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How does the integration of syntactic features (POS tags 

or dependency parsing) during BERT fine-tuning 

influence the performance of semantic parsing? 

Jinrui Zhang, University of Twente, The Netherlands

BERT has achieved outstanding performance in many NLP tasks, but its 
implicit handling of syntax may limit its effectiveness in shallow 
semantic parsing. This study explores incorporating explicit syntactic 
features, such as POS tags and dependency parsing labels into BERT. 
This is completed through two approaches: addition or concatenation 
either at the input embedding layer or after transformer layers. 
Experiments have been conducted, and results show that the additive 
approach with dependency parsing labels at input embedding layer 
achieves the highest F1 score, improving performance by 1.24%. This 
work provides insights into the integration of syntactic features in 
BERT. 

Additional Key Words and Phrases: BERT, Semantic Parsing, Large 
Language Model, BIO tagging, Dependency Parsing, POS tagging. 

 

1 INTRODUCTION  

1.1 Context and Motivation 
Shallow semantic parsing identifies the roles of words or phrases 
in a sentence and represents them in a structured format [1]. In 
semantic parsing, capturing syntactic and semantic relationships, 
such as grammatical roles and word dependencies among words 
in a sentence, is essential to understanding its meaning 
[2].  BERT, a Large Language Model (LLM), learns syntactic and 
semantic meanings of sentences using self-attention 
mechanisms and contextualized embeddings from large datasets 
during pre-training [3]. Instead of incorporating syntactic 
features like grammatical roles and word dependencies, BERT 
implicitly learns syntactic relationships during pre-training [4]. 
While BERT has achieved impressive results, its design of not 
explicitly incorporating syntactic information may constrain its 
performance. Research has shown that incorporating explicit 
syntactic information with contextual embeddings can improve 
performance [2]. Therefore, adding explicit syntactic features to 
BERT may enhance its ability to capture syntactic and semantic 
relationships. 
 
1.2 Specific Problem 

Understanding grammatical roles and sentence structures are 
critical for shallow semantic parsing. The limitation of (learning 
syntax implicitly) can cause it to underperform in such tasks. For 
example, understanding whether a word is the subject or object 
is essential for identifying its role in a sentence. 

POS tags and dependency parsers could help address this issue. 
POS gives each word in a sentence a grammatical category, such 
as nouns, verbs, adjectives, and adverbs [5]. Dependency parsers 
provide the dependencies between the words of a sentence such 
as conjunct, determinant, and nominal modifier [6]. 

POS tags and dependency parsers (explicit syntactic features) 
can complement BERT’s implicit learning during fine-tuning.  
This research explores the potential of integrating POS tags and 
dependency parsing labels into BERT to improve its ability to 
capture grammatical and semantic relationships in shallow 
semantic parsing. 
 

1.3 Research Questions 
This study addresses the following questions: 
 

1. How does adding explicit syntactic features, such as POS 
tags or dependency labels, during BERT fine-tuning affect 
performance in shallow semantic parsing? 

2. Which strategy for adding syntactic features (additive at 
input embeddings, additive post-transformer layers, or 
concatenation) works best for shallow semantic parsing 
tasks? 

3. Which syntactic feature, POS tags or dependency parsing 
labels, has a greater impact on the performance of shallow 
semantic parsing? 
 

2   RELATED WORK 
The study Syntax-Infused Transformer and BERT models for 
Machine Translation and Natural Language Understanding 
discusses incorporating syntactic features like POS tags, case, 
and subword positions into the Transformer and adding explicit 
syntactic features (POS tags) to BERT’s token embeddings. Two 
approaches are introduced for the integration of syntactic 
features like POS tags into BERT. One is through addition, the 
trainable POS embeddings with the same dimensions as the 
token embedding are added. The other is implemented by 
concatenating POS embeddings with the token embeddings. 
Unlike in addition, concatenation increases the size of the 
dimensions of the resulting embeddings.  To resolve this, the 
resulting embeddings are passed to a trainable affine 
transformation that maps the dimensions back to the required 
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size. It has concluded that the approach achieved performance 
improvements in machine translation (MT) and natural 
language understanding (NLU) tasks. The study focused on low-
resource settings (as few as 2.5k sentences) [7]. 

However, this study limited the potential benefits of 
incorporating syntactic features at different stages of the model 
such as after transformer layers. Additionally, the reliance on 
only POS tags may also limit the understanding of semantic 
structures and relationships since POS tags only help identify the 
roles of words in a sentence but cannot represent grammatical 
relationships or dependencies in a sentence [6]. 

