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This paper evaluates the performance of Random Forest models for network
traffic classification using two different feature sets, namely packet- and flow-
level features. These features are extracted from an existing Internet traffic
capture and label the data using histogram-based methods. Two distinct
models are trained, one on packet-level features and the other on flow-level
features. The performance of the models is assessed based on accuracy,
precision, and recall, and a feature importance analysis is conducted. The
results show the potential of Random Forest for effective network traffic
classification and provide insights into the importance of packet- and flow-
level features for such tasks.
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1 INTRODUCTION
An ever-increasing number of people make use of the Internet. In
2024, a total of 5.5 billion people were online, or around 68% of
the world’s population [2]. All these people produce a wide range
of types of network traffic, and Internet Service providers need
to identify these types to manage the performance or ensure the
security of the network. Traditional classification methods, such
as port-based or Deep Packet Inspection, fail due to multiple rea-
sons which will be in the related work section. However, machine
learning-based approaches offer a promising and suitable alternative
to these traditional methods [1, 4, 5].
This paper aims to evaluate and compare the performance of

Random Forest, based on accuracy, precision, and recall, for net-
work traffic classification using packet-level and flow-level features.
Packet-level features represent individual packet characteristics,
like size and inter-arrival time, while flow-level features are the
combined information of multiple packets. By comparing the per-
formance of the two models, this paper aims to provide insight into
the usefulness of each feature set for network classification using
Random Forest.
Furthermore, this paper will also conduct a feature importance

analysis for both models to assess the necessity of each feature in
their respective feature sets.

1.1 ResearchQuestion
RQ1 How does the performance of Random Forest models trained

on packet- versus flow-level features compare for network
traffic classification?

RQ2 How necessary is each feature in its corresponding feature
set?
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2 RELATED WORK
Network traffic classification is a topic that has evolved significantly
over the years. The earliest approach to network classification was
based on ports. These ports were defined by the Internet Assigned
Numbers Authority and coupled to an application [1, 4, 5]. However,
this method became ineffective due to applications nowadays using
unregistered or randomly generated ports [1, 3–5].
Deep Packet Inspection (DPI) emerged as an alternative to port-

based classification. Instead of relying on ports, this technique ana-
lyzes the packets’ payload. A signature is extracted from this payload
and then matched to an already existing library of predefined signa-
tures. Although it overcomes the problems of port-based classifica-
tion, this technique has its own problems. Firstly, DPI is not able to
classify encrypted traffic. This impacts its performance significantly,
since many applications encrypt their data [1, 4, 5]. Furthermore, it
raises privacy concerns, since accessing packet content is a breach
of privacy policy and law in different countries [1, 4].
Machine learning emerged as a solution that could solve the

problems of both previous techniques. This is because machine
learning techniques do not solely rely on port numbers or access the
packets’ payload. Instead, it relies on statistical features of network
packets or flows to classify. These include features such as packet
size or inter-arrival time for single packets or duration and total
size for flows [1, 4].

3 METHODOLOGY

3.1 Network traffic traces
For this research, network traffic traces from the University of New
South Wales (UNSW) are used. These traces are made up of network
traffic from 28 unique IoT devices as well as some non-IoT devices,
such as phones and laptops. The IoT devices consist of cameras,
switches and triggers, hubs, air quality sensors, electronics, health-
care devices, and light bulbs. A full list of the used devices can be
found in Appendix A. This data was originally captured over a pe-
riod of 26 weeks, however, only two weeks of data was made public.
The data contains approximately 11,5 GB of raw packet captures
and is available at: https://iotanalytics.unsw.edu.au/iottraces.html
[6].

Two raw packet capture files, from September 24th and 28th, are
not used due to issues encountered during feature extraction. These
issues caused the feature extraction to stop midway and, thus, be
incomplete. Multiple debugging efforts failed to resolve these issues,
so the decision was made to exclude these files.

