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1 ABSTRACT

In dynamic domains such as �nance, where predicting outcomes

is essential, introducing reinforcement learning (RL) has shown

considerable potential but it remains largely unexplored due to the

limited number of practical applications available and �eld limita-

tion as of now. A key challenge in �nancial decision-making comes

from the complexity and low predictability of �nancial systems,

making it di�cult to understand, evaluate, and trust these decisions.

This is particularly relevant when integrating RL applications, as

they mostly operate as black-box models, which lack transparency.

The application of Explainable AI (XAI) and its techniques in RL

comes as a promising solution. This research will analyze why and

how XAI methods are used in the �nancial �eld in order to under-

line bene�ts and actual progress and results with a focus on their

contribution to decision-making, risk assessment and regulatory

compliance. Furthermore, it will make use of a simpli�ed betting

game as a case study in order to explore how Explainable Rein-

forcement Learning (XRL) can be used to improve explainability

by examining and explaining decisions made by RL agents in an

unpredictable �nancial environment.
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2 INTRODUCTION

The process of decision-making across �elds such as �nance, health

care, or even autonomous systems, has been undeniably improved

and disrupted by the introduction of arti�cial intelligence. Introduc-

ing AI in �nance has led to the reduction of manual work when

dealing with fraud detection, risk assessment, personalized �nan-

cial services or algorithmic trading, while also improving customer

support through chat bots or AI-driven models that enhance e�-

ciency and reduce human error in contract analysis. In the �eld of

healthcare, introducing AI led to the possibility of analyzing pa-

tient data and suggesting personalized treatments for them. For

instance, “Nature Medicine” conducted a study that proved how

Google’s AI performed better than radiologists when faced with

the task of detecting breast cancer [4]. Regarding autonomous sys-

tems, Tesla’s Full Self-Driving software is possible thanks to the

introduction of AI in decision making. It works by collecting and

processing real-time data from sensors and cameras and making
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decisions regarding driving in a split-second. Studies show a signi�-

cant decrease in accidents caused by human error during the testing

of autonomous vehicle testing [20]. The considerable advancements

in AI, as well as relevant sub�elds such as machine learning, have

revolutionized these industries, introducing innovative methods

that optimize decision-making and address complex problems. A

notable outcome of such developments is Reinforcement Learning,

an approach to machine learning that is concerned with how an

agent makes a decision in an environment in order to maximize

the expected outcome and reward [18]. RL has been present and

studied for several decades, with its modern form based on the

theory of Markov decision processes (MDP) emerging since the

1980s [8]. This theory enables the prediction of all future states and

expected rewards through only the current state and action, not

taking into consideration previous occurrences [17]. Furthermore,

most RL applications either represent a MDP or a partial MDP.

RL has been integrated and used in many �nancial applications

such as market making, portfolio management and optimization, op-

timal execution, option pricing and hedging [19][7]. This approach

aided and bene�ted this �eld, where the previously used mathe-

matical models were not able to encompass the complexity of this

dynamic and volatile domain. This leads to under-performance and

potential �nancial losses [7]. However, creating other much more

intricate methods of approach with the help of reinforcement learn-

ing that give better and more e�cient results, inevitably leads to

the computationally untraceable, unexplainable, and recurring AI

problem of the “black box”. Data is being fed to the algorithm that

will provide an output but how that output was decided and made is

not explained nor traceable, especially when dealing with complex

Deep Reinforcement Learning methods such (DRL) as Neural Net-

works [5]. This becomes a critical problem in a �eld such as �nance

where a DRL is still in the infancy for these “high-stakes tasks”

[14]. A bug or error in reinforcement learning (RL) algorithms can

cause substantial and devastating �nancial losses, highlighting an

essential need for understanding how an RL agent makes a decision

and breaking the black box. If ethics are addressed, a lack of trans-

parency can lead to signi�cant consequences regarding sensitive

�nancial applications such as loan approval, credit scoring or insur-

ance underwriting. For example, in the case of an RL agent rejecting

a loan application, it is essential that the decision-making process is

explainable in order to provide the applicant with enough relevant

information behind the rejection. More attention is critical in reg-

ulated industries where fairness and accountability are a priority.

