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Syntactic simplification seeks to alter a sentence’s grammatical structure
while ensuring its meaning is maintained, thereby making it more under-
standable for a wider audience. Despite being trained on extensive datasets,
large language models mainly capture broad language patterns and often
find it challenging to maintain nuanced meanings in complex sentences.
This limitation can result in oversimplification or ambiguity. Therefore, it is
crucial to strike a proper balance between simplification and correctness.

This research introduces an improvement to the attention mechanism by
computing attention scores based on both hidden states and the grammatical
relationships between words, rather than relying solely on hidden states
as traditional attention mechanisms do. The paper also explains a second
approach that incorporates a grammatical embedding layer to enhance the
model’s understanding of grammatical structure.

The paper investigates various methods for incorporating explicit gram-
matical information into the model. It adopts two strategies: one focuses
on integrating grammatical information, while the other emphasizes fine-
tuning the model for specific downstream tasks, which in this case is syn-
tactic simplification. Fine-tuning the T5 model without explicit grammatical
information yielded best results, with a rouge-1 score of 0.96, rouge-2 score
of 0.9266, and R-L score of 0.9554 evaluated by ROUGE score.

Additional Key Words and Phrases: Syntactic simplification, attention scores,
large language models, attention mechanism, T5, hidden states, embedding
layer, BERT score

1 INTRODUCTION
Sentence Simplification is the process of reducing the complexity
of a sentence to make it easier to understand. This process involves
various types of simplification, including lexical simplification, para-
phrasing, amount of compression and syntactical simplification [11].
In most cases, both lexical and syntactic simplification work hand
in hand.
Lexical Simplification refers to replacing complex words with sim-
pler alternatives. This is especially helpful for a wide range of au-
diences, such as people with language disabilities [3], cognitive
impairments (e.g., aphasia) [2] or second-language learners, as it
reduces the cognitive load required to understand the content. Sen-
tences with intricate grammatical structures can be simplified by
rephrasing or restructuring them, thereby reducing their complexity.
However, this research will specifically focus on the implications
of syntactic simplification. Sentence simplification using syntactic
features emphasizes restructuring sentences rather than altering
individual words, as is typically done in lexical simplification. The
primary aim is to make sentences easier to understand while main-
taining their original meaning. For example, Table 1 provides an
illustration of syntactical simplification. Additionally, it can enhance
the performances of many NLP tasks such as grammatical error
correction, parsing, machine translation [4] [18], and so on. This
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Table 1. Complex and Simple Sentences

Complex: As soon as the game ended, they celebrated their victory.
Simple : The game ended. They celebrated their victory.

research primarily focuses on simplifying complex sentences by
breaking down long sentences with multiple clauses into shorter,
standalone sentences, often by removing conjunctions and connec-
tors.
This research uses a large language model known as T5. LLM

models employ attention mechanisms to identify relationships be-
tween different parts of a sequence. These mechanisms enable the
model to concentrate on the most important parts of the input, al-
lowing for a more adaptable and context-aware language generation
and comprehension [14].
Large language models (LLMs) are not specifically designed to

grasp grammar. Instead, they acquire patterns throughout the train-
ing process but lack the in-depth understanding of grammar that
models trained directly with grammatical frameworks possess. Dur-
ing the pre-training process, LLMs may indirectly pick up gram-
matical structures while trying to identify patterns that reveal the
relationships between words. Despite this, models like BERT, a large
language model, have demonstrated that certain attention heads
can accurately identify some grammatical relationships with an
accuracy of 75% or higher [5]. Although large language models are
not explicitly trained to understand grammar, different layers show
varying levels of performance on specific grammatical tasks. This
raises an important question: could incorporating explicit grammat-
ical information further improve the performance of LLMs?

In this research, the model will be fine-tuned to perform syntactic
simplification. A key part of this process is understanding how each
word is grammatically connected to other words in a sentence. To
achieve this, dependency parsing will be used, a natural language
processing technique that studies the grammatical structure of sen-
tences by identifying the relationships between words. The output
of dependency parsing is usually a dependency tree or graph, which
visually represents the syntactic connections in a sentence.

By incorporating additional features, such as grammatical infor-
mation represented through a graph, can provide the model with
enhanced contextual awareness. This approach enables the encoder
to concentrate more effectively on grammatical attributes. This pa-
per will show how grammatical bias will be integrated into the
model.

