT
embeddings (D=768). Each token is augmented with syntactic
information derived from POS/DEP embeddings, which helps
the model better understand grammatical relationships in the
sentence.
The '+' symbol indicates two methods of combining syntactic
information with token embeddings. The first is the additive
approach, where POS/DEP embeddings are element-wise added
to token embeddings. For example, if the token embeddings are

(0.7, 0.3, 0.2) and the POS/DEP embeddings are
(0.1, 0.8, 0.3), the result is (0.8, 1.1, 0.5). This approach keeps the
dimensionality the same (D). The second method is
concatenation, where the embeddings are simply joined. For
example, token embeddings (0.7, 0.3, 0.2) concatenated with
POS/DEP embeddings (0.1, 0.8, 0.3) result in (0.7, 0.3, 0.2, 0.1,
0.8, 0.3), doubling the dimensionality (D×2). To handle this
increase, a trainable linear projection layer reduces the
dimensionality back to D.

The enriched embeddings are then combined with segment and
positional embeddings to form the final input embeddings,
which are passed into BERT's encoder layers (12 layers for BERT
Base). Within the encoders, these enriched embeddings are
processed through 12 transformer layers to generate
contextualized embeddings. In the BERT for token classification
model, these embeddings combine the semantic information
learned during BERT’s fine-tuning with the syntactic
information provided by POS/DEP embeddings. After passing
through the encoder, the contextualized embeddings are fed into

a linear classification layer. This layer maps each token’s
contextualized embedding to a task-specific set of logits. These
logits are converted into probabilities using softmax for
prediction.

For example, if there are 20 BIO tags in total, the linear layer
generates 20 logits (one for each BIO tag) for every token. These
logits are then passed through softmax to predict the most likely
BIO tag for each token.

For instance, in the example 'LABEL_1', 'score': 0.69566524,
'word': 'I', the word 'I' receives the highest score for LABEL_1
among all BIO tags, meaning it is classified as the BIO tag
corresponding to LABEL_1.

4.3 Approach 2: Incorporating Syntactic Features
after Transformer Layers

Figure 3: The BERT base model for token classification + POS/dependency
parsing embeddings at the input embedding layer.

Figure 4: The BERT base model for token classification + POS/dependency
parsing embeddings after transformer layers.

TScIT 42, January 31st, 2025, Enschede, The Netherlands Jinrui Zhang

4

Tokens are first mapped to their respective input embeddings by
the embedding layer of BERT model for token classification. Next,
these embeddings are fed into 12 transformer layers of BERT
base to get contextualized embeddings. These embeddings are
provided by the last hidden layer, represented as O1, O2, etc.
(See Figure 4). These contextualized embeddings are then
enriched by combining token embeddings with POS/DEP
embeddings through either addition or concatenation, ensuring
syntactic information is incorporated.
The embeddings are integrated in the same way as described in
approach 1. These enriched contextualized embeddings are then
fed into a linear classification layer that generates logits for each
token. Finally, the logits are converted into probabilities using a
softmax layer to predict the most likely BIO tag for each token.

5 METHODOLOGY
This study applies a quantitative methodology to measure and
compare the performance of semantic parsing using BERT under
different conditions:

➢ Baseline Condition: Fine-tuning BERT without

incorporating explicit syntactic features.
➢ Experimental Condition: Fine-tuning BERT with the

integration of syntactic features, such as Part-of-Speech
(POS) tags or Dependency Parsing.

The steps for each condition will be explained below. The tools
and frameworks used during the process will also be addressed.

5.1 Frameworks and Tool
The frameworks and tools used are as follows:

⚫ PyTorch: Used to customize the model imported by the
Hugging Face Transformers.

⚫ Hugging Face Transformers: Provide a Pre-trained BERT
model and tools necessary for training (optimizer, Trainer,
Training Arguments, scheduler).

⚫ SpaCy: Used for extracting syntactic features (POS tags and
dependency parsing labels).

⚫ Regex (re): Used to extract entities and tags in the dataset.
⚫ SeqEval: Used to calculate precision, recall, F1-score, and

accuracy for predictions.
⚫ NumPy: Used to process logits and align predictions during

evaluation.

5.2 Process Overview

5.2.1 Baseline Condition

Figure 5: Baseline Condition Process Overview.

