Bike trajectory prediction with onboard sensors
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As the number of cyclist casualties rises, it is essential to make the bike a safer
option of transport. This can be done by making the bike a “smarter” device.
However, bicycles are severely behind in the smart vehicle industry. Whilst
the automobile industry is already creating autonomous cars, research on
smart bikes is few and far between. An intelligent bicycle solution would
allow for a safer environment for every smart vehicle in the system. One of
the key features of an intelligent bike is trajectory prediction as it allows
for safer navigation, lane keeping, obstacle detection and more. The current
state of the art solutions are not made for bicycles as they are limited in
space and processing power. The study compares different approaches to
path prediction with the goal of finding an effective LSTM architecture for
the purpose of a bike’s trajectory prediction using on-board sensors. The
described model lays the ground work for further research in the field of
smart bicycles by offering an effective LSTM model and plenty of ways
to improve upon it with the goal of bridging the gap between the high-
tech autonomous cars and comparably low-tech everyday bikes. The paper
deals with limitations of time, variety in the dataset, lack of attention to
external factors, edge computing and limited testing of prediction history
and horizon.

Additional Key Words and Phrases: bike, bicycle, trajectory prediction, path
prediction, RNN, recurrent neural network, LSTM, long short-term memory,
time sequence prediction

1 INTRODUCTION

According to the government of the Netherlands, the 17 million peo-
ple residing in the country share about 22.8 million bicycles [5]. The
relatively inexpensive and small vehicle is a staple in Holland. Even
though back in 2022 the dutch government set aside a budget of 780
million euro and just last year they allocated another 18 million euro
to be used over the next 3 years to improve bicycle infrastructures
[2], a statistic from Statista claims that in just 2022 there were 291
fatal cyclist road incidents [6]. That is the most cyclist casualties
since 1996 [6]. There are many possible reasons for this including
weather, visibility conditions. Since infrastructural upgrades do not
seem to affect the number of accidents positively, one could take a
different approach to road safety. For example, insuring more safety
for a cyclist by enhancing the bicycle’s intelligence

However, compared to other forms of transportation, the bicycle
is quite uninventive today. Apart from electric bicycles, not much
innovation has become widespread in the field. As the world moves
on to new smart technologies, the bike must keep up. This research is
an effort to bridge the gap between the low-tech bicycle and the high-
tech autonomous vehicles. Although autonomous vehicles have
been around since the 1980s [7], certain means of transport are much
more researched than others. To be more specific, bicycle research
is few and far between. As we aim to make cycling safer and more
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convenient for future generations, we must implement intelligent
assistance to the everyday bicycle. Although many sophisticated
systems exist for other autonomous vehicles, they are not as feasible
for bicycles as the space and resources (computing power, memory,
etc.) they have are much more limited.

Currently, the main safety mechanism on most bikes is the very
simple bell. However, it is only useful in simpler situations as it
can only be properly used when the driver can foresee an obstacle
and wants to communicate the danger to it. This does not entail
proactive safety though, i.e. forecasting possible future events. That
could be done using data driven approaches. More specifically, one
of the essential features of an autonomous vehicle is trajectory
prediction. This enables the possibility of safer navigation, lane
keeping, obstacle detection and more. However, the problem of
implementing such a system on a bicycle in a lightweight manner
is far beyond a simple one. As infrastructure gets smarter and big
cities connect their traffic systems with other devices like smart cars
to maintain road safety — adding bikes to this system would make
it even more detailed and safer.

The main gaps in research come in four forms. Firstly, there is a
lack of research on bikes specifically. Most route prediction research
is made for smart cars [1, 3, 9, 10]. This leaves a wide gap in research
as a bike is fundamentally different from a car. A bike can be far
more reactive as it relies on human input more and is generally
less stable. Also bikes are often ridden on different types of paths
whilst cars mostly stick to paved roads. Moreover, most research
does not account for complex situations, often choosing to predict
a general direction (east, west, south, north) [9, 10] whilst pointing
out the need for a more adaptive model. Furthermore, most papers
on the topic do not mention what they run their models on [1, 10].
This is another big gap in research as real-time trajectory prediction
on a bike is heavily constrained by the aforementioned constraints
of space and resources. Finally, there’s a gap in multimodal sensor
implementations for trajectory prediction.