Another study introduces a local attention mechanism that uses 
syntactic distances from dependency trees to restrict attention 
to syntactically relevant tokens. BERT with Syntax-Aware Local 
Attention (SLA) leads BERT to focus more on local syntactic 
relevance, meaning it emphasizes relationships between words 
that are close to each other in the syntactic structure of a 
sentence. The approach improves performance on single-
sentence classification and sequence labeling tasks [8]. However, 
SLA separates local and global attention computations. The 
attention scores are later combined with a gated unit thus it may 
lead to a limitation of the synergy between local and semantic 
information [8].  In contrast, adding dependency parsers at the 
input embedding level of BERT directly into token embeddings 
enables better integration of syntactic and contextual 
information. 
These limitations in the existing solutions address the gaps and 
highlight the need for other approaches. 
 

3 BACKGROUND 

3.1 BERT 
BERT, or Bidirectional Encoder Representations from 
Transformers, is a large language model built on transformer 
architecture to process text. Its name indicates that BERT uses a 
bidirectional approach to analyze text. This approach allows 
BERT to consider a word's context by examining its preceding 
and succeeding words [3]. The model is pre-trained on massive 
text datasets, such as BooksCorpus and English Wikipedia. 
Masked Language Modeling (MLM) and Next Sentence 
Prediction (NSP) are applied during pre-training.  In Masked 
Language Modeling (MLM), 15% of the tokens in the input 
sequence are masked at random, and the model learns to predict 
them using the surrounding context. NSP, where the model is 
provided with pairs of sentences and learns to predict whether 
the second sentence follows the first logically [3]. The self-
attention mechanism evaluates how much focus should be 
placed on each word relative to others in the sentence [9]. In self-
attention, each word is converted into query, key, and value 
vectors first, then compared with the vectors of other words in 
the sentence [9]. The comparisons are used to compute attention 
scores. These scores show how strongly one word relates to 
another. BERT uses these scores to produce weighted 
representations of each word in the context of the sentence. This 
self-attention mechanism is applied across multiple layers in 
BERT and implicitly allows BERT to learn syntactic and semantic 
information [3]. BERT can be fine-tuned for specific downstream 

tasks, and a task-specific layer can be added to the model. For 
instance, a classification head can be added for token 
classification tasks such as shallow semantic parsing, where 
each token in the input sequence is assigned a label that 
represents its semantic role (e.g., predicate, argument, or 
modifier). Fine-tuning typically requires much less data than 
training, making BERT adaptable to various NLP tasks, including 
shallow semantic parsing [3]. 

 

3.2 POS Tagging 
 

 
Figure 1: An example of POS tagging. 

Part-of-speech (POS) tagging assigns a tag to each word in a 
sentence. Each tag represents a word's grammatical role [10]. 
POS tagging is done by splitting the sentence into individual 
words and then analyzing each word using lexical information 
and context to determine the appropriate tag [10]. For example, 
in the sentence "She owned a wonderful mirror." each word gets 
assigned a tag based on its syntactic role in the sentence (See 
Figure 1). 

 

3.3 Dependency Parsing 
Dependency parsing identifies relationships between words, 
known as dependencies. These dependencies are shown in a 
dependency tree, where words are represented as nodes, and 
dependencies are represented as directed edges [10]. For 
example, in the sentence “She owned a wonderful mirror”, 
“owned” is the head of “she”, and the dependency between them 
is labeled as nsubj (nominal subject). The nsubj relationship 
indicates that "she" is the grammatical subject of the verb 
"owned". In other words, "she" is the entity performing the 
action of owning something (See Figure 2). In addition, 
dependency parsing builds on syntactic roles to identify 
grammatical dependencies in a sentence. 

Figure 2: An example of dependency parsing. 
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4 NEW ARCHITECTURE 

4.1 Objective 
The objective of this task is to perform shallow semantic parsing 
by predicting semantic roles in a sentence, represented using 
BIO tagging. BIO tagging assigns tags to tokens or words with 
their corresponding semantic roles in a sentence. Ultimately, the 
aim is to identify the main action and determine who did what to 
whom, where, and when, represented in BIO format. 
 