Regulations such as the General Data Protection Regulation (GDPR)

in the European Union or the Fair Lending Act in the United States

require that automated decision-making processes be transparent

and justi�able, particularly in cases where individuals’ �nancial fu-

tures are at stake. The algorithm must explain the reasoning behind

every decision in order not to undermine the consumer’s trust and

avoid violation of regulatory obligations. Such unjust rejection may
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result in the applicant �ling a complaint and in the absence of a

clear explanation of the decision, the �nancial institution could face

legal consequences or regulatory penalties. To e�ectively address

this challenge, Explainable AI (XAI), a sub�eld of AI, focuses on

enhancing core principles like transparency and interpretability,

thereby enabling human users to gain deeper insights into the ma-

chine’s decision-making process [1]. XAI has established itself as

an essential tool for �nance scholars, industrial institutions, and

strategists because of its accessible and logical methods, along with

its clear computational processes, which have enabled numerous

�nancial studies [2].

The purpose of this research is to explore and highlight the advan-

tages of how explainable AI methods can be integrated into RL in

low-predictability, dynamic, and complex environments to enhance

transparency and understanding of these elaborated algorithms and

methods. By analyzing the state of the art and also providing a

practical example of the use of XRL methods, this paper aims to

address the imperative problem between the potential e�ciency

and advantages that DRL methods can pose in �nance and the need

for trust and explainability of the processes and reasoning done by

the RL agents in di�erent �nancial applications.

The problem statement and objectives leave to the following

research question:

How do Explainable Reinforcement Learning (XRL)

techniques impact the decision-making explainability

of RL agents in the dynamic �eld of Finance and more

speci�cally a low-predictability betting game?

This extended research question can be broken further into the

following sub-questions:

(1) How do Explainable Reinforcement Learning (XRL) tech-

niques impact the decision-making explainability of RL agents

in the �eld of Finance?

(2) "How do Explainable Reinforcement Learning (XRL) tech-

niques a�ect the explainability of RL agents’ decision-making

in a low-predictability betting game designed to simulate a

simpli�ed stock market?

This research aims at investigating advantages that XRL tech-

niques can pose when analyzing dynamic and unpredictable realistic

�nancial environments.

3 METHODOLOGY

This research will require multiple steps. First, literature research

will be performed to obtain a general understanding of explain-

able reinforcement learning (XRL) in �nance and existing methods.

Considering that the existing literature presents complex �nancial

systems ( for example: stock market, portfolios) that refer to real-life

scenarios with real hard-to-understand, analyze and explain data,

the second part of the paper will focus on XRL on a case study of a

simple betting game. The game provides an idealized scenario where

agents must make decisions under uncertainty (trying to mimic a

stock market environment). Consequently, LIME, an XRL model,

will be implemented to showcase the use of explainable methods to

understand and explain the decision-making process of the betting

game’s RL agent. The objective of this case study is to demonstrate

and provide a practical application of XRL on an RL observer and

to analyze the resulting outcomes.

The betting game, on which my experiments ar based on, is part

of an ongoing project led by my supervisor, involving other students.

The game implementation (game logic and generators) for the case

study was done by Mette Weisfelt while the RL observer and LIME

implementation was implemented by me.

4 LITERATURE REVIEW

SinceMachine learning and reinforcement learning are experiencing

expansion in many domains such as �nance, expansion attributed

to the high performance and great potential they provide, strong

concerns arise about the opacity of this disruptive technology being

voiced by stakeholders. As these algorithms become increasingly

powerful and adaptable, they also become more opaque, rigid, and

resemble black boxes, making their decision-making processes di�-

cult to understand [18]. Finance is fundamentally concerned with

the management, allocation, and investment of monetary resources,

so when these systems are entrusted with any type of money man-

agement, the stakes become extremely high, and transparency and

trust become vital. Eliminating the opaqueness becomes imperative,

considering the gravity of monetary, ethical and safety risks when

entrusting an RL agent with such sensitive operations. XAI aims at

solving such problems by creating the means by which the decision

process and decision points of an agent can be explained and made

transparent to be more easily assessed and �xed in case of poten-

tial �aws. XAI methods can be categorized into two main types

to aid in understanding and organizing XRL techniques (a subset

of XAI): intrinsic and post hoc [12]. The intrinsic category refers

to the construction of a model that is already compliant with the

interpretability requirement. In the post-hoc category, an additional

interpretable model or explanation technique is created to explain

the existing non-interpretable model [11].

