Measuring the energy consumption and carbon footprint of encrypted

databases using CodeCarbon

MIHAI POP, University of Twente, The Netherlands

Privacy and climate change are two crucial subjects that have concerned
people recently. Encryption is vital in preventing malicious actors from
interfering and tampering with sensitive data. Nonetheless, encrypting and
decrypting data impacts the energy consumption of the systems that run
those algorithms. This research will measure the carbon footprint of database
queries with and without encryption. After gathering the measurements,
some statistical analysis is carried out to verify the significant difference
between the two and their magnitude. The findings of this paper are per-
tinent for sustainable data privacy and the cybersecurity domain because
they provide additional information in the comparison between searchable
encryption and plain, unsecured search queries.

Additional Key Words and Phrases: Databases, Encryption, Privacy, Energy,
Carbon Footprint, CodeCarbon

1 INTRODUCTION

Privacy is a topic that has become more prevalent in recent years in
our lives. Legislation like GDPR (General Data Protection Regula-
tion) in the European Union or CCPA (California Consumer Privacy
Act) in California defines how privacy can be safeguarded and what
companies that store personal data need to do to ensure that the
rights of their users are not violated.

Encrypted databases protect users’ privacy by offering a secure
way to query data and reducing the chances of tampering with
sensitive information by a malicious actor. However, encrypting
and decrypting information takes extra computational time and
materializes in more energy consumed, unlike the same task without
cryptographic steps. Furthermore, reducing the carbon footprint is a
problem companies are trying to solve by evaluating and optimizing
electricity assets to combat climate change. As a result, companies
need to increase their privacy protection to fight against malevolent
actors and simultaneously reduce their carbon emissions. This study
aims to investigate these points of interest to understand better
the environmental consequences of using a tool like encrypted
databases.

Based on the information mentioned above, the study will focus
on the following research question: What is the difference in energy
usage and carbon footprint of queries in an encrypted database from
that of a non-encrypted database?

To address these research questions, an experiment was carried out
to measure the possible differences between the energy consump-
tion and carbon footprint. The setup of the experiment involved the

TScIT 42, January 31, 2025, Enschede, The Netherlands

© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

utilisation of tools like SWiSSSE[5] (a framework that enables en-
crypted queries to a Redis database) and CodeCarbon[2] (a Python
framework to track the carbon emissions of a computer program)
to enable the possibility to perform encrypted search queries and to
be able to measure the energy consumption and carbon emissions
of unencrypted queries and encrypted ones. The analysis carried
out on the results of the experiments uncovers noticeable differ-
ences in energy consumption and, subsequently, in carbon footprint,
encrypted databases requiring more power to perform the same
amount of queries.

The remainder of this paper is structured as follows. Section 2 offers
an overview of privacy, encrypted databases, and confidentiality.
Section 3 outlines the methodology for designing and conducting the
experiment. Section 4 showcases the experiment’s findings. Section 5
discusses the results and considers potential threats to their validity.
Finally, Section 6 offers concluding remarks.

2 RELATED WORK

In this section, we compare existing papers that measure energy
consumption and the performance of systems, as well as their tech-
niques to achieve the respective measurements.

Energy consumption. Studies like Warade et al.[12] or Cabrera et
al.[1] discuss and analyse the possibilities of measuring energy
consumption using EML (energy measurement library) or using
hardware like smart energy plugs, that transmit the recorded data.
Khan[6] analyses the possibility of measuring the energy consump-
tion of High Performance Computing using Inte]l RAPL (Running
Average Power Limit), a tool that gathers the data directly from the
CPU to estimate the energy consumption used. The relationship
between energy consumption and encryption measures has been
previously investigated to identify if there is a correlation in Ma-
chine Learning[8]. Another area where this was researched was in
the area of advertisement blockers on mobile devices[10].

Encrypted databases. In Gui et al.[5], the issue of measuring the per-
formance of encrypted databases in comparison with non-encrypted
databases was analysed, and it was concluded that it is a perfor-
mance difference that can be in the range of two times slower for
solutions like SWiSSSE in comparison with unencrypted databases.

Carbon footprint. Research has been conducted to determine the
carbon footprint of data transmission on a backbone network[4].
However, no research has been done on the impact caused by en-
crypted databases.