2 PROBLEM STATEMENT
While large language models (LLMs) like BERT acquire a consid-
erable understanding of grammar during their pre-training, they
do not fully grasp it, as their understanding of grammar is largely
an unintended consequence of the training process [5]. This study
emphasizes that incorporating dependency trees structures that
illustrate the grammatical relationships between words in a sen-
tence can enhance the syntactic simplification task. By constructing
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a graph and using it as an additional feature in an encoder, this
method can help identify which elements of a sentence should be
removed, restructured, or kept.

2.1 ResearchQuestion
How can dependency trees be used to capture syntactic relationships
between words and be integrated as additional input to an encoder-
decoder model for generating syntactically simplified sentences?
Sub-Research Questions (RQ):

(1) What techniques can be employed to incorporate graph-based
syntactic information into sequence-to-sequence models?

(2) How can semantic information derived from the model’s at-
tention mechanism be balanced with explicit syntactic biases
provided by graph-based inputs to improve grammatical cor-
rectness and fluency?

3 RELATED WORK
This section will go through some of the related work in syntactical
simplification using various techniques.

(1) In their 2020 paper, Martin et al. [11] have employed sev-
eral methods to simplify sentences, focusing on four main
attributes: the amount of word compression, paraphrasing,
lexical simplification, and syntactical simplification. They
have used control tokens as an additional input along with
the sentences.

(2) In their work, Ma et al. [10] used matrices where each entry
consists of relation vectors. These vectors represent either
the grammatical relationship between two tokens or the num-
ber of steps each token takes to reach their ancestor in the
dependency tree. Additionally, they incorporate a learnable
gating mechanism to combine these relation vectors with the
original attention scores that are computed.

(3) In their work, Bai et al. [1] different matrices were employed
in this study, with each entry representing various types of
grammatical distances between tokens. The use of distinct
matrices allowed for the generation of varied attention out-
puts; these outputs were subsequently added together and
transmitted to an additional attention layer for further pro-
cessing. In this subsequent layer, the outputs were used as
keys and values to compute a new attention output.

4 BACKGROUND INFORMATION

4.1 T5 model
The T5-small model is a transformer-based encoder-decoder archi-
tecture that looks like the Transformer proposed by Vaswani et al.
[14]. It consists of blocks, each of which includes a self-attention
layer, followed by an add-and-norm layer and a feed-forward layer
[13]. T5-small comprises 12 blocks, with 6 blocks in the encoder part
of T5-small. Within each block, there are eight attention heads. Each
attention head operates independently to capture different aspects
of the relationships or dependencies between elements in the input
sequence. The outputs from these heads are then combined and
further processed to enhance the model’s understanding.

The decoder is similar to the encoder but includes an additional at-
tentionmechanism known as cross-attention after each self-attention

layer, which focuses on the encoder’s hidden state that later acts as
query and key in the decoder part. Additionally, the decoder uses a
unique form of attention called auto-regressive self-attention, which
limits the model to attending only to tokens that come before the
current position and everything that comes after this current token
is masked [13]. In every attention layer, the input is transformed
into query (q), key (k), and value (v) vectors through separate linear
transformations. The attention score is then calculated as follows:

Attention(𝑄,𝐾,𝑉 ) = softmax

 
𝑄𝐾⊤√︁
𝑑𝑘

!
𝑉 (1)

Instead of using a single attention head to determine which parts
of the input are important, the model uses multi-head attention.
Each head focuses on different parts and aspects of the data. By
projecting the data into different subspaces, the model captures
different meanings within these contextual subspaces [14]. However,
the exact role or function of each subspace or head is not explicitly
understood.

4.2 How much Grammar do LLM models know?
Many studies have used techniques like probing [12], weight prun-
ing [17], and other methods to investigate the roles of individual
attention heads in transformer models. These studies aim to identify
which specific linguistic features each head focuses on and how
different heads contribute to various aspects of language process-
ing. For instance, in their work, Voita et al. [17] used Layer-wise

Fig. 1. head view in layer 3

Relevance Propagation (LRP) to measure how much each head con-
tributes to the model’s final decision. In a transformer model, each
layer learns different types of relationships among words because
each attention head has its own set of weights, and they receive
different updates during the training process, leading to varying
performance. Additionally, attention distances differ among atten-
tion heads, even within the same layer, due to different attention
mechanisms. Some heads may focus on capturing relationships be-
tween words that are far apart, while others might concentrate on
connections between nearby words. As shown in Fig. 1, is an exam-
ple of attention being computed in layer 3 visualized using Bertviz
[15], where thicker lines represent stronger relationship of a word
with the rest of the words in the sentence. For instance, Jawahar
et al. [8] indicated that higher layers, excel over lower layers when
sentences include a significant distance between the subject and
the verb. This implies that the higher layers are better at capturing
complex syntactic relationships, especially those involving long-
range dependencies. In contrast, the middle layers seem to focus on
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simpler grammatical structures, emphasizing more straightforward
syntactic patterns. In their paper Vig and Belinkov [16], they tried to
understand what each attention head does by examining the mean
attention distance, mean attention entropy, and attention variability
of each head. For instance, if a head has high variability and high
entropy how good is it at capturing grammar by distributing its
attention across tokens.

