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Fig. 1. A screenshot of the Toronto-3D dataset [10], which is used as a basis for the synthetic data generation.

Machine learning in classification and segmentation of point clouds scanned
by LiDAR sensors has been a topic of interest for many years, and has been
applied to various fields such as autonomous driving, urban planning and
cartography. Despite this, obtaining and labeling real-world ground truth
data to train these models remains a time-consuming, error-prone and costly
task that is still widely done today, specifically in the field of utility poles
and mapping out urban areas. This paper explores the use of synthetic data
generation to train a model for semantic segmentation of point clouds of
isolated utility poles. This research presents a methodology to generate
synthetic point clouds of utility poles and train a model on these synthetic
point clouds. The results show that the model trained on synthetic data can
be used to segment real-world point clouds with exceptional accuracy, and
that procedurally generating synthetic data can be a viable alternative to
manually labeling real-world data.
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1 INTRODUCTION
1.1 Background and Context

The use of laser scanning technology has quickly grown to be-
come a popular method for capturing 3D data of environments and
structures, and its application in the use of machine learning has
also gained traction. One such application is the use of machine
learning to identify objects and their components from 3D point
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cloud data. This is particularly useful in applications such as au-
tonomous driving, where humans, obstacles, and other vehicles
need to be identified and located in real-time. Another such applica-
tion would be for the maintenance of catenary arches, where the
inspection process would be assisted through creating a LIDAR scan
of the arches and using machine learning to identify and locate
components of the arches. This would allow for a more efficient
and accurate inspection process, as well as a reduction in the time
and cost of the inspection process. This research, however, will fo-
cus on the application of streamlining the process of performing
semantic segmentation on utility poles, specifically those scanned
in the Toronto-3D dataset [10], using synthetic data generation.
The research will demonstrate the feasibility of using synthetic
data generation to automate the labeling process for components
of laser-scanned objects, with utility poles being the main focus.
This paper then proposes a methodology to generate this synthetic
data, and evaluates it using a machine learning model for semantic
segmentation of point clouds.

1.2 Problem Statement

Currently, manually scanned and labeled point cloud data is still
widely used today to train Al models for semantic segmentation of
point clouds. This process is expensive, time-consuming, and prone
to human error, and can be a significant bottleneck in the training
process. Labeling point clouds containing thousands to millions of
points is a tedious task that requires time and effort, and requires
capable hardware to manipulate the large datasets. There have been
advancements made to automate the labeling process, such as using
algorithms and AI models to label this data, however, the require-
ment to perform real scans of environments and structures still
remains a significant bottleneck in many applications.

1.3 Research Objectives

This research aims to develop a method to generate point cloud data
from a procedurally generated models of utility poles to train a point
cloud semantic segmentation model. The model will then use this
data to perform semantic segmentation on real-world point cloud
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scans. This will streamline the process of adding new components
and supplying data to further train the model. The system will be
evaluated on the resulting Al model’s performance in segmenting
point clouds, as well as its efficiency in terms of time and cost taken
to generate data.

The research questions that will be addressed in this research are:

e RQ1: What are the key features and parameters that
contribute to the structure of the utility poles from the
dataset?

e RQ2: What existing techniques can be used to generate
synthetic point clouds of utility poles?

¢ RQ3: Can a model trained purely with fully synthetic
data from the proposed method to reliably perform
semantic segmentation on utility poles?

1.4  Chapter Overview

Chapter 2 will provide an outlook on the current state of the art in
using synthetic data for the semantic segmentation of point clouds,
providing an insight into what research has already been done
in the current field of interest. Next, chapter 3 will present the
methodology used to research and develop the proposed method,
as well as answer the first and second research questions. Chapter
4 contains the results of the research, presenting the performance
and efficiency of the system. In Chapter 5, the results and findings
of the research will be discussed, as well as strengths, limitations,
and possible future developments. Finally, chapter 6 will conclude
the research, summarizing the research objectives, findings, and
contributions of the research. The third research question is also
answered in this chapter as part of the conclusion.

2 LITERATURE REVIEW

As of the date this paper was written, there is a lack of research on
the generation of synthetic point clouds from procedurally gener-
ated utility poles. Despite this, research has been done in the field of
machine learning to generate synthetic point cloud data for training
models for semantic segmentation, especially for large-scale envi-
ronments such as cities and landscapes. This section will review
the existing literature on the topic, and discuss the methods and
techniques used to generate synthetic point cloud data, as well as
the applications and results of these methods.