TScIT 42, January 31, 2025, Enschede, The Netherlands

3 MEASUREMENT METHODOLOGY

This section will focus on the experiment setup: the tools used to
run the experiment and the environment in which the tools were
run to measure the possible differences. The code created for the
experiment is open-source and can be found Github[3], so that the
results can be reproduced and analysed.

3.1 Measuring the carbon footprint

To record the energy consumption and carbon footprint of the ex-
periment, we used a tool called CodeCarbon. This tool was created
by researchers with the goal of registering the aforementioned data.
Unlike alternatives, such as measuring the energy drawn by the
computer during the experiment, CodeCarbon measures the en-
ergy consumed by the CPU, GPU, and memory of the computer
separately, helping to understand if there is a specific part that the
program is using more. Consequently, it identifies which component
is using more power than the rest to run the program. Furthermore,
after the energy tracking is stopped, it calculates the carbon emis-
sions for the interval that it ran, relevant for the present study. It
does this by utilising the energy consumption value and the re-
gional carbon intensity of electricity, which is based on the ratio of
fossil-based and renewable-generated energy in each country.

For the experiment, a wide data range was used to better understand
the differences in carbon emissions between different numbers of
search queries and to check how the increase in the number of
queries affects energy usage and, subsequently, the carbon footprint.

Like any tool used to measure anything, CodeCarbon has some
limitations. Since it is a software solution for measuring energy
consumption, it relies on the data provided by the computer’s com-
ponents. That data is estimated using different tools, such as Intel
Power Gadget for Intel CPUs or an estimation of memory usage.
However, the value can differ for each module and manufacturer, so
inaccuracies may occur. Furthermore, the tracking is not continuos
because CodeCarbon measures the energy usage at a set interval.

All things considered, CodeCarbon is a good tool to track carbon
emissions, despite the negative points mentioned above. It is a
software-based solution that makes emission monitoring simpler
and more convenient without needing specialised equipment; these
points are crucial in using it as the monitoring tool for this research.

3.2 Encrypted database

There are multiple DBMSs (Database management systems) like
Microsoft SQL[9] or MongoDB(7] that support encrypted queries,
but there are limitations. Microsoft SQL supports encrypted queries
but only allows the encryption of specific columns, not the entire
database. Mongodb has a limited set of features available for the
Community Edition, like Automatic Encryption not being available,
and there are some limitations to the possible queries that can be
used. Furthermore, both options require the database managers to be
locked in their respective ecosystems. Either of the aforementioned
options is also not open-source and not available for free. For these
reasons, neither of these options was selected for the experiment.

Mihai Pop

For the experiment, a Redis-based implementation called SWiSSSE
was used because it provides encryption by using encrypted queries.
It is a solution created by security researchers, and a reference
benchmark exists between SWiSSSE and a non-encrypted Redis
database[5]. Furthermore, even though the implementation is using
Redis, the principles can be ported to other DBMSs like PostgreSQL
or MariaDB in the future, for example, since the research behind
talks about the technique of encrypting the queries, not about provid-
ing a dedicated tool only in Redis. There is extensive documentation
on how to reproduce the benchmarks, with detailed steps, which
was ideal for this research’s experiment [11]. On the other hand,
SWISSSE is not a mature solution, and it is a more complex solution
to work with than a built-in product like MongoDB’s Queryable
Encryption. Also, it is a form of Searchable Systematic Encryption,
so it is more optimised in keyword-based search scenarios, but in
some other scenarios, it might not be applicable altogether.

These points, together with the fact that both SWiSSSE algorithms
and the implementation are open source, so other researchers in
the cybersecurity domain could reproduce the process, motivated
the decision to choose SWiSSSE for this research.

3.3 Materials

Python and libraries like matplotlib and scipy are used to run the
CodeCarbon energy tracking and data analysis to identify the statis-
tical significance of the different values. To populate the database,
the Enron mail dataset was used since it was linked in the SWiSSSE’s
Github repository, and using it made the setup of the experiment
way easier than reconfiguring the SWiSSSE tool to use another
dataset.