A mix of both intrinsic and post-hoc models can be found in

existing XRL �nancial applications documentation. Existing work

validates the bene�ts of using RL and XRL in di�erent �nance do-

mains [3]. A DNQ (Deep neural Network) agent, which is com-

monly used in stock trading applications, uses a RL model that is

too complicated to interpret and opaque. To this agent, a post-hoc

explainability technique called SHAP was applied to help break

down and understand the agent’s reasoning. The method worked

with two real stock datasets and explained the predicted outcomes

and rewards for buying and/or selling stock.

In another �eld of �nance, Misheva et al. (2021) [10] explored the

use of explainable AI (XAI) methods: SHAP and LIME, in credit risk

management to increase the transparency and explainability of ma-

chine learning models used in credit risk management. Since loans

and credit approvals are high-risk decisions, entrusting RL models

to do this critical operation would be impossible without proper and

extensive reasoning and regulatory acceptance. Wrong decisions

in this �eld could equate to signi�cant loss of funds and reputation

(lawsuits, ethical problems) of the �rms or companies that would

utilize these models. The study demonstrated that post-hoc explain-

ability techniques could provide local and global interpretability

for credit scoring models, making AI-based credit risk assessments
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more reliable and compliant with regulatory requirements. The

research applied XRL techniques to ML models trained on peer-to-

peer lending data from Lending Club, �nding that SHAP e�ectively

highlighted global feature importance. Furthermore, LIME provided

detailed explanations for individual loan approval decisions. The

study’s �ndings reinforce the necessity and importance of explain-

able models in �nancial applications, as they facilitate trust and

accountability in RL agents decision-making and make possible

the integration of these machine learning models in these complex

�elds.

As seen in Lundberg and Lee (2017), it is much easier for humans

to understand the factors that in�uence an agent decision with the

help of SHAP values. Their framework brings into discussion the

challenge of model interpretability in machine learning and AI by

giving a compatible and explainable metric for understanding com-

plex predictions across multiple domains. When making informed

decisions, it is essential for �nancial experts to visualize SHAP val-

ues, for example plots of rewards, in order to show how past actions

a�ect the process of decision-making. Moreover, this perspective

helps identify key days and actions with the most signi�cant im-

pact on predictions [9]. The visualization of SHAP with the help of

plots of rewards or possible in�uence of speci�c dates or periods,

displayed how past actions contributed either negatively or posi-

tively to the decisions made by the agents. Key days and actions

that contributed most to predictions can be explained and decisions

to buy/sell can be broken down in order to help experts in making

a more informed decision. Furthermore, this XRL model can also

break down and �nd possible �aws or weak reasoning points of

DNQ agents. Both intrinsic and post-hoc XRL models can be applied

to portfolio management optimization and construction. Attention

layers, Multi-head LSTM and Explainable Policy Network are in-

trinsic models that were integrated into the RL agent to be able to

directly assess feature importance andweights. This made it possible

to analyze more in-depth portfolio features and how these features

in�uence and contribute to portfolio-related decisions. The post-hoc

method used is Q-value analysis (with visual representation) result-

ing from attention layers to interpret which features were the most

in�uential in speci�c decisions made post-training. As explained

by Mao Guan and Xiao-Yang Liu (2021), when visualized, Q-value

analysis can provide transparency in understanding which variables

most signi�cantly a�ected a model’s decision, which makes it easier

when interpreting factors that in�uence portfolio management de-

cisions [6]. Since the RL model outperformed traditional techniques,

the explanations o�ered by the XRL methods can o�er reasoning

and transparency in how and why this performance was possible.