In BIO tagging: 

B-TAG: Indicates that the token is the first word of a specific 
entity or semantic role chunk. 
I-TAG: Indicates that the token is inside the entity or chunk and 
follows a "B-" tag. 
O-TAG: Indicates that the token does not belong to any semantic 
role or entity chunk. 
 

4.2 Approach 1: Incorporating Syntactic Features into 
the Input Embedding Layer 
Integrating POS/DEP embeddings alongside traditional input 
embeddings extends the standard BERT model for token 
classification (See Figure 3). This integration adds an additional 
embedding layer designed to encode Part-of-Speech (POS) or 
dependency parsing (DEP) labels (Each child in the dependency 
tree gets the corresponding dependency relation to its parent 
word.). The embedding layer maps POS tags or DEP labels into 
dense representations with the same dimensionality as BERT 
embeddings (D=768). Each token is augmented with syntactic 
information derived from POS/DEP embeddings, which helps 
the model better understand grammatical relationships in the 
sentence. 
The '+' symbol indicates two methods of combining syntactic 
information with token embeddings. The first is the additive 
approach, where POS/DEP embeddings are element-wise added 
to token embeddings. For example, if the token embeddings are  

(0.7, 0.3, 0.2) and the POS/DEP embeddings are  
(0.1, 0.8, 0.3), the result is (0.8, 1.1, 0.5). This approach keeps the 
dimensionality the same (D). The second method is 
concatenation, where the embeddings are simply joined. For 
example, token embeddings (0.7, 0.3, 0.2) concatenated with 
POS/DEP embeddings (0.1, 0.8, 0.3) result in (0.7, 0.3, 0.2, 0.1, 
0.8, 0.3), doubling the dimensionality (D×2). To handle this 
increase, a trainable linear projection layer reduces the 
dimensionality back to D. 

The enriched embeddings are then combined with segment and 
positional embeddings to form the final input embeddings, 
which are passed into BERT's encoder layers (12 layers for BERT 
Base). Within the encoders, these enriched embeddings are 
processed through 12 transformer layers to generate 
contextualized embeddings. In the BERT for token classification 
model, these embeddings combine the semantic information 
learned during BERT’s fine-tuning with the syntactic 
information provided by POS/DEP embeddings. After passing 
through the encoder, the contextualized embeddings are fed into 

a linear classification layer. This layer maps each token’s 
contextualized embedding to a task-specific set of logits. These 
logits are converted into probabilities using softmax for 
prediction. 

For example, if there are 20 BIO tags in total, the linear layer 
generates 20 logits (one for each BIO tag) for every token. These 
logits are then passed through softmax to predict the most likely 
BIO tag for each token. 

For instance, in the example 'LABEL_1', 'score': 0.69566524, 
'word': 'I', the word 'I' receives the highest score for LABEL_1 
among all BIO tags, meaning it is classified as the BIO tag 
corresponding to LABEL_1. 

 
 

4.3 Approach 2: Incorporating Syntactic Features 
after Transformer Layers 
 

 

Figure 3: The BERT base model for token classification + POS/dependency 
parsing embeddings at the input embedding layer. 

Figure 4: The BERT base model for token classification + POS/dependency 
parsing embeddings after transformer layers. 
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Tokens are first mapped to their respective input embeddings by 
the embedding layer of BERT model for token classification. Next, 
these embeddings are fed into 12 transformer layers of BERT 
base to get contextualized embeddings. These embeddings are 
provided by the last hidden layer, represented as O1, O2, etc. 
(See Figure 4). These contextualized embeddings are then 
enriched by combining token embeddings with POS/DEP 
embeddings through either addition or concatenation, ensuring 
syntactic information is incorporated. 
The embeddings are integrated in the same way as described in 
approach 1. These enriched contextualized embeddings are then 
fed into a linear classification layer that generates logits for each 
token. Finally, the logits are converted into probabilities using a 
softmax layer to predict the most likely BIO tag for each token. 
 

5  METHODOLOGY 
This study applies a quantitative methodology to measure and 
compare the performance of semantic parsing using BERT under 
different conditions: 
 
➢ Baseline Condition: Fine-tuning BERT without 

incorporating explicit syntactic features. 
➢ Experimental Condition: Fine-tuning BERT with the 

integration of syntactic features, such as Part-of-Speech 
(POS) tags or Dependency Parsing. 
 

The steps for each condition will be explained below. The tools 
and frameworks used during the process will also be addressed. 
 