Baseline Condition Preprocessing:
In the baseline condition, the dataset is preprocessed without
incorporating syntactic features like POS tags or dependency

parsing labels. Sentences are converted into tokenized inputs
aligned only with BIO tags for shallow semantic parsing. Each
sentence in the database follows the format [TAG: entity], such
as [Actor: He] [Action: sat down] [Location: on a stone]. The raw
sentences are processed using regular expressions to extract
entities and their corresponding tags. After processing, clean
sentences are produced, such as “He sat down on a stone.” and
BIO tags are aligned at the word level, for example, [B-Actor: He]
[B-Action: sat] [I-Action: down] [B-Location: on][I-Location: a]
[I-Location: stone] [O: .]. Next, the BERT tokenizer tokenizes
words into subword tokens to ensure compatibility with the
BERT model. For example, the word “ebony” might be split into
subwords ['e', '##bon', '##y'], and each subword gets the same
BIO tag as the original word. Note that not all the words will be
split into subwords, only rare words that are not in the
tokenizer’s vocabulary. Special tokens like [CLS], [SEP], and
[PAD] are assigned a value of -100 for BIO tags ensure that these
tokens are excluded from loss computation because they are not
part of the actual input that requires tagging [3]. Doing so
prevents irrelevant tokens from having an effect on model
learning.

Stage Step

Dataset
Preprocessing

See Baseline Condition
Preprocessing.

Dataset Splitting Step 1: Shuffle the tokenized dataset
with seed 42 to ensure the dataset is
randomized in a consistent and
reproducible manner.

 Step 2: Split the tokenized dataset
into training, validation, and test sets
(70%, 15%, 15%).

Model Setup Step 3: Load the pre-trained BERT
model (bert-base-cased) for token
classification.

 Step 4: Define the number of output
labels (BIO tags).

Training Define Training Arguments (epochs,
learning rate etc.)

 Step 5: Train the model on the
training dataset and validate it on
the validation dataset.

Evaluation Step 6: Evaluate the model on the
test dataset using the seqeval metric.

 Step 7: Compute performance
metrics (precision, recall, F1-score,
accuracy).

5.2.2 Experimental Condition

Figure 6: Conditional Condition Process Overview.

How does the integration of syntactic features (POS tags or dependency parsing) during BERT fine-tuning influence the performance of semantic parsing? TScIT 42, January
31st, 2025, Enschede, The Netherlands

5

Experimental Condition Preprocessing:

In the experimental condition, the preprocessing is extended to
include syntactic features like POS tags or dependency parsing
labels. After processing the raw sentences and aligning BIO tags
as described earlier, the clean sentences are passed through
SpaCy to extract dependency tags or POS tags, which are mapped
to unique IDs. For example, if “ebony” is assigned a BIO tag of 14
and a POS tag of 26, the subwords ['e', '##bon', '##y'] will also
get assigned the same BIO tag and POS tag. The BERT tokenizer
tokenizes the words, aligning the BIO tags and POS/dependency
labels to subword tokens. Special tokens like [CLS], [SEP], and
[PAD] are assigned a value of -100 for BIO tags and 0 for POS or
dependency parsing labels [3].

➢ Approach 1: Incorporating Syntactic Features into the
Input Embedding Layer

Stage Step

Dataset
Preprocessing

See Experimental Condition
Preprocessing.

Dataset Splitting Step 1: Shuffle the tokenized
dataset with seed 42 to ensure the
dataset is randomized in a
consistent and reproducible
manner.

 Step 2: Split the tokenized dataset
into training, validation, and test
sets (70%, 15%, 15%).

Model
Customization

Step 3: Add an embedding layer for
dependency parsing labels/POS
tags.

 Step 4: Add or concatenate
DEP/POS embeddings to token
embeddings.

(Only needed for
concatenation)

Step 5: Define a projection layer to
reduce concatenated embeddings
back to the dimensions of BERT.

Model Setup Step 6: Load the customized BERT
model (bert-base-cased) for token
classification.

 Step 7: Define the number of output
labels (BIO tags).

Training Step 8: Define training arguments.
 Step 9: Use a custom optimizer with

different learning rates for BERT
and dependency label
embeddings/POS tags.

 Step 10: Use a linear learning rate
scheduler to gradually adjust the
learning rate during training.

 Step 11: Train the model on the
training dataset and validate it on
the validation dataset.

Evaluation Same as baseline.

➢ Approach 2: Incorporating Syntactic Features after
Transformer Layers

Stage Step

Dataset
Preprocessing

See Experimental Condition
Preprocessing.

Dataset Splitting Step 1: Shuffle the tokenized dataset
with seed 42 to ensure the dataset is
randomized in a consistent and
reproducible manner.

 Step 2: Split the tokenized dataset into
training, validation, and test sets
(70%, 15%, 15%).

Model
Customization

Step 3: extract the contextualized
embeddings from the last hidden
layer.

 Step 4: Add or concatenate DEP/POS
embeddings to contextualized
embeddings.

(Only needed for
concatenation)

Step 5: Define a projection layer to
reduce concatenated embeddings
back to the dimensions of BERT.

Model Setup Step 6: Load the customized BERT
model (bert-base-cased) for token
classification.

 Step 7: Define the number of output
labels (BIO tags).

Training Step 8: Define training arguments.
 Step 9: Use a custom optimizer with

different learning rates for BERT and
dependency label embeddings/POS
tags.