The research presented in [5] has shown that different attention
heads focus on different types of grammatical relationships, all with
varying levels of accuracy. For instance, there is an 86.8% accuracy
for the dobj relation between tokens in heads 8-10 in BERT, while
noun modifiers attend to their nouns with a 94.3% accuracy at the
det relation. All these results were obtained by learning patterns
from large datasets during the pre-training process. Additionally, a
study conducted by Htut et al. [6] has shown that there are some
heads that focus on specific dependency types. However, there are
no heads capable of comprehending all relationships, meaning none
are specialized in comprehensive parsing or fully understanding the
entire syntactic structure of a sentence.
Despite not being pre-trained on specific grammar tasks, large

language models have shown good performance in this area.

4.3 Dependency Parsing
In this study, sentences will be pre-processed using dependency
parsing, by using well-known Python library known as SpaCy to
analyze grammatical relationships between words. This process
produces a tree-like structure that represents the syntactic relation-
ships in the sentence. The tree begins with a root node, typically
the main verb of the sentence, which has no incoming arcs. All
other words have exactly one incoming arc [9]. The tree expands
by forming edges, which denote grammatical relationships between
words. When two words are connected by an edge, it indicates a
dependency, with one word being grammatically dependent on the
other. An illustrative example of how a dependency tree is formed
is shown in Fig. 4.

5 METHODOLOGY
This section outlines the approaches taken to address the research
question.

Initially, the paper will evaluate the model without incorporating
any grammatical features, fine-tuning it to understand its perfor-
mance in this simplified state. Following this evaluation, the func-
tionality of the model’s attention heads will be analyzed by assessing
both the average score and variance for each head. Based on these
findings, the least important attention heads will be pruned.
Finally, grammar will be integrated into the model using two

distinct methods: one will involve a matrix, while the other will
utilize grammatical embeddings. By the end of the study, the perfor-
mance of the model with explicit grammar inclusion to that of the
model without grammar integration will be compared. The initial
approach with grammar involved adjusting the attention layer to
more effectively capture the dependency relationships between to-
kens. Before inputting the (seq_len, seq_len) matrix, where seq_len
represents the sequence length, the relationships among words are
first analyzed and then converted to grammatical distances and are

filled into a matrix. If two words are directly connected (i.e., sharing
an edge in the dependency tree), a grammatical distance of one is
assigned to highlight the importance of their relationship. For words
that are not directly connected, the total number of steps each token
would need to take in order to reach the lowest common ancestor
is computed. This is fed to the attention-layer which is later either
added or multiplied with the score computed in the attention-layer
before passing it to the softmax function. As shown in Fig. 2 are the
changes made in the attention layer of T5.

Fig. 2. matrix in the attention layer

Fig. 3. Activity diagram of dependency and depth embeddings

For the second approach, two types of embeddings are created to
be added to the token embeddings: dependency embeddings, which
represent the embeddings of dependency relationships, and depth
embeddings, which represent the embeddings of the depth of the
tokens in the dependency tree. Each token’s level in the tree and
its relationship with its head are both sent to the stack layer. If it is
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an encoder, both embeddings are obtained and added to the input
embeddings to create new embeddings, which will then be sent to
downstream tasks for further processing. Fig. 3 is an illustrative
example of the process flow.

6 EXPERIMENT

6.1 Pruning Compared to Not Pruning
The model will initially be evaluated without considering pruning.
The T5-small model consists of 6 encoder blocks, each containing
8 attention heads, resulting in a total of 6 × 8 = 48 attention heads
in the encoder stack. Pruning will only be done when the model is
being fine-tuned, with no grammar information taken into account
in order to see if it has an effect.
To evaluate the attention score for each head in a layer. The

following steps were taken:
• Average Attention Score: Compute the average attention
score for each head for all the inputs

• Variance of Attention Score: Indicates how variant each
attention score of a head is.