3.2 Feature Extraction
Feature extraction is a necessary step in transforming raw packet
captures into a usable form for training a machine learning model.
This section describes the extraction of packet-level and flow-level
features used in this research.
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3.2.1 Packet-level features. Packet-level features are characteristics
of individual packets in the captured traffic. The following packet-
level features were extracted:

• Packet size
• Protocol
• Source IP
• Destination IP
• Source port
• Destination port
• Inter-arrival time

These features were extracted using Python making use of the
PyShark package. The script processes a raw packet capture file by
iterating through each packet and extracting the features. The inter-
arrival time is extracted from the time_delta field of the transport
layer.

3.2.2 Flow-level features. Flow-level features combine the informa-
tion from multiple packets that belong to the same flow. For this
research, bidirectional flows are used, which contain packets sent in
both directions between the two endpoints. The following flow-level
features were extracted:

• Source IP
• Destination IP
• Source port
• Destination port
• Protocol
• Flow volume
• Flow duration
• Flow rate
• Packet count

The flow-level features were calculated using Python and the
packet-level features. The flows were identified using the five-tuple
(source IP and port, destination IP and port, and protocol) and the
inter-arrival time, which is zero for the first packet of a new flow.

3.3 Data Labeling
In supervised machine learning, which Random Forest is part of,
labeling the dataset is required in order to train the model.
The labels given to the packet-level dataset include labels for

packet size and inter-arrival time, as well as a device pair label. The
latter shows from which type of device the packet came and what
kind of device its destination was.

The labels for the flow-level dataset include labels for flow volume,
flow duration, average flow rate, packet count, and again a device
pair label. However, the meaning of the device pair label is a bit
different. Since the flows are bidirectional, the device pair does not
represent a direction.
Histograms were used for all labels, except the device pair label.

These histograms were created using Python and can be found in
Appendix B. By analyzing the distribution, distinct ranges were iden-
tified. For some labels, logarithmic bins were used due to skewness
toward lower values.
The following ranges are identified:
• Packet size: small (<= 200 bytes), medium (<=1200 bytes),
and large (1200+ bytes)

• Inter-arrival time: very short (<= 1 second), short (<= 10
seconds), moderate (<= 40 seconds), and long (40+ seconds)

• Flow volume: Very low (<= 1000 bytes), low (<= 5000 bytes),
medium (<= 10000 bytes), and high (10000+ bytes)

• Flow Duration: short (<= 100 seconds), medium (<= 1000
seconds), and long (1000+ seconds)

• Flow rate: very slow (<= 15000 B/s), slow (<= 140000 B/s),
medium (<= 440000 B/s), and fast (440000+ B/s)

• Packet count: single packet (1 packet), low (<= 5 packets),
medium (<= 21 packets), and high (21+ packets)

For the device pair label, the list of devices provided by the study
from the UNSW [6] was used. Apart from the names of the devices,
the list also contains the MAC addresses of these devices. Using
this, it was possible to determine what kind of device the source
and destination devices of a packet or flow were. The category of
each device can be found in Appendix A.

3.4 Model Development
To evaluate the performance of Random Forest for network traffic
classification, two models were developed: one trained on packet-
level features and the other on flow-level features. Both models were
implemented using the Random Forest classifier from the Python
package Scikit-learn with its default hyperparameters. The deci-
sion to use the default parameters was mainly due to limited time,
however, this should still allow for a meaningful performance com-
parison between the datasets. These settings include 100 estimators
and a maximum depth determined by the model itself. For both
models a train-test split of 80-20 was used.

4 RESULTS

4.1 Packet-Level Model

Actual value
Small 2009183 0 0
Medium 0 349634 0
Large 0 0 895087

Small Medium Large
Predicted value

Table 1. Confusion Matrix for packet size label

Actual value
Very Short 2944037 0 0 0
Short 0 135745 0 0
Moderate 0 0 125502 1
Long 0 0 0 48619

Very Short Short Moderate Long
Predicted value

Table 2. Confusion Matrix for inter-arrival time label

The packet-level model performs well across its outputs, for all its
labels, accuracy, precision, and recall were calculated using Python.
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This can also be done with the confusion matrices in Table 1 and 2,
and Appendix C.1. Accuracy measures overall correctness, precision
measures the proportion of correct predictions, and recall measures
the proportion of actual values that were correctly predicted.