5.1 Frameworks and Tool 
The frameworks and tools used are as follows: 
 

⚫ PyTorch: Used to customize the model imported by the 
Hugging Face Transformers. 

⚫ Hugging Face Transformers: Provide a Pre-trained BERT 
model and tools necessary for training (optimizer, Trainer, 
Training Arguments, scheduler). 

⚫ SpaCy: Used for extracting syntactic features (POS tags and 
dependency parsing labels). 

⚫ Regex (re): Used to extract entities and tags in the dataset. 
⚫ SeqEval: Used to calculate precision, recall, F1-score, and 

accuracy for predictions. 
⚫ NumPy: Used to process logits and align predictions during 

evaluation. 

 

5.2 Process Overview 

5.2.1 Baseline Condition 

Figure 5: Baseline Condition Process Overview. 

Baseline Condition Preprocessing: 
In the baseline condition, the dataset is preprocessed without 
incorporating syntactic features like POS tags or dependency 

parsing labels. Sentences are converted into tokenized inputs 
aligned only with BIO tags for shallow semantic parsing. Each 
sentence in the database follows the format [TAG: entity], such 
as [Actor: He] [Action: sat down] [Location: on a stone]. The raw 
sentences are processed using regular expressions to extract 
entities and their corresponding tags. After processing, clean 
sentences are produced, such as “He sat down on a stone.” and 
BIO tags are aligned at the word level, for example, [B-Actor: He] 
[B-Action: sat] [I-Action: down] [B-Location: on][I-Location: a] 
[I-Location: stone] [O: .]. Next, the BERT tokenizer tokenizes 
words into subword tokens to ensure compatibility with the 
BERT model. For example, the word “ebony” might be split into 
subwords ['e', '##bon', '##y'], and each subword gets the same 
BIO tag as the original word.  Note that not all the words will be 
split into subwords, only rare words that are not in the 
tokenizer’s vocabulary. Special tokens like [CLS], [SEP], and 
[PAD] are assigned a value of -100 for BIO tags ensure that these 
tokens are excluded from loss computation because they are not 
part of the actual input that requires tagging [3]. Doing so 
prevents irrelevant tokens from having an effect on model 
learning. 
 
 

Stage Step 

Dataset 
Preprocessing 

See Baseline Condition 
Preprocessing. 

Dataset Splitting Step 1: Shuffle the tokenized dataset 
with seed 42 to ensure the dataset is 
randomized in a consistent and 
reproducible manner. 

 Step 2: Split the tokenized dataset 
into training, validation, and test sets 
(70%, 15%, 15%). 

Model Setup Step 3: Load the pre-trained BERT 
model (bert-base-cased) for token 
classification. 

 Step 4: Define the number of output 
labels (BIO tags). 

Training Define Training Arguments (epochs, 
learning rate etc.) 

 Step 5: Train the model on the 
training dataset and validate it on 
the validation dataset. 

Evaluation Step 6: Evaluate the model on the 
test dataset using the seqeval metric. 

 Step 7: Compute performance 
metrics (precision, recall, F1-score, 
accuracy). 

 

5.2.2 Experimental Condition 

 
Figure 6: Conditional Condition Process Overview. 



How does the integration of syntactic features (POS tags or dependency parsing) during BERT fine-tuning influence the performance of semantic parsing? TScIT 42, January 
31st, 2025, Enschede, The Netherlands 

5 

Experimental Condition Preprocessing: 

In the experimental condition, the preprocessing is extended to 
include syntactic features like POS tags or dependency parsing 
labels. After processing the raw sentences and aligning BIO tags 
as described earlier, the clean sentences are passed through 
SpaCy to extract dependency tags or POS tags, which are mapped 
to unique IDs. For example, if “ebony” is assigned a BIO tag of 14 
and a POS tag of 26, the subwords ['e', '##bon', '##y'] will also 
get assigned the same BIO tag and POS tag. The BERT tokenizer 
tokenizes the words, aligning the BIO tags and POS/dependency 
labels to subword tokens. Special tokens like [CLS], [SEP], and 
[PAD] are assigned a value of -100 for BIO tags and 0 for POS or 
dependency parsing labels [3]. 
 

➢ Approach 1: Incorporating Syntactic Features into the 
Input Embedding Layer 

 

Stage Step 

Dataset 
Preprocessing 

See Experimental Condition 
Preprocessing. 