Referring to the methods used by Vig and Belinkov [16], they ana-
lyzed the roles of each head using the above approaches, along with
other methods such as entropy. For instance, they utilized variability
to determine which heads focused on position-based relationships
rather than dependency-based ones. Therefore, high variability indi-
cates a non-position-based relationship. They also employed entropy
to assess whether the attention was more scattered or concentrated.
This approach provided insights into which heads were most im-
portant within each layer. However, they used these methods to
understand the function of each attention head. This paper will sum
both values to determine which heads are unnecessary so that they
can be pruned during inference time.

6.2 Dependency Matrix
The model’s architecture has been extended to accept an additional
input, namely a matrix, This matrix encodes grammatical informa-
tion about the input sentence. The modified model now takes four
main inputs:

• Input: The tokenized input sentence.
• Attention: It tells which parts of the input should be focused
on and which parts are simply padding that can be ignored.

• Labels: The ground-truth data used by decoder during train-
ing.

• Matrix: A matrix of size (batch_size, seq_len, seq_length)
that represents the grammatical relationships between tokens
in the input sentence.

Everything is pre-processed before sending the matrix to the en-
coder’s self-attention layer. The matrix size should be equal to the
sequence length of the input_id. The initial approach involves cre-
ating a matrix of seq_len by seq_len, but only filling the matrix
with the grammatical relationships of words as the first step. This
is necessary because SpaCy processes entire words, while a typical
tokenizer breaks words into subwords when the word is not in its
vocabulary. To address this issue, words are tokenized, and a dictio-
nary is created to map to its corresponding subword components.

Fig. 4. dependency tree

Fig. 5. matrix computed from dependency tree

For example, the word "Cinderella" is split into "Cin," "der," and
"ella." Since the matrix already contains an entry for "Cinderella,"
this entry is copied for both the rows and columns, duplicating it
𝑛 − 1 times, where 𝑛 represents the total number of subwords. This
approach is employed because the subwords are considered parts
of the same word. As shown in Fig. 5 is an illustrative example of
duplicating rows and column entries of subwords of a word.
In most studies, an adjacency matrix is used, typically focusing

on the dependent word "attending" to the head, where [dependent,
head] = 1 when there is a direct edge, and the reverse [head, de-
pendent] = 0. According to Clark et al. [5], The attention scores
computed by BERT, The dependent word tends to "attend" on the
head word instead of the reverse, because each dependent is as-
sociated with only one head, whereas heads can have several de-
pendents. However, in this study, matrix is expanded to explore
whether reversing this relationship, so that both [dependent, head]
= 1 and [head, dependent] = 1, could also have an impact. Intro-
ducing reverse dependencies is important because it may provide
a more comprehensive understanding of word relationships. Both
directions offer unique semantic insights. For example:

• nsubj : "The dog" is the subject of "eat
• opposite : "eat" is the predicate of the "the dog"

After constructing the matrix, it is refined further by applying a
threshold. Any relationship that exceeds this threshold is considered
grammatically distant and is disregarded. On the other hand, rela-
tionships below the threshold are considered grammatically close
and are retained. The established threshold is a total sum of 4. This
value was selected to ensure that the grammatical distances remain
relatively close. If a token is a direct ancestor of another token, the
step count is 1, as they are connected by a direct edge. However, if
two tokens are not connected by a direct edge, their combined total
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steps must equal 4 or less for them to be considered grammatically
close.
So, instead of passing the score computed by 𝑄 · 𝐾⊤ to the soft-

max function. The T5 model has been modified to accept a new
parameter matrix, which is of size (batch_size, seq_len, seq_len).
This is repeated 8 times so that it can be used by all the attention
heads. The new shape of the matrix is (batch_size, num_heads ,
seq_len, seq_len) where num_heads represents the number of heads
in each T5’s attention layer. This method was only implemented
in the encoder and not the decoder because the hidden state of the
encoder will be passed to the cross-attention layer of the decoder.
Four different methods were used to handle this:
• score * matrix : Any value below the threshold is assigned a
1, while values above the threshold are set to 0. This creates
a matrix of 1s and 0s, which is then multiplied element-wise
with 𝑄 · 𝐾⊤. This process is applied across all 8 heads in
each attention layer. As a result, the attention computed is
effectively modified by the matrix if it is not considered gram-
matically significant. In other words, it nullifies the attention
scores for tokens that are not grammatically related

Attention(𝑄,𝐾,𝑉 ) = softmax

 
𝑄𝐾⊤ ∗matrix√︁

𝑑𝑘

!
𝑉 (2)

• score + matrix : Any value below the threshold is set to 0,
while any value above it is set to negative infinity. This results
in amatrix consisting of 0s and negative infinity values, which
is then added element wise with 𝑄 · 𝐾⊤.