For the packet size label, the model achieved perfect scores, with
accuracy, precision, and recall of 1.0. For the inter-arrival time label,
it achieved similar results, with an accuracy of 0.9999997, a preci-
sion of 0.9999949, and a recall of 0.9999980. Since these labels are
directly based on distinct ranges of their corresponding features,
these results can be expected.

The device pair label is not directly tied to one distinct feature and
the model’s performance for this feature also reflects this. However,
it still has a strong performance. It scored an accuracy of 0.9906549,
a precision of 0.9012846, and a recall of 0.9014629.

Fig. 1. Feature importance packet-level model

The feature importance analysis, shown in figure 1, reveals the
contribution of each packet-level feature to each label. For both the
packet size and inter-arrival time labels, the corresponding feature
is of the most importance, which makes sense since they were
labeled using those features. The fact that the device pair label is not
directly linked to a single feature is reflected in the analysis. For this
label, almost all features have relatively similar importance, with
the destination port being slightly more important, the inter-arrival
time slightly less important, and protocol being the clear exception.

4.2 Flow-level Model

Actual value
Very Low 59605 0 0 0
Low 0 13336 0 0
Medium 0 2 5860 1
High 0 0 0 2905

Very Low Low Medium High
Predicted value

Table 3. Confusion Matrix for flow volume label

Actual value
Short 77176 1 0
Medium 0 2797 0
Long 0 0 1734

Short Medium Long
Predicted value

Table 4. Confusion Matrix for flow duration

Actual value
Very Slow 47605 0 0 0
Slow 0 21776 0 0
Medium 0 0 9714 0
Fast 0 0 0 2613

Very Slow Slow Medium Fast
Predicted value

Table 5. Confusion Matrix for flow rate label

Actual value
Single Packet 26971 0 0 0
Low 0 18970 0 0
Medium 0 0 29823 0
High 0 0 0 5944

Single Packet Low Medium High
Predicted value

Table 6. Confusion Matrix for packet count label

Same as the packet-level model, the flow-level model also performed
strongly across its outputs. Like the packet-level model, for the labels
that are based on distinct ranges of their corresponding feature, the
model achieves almost perfect scores.

• Flowvolume label:Accuracy: 0.9999755, Precision: 0.9999625,
Recall: 0.9999147

• Flowduration label:Accuracy: 0.9999878, Precision: 0.9998809,
Recall: 0.9999957

• Flow rate and packet count labels: For both labels, the
model achieved perfect scores, with accuracy, precision, and
recall of 1.0

On the device pair label, the flow-level model also achieved a
lower but still strong performance. It scored an accuracy of 0.9674695,
a precision of 0.9545989, and a recall of 0.9276326.
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Fig. 2. Feature importance flow-level model

The feature importance analysis for the flow-level model, shown
in figure 2, again shows that the labels labeled using a single feature
rely mostly on that feature. However, this is to a lesser extent than
compared to the packet-level model. It can be seen that these labels
also significantly rely on other features as well. The device pair label,
like in the packet-level model, again relies on almost all features in
varying degrees, with the protocol being the clear exception for this
model as well.

5 DISCUSSION

5.1 Research question 1
From the results, it can be seen that both models perform very well.
They both achieved perfect or almost perfect scores for all labels
based on distinct ranges of their corresponding features. For the de-
vice pair label, the flow-level model achieved a lower accuracy than
the packet-level model, however, it did achieve a higher precision
and recall.
If classification were performed solely using the labels based on

ranges, for example by creating profiles for different applications,
one model would not necessarily outperform the other since they
both score almost perfectly for these labels. However, since the
flow-level model has more of these labels, it might be possible to
create more fine-grained profiles for this model.
Which model performs better if the device pair label were to be

used depends on the objective of the network traffic classification.
For goals like resource management or detecting malicious traffic,
the flow-level model would perform better due to its higher preci-
sion and recall. A lower precision and recall could result in wasted
resources by allocating, for example, bandwidth to an application
that does not require it, or result in missing malicious traffic or flag-
ging normal traffic as malicious. However, if overall classification is
the goal, the packet-level model would outperform the flow-level
model due to its higher accuracy.