The analysis of the articles indicates that these models can im-

prove trust in RL methods and in the agent’s reasoning as a whole

by debugging. Furthermore, it also can bring real bene�ts to �nan-

cial experts by highlighting properties or patterns that could not

have been visible with other traditional �nancial methods. Mao

Guan and Xiao-Yang Liu work highlights the ability to uncover

hidden patterns in �nancial data. The study further emphasizes

the extent to which XRL is capable of providing meaningful in-

sights into �nancial systems, a process which would be signi�cantly

more complicated using only traditional methods of interpretation

such as technical analysis and fundamental analysis, both being

commonly used to interpret market trends and stock performance.

While these previously mentioned methods have been valuable for

decision-making, oftentimes they do not allow insight into complex,

non-linear patterns in data [6].

Considering that the existing literature presents complex �nancial

systems (stock market, portfolios) that refer to real-life scenarios

with real hard-to-understand, analyze and explain data, the next

section of the paper will focus on a case study of an idealized, simple

betting game. It will very lightly mimic the stock market and the

impact of di�erent XRL techniques on a RL agent will be analyzed.

The game and RL agent are both implemented in Python.

5 CASE STUDY

The case study analyzes the decision-making and reasoning of an

RL agent developed for a Python-based betting game.

5.1 Components

The betting game consists of a generator and an observer. The gener-

ator produces sequences of numbers based on di�erent distributions:

• Linear distribution:Generates linearly increasing sequences.

• Normal distribution: Produces values based on a Gaussian

distribution.

• Cellular automata distribution: Creates binary sequences.

• Stock data: Uses historical stock data (e.g., Apple stock) as

input.

The observer, implemented as an RL agent, predicts whether

the next value will be higher or lower, earning rewards for correct

predictions and penalties for incorrect ones.

DNQ RL agent: the agent was implemented using Deep Q-

learning. The algorithm used combines Q-learning with a deep

neural network to approximate the Q-function (the action-value

function). The deep neural network is a complex network that mim-

ics neurons of a brain and goes to thought computations that cannot

be understood just by analysing or running the code [16]. They

are referred to as “black boxes” due to elevated di�culty in the

interpretation of the inner states of the models [16] which hinders

the possibility of understanding the reasoning behind certain, if not

any, decision the agent makes. .

The deep neural network takes input features that are mathe-

matically relevant for predicting the trend of the distributions [15].

These features include:

• Rolling mean,

• EMA (Exponential Moving Average),

• Current value,

• Trend slope,

• Momentum,

• cons_pos_value (number of consecutive positive rewards).

The action states are:

• 1: Bet higher,

• 0: Bet lower.

LIME: Ribeiro et al. [13] addresses the problem of explaining

opaque machine learning models by proposing LIME . This model-

agnostic post-hoc XRL technique can be used locally, or globally to

understand how the model behaves by giving user-friendly visual
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explanations. It builds simple surrogate (linear) models around these

complex models in the local vicinity of each prediction in order to be

able to o�er a n interpretable representation that is locally faithful

to the classi�er. Since analysing single predictions would not be

su�cient to explain how a model works, multiple LIME weights

will be aggregated. By aggregating the LIME weights, the global

behaviour of the Reinforcement Learning agent will be studied to

get a general understanding of how important each feature is in the

general decision process.

The vizualisation of the LIME results will be displayed using

di�erent charts:

• Beeswarm plot: combines weights and feature values, o�er-

ing a comprehensive visualization of both feature contribu-

tions and values.

• Global feature importance: the absolute values of feature

weights are averaged over all data points to detect most im-

portant features.

• Trend plot of each feature: feature weights are plotted

alongside the corresponding feature values to detect patterns

or relationships.

5.2 Result and analysis

Ten episodes of training were conducted multiple times, each con-

sisting of 2,000 movements. After training the RL model with dif-

ferent generators and evaluating it using LIME methods the results

provided several insights.