Dataset Splitting Step 1: Shuffle the tokenized 
dataset with seed 42 to ensure the 
dataset is randomized in a 
consistent and reproducible 
manner. 

 Step 2: Split the tokenized dataset 
into training, validation, and test 
sets (70%, 15%, 15%). 

Model 
Customization 

Step 3: Add an embedding layer for 
dependency parsing labels/POS 
tags.  

 Step 4: Add or concatenate 
DEP/POS embeddings to token 
embeddings. 

(Only needed for 
concatenation) 

Step 5: Define a projection layer to 
reduce concatenated embeddings 
back to the dimensions of BERT. 

Model Setup Step 6: Load the customized BERT 
model (bert-base-cased) for token 
classification. 

 Step 7: Define the number of output 
labels (BIO tags). 

Training  Step 8: Define training arguments. 
 Step 9: Use a custom optimizer with 

different learning rates for BERT 
and dependency label 
embeddings/POS tags. 

 Step 10: Use a linear learning rate 
scheduler to gradually adjust the 
learning rate during training. 

 Step 11: Train the model on the 
training dataset and validate it on 
the validation dataset. 

Evaluation Same as baseline. 

 

➢ Approach 2: Incorporating Syntactic Features after 
Transformer Layers 

 

Stage Step 

Dataset 
Preprocessing 

See Experimental Condition 
Preprocessing. 

Dataset Splitting Step 1: Shuffle the tokenized dataset 
with seed 42 to ensure the dataset is 
randomized in a consistent and 
reproducible manner. 

 Step 2: Split the tokenized dataset into 
training, validation, and test sets 
(70%, 15%, 15%). 

Model 
Customization 

Step 3: extract the contextualized 
embeddings from the last hidden 
layer. 

 Step 4: Add or concatenate DEP/POS 
embeddings to contextualized 
embeddings. 

(Only needed for 
concatenation) 

Step 5: Define a projection layer to 
reduce concatenated embeddings 
back to the dimensions of BERT. 

Model Setup Step 6: Load the customized BERT 
model (bert-base-cased) for token 
classification. 
 

 Step 7: Define the number of output 
labels (BIO tags). 

Training  Step 8: Define training arguments. 
 Step 9: Use a custom optimizer with 

different learning rates for BERT and 
dependency label embeddings/POS 
tags. 

 Step 10: Use a linear learning rate 
scheduler to gradually adjust the 
learning rate during training. 

 Step 11: Train the model on the 
training dataset and validate it on the 
validation dataset. 

Evaluation Same as baseline. 

 

6 EVALUATION 

6.1  Evaluation Metrics 
SeqEval, a Python framework, is used here to calculate precision, 
recall, F1-score, and accuracy for predictions. In addition, three 
confusion matrices are visualized to analyze how well the model 
predicts each tag and to evaluate the impact of grammar on the 
predictions. 
Since the database is imbalanced, with a higher proportion of “O” 
tags compared to the other tags, F1 is preferred for evaluation in 
this task. Unlike accuracy which reflects only overall correctness, 
F1 balances precision and recall making it more suitable for 
evaluating the performance of the minority classes [10]. 
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6.2 Experimental Setup 

6.2.1 Data Split 
The dataset consists of a total of 2041 samples, split as follows: 

➢ 70% train data 
➢ 15% validation data 
➢ 15% test data 

 
To ensure the reliability of the results, the dataset is shuffled 
before splitting, and the training, validation, and test dataset 
remain consistent across all approaches. 

 

6.2.2 Hyperparameters 
 

Table1: Training Hyperparameters of BERT without syntactic features 

Hyperparameters Values 

Epochs 10 

Learning Rate 0.00001 

Training Batch Size 32 

Evaluation Batch Size 16 

LR Warmup 0.2 

LR Scheduler linear 

Dropout 0.1 

 
 

Table2: Training Hyperparameters of BERT with syntactic features 

Hyperparameters Values 

Epochs 10 

Learning Rate BERT 0.00002 

Learning Rate POS/DEP 0.0001 

Training Batch Size 32 

Evaluation Batch Size 16 

LR Warmup 0.2 

LR Scheduler linear 

Dropout 0.1 

 
When fine-tuning a model, hyperparameters like batch size, 
learning rate, and number of epochs significantly impact model’s 
performance and convergence speed. The optimization of 
hyperparameters is crucial for effective fine-tuning [11]. In this 
case, all hyperparameters are consistent across approaches 
except for learning rates. Since BERT parameters are pre-trained 
and POS/DEP embeddings are randomly initialized, learning 
rates are adjusted to train syntactic embeddings more quickly. 
 