3.4 Environment

To make the experiment reproducible and easy to maintain the ex-
periment was run using Docker. A Redis container with the SWiSSSE
configuration files was created to run the DBMS.

The experiment ran on the ARM64 architecture on the following
machine:

e 16-inch Macbook Pro with M1 Max (10 cores CPU + 24 cores
GPU) and 32GB of RAM.

4 RESULTS

This section will address the experiment’s results, splitting them
based on the research questions. Data was collected using the method
described in Section 3. The complete measurements can be found
in Appendix A.

4.1 Measuring the energy usage and carbon footprint
when the database size is constant and the number of
queries is variable

Procedure. We measured the energy consumption and carbon emis-
sions by running 500, 1000, 2000, 3000, 4000 and 5000 random search
queries to check for a difference between running these queries us-
ing SWISSSE or in a classic database like Redis. Furthermore, we
wanted to identify emissions and energy usage tendencies when
scaling the number of queries in both scenarios. The database size

Measuring the energy consumption and carbon footprint of encrypted databases using CodeCarbon

was set to 400 000, and the Enron email dataset was used. We used
natural logarithm for the figures so that the difference between the
classic database and SWiSSSE is more noticeable.

Classic database. As shown in Figure 1, the energy consumption of
unencrypted queries is at a maximum (4.00 - 10~> kWh) for running
5000 search queries. Figure 2 shows that the value of the CO; emis-
sions is at (14.98 - 107> kg) for the same amount of search queries.
Both figures show that the energy usage and carbon footprint in-
crease slightly but are relatively stable relative to the resource usage
of SWiSSSE as a database solution. The high values for both energy
usage and carbon emissions at 4000 queries could be due to the fact
that a background task was running at the same time with the test,
a limitation discussed in Subsection 5.3.

SWISSSE database. In contrast to the values for a classic Redis data-
base, the energy usage and carbon values for SWiSSSE are consis-
tently higher, reaching a higher peak (212.89 - 107> kWh) in energy
consumption when running 5000 random search queries, showed in
Figure 1. Carbon emissions reach a higher point too (795.52 - 107>
kg), 53 times higher than the value recorded for 5000 random search
queries for a database that uses unencrypted queries. This difference
is shown in Figure 2. Furthermore, in both figures it can be noticed
a significant increase as the number of search queries is increased,
scaling proportionally, the graph for SWiSSSE being almost parallel
to the graph of the classic database.

Statistical analysis. To further analyse the entire data gathered, sta-
tistical analysis was used to identify if there is a significant difference
between the distributions. For that, the Mann-Whitney U test was
performed, with the alpha set at 5% and the following hypotheses
used:

e Hj: The distributions of both samples are equal.

e Hj: The distributions of both samples are unequal.

The statistical test results were the following: the p-value of the test
was 0.0010, which was lower than the acceptance level of 0.05, thus
rejecting the null hypothesis and proving that the distributions of
the two scenarios are not the same.

TScIT 42, January 31, 2025, Enschede, The Netherlands

s -®- SWisSSE """ o
Classic database __..—""
= L
1} e
£ .
2 _g -7
5 »~
o s
5 |
g .
& —7 7
-
o
£
=
F=]
s —8
oh
2
=
2
° -9
£
\ T \ T T
1000 2000 3000 4000 5000
Number of queries
Fig. 1. Energy consumption for variable amount of queries
—6 -
—-$- SWissSE """ *
Classic database Pt
T
B -7 o«
E T
£ -
-~
;
o~ rd
g4
8 L
-
o
£
&
= —97
(]
o
L2
[
2 —10
m
E
—11
T T T . T
1000 2000 3000 4000 5000

Number of queries

Fig. 2. CO, emissions for variable amount of queries

4.2 Measuring energy and carbon costs when the number
of queries is constant and database size is variable

Procedure. In contrast to Subsection 4.1, in this scenario, the number
of queries used remained at 1000. Still, the database’s size changed
to 1000, 2000, 3000, 4000, 5000 entries from the Enron email dataset.
This measurement aims to identify the differences between the
costs per query and how those change depending on the database
size. Like the previous subsection, the figures include the standard
error for the measurements, but it is not noticeable due to the small
changes. Logarithm scale was used also for the figures included in
this subsection since they emphasize better the differences.