All the global feature importance plots values did not change

much from �rst to last episode even if the RL agent was not per-

forming optimally to get a substantial cumulative reward (not even

in the easy case of the linear generator where the observer just has

to learn to bet 1-higher every time). The features chosen, even if

they represent mathematically correct and technical indicators, fail

to deliver more than average results (or negative results) and seem

to be used erratically and inconsistently by the DNQ agent. This is

accentuated especially in the sock data observer where the values

have a higher degree of randomness. This situation can indicate

an incorrect trade-o� between exploration and exploitation or hy-

perparameter values in the model but also problems with feature

selection.

The ine�cient feature selection strategy is also emphasized by the

prevalence of the current value feature as one of the most in�uential

in decision making across all generators, even if it represents just a

numerical value and does not indicate anything about the generator

direction. This can put noise in the decision and negatively in�uence

the observer.

The importance of other features is also discrepant across the

di�erent generators, again questioning their validity. Nonetheless,

even if the features utilized do not yield optimal results and generate

inconsistencies in decision-making, they make a positive contribu-

tion to the decision-making process and lead to positive cumulative

rewards (from 100-300 positive cumulative results in the presented

training context) for most generators. To validate this, the agent

trained just with current value as state feature demonstrated com-

pletely ine�cient learning with many negative cumulative rewards

across all generators.

Since di�erent generators present di�erent distributions, di�erent

features become important in the decision making; therefore, a

deeper analysis is needed to assess what features can be changed

to provide better results and accommodate all types of generators.

Consequently, the inconsistencies in the learning strategies adopted

by the observer in di�erent training sessions (as shown by the

beeswarm and feature trend plots) highlight learning issues that

are subsequently demonstrated by ine�cient performance when

using a random distribution generator with the real stock data. This

concludes that the observers and its selected features have a positive

impact on a betting game with generators that do not exhibit much

randomness but it is not appropriate yet for a betting game with

random unpredictable data.

Plots examples to justify the results can be found in Appendix A.

Below the analysis of the LIME plots is provided for every gener-

ator.

(1) Linear generator: The rl agent is performing the best on

the linear generator. The �nal scores (cumulative rewards)

are growing linearly, but some confusion in the predicting is

present even for a linear distribution (the last score presented

and the highest one was 430 and there are 2000 movements).

The global feature importance graph shows three main im-

portant features: rolling mean, EMA and current value. The

other three do not contribute much to the decision (momen-

tum only contributes to one). The beeswarm and individual

feature trend plots shows that the LIME weight contribution

stays approximately the same but the feature values have

a tendency to swap LIME feature weights between them in

di�erent training sessions (opposite feature weights between

training sessions). Momentum stays the same with LIME

weight zero across training sessions.

(2) Normal distribution generator: The �nal scores (cumu-

lative rewards) are positive but seem to remain stuck at the

100-200 values. The global feature importance graph shows

three main important features: EMA, current value and mo-

mentum. Slope also contributes to the decision, although not

signi�cantly and the last two do not have a real impact. Here

the beeswarm and individual feature trend plots maintain

similar LIME weight across training sessions for a feature

value aside from the EMA feature that swaps lime weights

and values, and current value that behaves inconsistently.

(3) Cellular automata generator: The �nal scores (cumulative

rewards) are positive but also remain stuck at the 100-200

values. The global feature importance shows that: EMA, cur-

rent value, momentum, and consecutive positive rewards fea-

ture in�uence most decision-making. Rolling mean and trend

slope have low absolute mean weights values. the beeswarm

and individual feature trend plots maintain the same, constant

distribution of values and weights across di�erent training

sessions.

(4) Stock data generator: The stock data generator poses a

challenge for the RL agent. The �nal scores across training

episodes are both positive and negative indicating that the

agent is not learning e�ectively. The global feature impor-

tance of each feature changes with di�erent training sessions,
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making it di�cult to tell which features are the most impor-

tant for this generator. The beeswarm is also looking di�erent

in di�erent training sessions and for the trend of the features

it is observed that the trend for current value and EMA stay

the same proportionally but have di�erent weights. The trend

plots of the other features have changed similar to the ones

from the other generator plots.