Attention(𝑄,𝐾,𝑉 ) = softmax

 
𝑄𝐾⊤ +matrix√︁

𝑑𝑘

!
𝑉 (3)

• Gating mechanisms on scores : Instead of fully discarding
the score, this method provides the model with the flexibility
to choose between score and bias_score. Here, bias_score is
derived using Eq (2), and score is the original score computed
by the attention layer. 𝛿 is initially set to 0.7

adaptive_score = (1 − 𝛿) · bias_score + 𝛿 · score (4)

• Gating mechanisms on attention outputs : In the final ap-
proach, instead of employing a single matrix and using only
one attention output, two matrices are used. The concept of
using multiple matrices for relationships was inspired by the
work of Bai et al. [1]. However, this approach has been modi-
fied by introducing a gating mechanism to combine outputs
from the different attention mechanisms based on the chosen
two matrices. Instead of adding another attention layer, as
done in their work, this paper stops the process here. The
first matrix has binary entries for tokens that are directly con-
nected, while the second matrix includes all tokens that are
not directly connected; for these tokens, the entries represent
the sum of the steps required to reach their common ances-
tors. Additionally, a threshold of 4 was chosen. The approach
has been modified by introducing a gating mechanism to
combine the outputs from the different attention mechanisms
computed based on the two matrices. A learnable parameter

𝛼 was introduced to enable the model to dynamically adjust
its preference between two attention outputs. Since different
layers of the model focus on varying levels of grammatical
distance, this parameter provides greater flexibility, allow-
ing the model to adapt and ensure grammatical correctness
across layers. 𝛼 is set to 0.5 in all layers in the beginning with
a learning rate of 1e-4. Overtime, the values change in differ-
ent layers reflecting what the layer focuses on. Consequently,
the final output is generated as follow.:

attention_output1 = softmax

 
𝑄𝐾⊤ ∗matrix1√︁

𝑑𝑘

!
𝑉 (5)

attention_output2 = softmax

 
𝑄𝐾⊤ ∗matrix2√︁

𝑑𝑘

!
𝑉 (6)

attention = 𝛼 · attention_output1+ (1−𝛼) · attention_output2 (7)

6.3 Dependency Embedding
• Input: The tokenized input sentence.
• Attention: It tells which parts of the input should be focused
on and which parts are paddings that can be ignored.

• Labels: The ground-truth data used by the decoder during
training.

• Dependency Relationship: Represents the relationship be-
tween a token and its direct ancestor, with a size of (batch_-
size, seq_len).

• Level IDs: Represents the depth of the token in the depen-
dency tree(batch_size, seq_len).

By examining the dependency relationships in SpaCy, 45 distinct
grammatical relationships were used. To incorporate these into the
model, a separate embedding layer was created for these relation-
ships, keeping it separate from the word embedding layer. This
approach ensures that the grammatical relationships are placed in
their own embedding space, allowing similar relationships to cluster
in the same subspace during training. For each token, both its de-
pendency (word → head) and its position within the syntactic tree
are taken into account. Using depth embedding was inspired by the
work of Ma et al. [10]. However, this approach has been modified
in this paper by incorporating dependency embedding as well. As a
result, both the token’s depth in the tree and its dependency rela-
tionship are represented in a higher-dimensional space, specifically
with a dimension of 512. The new embedding layers for both level_-
ids and dependency relationships are initialized with dimensions
that match the hidden size of T5-small. Both of their weights are
randomly initialized using He initialization further processing

embedding = token_embedding + depend_embedding + level_id
(8)

7 EVALUATION

7.1 Evaluation Metrics
The accuracy was evaluated using two evaluation metrics which
are ROUGE and Bert Score

(1) ROUGE-1: This metric evaluates the overlap of individual
words between the predicted sentence and the ground truth. It
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measures how many uni-grams from the ground truth appear
in the predicted sentence.

(2) ROUGE-2: This metric evaluates the overlap of pairs of
consecutive words between the predicted sentence and the
ground truth. It calculates how many bi-grams from the
ground truth also appear in the predicted sentence.

(3) ROUGE-L: This metric measures the Longest Common Sub-
sequence (LCS) between the predicted sentence and the ground
truth. The LCS is the longest sequence of words that appear
in both the predicted sentence and the ground truth while
preserving order.