Classic database. In Figure 3 and Figure 4, it can be observed that the
energy usage and carbon emissions are relatively stable, reaching a

TScIT 42, January 31, 2025, Enschede, The Netherlands

maximum (2.90 - 1078 kWh in energy usage and 0.78 - 1078 kg in
carbon emissions) for a database size of 5000 entries.

SWiSSSE database. This type of database had a way more significant
and noticeable increase in both energy consumption and CO3, both
of them presented in Figure 3 and Figure 4. However, a similar
pattern to the classical database is described by the plots: the values
for both energy consumption and for carbon emissions peak at 5000
entries (37.57 - 1078 kWh and 10.05 - 1078 kg), using up to 13 times
more resources per query than the classical database.

-®- SWisssE _-®
—15.0 1 Classic database -

//,‘r
—

i

—=15.5 1 -
—16.0 4
—16.5 1
-17.0 1

-17.5 1

Natural logarithm of energy consumed per query

T T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000
Database size

Fig. 3. Energy consumption per query for variable database size

~16.0 1 -
-#- SWiSSSE _-e

Classic database -
—16.5 4 "

-17.0 4 -7
-17.5 1
—18.0 4

—18.5 4

Natural logarithm of CO2 emitted per query

—=19.0 4

T T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000
Database size

Fig. 4. CO, emissions per query for variable database size

5 DISCUSSION

In this section, the experiment’s results will be interpreted, com-
pared with previous related data, and discussed, along with the
implications of the findings and possible limitations of the experi-
ment.

Mihai Pop

5.1 Interpretation of the results

Given the data gathered in the experiment and the results of the
aforementioned experiment described with plots in Section 4 we
can conclude there is a significant difference in energy usage and
subsequently, in the value of carbon emissions when encrypted
databases like SWiSSSE are used. The resources increase could be
attributed to the number of cryptographic operations needed to
decrypt and encrypt the data for the queries.

5.2 Implications of the findings

It can be observed in all of the plots that the difference between
classic database and SWiSSSE is significant, SWiSSSE being 54 times
more energy consuming than a classical database. However, if the
respective data is small and not queried often, encrypted databases
could be a solution in scenarios that require the data to be encrypted
like storing sensitive information. The benefits of better protecting
the respective data could outweigh the negative implications of
utilising more energy per query and increasing carbon emissions.

However, for large scale deployments, the economical disadvantages
of increasing the energy consumption by orders of magnitudes could
be a factor that would make the use of encrypted query database
like SWiSSSE unpractical. This bottleneck could be why most of the
solutions that offer encrypted database solutions rely on encrypting
a specific column in a table since that is way less computational in-
tensive and thus, more power efficient and environmentally friendly.

5.3 Limitations of the experiment

SWiSSSE. The experiment is based on the implementation available
on GitHub of the SWiSSSE database[11]. This implementation is
based on the algorithms on the original paper, but it is not a released
or mature solution, so optimisations could be done to reduce the
overhead.

CodeCarbon. Since it is a software-based solution for measuring en-
ergy consumption and calculating carbon emissions, data-gathering
errors could occur way more than hardware-based solutions. Fur-
thermore, this tool monitors the energy consumption of the entire
machine, not only the Docker and Redis container processes, in
the case of this experiment, which could result in some differences
between each iteration due to the background tasks of the operating
system or other programs running. Additionally, data is gathered
at a set interval, the energy measurements are not continuous, and
CodeCarbon doesn’t consider any network overhead caused by in-
creasing the sizes of the queries. Moreover, encrypted queries may
be larger than classic queries, thus inducing a communication over-
load. The experiment doesn’t measure and consider this potential
overload, which is still an important problem in sustainable ICT.

ARM64. A computer with an ARM64 processor was used and the
results could be different due to the performance and optimisation
differences between the ARM architecture and the X86_64 architec-
ture.