This study will attempt to construct an algorithm that will use
differently placed IMU sensors and a phone to measure GPS for the
task of trajectory prediction. An inertial measurement unit (IMU) is
a sensor that produces accelerometer and gyroscope measurements
whilst GPS is global positioning data collected on a phone. The re-
search aims to study current architectures used for route prediction
to answer the following research questions:

RQ1: What algorithm is best suited for a bike’s trajectory predic-
tion using GPS and IMU inputs?

RQ2: What effect would adding an additional IMU have to the
quality of a bike’s trajectory prediction?

2 RELATED WORK
2.1 INITIAL MODEL SELECTION

The first point of research was a scientific paper sent in by the study’s
supervisor. The paper was a Survey On Trajectory-Prediction Meth-
ods for Autonomous Driving [3]. This paper covers many different
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methods which allowed to weigh the pros and cons of each to decide
on which system is best fit for a bike.

2.2 PHYSICS BASED MODELS

The main issues of physics based models come down to two things.
Firstly, they are very limited in complex situations, this is especially
the case since the bike is quite maneuverable and humans can act
unpredictably at times. Another key issue here is the fact that every
time the system needs to make a prediction it has to run its calcula-
tions anew. This means that it is not very feasible to use a system
like this in a real-time setting on a bike.

2.3  MACHINE LEARNING MODELS

Machine learning models are much better than physics based models
in predicting complex situations however worse than deep learning
models. Moreover, feature engineering is a crucial part of the success
of ML models. If the person running a machine learning model does
not have much experience extracting the correct features for the
model - the quality of the model will be low.

2.4 DEEP LEARNING MODELS

This is the category this study will explore. More specifically, this
study works with RNNs (recurrent neural networks) or LSTMs (long
short-term memory). A recurrent neural network (RNN) is a deep
neural network trained on sequential data which can make future
predictions depending on the given sequential input [4]. This is
due to a few reasons, namely these models having a good balance
between complexity and performance and being good at modelling
dependencies over time. These traits are perfect for a real-time
trajectory prediction on edge devices.

2.5 FURTHER RESEARCH

After choosing to focus on LSTMs, a type of RNN, in order to find
more related literature, works that the study supervisor sent in
and papers on Google Scholar were studied. Since bikes are not
widely covered in this field, the main search terms were ‘trajectory’,
‘prediction’, ‘path’, ‘detection’, ‘time sequence prediction’, RNN’,
‘LSTM’, ‘recurrent neural network’, and ‘long short-term memory’.

Research has already been conducted about using RNNs in tra-
jectory prediction [1, 3, 8-10]. These papers allowed me to outline
the 5 gaps mentioned in the introduction whilst also offering some
models to try out.

3 METHODOLOGIES
3.1 DATASET

The dataset used for this research was previously compiled by the
University of Twente. It is made up of 53 people’s data of riding
a bike with 5 sensors. Firstly there’s GPS collected from a phone.
Moreover, there are 4 separate IMUs — on the handlebar, on the
pedal, on the helmet and on the frame. Due to time constraints and
there being a lot of data, only one person’s data was used. That is
around 160000 data points. The columns of the dataset include: a
timestamp, the angular acceleration and gyro data of all the IMUs,
the latitude, longitude, the velocity and the angular acceleration
from the GPS (phone).
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3.2 GROUND TRUTH

For this project, the GPS data will work as the ground truth. The
GPS, whilst having 5 meter deviation, is still good for recording the
general path and low-speed movements.

3.3 TRAINING, VALIDATION AND TESTING

The dataset was split into 3 parts — 70% training, 15% validation,
15% testing. For each 100 data points the next 10 data points are
predicted. The models were implemented in TensorFlow Keras and
were trained for 30 epochs each using mean squared error (MSE) as
the loss function:

1x .
MSE = ~ Z (i - yi)?
i=1

where:

o nis the number of samples
o ) is the predicted value
e y is the true value

and the Adam optimizer.

The input data used was the angular acceleration and gyro data
of the frame IMU with the hypothesis that it is the most stable,
relative coordinates calculated from the latitude and longitude, the
velocity and the angular acceleration from the GPS (phone). The
targets were relative coordinates.