2.1 Automatic Generation of Point Cloud Synthetic
Dataset for Historical Building Representation

[8] This is a research paper that presents a novel framework for
automatically generating synthetic point clouds from digital 3D
scenes. The framework is designed to generate automatically labeled
point clouds that resemble laser scans of historical buildings, and can
be used to train machine learning models for semantic segmentation.
This research however does not implement procedural generation of
these 3D scenes, and instead uses pre-existing 3D scenes manually
modeled after historical buildings. This research demonstrates the
feasibility of using digitally generated point clouds as training data,
and shows that models trained on the synthetic data perform well
on real-world data.
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2.2 STPLS3D

[1] Existing research on the procedural generation of 3D scenes
converted to labeled point clouds for use in semantic segmentation
includes the research paper on STPLS3D. This paper investigates
the use of generated 3D scenes for training models for semantic seg-
mentation through the use of generating scenes containing terrain,
vegetation, and buildings using procedural generation techniques.
The point clouds are then generated via simulated UAV flight pat-
terns. This procedure involves loading environment layouts (build-
ing footprints, road networks, etc.) from a publicly available dataset,
and placing buildings and vegetation in the scene using the layout
as a guide and a procedural generation algorithm. The generated
scenes are then converted to point clouds using a simulated UAV
flight pattern. The results of this research show that the generated
point clouds can be used to train models for semantic segmentation,
and that the models trained on the synthetic data perform well on
real-world data.

2.3 PT2PC

[6] The techniques used in PT2PC is based on the idea of generating
a diverse set of point clouds from a symbolic part tree representation.
A part tree is a hierarchical structure, defining the parts of an object
and their relationships to one another (e.g., a chair consists of a seat
connected to a surface and a frame, where the frame consists of two
frame bars etc.). This research highlights the concept of generating
a large set point clouds that are diverse in their shape and structure,
yet conform to a set of rules to maintain a realistic representation
of the object.

3 METHODOLOGY AND APPROACH

In this section, the methodology that was used to conduct the re-
search will be discussed, including the steps involved in each phase
along with their technicalities. The programming language used for
ths research was Python [11], and the most noteable libraries used
were Open3D [12] for 3D geometry and point cloud processing,
and PyTorch [7] for machine learning. To create 3D models for the
utility poles, Blender [2] was used.

3.1 Dataset preparation

The first stage involved preparing the ground truth dataset to use
for reference, analysis, and evaluation of the final result. Due to time
and resource constraints, this research focuses on the utility poles
from the Toronto-3D dataset [10], as opposed to utility poles in gen-
eral. This dataset was selected as it contained a significant number
of clearly scanned utility poles with an acceptable level of varia-
tion and structure for the scale of this research. This stage involved
conducting qualitative research to analyze, understand and identify
the key features and parameters that contribute to the structure of
these utility poles. The dataset already had all utility poles labeled
(under “Pole”, together with traffic lights, streetlights, and other
pole-like structures). From this data, all point clouds labeled “Pole”
were extracted and grouped via the DBSCAN clustering algorithm
using CloudCompare [3], a software for point cloud processing. The
resulting clusters were then manually filtered to remove any clusters
that were not utility poles. Manual labeling was then performed, seg-
menting the clouds by pole, lamp, cross arm, transformer, sign,
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traffic light, and pedestrian signal. Shapes that were too complex
and unrecognizable were removed, and labeling was done taking
the known issue of distortions with the dataset into account. Some
shapes were slightly distorted or duplicated due to the scanning
process, and these were manually corrected by ignoring points that
were too heavily offset from where they should be. Cables were also
not labeled. A dataset of 93 samples was created. This sample size
is relatively small, but it was deemed sufficient for the scale of this
research. The number of points in each sample ranged from a few
hundred to over ten thousand. For this reason a standard point count
of 1024 was used. Point clouds with less than 1024 points would be
sampled randomly without replacement (duplicating points), and
samples with more than 1024 points would be sampled randomly
without replacement. Figure 3 shows statistics on the balance of
samples within the ground truth dataset. Take note how the dataset
is not very balanced, and due to the limited sample size, the num-
ber of samples used from the ground truth dataset will have to be
maximized. This will be addressed later in the paper.

Fig. 2. Isolated and labeled ground truth samples.
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Fig. 3. Label statistics of the ground truth dataset, showing the number of
samples containing a corresponding label.

3.2 Utility Pole Analysis

The next stage involved analyzing the ground truth dataset, as well
as conducting qualitative research to understand the key features
and parameters that contribute to the structure of the utility poles.
The ground truth dataset was also analyzed for the patterns and
structures of the points, as well as the dimensions, variations, and
placement of the components of the utility poles. In addition to
a large set of rules defined, the first research question can be an-
swered by analyzing the dataset and identifying the key features
and parameters that contribute to the structure of the utility poles;
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3.2.1 Poles. Poles are the root component of the utility poles, and
are always present. They are the tallest component of the utility
pole, and are always vertical. They had a base radius of about 15
centimeters, a top radius of about 10 centimeters, and a height of
around 8.45 meters. The poles would then be scaled by a random
value between 1.0 and 1.955.