Measuring the energy consumption and carbon footprint of encrypted databases using CodeCarbon

5.4 Future work

Further research in this field, such as generalising this experiment
and testing more DBMSs, is needed to identify if the trend is sim-
ilar across the solutions. Furthermore, experimenting with differ-
ent datasets could help verify if the results remain consistent for
databases that are structured differently: the ones that rely heavily
on foreign keys or the ones in which the tables have a minimum
amount of foreign keys. Another point of interest could be check-
ing if the energy usage and the carbon footprint are influenced by
different architectures. On top of that, more and more companies
use Kubernetes to deploy databases and systems since it is easier
to manage and allows load balance the requests, so measuring the
energy usage and carbon emissions of encrypted databases in that
scenario could be valuable information for a broad spectrum of
companies and institutions.

6 CONCLUSION

Encrypted databases are a solution that responds to the reality of
today, where we need more and more protection for our privacy.
However, it is not a perfect solution because it uses significantly
more energy resources, and thus, it could heavily influence the car-
bon footprint of the systems that use them. This difference could be
minimized in the future by technological advancements or software
optimization, but at the moment there is a significant difference in
using a classical database and using an encrypted one.

This paper managed to identify the differences in energy usage and
carbon emissions by using a database solution that encrypts queries
like SWiSSSE and a solution that doesn’t do that. The differences
between the two presented in the Figures in Section 4, small but
still significant when the dataset or the number of queries is small,
increase considerably to up to 53 times and, thus, become substantial
for more substantial data and queries. This difference makes the
usage of encrypted databases in systems that work with big datasets
or are very data-driven very impractical for companies that try to
minimise their energy usage and carbon footprint.

REFERENCES

[1] Alberto Cabrera, Francisco Almeida, Javier Arteaga, and Vicente Blanco. 2015.
Measuring energy consumption using EML (energy measurement library). Comput
Sci Res Dev 30, 2 (May 2015), 135-143. https://doi.org/10.1007/s00450-014-0269-5
Benoit Courty, Victor Schmidt, Sasha Luccioni, Goyal-Kamal, MarionCoutarel,
Boris Feld, Jérémy Lecourt, LiamConnell, Amine Saboni, Inimaz, supatomic,
Mathilde Léval, Luis Blanche, Alexis Cruveiller, ouminasara, Franklin Zhao, Aditya
Joshi, Alexis Bogroff, Hugues de Lavoreille, Niko Laskaris, Edoardo Abati, Douglas
Blank, Ziyao Wang, Armin Catovic, Marc Alencon, Michat Stechty, Christian Bauer,
Lucas Otavio N. de Aratjo, JPW, and MinervaBooks. 2024. mlco2/codecarbon:
v2.4.1. https://doi.org/10.5281/zenodo.11171501
[3] Marc Damie, Merijn Posthuma, and Mihai Pop. 2025. MarcT0K/privacy-carbon-
experiments. https://github.com/MarcTO0K/privacy-carbon-experiments
[4] Marion Ficher, Francoise Berthoud, Anne-Laure Ligozat, Patrick Sigonneau,
Maxime Wisslé, and Badis Tebbani. 2021. Assessing the Carbon Footprint of
the Data Transmission on a Backbone Network. In 24th Conference on Innovation
in Clouds, Internet and Networks (Paris, France). https://hal.science/hal-03196527
[5] Zichen Gui, Kenneth G. Paterson, Sikhar Patranabis, and Bogdan Warinschi.
2020. SWiSSSE: System-Wide Security for Searchable Symmetric Encryption.
https://eprint.iacr.org/2020/1328 Publication info: Published elsewhere. Minor
revision. PoPETs 2024.
[6] Nizam Kashif Khan. 2018. Energy Measurement and Modeling in High Performance
Computing with Intel’s RAPL. Aalto University. https://aaltodoc.aalto.fi/handle/
123456789/30613 ISSN: 1799-4942 (electronic).