3.4 MODEL ARCHITECTURE

3.4.1 “RoNIN’. Before constructing a model from other papers,
the plan was to use the “Robust Neural Inertial Navigation” model
[8]. This model offers multiple different neural inertial navigation
architectures which use IMU and the now discontinued Google
application Tango data. Due to the similarity in the used data, the
plan was to take away the extra features that came from Tango
and train the model with the aforementioned dataset. However, this
plan did not work out as very quickly after removing some of the
inputs the performance became terrible even with their own dataset
which meant that getting it to work well on the restricted type of
data available would have been unfeasible.

34.2 MODEL 1. After spending a lot of time on the failure of using
RoNIN, it was clear that a more stripped down model was necessary
due to the lack of time and lack of features in the used dataset.
Because of this, other papers were investigated for a simpler model.
It was important that the paper either detailed the architecture of
the model clearly or offered a code repository to investigate for the
model, to be able to examine and compare the models efficiently.
The first two papers [9, 10] offered a simple structure that can be
seen in figure 1.

It is also important to note that this particular model was origi-
nally used for a classification task.

To allow for the output to be 10 predictions in the future, a small
adjustment to the architecture was necessary. The dense output
layer would collect the 10 predictions and the reshape layer put
them into the correct shape to compare against the validation set.
The final architecture for model 1 can be seen in figure 2.
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Fig. 1. The architecture of the first model
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Fig. 2. The adapted architecture of the first model

3.4.3 MODEL 2. The next model [1] offered a different structure
which can be seen in figure 3. The big differences between the two
models are the number of LSTM layers and the second model using
time distributed dense layers. A time distributed wrapper applies
the selected layer (in this case a dense layer) to each timestamp
independently. Without this wrapper, the time sequence input gets
flattened and loses the temporal structure, failing to extract the
important features of each step. Instead, a non-time distributed
layer would try to extract the features from an amalgamation of the
different time steps.

Once again, the model needed to be slightly adapted to only
keep the 10 last predictions per 100 datapoints, thus the revised
architecture can be found in figure 4.

4 RESULTS
4.1 RESEARCH QUESTION 1

4.1.1 MODEL 1. The training lead to a root mean square error of
approximately 166.32923 meters. This was calculated by first getting
the distance between two coordinates using the Haversine formula:
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Fig. 4. The adapted architecture of the second model
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where:

e d: Distance between the two points (in meters)

o R:Radius of the Earth (in meters, typically 6,371, 000 meters)
® &1, ¢2: Latitudes of points 1 and 2 (in radians)

e i, A2: Longitudes of points 1 and 2 (in radians)

and then turned into RMSE using the following formula:

Here:

o n: Total number of data points
o d;: The Haversine distance (in meters) for the i-th pair of
actual and predicted coordinates

The real vs. predicted trajectory from the testing can be found in
figure 5 and the graph of the loss function from the training can be
found in figure 6. The graph shows the entire trajectory for context
but only the true trajectory (in green) is predicted (prediction is in

red).

4.1.2 MODEL 2. This model performed way better than the pre-
vious. The root mean squared error was approximately 22.46106
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Fig. 6. Model 1 training loss graph

meters. The real vs. predicted trajectory from the testing can be
found in figure 7 and the training loss graph can be found in figure
8.

4.2 RESEARCH QUESTION 2

After the success of the second model, a second IMU was added.

The handlebar IMU was chosen to be added specifically due to the
hypothesis that the handlebar movements could contain meaningful
information for the prediction of trajectory due to steering being
directly connected to the path that the bike will take. This resulted

in a root mean squared error of 19.69739 meters. The predicted vs.

real trajectory can be found in figure 9 and the loss graph is available
in figure 10.
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5 DISCUSSION
5.1 RESEARCH QUESTION 1

After comparing the two models from the 3 different papers, the
second one outperformed the first one. This could be due to a number
of factors.

5.1.1 LSTM UNIT SIZE. Even though the first model had more
LSTM layers - they were all 128 units each (compared to the second
model’s 256 units in one layer). Even though more layers should
result in more complex pattern recognition and better generalization
— the results tell a different story.