3.2.2  Streetlamps. Streetlamps are the most common component
of utility poles, and are usually placed at the top of the pole. The
dataset used a single make and model of streetlamp, so a 3D model
of the streetlamp was created. The streetlamp was modeled using
the ground truth point clouds, as well as images of the streetlamp
found online. There would only be a maximum of one streetlamp
per pole. They have a slight variation in rotation (around 5 degrees),
and tend to be mounted at heights from 6.5m to 9.44m (Always
being above traffic lights if any are present).

3.2.3 Traffic Lights and Pedestrian Signals. Traffic lights would only
be present at intersections, and could have a second traffic light
perpendicular to the first. There would (almost) always be a pedes-
trian traffic light opposite to a traffic light, and the traffic light had
a chance of containing a large blue sign on it to signal the entering
of a new street. Traffic lights are mounted at a height between 4.2
and 5.2 meters, and the pedestrian signals are mounted at heights
between 2.3 and 2.6 meters.

3.24 Transformers. Transformers had three variations:

o Three cylindrical transformers: with four cross arms above
them. Two of the cylinders would form a line perpendicular
to a road. They are mounted at a height between 4.1 and
4.2 meters from the top of the pole, but are always above
streetlamps and traffic lights if any are present.

o A single cylindrical transformer: always parallel to the
road. Mounted between 9.9 and 10.1 meters from the ground,
always above traffic lights if they are present.

e A single cuboid transformer: could be placed at any angle.
Mounted between 4.4 and 4.7 meters from the ground.

3.2.5 Cross Arms. There are 6 defined variations:

o 3 facing the road with 1m spacing starting from 0.3m below
the pole apex, with a chance of having one more between a
streetlamp and traffic light if present.

o One large cross arm on the top of the pole, up to 0.3m below
the pole apex.

e Two smaller cross arms on the top of the pole, from 0.62m to
0.9m below the top.

e Two pairs of smaller cross arms on the top of the pole, around
0.8 from the top of the pole, with around 1.6m spacing.

o One smaller cross arm facing the road, from 1.3m to 2.9m
from the top.

3.2.6 Signs. Signs come in many various shapes, forms, and pat-
terns and was the most difficult to analyze due to the variation of
these components. These signs were divided into two main types,
namely side signs (signs mounted on their side to the pole, such as
standard street signs) and normal signs (signs with their baseplate
mounted directly to the pole). Side signs such as street signs (both
the new rounded-top design and the older smaller rectangular street
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sign) had their placement rules assigned to their purpose (street
signs only appear in junctions and point towards another street,
advertisements would be placed at random as long as their larger
side was visible to drivers on the road, and the height of the place-
ment was legal as per defined by sign regulations in Toronto). Other
signs that depended on the state of the road and intended for drivers
were placed at rotations around 45 degrees from the roadside to
be visible to drivers. Smaller indicator signs also had a common
pattern where multiple of them would be placed directly above or
below each other in small groups. Side signs also tended to never
be overlapping on the z axis regardless of their angle, as this may
hinder their visibility.

Normal signs also had a tendency to be grouped together vertically
when multiple were present, but had a large range of possible sizes.
For this, a set of manually defined widths and heights were defined
and pseudo-randomly selected from to place on the pole. These
types of signs would always be intended for vehicles and not pedes-
trians, and so they do not face more than 90 degrees away from
any nearby road. Sometimes a single sign would be placed higher
above on the utility pole for reasons such as to indicate zones where
trucks are prohibited, and this was also taken into account.

3.3 Answering Research Question 1

With this gathered information, research question 1 can then be
answered. It can be stated that the key features and parameters that
contribute to the structure of the utility poles from the dataset are
the poles themselves, streetlamps, traffic lights, pedestrian signals,
transformers, cross arms, and signs. For the poles, the key parame-
ters that contribute to the structure of the utility pole is the height,
base radius, and top radius. For streetlamps, the contributing pa-
rameters are its presence, the height the streetlamp is mounted at,
and the angle it is mounted at. Traffic lights and pedestrian signals
have their key parameters as the number of traffic lights or pedes-
trian signals present, the presence of a blue sign on the traffic light,
and their mounted heights and angles. For transformers, the key
parameters are the type of transformer, the number of transformers,
and the angle of the transformer, as well as its mounted height.
For cross arms, the key parameters are the type of cross arm, the
number of cross arms, the mounted height, and the angle of the
cross arms. Signs have the highest number of key parameters due to
their variety. These parameters include the type of sign, the number
of aligned sign clusters present, the mounted height of each cluster,
the mounted angle of each cluster, and the size and type (side or
normal) of each sign. These key features and parameters are crucial
to the structure of the utility poles in the dataset, and are used to
generate synthetic data in the next stage of the research.