6.3 Results 

6.3.1 SeqEval Metrics 
 

Table1: Performance of BERT base model for token classification. 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Accuracy 
（%） 

81.64 85.49 83.52 88.07 
 

Table2: Performance of BERT base model for token classification with 
POS/DEP using different integration approaches. 

Approach Syntactic 
Features 

Precision 
(%) 

Recall 
(%) 

F1 
(%) 

Accuracy 
（%） 

Addition at input 
embedding  

POS 82.74 84.75 83.73 88.57 

 DEP 83.36 86.17 84.74 89.46 

Concatenation at 
input 

embedding  

POS 69.16 72.94 71.00 78.20 

 DEP 69.76 73.95 71.80 77.90 

Addition 
after transformers 

POS 82.05 84.82 83.41 88.40 

 DEP 83.18 85.76 84.45 88.77 

Concatenation 
after transformers 

POS 81.48 84.01 82.72 87.44 

 DEP 82.79 84.41 83.60 87.94 

 

Two approaches incorporating syntactic features outperform 
BERT without explicit grammar, while other approaches show 
minor improvements to be worth discussing. Adding 
dependency parsing at the input embedding layer achieves an F1 
score of 84.74%, showing an improvement of 1.24%. Likewise, 
adding dependency parsing after the transformer layers 
achieves an F1 score of 84.45%, with an improvement of 0.93%. 
Among all approaches, the additive approach with dependency 
parsing at the input embedding layer shows the best 
performance. In contrast, concatenating syntactic features at the 
input embedding layer leads to a significant decrease in 
performance. Moreover, dependency parsing consistently 
outperforms POS tags across all approaches. 
 

6.3.2 Confusion Matrix 
The entries of diagonal down in the Confusion Matrix represent 
the correctly predicted BIO tags. Figure 8 displays the results of 
the best-performing approach, where 14 out of 27 tags show 
improved predictions. In contrast, Figure 9 represents the 
results of the worst-performing approach, where only two tags, 
‘O’ and ‘B-Action’ are predicted more accurately compared to 
BERT without grammar (See Figure 7), while most other 
predictions show a decrease. 
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Figure 7: Confusion Matrix of BIO tags for BERT without syntactic features. 

 

 
Figure 8: Confusion Matrix of BIO tags for BERT with Dependency Parsing 

added at input embedding. 

 
 

 
Figure 9: Confusion Matrix of BIO tags for BERT with POS concatenated at 

input embedding. 

 

7  DISCUSSION 
Additive approaches generally achieve better performance than 
concatenation approaches. Concatenation at the input 
embedding layer requires projecting the combined embeddings 
back to the dimensions compatible with BERT. This process 
creates noise and results in this approach performing the worst. 
However, concatenation after the transformer layers has 
minimal impact on performance because the embeddings are 
already contextualized by BERT before adding the syntactic 
features. Additionally, inconsistency in the dataset may limit the 
performance of the models.  For example, in the sentence “He 
made up his mind…”, the word ‘up’ should be considered as part 
of the action. However, it is labeled as a direction in the dataset 
that can confuse the models. Moreover, the size of the dataset is 
not large enough for efficient fine-tuning. 
 

8  CONCLUSION 
In this study, the impact of incorporating explicit syntactic 
features, such as POS tags and dependency parsing labels into 
BERT has been investigated. Various approaches have been 
implemented and evaluated for shallow semantic parsing in the 
form of BIO tagging.  The results highlight the importance of 
selecting and integrating syntactic features carefully to enhance 
shallow semantic parsing performance. There are two main 
approaches: incorporating syntactic features (POS tags or 
dependency parsing labels) either through addition or 
concatenation at BERT’s input embedding layer or incorporating 
them after the transformer layers. 
Among the approaches tested, the additive approach at the input 
embedding layer with dependency parsing labels shows an 
improvement of 1.24%, Adding dependency parsing after the 
transformer layers achieves a 0.93% improvement. 
Concatenating syntactic features at the input embedding layer 
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significantly worsens the performance. While incorporating 
explicit syntactic features has potential, their impact depends 
heavily on the integration method and specific features used.  
Further research could explore alternative ways to incorporate 
syntactic information for more significant improvements and 
ensure the consistency of data. 
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