Drawbacks and Future Work: Lime provides a faithful single

prediction explanation of the importance of features, so when ag-

gregating multiple feature weights from di�erent predictions, some

inconsistencies can arise (LIME operates locally, and global patterns

might not be captured perfectly)[19]. In addition, LIME’s most im-

portant feature can cause either wrong or correct predictions. Both

features with high positive or high negative LIME weights have a

large impact on the predictions. For future work, more XRL methods

can be applied (SHAP, silency maps). The predictions can be studied

locally to check the in�uence of the speci�c features in correct and

incorrect predictions since now the focus was analyzing the impact

of the features in decision making regarding the correctness. Fur-

thermore, a more in depth debugging can be done to the RL agent

by removing non-relevant or noise inducing features and replacing

them with relevant ones.

6 CONCLUSION

This paper has investigated the integration of Explainable Reinforce-

ment Learning techniques into Reinforcement Learning (RL) models

to overcome the current limitations of transparency and con�dence

in the �nancial decision making process. The research highlights

the weaknesses of traditional “black-box” RL models, lack of trans-

parency, and the potential risks in high-stakes environments such

as �nance, and thus the need to apply XRL techniques for insight

into model reasoning.

This case study applies a simpli�ed betting game to show how

XRL techniques, notably LIME, may be used to better understand

the RL agent’s decision-making process in a variety of environments

from linear distributions all the way through to more complex stock

data generators. Furthermore, the results reveal di�erences in fea-

ture importance and con�rm the need for more developed feature

selection and tuning of the RL agents. These observations point

towards the importance of the role XRL can play in identifying and

preventing model weaknesses, such that RL applications in �nance

are not only e�ective but also understandable.

Though the case study provides meaningful insights, limitations

such as the local scope of LIME and RL agent’s poor performance

suggest the need for further future research. Integration of additional

XRL methods, improved feature selection, and performing a more

in-depth analysis of predictions are further needed to improve the

RL agent performance and decision-making transparency.

In conclusion, this research emphasizes that Explainable Rein-

forcement Learning is not only a technical requirement but a require-

ment for establishing trust, enhancing decision-making process, and

ensuring compliance in dynamic �nancial environments. As RL ad-

vances and evolves, the intersection with XRL o�ers a promising

solution to bridge innovative machine learning techniques with the

explainability required to enable responsible and ethical practice in

�nance.

6.1 Limitations and future research

Time constraints were the biggest limitations considering the broad-

ness of the research. A more in-depth literature analysis could be

done to get a wider understanding of the "state of the art" of XRL in

�nance with a separate focus on di�erent �elds of this broad domain.

The case study presents a global analysis of the decision-making

patterns of the RL agent, but there is a need for a local analysis to

enhance understanding and more accurately assess which features

in�uence which outcomes. Furthermore, applying more XRL models

could be use for better analysis and comparison of results. Future

research could dive into the optimization of the RL agent based on

the feedback and results of the XRL techniques and explore their

relationship.

A APPENDIX

Fig. 1. (Global feature impotence graphs for normal and linear generators

respectively: emphasizing current value as a influencial feature and the

importance of di�erent values across di�erent generators)

Fig. 2. (Beeswarm graphs of stock and cellular generators: emphasizing

di�erent LIME wight distributions of di�erent feature values across genera-

tors)
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Fig. 3. (Trend graph feature for EMA in two separate training occasion with

a normal generator: there is a noticed shi� of LIME weights compared to

di�erent feature values emphasizing the change of learning strategy on the

same generator)

Fig. 4. (Trend graph feature for Rolling Mean in two separate training

occasion with a normal generator: there is a noticed inconsistencies of LIME

weights compared to di�erent feature values emphasizing irregular learning

pa�erns)

Fig. 5. (Beeswarm graphs for the cellular generator in two separate training

sessions: there is a consistency between learning pa�erns emphasizing that

the suboptimal consistent cumulative reward across episodes can be caused

also by the exploration exploitation trade-o� or hyperparameters values)
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During the research process, AI tools were utilized for code com-
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thor assumes full responsibility for the content and conclusions

presented in this work.
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