(4) BERT Score: This metric assesses the similarity of each token
in the predicted sentence compared to those in the ground
truth. Similarity between tokens is evaluated using contex-
tual embeddings. Additionally, the method employs greedy
matching to enhance the score by aligning each token in the
predicted sentence with the most similar one in the reference
based on embeddings. [19]

(5) Event overlap Score: This metric evaluates the similarity
of each token in the predicted sentence to the corresponding
token in the ground truth, calculated on a per-event basis.
For example, if the ground truth consists of three sentences
and the prediction also contains three sentences, the token
similarity is computed individually for each pair of sentences.
The number of matching words is obtained and divided by the
total number of words in the ground truth for each sentence.
Once this is computed, the final score is obtained by summing
each score and dividing it by the total number of events in
the ground truth. For instance, (0.63 + 0.73 + 0.33) / 3

Event Overlap Score =
˝(overlap_per_event)

len(events_in_ground truth)
(9)

(6) Event split Score: This metric assesses the total number of
events identified in the generated text and compares it to the
number of events in the reference sentence. Here, 𝑝 represents
the number of events in the predicted sentences, while 𝑟 refers
to the number of events in the reference sentence.

Event Split Score =
min(𝑝 , 𝑟 )
max(𝑝 , 𝑟 )

(10)

7.2 Experimental Setup
For this experiment, a dataset of 1,000 of sentences was used The
sentences were divided into training, validation, and test sets with
80%, 10%, and 10%, respectively. The dataset consists of pairs of com-
plex and simple sentences. The complex sentences use connectors
like "Before," "After," and "When," while the simple sentences remove
these connectors to present a sequential order. In other words, the
simple sentences consist of distinct events or actions.
Low-Rank Adaptation and PEFT: The T5-small model comprises
of about 60 million parameters [13]. Fine-tuning this pre-trained
model can pose challenges due to hardware limitations. LoRa a
type of PEFT (parameter-efficient fine-tuning) provides a solution
by enabling the fine-tuning of only a limited number of additional
parameters, while the majority of parameters remain unchanged.
This approach significantly reduces computational costs. Training
just a few parameters can achieve performance levels similar to

those of a model that has undergone full parameter training. [7]
The following parameters were used:

• r = 8
• lora_alpha = 64
• lora_dropout = 0.01

Approach 1: Dependency Matrix: The AdamW optimizer was
selected for this study due to its superior performance compared
to the Adam optimizer. AdamW effectively decouples weight decay
from gradient-based updates, which leads to better convergence. A
learning rate of 1e-4 was chosen, aligningwith common practices for
training T5 models, which typically use learning rates of either 1e-4
or 3e-4. Additionally, ReduceLROnPlateau was used as a learning
rate scheduler with a patience of 2 epochs. If the validation loss
continues to increase in two consecutive epochs, the learning rate
will be reduced by a factor of 0.1. The batch size was set to 4 to allow
for frequent weight updates, given that the dataset is relatively small.
The experiment was run for 10 epochs. Approach 2: Dependency
Embeddings and Depth embeddings The learning rate, number
of epochs, and learning rate scheduler are consistent with those used
in the dependency matrix approach. However, there are two key
differences in this case: two new embeddings have been initialized,
specifically the depth_embeddings and dependency_embeddings,
respectively. Furthermore, both embeddings are initialized with He
initialization, and they share the same learning rate as the other
parameters, which is set at 1e-4.

7.3 Results
Baseline: The BERT score evaluates precision, which measures how
many words in the prediction closely match the words in the refer-
ence based on contextual embeddings, and recall, which measures
how many words from the reference are included in the prediction.
The F1 score, which balances both precision and recall, is very high,
indicating good results and suggesting that the contextual meaning
of the sentences is maintained. However, the event overlap score
is the lowest, measuring how well the predicted events align with
the reference events. This low score could also be due to the de-
fault settings used in this paper. The split score is high, showing
that the model effectively splits sentences into events. However,
when evaluating split scores, ROUGE and event overlap should also
be considered, as the split score does not account for the order of
events, which may be incorrect. When analyzing all metrics, the
model demonstrates good performance in splitting events while
maintaining the correct order, all without explicit grammar infor-
mation.
R1 R2 RL Precision Recall F1 EO Split

0.9649 0.9266 0.9554 0.9767 0.9734 0.9749 0.8808 0.9763

Table 2. Evaluation Metrics for Baseline

Baseline with pruning: Pruning certain heads in the T5-small
model did not yield positive results, as it significantly reduced most
of the computed scores, with many falling below 0.90. This outcome
can be attributed to the fact that T5-small already has a limited
number of heads per layer, making further pruning unlikely to
produce significant improvements.
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R1 R2 RL Precision Recall F1 EO Split

0.8703 0.7985 0.8261 0.9406 0.9173 0.8984 0.6518 0.8863

Table 3. Evaluation Metrics for pruning

Gating mechanism on score: In Fig 6, it is shown that different
layers of the encoder exhibit varying delta rates. Initially, delta is
set to 0.7, where the formula is delta * bias_score + (1 - delta) *
scores. This experiment was conducted with a learning rate of 1e-4.
Across all layers, there was a clear preference for using the original
score, as none of the delta values dropped below 0.69 throughout
all epochs, despite the high learning rate. This explains why the
scores evaluated remained almost identical to the baseline, with
only minor differences.