[2

TScIT 42, January 31, 2025, Enschede, The Netherlands

[7] MongoDB. 2025. Queryable Encryption - MongoDB Manual v8.0. https://www.

mongodb.com/docs/manual/core/queryable-encryption/

Rakshit Naidu, Harshita Diddee, Ajinkya Mulay, Aleti Vardhan, Krithika Ramesh,

and Ahmed Zamzam. 2021. Towards Quantifying the Carbon Emissions of Dif-

ferentially Private Machine Learning. arXiv (July 14 2021). http://arxiv.org/abs/

2107.06946

[9] Pietervanhove. 2024. Always Encrypted - SQL Server. https://learn.microsoft.

com/en-us/sql/relational-databases/security/encryption/always-encrypted-
database-engine?view=sql-server-ver16

[10] Kent Rasmussen, Alex Wilson, and Abram Hindle. 2014. Green Mining: Energy

Consumption of Advertisement Blocking Methods. In Proceedings of the 3rd Inter-

national Workshop on Green and Sustainable Software (Hyderabad, India). ACM,

38-45. https://doi.org/10.1145/2593743.2593749

SWiSSSE-crypto. 2024. SWiSSSE-crypto/SWiSSSE. ~ https:/github.com/SWiSSSE-

crypto/SWiSSSE

[12] Mehul Warade, Kevin Lee, Chathurika Ranaweera, and Jean-Guy Schneider. 2023.
Monitoring the Energy Consumption of Docker Containers. In 2023 IEEE 47th An-
nual Computers, Software, and Applications Conference (COMPSAC). IEEE, Torino,
Italy, 1703-1710. https://doi.org/10.1109/COMPSAC57700.2023.00263

8

[11

A EXPERIMENT DATA

Country where the carbon emissions were measured: the Nether-
lands!

A.1 Measurements when the number of queries is variable
and database size is constant

No. of queries | Energy (10~> kWh) | CO; (107> kg)
500 1.67 6.26
1000 2.07 7.76
2000 2.50 9.34
3000 3.04 11.36
4000 4.99 18.64
5000 4.00 14.98

Table 1. Classic database measurements

No. of queries | Energy (10~ kWh) | CO; (107 kg)
500 30.77 114.99
1000 56.52 211.22
2000 91.25 340.96
3000 128.32 479.51
4000 177.39 662.85
5000 212.89 795.52

Table 2. SWiSSSE database measurements

!Carbon emissions values differ per country so the results might be different depending
on the geographical location

https://doi.org/10.1007/s00450-014-0269-5
https://doi.org/10.5281/zenodo.11171501
https://github.com/MarcT0K/privacy-carbon-experiments
https://hal.science/hal-03196527
https://eprint.iacr.org/2020/1328
https://aaltodoc.aalto.fi/handle/123456789/30613
https://aaltodoc.aalto.fi/handle/123456789/30613
https://www.mongodb.com/docs/manual/core/queryable-encryption/
https://www.mongodb.com/docs/manual/core/queryable-encryption/
http://arxiv.org/abs/2107.06946
http://arxiv.org/abs/2107.06946
https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-ver16
https://doi.org/10.1145/2593743.2593749
https://github.com/SWiSSSE-crypto/SWiSSSE
https://github.com/SWiSSSE-crypto/SWiSSSE
https://doi.org/10.1109/COMPSAC57700.2023.00263

TScIT 42, January 31, 2025, Enschede, The Netherlands

A.2 Measurements when the database size is variable and

number of queries is constant

Mihai Pop

Database size | Energy (108 kWh) [CO, (1078 kg)
1000 13.13 3.51
2000 17.30 4.63
3000 21.65 5.79
4000 28.60 7.66
5000 37.57 10.05

Database size | Energy (1078 kWh) | CO, (1072 kg)
1000 1.98 0.53
2000 2.28 0.61
3000 2.51 0.67
4000 2.66 0.71
5000 2.90 0.78

Table 3. Classic database measurements

Table 4. SWiSSSE database measurements

	Abstract
	1 Introduction
	2 Related work
	3 Measurement Methodology
	3.1 Measuring the carbon footprint
	3.2 Encrypted database
	3.3 Materials
	3.4 Environment

	4 Results
	4.1 Measuring the energy usage and carbon footprint when the database size is constant and the number of queries is variable
	4.2 Measuring energy and carbon costs when the number of queries is constant and database size is variable

	5 Discussion
	5.1 Interpretation of the results
	5.2 Implications of the findings
	5.3 Limitations of the experiment
	5.4 Future work

	6 Conclusion
	References
	A Experiment data
	A.1 Measurements when the number of queries is variable and database size is constant
	A.2 Measurements when the database size is variable and number of queries is constant