5.2 Research question 2
From the feature importance analyses, it can be concluded that
the protocol could be excluded from the packet-level features with
minimal impact since all labels only marginally rely on it. However,
it is not possible to conclude this for the flow-level features as well
since the packet count label has a significant reliance on it.

For both feature sets, none of the other features can be excluded
without significant impact. Mainly the device pair label relies on
most features in various but non-discardable amounts, with the
exception being the protocol. If this label were not to be used, more
features could be excluded without having a significant impact on
the remaining labels.

6 CONCLUSION
This research highlights the potential of Random Forest models for
network traffic classification using both packet- and flow-level fea-
tures. The results show the strengths of each feature set in different
contexts. The packet-level model is better suited than the flow-level
model for overall classification due to its higher accuracy, while the
flow-level model given its higher precision and recall would out-
perform the packet-level model in tasks requiring a more nuanced
insight, such as resource allocation.
The feature importance analyses also revealed the possible opti-

mization that can be done in future work by excluding the protocol
from the packet-level model without it having a significant impact.

In the end, this study not only shows the effectiveness of Random
Forest in network classification, but it also provides insights for
future research to refine feature selection.

7 LIMITATIONS
One possible limitation of this study is the lack of hyperparameter
tuning during the development of the models. Both models were
trained using default parameters, which may not be the optimal
configuration for these datasets. The models achieved high accuracy,
precision, and recall, especially for the labels based on distinct ranges
of their corresponding features. This performance could be partially
due to overfitting. Future work could evaluate both of the models’
performances on entirely unseen datasets to provide further insight
into this.
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A LIST OF DEVICES IN TRAFFIC CAPTURE
The following devices were used during the network traffic capture,
as documented in the study from the University of New SouthWales
[6]. Added in parenthesis is the category in which they fall for the
device pair label.

• Smart Things (Hub)
• Amazon Echo (Hub)
• Netatmo Welcome (Camera)
• TP-Link Day Night Cloud camera (Camera)
• Samsung SmartCam (Camera)
• Dropcam (Camera)
• Insteon Camera (Camera)
• Withings Smart Baby Monitor (Camera)
• Belkin Wemo switch (Switch or trigger)
• TP-Link Smart plug (Switch or trigger)
• iHome (Switch or trigger)
• Belkin wemo motion sensor (Switch or trigger)
• NEST Protect smoke alarm (Air quality sensor)
• Netatmo weather station (Air quality sensor)
• Withings Smart scale (Healthcare device)
• Blipcare Blood Pressure meter (Healthcare device)
• Withings Aura smart sleep sensor (Healthcare device)
• Light Bulbs LiFX Smart Bulb (Light bulb)
• Triby Speaker (Electronics)
• PIX-STAR Photo-frame (Electronics)
• HP Printer (Electronics)
• Samsung Galaxy Tab (Phone)
• Nest Dropcam (Camera)
• 2x Android Phone (Phone)
• Laptop (Laptop)
• 2x MacBook (Laptop)
• iPhone (Phone)
• TPLink Router Bridge LAN (Gateway)

B HISTOGRAMS

B.1 Packet-level model

Fig. 3. Histogram for packet size

Fig. 4. Histogram for inter-arrival time (logarithmic bins)

B.2 Flow-level model

Fig. 5. Histogram for flow volume (logarithmic bins)

Fig. 6. Histogram for flow duration (logarithmic bins)
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Fig. 7. Histogram for flow rate (logarithmic bins)

Fig. 8. Histogram for packet count
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C CONFUSION MATRICES DEVICE PAIRS

C.1 Packet-Level Model

Fig. 9. Confusion matrix for device pair label (packet-level model)
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C.2 Flow-Level Model

Fig. 10. Confusion matrix for device pair label (flow-level model)
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