Fig. 6. The values of delta at different blocks in T5 encoder

R1 R2 RL Precision Recall F1 EO Split

0.9603 0.9294 0.9590 0.9799 0.9765 0.9781 0.8802 0.9747

Table 4. Evaluation Metrics for gating mechanism on scores

score *matrix: When comparing to the baseline, the BERT Score
did decrease, but not significantly, indicating that the contextual
meaning of the predicted sentence matches that of the reference. It
only went down by 1%. However, the ROUGE score has decreased
significantly, which indicates that there is less overlap occurring
between the predicted sentence and the reference. For example,
ROUGE-2 is the most significantly impacted, possibly because it
struggles to account for grammatically distant words that form
meaningful bigrams. This issue could arise if two consecutive words
in the reference sentences are placed together, but the distance to
their lowest common ancestor in the dependency graph exceeds
the threshold used in this paper; they receive a value of zero in the
matrix. As a result, this affects how they attend to each other in
the attention score computed by the attention layer. The number
of splits also decreased by 3%, which indicates that some of the
sentences are not split into the correct number.

R1 R2 RL Precision F1 Recall EO Split

0.9360 0.8873 0.9255 0.9688 0.9643 0.9603 0.8278 0.9488

Table 5. Evaluation Metrics for score * matrix

score + matrix: As shown in the findings, a decline in all the
scores indicates that the use of negative infinity penalizes distant
relationships. Unlike the score * matrix, event overlap and ROUGE
scores have dropped significantly; however, the split score has not
decreased in comparison to the score * matrix. This means that
even though the events are split into the correct number, the order
may not be maintained. There are fewer words that overlap with
each other, and the BERT score has decreased significantly, indicat-
ing that there are either fewer words generated in comparison to

the reference sentence or that the words generated do not match
contextually.

R1 R2 RL Precision Recall F1 EO Split

0.9042 0.8394 0.8623 0.9402 0.9342 0.9368 0.726 0.9491

Table 6. Evaluation Metrics for score + matrix

Gating mechanisms on attention outputs: In Fig 7 it is shown
that different layers of the encoder exhibit varying rates of alpha.
In some areas of the encoder, there is a preference for using direct
edges, represented by matrix 1, which performs better than matrix 2,
which includes distances between distinct tokens. Over the course of
the epoch, the values began to change. The lower layers and upper
layers tend to have slightly lower values than the middle layers.
This experiment was conducted with a learning rate of 1e-4. This
behavior is consistent with the understanding that different layers
in LLM models focus on various aspects even without using extra
grammatical information. Different layers have different attention
heads; hence, they focus on different tokens at varying distances.

Fig. 7. The values of alpha at different blocks in T5 encoder

R1 R2 RL Precision F1 Recall EO Split

0.9076 0.8302 0.8724 0.9401 0.9368 0.9342 0.7532 0.9566

Table 7. Evaluation Metrics for gating attention outputs

The split score is slightly higher than the other two approaches;
however, the event overlap and the ROUGE scores are lower. This
suggests that either the order of the sentences is not maintained, or
if it is maintained, some of the generated words do not match the
reference. This observation is also supported by the drop in the F1
score of the BERT score, as well as the lack of overlap among the
words.

Dependency Matrix and Level ID:Based on the results, the
embeddings did not possess the appropriate weights to influence
the token representations effectively. As a result, adding additional
information to the token embeddings before further downstream
tasks did not cause any meaningful changes. It was almost as if
nothing had been added to the token embeddings, and their contri-
bution did not produce any noticeable effect. When observing the
outputs, they were nearly identical to the baseline results. This is
why, unlike other approaches, the scores computed using both BERT
and ROUGE metrics did not drop significantly. The BERT Score was
almost the same as the baseline because the outputs in this case
were not corrupted. This stability in attention scores ensured that
there were no negative effects on the model’s performance.