 Step 10: Use a linear learning rate
scheduler to gradually adjust the
learning rate during training.

 Step 11: Train the model on the
training dataset and validate it on the
validation dataset.

Evaluation Same as baseline.

6 EVALUATION

6.1 Evaluation Metrics
SeqEval, a Python framework, is used here to calculate precision,
recall, F1-score, and accuracy for predictions. In addition, three
confusion matrices are visualized to analyze how well the model
predicts each tag and to evaluate the impact of grammar on the
predictions.
Since the database is imbalanced, with a higher proportion of “O”
tags compared to the other tags, F1 is preferred for evaluation in
this task. Unlike accuracy which reflects only overall correctness,
F1 balances precision and recall making it more suitable for
evaluating the performance of the minority classes [10].

TScIT 42, January 31st, 2025, Enschede, The Netherlands Jinrui Zhang

6

6.2 Experimental Setup

6.2.1 Data Split
The dataset consists of a total of 2041 samples, split as follows:

➢ 70% train data
➢ 15% validation data
➢ 15% test data

To ensure the reliability of the results, the dataset is shuffled
before splitting, and the training, validation, and test dataset
remain consistent across all approaches.

6.2.2 Hyperparameters

Table1: Training Hyperparameters of BERT without syntactic features

Hyperparameters Values

Epochs 10

Learning Rate 0.00001

Training Batch Size 32

Evaluation Batch Size 16

LR Warmup 0.2

LR Scheduler linear

Dropout 0.1

Table2: Training Hyperparameters of BERT with syntactic features

Hyperparameters Values

Epochs 10

Learning Rate BERT 0.00002

Learning Rate POS/DEP 0.0001

Training Batch Size 32

Evaluation Batch Size 16

LR Warmup 0.2

LR Scheduler linear

Dropout 0.1

When fine-tuning a model, hyperparameters like batch size,
learning rate, and number of epochs significantly impact model’s
performance and convergence speed. The optimization of
hyperparameters is crucial for effective fine-tuning [11]. In this
case, all hyperparameters are consistent across approaches
except for learning rates. Since BERT parameters are pre-trained
and POS/DEP embeddings are randomly initialized, learning
rates are adjusted to train syntactic embeddings more quickly.

6.3 Results

6.3.1 SeqEval Metrics

Table1: Performance of BERT base model for token classification.

Precision
(%)

Recall
(%)

F1
(%)

Accuracy
（%）

81.64 85.49 83.52 88.07

Table2: Performance of BERT base model for token classification with
POS/DEP using different integration approaches.

Approach Syntactic
Features

Precision
(%)

Recall
(%)

F1
(%)

Accuracy
（%）

Addition at input
embedding

POS 82.74 84.75 83.73 88.57

 DEP 83.36 86.17 84.74 89.46

Concatenation at
input

embedding

POS 69.16 72.94 71.00 78.20

 DEP 69.76 73.95 71.80 77.90

Addition
after transformers

POS 82.05 84.82 83.41 88.40

 DEP 83.18 85.76 84.45 88.77

Concatenation
after transformers

POS 81.48 84.01 82.72 87.44

 DEP 82.79 84.41 83.60 87.94

Two approaches incorporating syntactic features outperform
BERT without explicit grammar, while other approaches show
minor improvements to be worth discussing. Adding
dependency parsing at the input embedding layer achieves an F1
score of 84.74%, showing an improvement of 1.24%. Likewise,
adding dependency parsing after the transformer layers
achieves an F1 score of 84.45%, with an improvement of 0.93%.
Among all approaches, the additive approach with dependency
parsing at the input embedding layer shows the best
performance. In contrast, concatenating syntactic features at the
input embedding layer leads to a significant decrease in
performance. Moreover, dependency parsing consistently
outperforms POS tags across all approaches.

6.3.2 Confusion Matrix
The entries of diagonal down in the Confusion Matrix represent
the correctly predicted BIO tags. Figure 8 displays the results of
the best-performing approach, where 14 out of 27 tags show
improved predictions. In contrast, Figure 9 represents the
results of the worst-performing approach, where only two tags,
‘O’ and ‘B-Action’ are predicted more accurately compared to
BERT without grammar (See Figure 7), while most other
predictions show a decrease.

How does the integration of syntactic features (POS tags or dependency parsing) during BERT fine-tuning influence the performance of semantic parsing? TScIT 42, January
31st, 2025, Enschede, The Netherlands

7

Figure 7: Confusion Matrix of BIO tags for BERT without syntactic features.

Figure 8: Confusion Matrix of BIO tags for BERT with Dependency Parsing

added at input embedding.

Figure 9: Confusion Matrix of BIO tags for BERT with POS concatenated at

input embedding.