5.1.2 TIME DISTRIBUTED DENSE LAYERS. A big part of the second
model’s success can be attributed to the two time distributed dense
layers. This type of dense layer is especially useful in RNNs as it
applies the dense layer to each step of the time sequence input
independently. This means that the model optimizes the prediction
with the temporal dependencies in mind. It is likely that this is the
key to this model performing better than the first one. This allows
the model to better learn from the entire sequence of the input.

5.1.3 APPLICATION OF THE MODEL . As mentioned before, the
first model was originally a classification model and thus might be
more optimal for that purpose. Since the task this paper talks about
is a regression task, the second model is much more optimal.

5.2 RESEARCH QUESTION 2

The additional handlebar IMU information ended up performing a
little better than the same model without the additional IMU. There
could be a few potential reasons for this.

5.2.1 PLACEMENT. As described previously, the handlebar IMU
was chosen with the hypothesis that since its movements directly
correspond with the way the bike goes, the performance should be
better. However, this cannot be confirmed nor denied until tested
with an extra IMU in a different placement.
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5.2.2 BETTER UNDERSTANDING OF COMPLEX SITUATIONS. As
mentioned in the introduction, one of the gaps in research is the
complexity of the prediction. The model with an extra IMU may
have performed better due to the fact that it was able to better learn
more complex patterns.

5.3 LIMITATIONS

5.3.1 TIME. This study was very limited in time thus a lot of cor-
ners were cut. This is the main factor that held back this research
from being more expansive as the dataset that was made available
was of significant size and plenty other models are offered in other
papers. This lack of time affected both of the research questions
as more different structures could have been explored in the first
research question for a more complete understanding of what works
well in bike trajectory prediction and more different IMU placements
could have been explored in the second research question. Future
research should be conducted with more time set aside for more
experiments.

5.3.2 DATASET. Even though the dataset is of reasonable size, it
could have featured more sensors. This could have lead to the use
of the RoNIN model or an even better result for a different model.
Furthermore, the dataset was collected in a rather controlled envi-
ronment as the path was almost the same each time. This may cause
the model to not be able to predict more erratic behavior. A further
study could feature a more expansive dataset and more multimodal
sensor fusion research.

5.3.3 EXTERNAL FACTORS. This study did not take into account
many external factors that may affect the quality of the prediction.
Different road conditions, weather conditions, urban environments
were not considered during this study. A future analysis could take
these factors into account.

5.3.4 EDGE COMPUTING. The training and predictions were all
done on quite powerful computers. In a real use case, the prediction
should be done on the bike itself which would require the model to
be ran on something like a single board computer. Future researchers
should test out the predicting process in a live situation on an edge
device.

5.3.5 PREDICTION HISTORY AND HORIZON. Through out the
entire research, 100 data points were used to predict the following
10 steps. The extent to which the model could predict was never
tested due to lack of time assigned for the research. This could be
further tested to see how far the model can predict with a good
RMSE and also with how many data points can the prediction be
done whilst having the RMSE remain small.

6 CONCLUSION

This study looked into the possibility of path prediction for bicycles
using multimodal sensor data, more specifically using IMU and GPS
data. After comparing two different LSTM architectures it was found
that for the regression task of predicting a bike’s trajectory, time
distributed dense layers on top of LSTM layers is the key to a quality
model. The second additional handlebar IMU proved to make the
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model predictions higher quality but more research is needed to
find out if that is the case for other IMU placements.

This research leads the way in connecting the gap between the
old school bicycle and the modern autonomous vehicles that grow in
popularity each day. The study offers a quality trajectory prediction
model which can be easily understood and expanded in the covered
gaps of this research.

Many limitations stopped this analysis from being more in-depth.
Future studies on the subject could make sure there is enough time
to cover a wider variety of models, use a dataset with more various
sensors, take into account external factors, test the predictions on
an edge computing device to make sure it is fit for real-time use and
test different prediction history and horizon lengths.

In conclusion, this paper builds on the everyday bicycle by offer-
ing trajectory prediction with the use of simple sensors that can be
found in a smartphone. The success of this short study means that
the future of a smarter and safer bicycle is promising and feasible.
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