R1 R2 RL Precision F1 Recall EO Split

0.9589 0.9251 0.9527 0.9778 0.9760 0.9744 0.8552 0.9727

Table 8. Evaluation Metrics for dependency matrix and level ID
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7.4 Discussion
Dependency_embeddings and level_ids: This approach was not
better than the baseline. Both metrics, the ROUGE and BERT score
were almost similar compared to those computed for the baseline.
The reason behind this is that both dependency embeddings and
depth embeddings are not pre-trained. Despite setting their learning
rate to 1e-4 to facilitate faster learning, the data used was too small.
A large dataset is required for these embeddings to attain the correct
weights, and they should also be pre-trained on downstream tasks
first. The right approach would have been to train them separately
using different datasets so that they can learn and attain the right
weights; in other words, grammatical relationships that tend to
closely relate to one another would fall into the same subspace.
Once that is done, these pre-trained weight embeddings could be
used to fine-tune the T5 model for syntactic simplification, or both
processes could be done simultaneously.
Matrix: First of all, the baseline model performed well, demon-

strating that the T5 model effectively simplified sentences based
on events. This is evidenced by the results, where the F1 score was
the highest among all approaches, indicating that the generated
sentences matched contextually well with the reference. Moreover,
when considering both the split score and event overlap, as well as
the ROUGE score, T5 correctly sequenced the events, highlighting its
strong performance even without explicit grammatical information.

Pruning was applied only to the model that excluded grammatical
information. A close examination of the attention heads in each
layer provided some insights; however, due to the smaller size of
the T5- small model, further pruning led to incorrect outputs upon
closer inspection.
When evaluating the other approaches, it is clear that they all

underperformed. This is evident in the decreasing number of cor-
rectly ordered splits when considering event overlap, ROUGE score,
and split scores. Additionally, a drop in the BERT score indicates
that the number of tokens that contextually align with references
has reduced.The paper did not investigate the attention heads when
applying grammatical information, which could have assessed the
impact of changes by computing metrics such as entropy and vari-
ability. For instance, if the matrix were applied at certain layers,
variability could have been closely examined to determine whether
it shifted from being mostly position-based (low variability) to more
dependency-related (high variability). Similarly, it would have been
valuable to evaluate whether entropy changed from a more focused
to a dispersed state. So, these approaches would help with picking
the right threshold and deciding where to apply the matrix. Among
all the approaches, the application of a gating mechanism on scores
performed the best. This is because the attention was not completely
modified by the matrix, allowing the model to prioritize its prefer-
ences through the use of learnable parameters. It was observed that
the model predominantly relied on the attention score computed by
the attention layer.

8 CONCLUSION
In conclusion, this paper has explored various methods for incor-
porating grammatical information into the model, enabling its use

in the encoder’s attention layer. The goal was to modify the atten-
tion scores to place greater emphasis on grammatical relationships,
thereby facilitating the breakdown of syntactically complex sen-
tences into simpler ones. Specifically, the objective was to ensure
that words lacking grammatical connections do not attend to each
other and that those with grammatical relationships are highlighted.
Despite the presence of grammatical information, the model

demonstrated limited learning from the proposed matrices. This
paper primarily concentrated on implementing this grammatical
information across all layers. Future research will require a more
granular analysis to understand the specific functions of each at-
tention head and how they can be adjusted in consideration of the
additional grammatical data. Simply adding the matrix did not help
the model; other techniques such selecting heads that focus on gram-
matical features and applying the matrix only to those heads may
be more effective. Overall, large language models (LLMs) perform
exceptionally well after fine-tuning, as evidenced by the baseline
results. T5, for instance, has been pre-trained on over 100 billion
tokens. Various studies have indicated that, even without explicit
training in grammatical structures, attention heads often incorpo-
rate grammatical considerations, at least to some extent, across all
layers. No single attention head or layer is solely responsible; rather,
the workload is distributed among all. Consequently, the aim of this
research was to achieve a slight increase in accuracy because the
accuracy of the baseline was already high. If improvement is to be
pursued, only slight enhancements can be anticipated, and these
will require a deeper understanding of what each head is actually
doing, rather than simply applying a matrix in each layer and a lot
more data.

9 FUTURE WORK
Future research could concentrate on gathering more data, particu-
larly if Approach 2 is used with dependency embedding and depth
embedding. This would enhance the embeddings’ ability to cluster
related words or relationships. Whereas, for Approach 1, it would
be beneficial to explore the complexities of how attention scores
function by seeking to understand the role of each attention head
through the analysis and decide whether to apply matrices to spe-
cific heads, possibly employing different thresholds for each head
instead of applying matrices to all heads in each layer.
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