7 DISCUSSION
Additive approaches generally achieve better performance than
concatenation approaches. Concatenation at the input
embedding layer requires projecting the combined embeddings
back to the dimensions compatible with BERT. This process
creates noise and results in this approach performing the worst.
However, concatenation after the transformer layers has
minimal impact on performance because the embeddings are
already contextualized by BERT before adding the syntactic
features. Additionally, inconsistency in the dataset may limit the
performance of the models. For example, in the sentence “He
made up his mind…”, the word ‘up’ should be considered as part
of the action. However, it is labeled as a direction in the dataset
that can confuse the models. Moreover, the size of the dataset is
not large enough for efficient fine-tuning.

8 CONCLUSION
In this study, the impact of incorporating explicit syntactic
features, such as POS tags and dependency parsing labels into
BERT has been investigated. Various approaches have been
implemented and evaluated for shallow semantic parsing in the
form of BIO tagging. The results highlight the importance of
selecting and integrating syntactic features carefully to enhance
shallow semantic parsing performance. There are two main
approaches: incorporating syntactic features (POS tags or
dependency parsing labels) either through addition or
concatenation at BERT’s input embedding layer or incorporating
them after the transformer layers.
Among the approaches tested, the additive approach at the input
embedding layer with dependency parsing labels shows an
improvement of 1.24%, Adding dependency parsing after the
transformer layers achieves a 0.93% improvement.
Concatenating syntactic features at the input embedding layer

TScIT 42, January 31st, 2025, Enschede, The Netherlands Jinrui Zhang

8

significantly worsens the performance. While incorporating
explicit syntactic features has potential, their impact depends
heavily on the integration method and specific features used.
Further research could explore alternative ways to incorporate
syntactic information for more significant improvements and
ensure the consistency of data.

REFERENCES
[1] Gildea, D., and Jurafsky, D. 2002. Automatic labeling of
semantic roles. Computational Linguistics 28, 3 (Sept. 2002),

245–288. https://doi.org/10.1162/089120102760275983.

[2] Strubell, E., Verga, P., Andor, D., Weiss, D., and McCallum, A.
2018. Linguistically-informed self-attention for semantic role
labeling. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (Brussels, Belgium, Oct.

2018), Association for Computational Linguistics, 5027–5038.

https://doi.org/10.18653/v1/D18-1548.
[3] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. 2019. BERT:
Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers) (Minneapolis, MN, June 2019), Association for

Computational Linguistics, 4171 – 4186.

https://doi.org/10.18653/v1/N19-1423.

[4] Hewitt, J., and Manning, C. D. 2019. A structural probe for
finding syntax in word representations. In Proceedings of the
2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers) (Minneapolis, MN, June 2019),

Association for Computational Linguistics, 4129 – 4138.

https://doi.org/10.18653/v1/N19-1419.
[5] Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. 2003.
Feature-rich part-of-speech tagging with a cyclic dependency
network. In Proceedings of the 2003 Human Language
Technology Conference of the North American Chapter of the
Association for Computational Linguistics (Edmonton, Canada,

May 2003), Association for Computational Linguistics, 252–259.

https://doi.org/10.3115/1073445.1073478.
[6] Dozat, T., and Manning, C. D. 2017. Deep biaffine attention for
neural dependency parsing. In Proceedings of the 5th
International Conference on Learning Representations (Toulon,
France, Apr. 2017).
https://openreview.net/forum?id=Hk95PK9le.
[7] Sundararaman, D., Subramanian, V., Wang, G., Si, S., Shen, D.,
Wang, D., and Carin, L. 2019. Syntax-infused transformer and
BERT models for machine translation and natural language
understanding. arXiv preprint arXiv:1911.06156.
https://arxiv.org/abs/1911.06156.
[8] Li, Z., Zhou, Q., Li, C., Xu, K., and Cao, Y. 2021. Improving BERT
with syntax-aware local attention. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021 (Online, Aug.

2021), Association for Computational Linguistics, 645–653.

https://doi.org/10.18653/v1/2021.findings-acl.57.

[9] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, Ł., and Polosukhin, I. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc.,

6000–6010. https://arxiv.org/abs/1706.03762.

[10] Jurafsky, D., and Martin, J. H. 2009. Speech and Language
Processing: An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition, 2nd ed.
Pearson Prentice Hall.
[11] Oliver, M., and Wang, G. 2024. Crafting Efficient Fine-Tuning
Strategies for Large Language Models. arXiv preprint
arXiv:2407.13906. https://arxiv.org/abs/2407.13906.

https://doi.org/10.1162/089120102760275983
https://doi.org/10.18653/v1/D18-1548
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.3115/1073445.1073478
https://openreview.net/forum?id=Hk95PK9le
https://arxiv.org/abs/1911.06156
https://doi.org/10.18653/v1/2021.findings-acl.57
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2407.13906