3.4 Data Generation

3.4.1 Answering Research Question 2. Deciding on an approach
to generate the synthetic data was a crucial step in the research.
The generation process needed to balance realism, accuracy, and
variation with performance, efficiency, and scale. Initial research
was made on existing methods to generate point clouds from 3D
geometry to get insights on possible approaches. To answer the
second research question regarding what existing techniques can
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be used to generate synthetic point clouds of utility poles, the fol-
lowing current methods for reaching the goal are described and
assessed. BlenSor [4] is a package for simulating various laser scan-
ning sensors within a 3D modelling application called Blender [2].
This package leverages the 3D capabilities of Blender to allow users
to simulate laser scanning of a 3D scene without having to leave
the 3D modeling program. This package was considered for direct
use in this research but was ultimately not used. The reason for
this was because the package is not intended for use in generating
large datasets, and has no way to automatically do so. This is also
designed to scan large scenes over single objects due to its nature
of firing rays in all directions from the simulated LiDAR sensor, and
this may not be as efficient as a custom approach for this purpose.
Another popular method is to use CloudCompare [3]’s built-in tools
for sampling points on 3D geometry. This method runs very well,
but unfortunately is also not designed for automated generation of
large datasets, and requires importing and exporting to and from a
separate software. To the current knowledge of the author at the
time of writing, there are no existing methods to directly generate
synthetic point clouds of utility poles, but there are tools available
to allow for the creation of such a workflow.

3.4.2  Procedural Generation. Using the collected rules, insights and
patterns, an algorithm was created to generate 3D mesh scenes of
utility poles, ensuring maximum diversity in its generation, while
adhering to the defined rules as realistically as possible. This system
had two main components, namely the scene generation, which in-
cludes generating, placing and modifying 3D geometry to construct
utility poles, and the point cloud conversion, which involves con-
verting the geometry into a point cloud. This section explores these
steps in detail.

3.4.3 Scene Generation. Using the derived rules and patterns, a
tool was developed that could generate 3D scenes of utility poles
on the fly within a fraction of a second on mid-level hardware. A
key strength of this system was its modularity. For example, in the
use case scenario of utility pole maintenance for a city: if the city
decides to implement a new sign or model for their streetlamps or
perhaps a new component entirely, maintainers would just need to
add a new definition for the new components and regenerate the
data. This is much more cost-effective and efficient in comparison
to waiting for new installations to be made in the real world, laser
scanning the utility poles again and then labelling the new data.
A starting point for the procedural generation is to decide on
the current state of the road. This would involve decisions such
as whether the utility pole is at an intersection or beside a normal
road, and which of the nearby roads was a main road. From this, the
system is able to make decisions such as the angle of components
that need to face towards or away from the street, or the presence of
components such as traffic lights that are only present at junctions
(according to the ground truth dataset).
A key component in the component placement systems was the use
of preventing overlaps through defining placements. A placement
in this system is referred to as an object attached to the utility pole
that will be taken into account in overlap prevention. A state is
shared between steps in the placement algorithms, and whenever a
component is placed which other placements would need to account
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Fig. 4. High-level overview of the data generation procedure.

for, it would be stored in a defined group. Placements in the same
group cannot overlap any other placements in the same group in the
vertical axis regardless of what angle they are placed. Placements
may otherwise only overlap other placements in the vertical axis if
they are placed at least 90 degrees in vertical rotation away from the
other placement. This way, one would just need to store a dictionary
mapping a key denoting the placement’s group, to an array of objects
containing the height (the amount of vertical space the placement
takes up), the z-position and the angle at which the placement was
made. An example of this usage is with the so-called side signs.
When the system would decide on a position to place a side sign,
it would ensure that it would not obstruct the visibility of any
other side signs. However, in the case of normal signs, it would
not block their visibility when placed at the same vertical position
as normal signs do not protrude far from the pole. The placement
groups are defined, but can be easily extended. These were side
signs, normal signs, and miscellaneous placements (an arbitrary
group for all other objects such as traffic lights, streetlamps, and
cross arms). The system then places the components in the order
of poles, traffic lights, streetlamps, transformers, cross arms, and
signs. When new geometry is added to the scene, the system keeps
track of the geometry’s labels via storing the label of the triangles in
an array in the shared state. To add further variation, components
such as some signs, cross arms and side signs have subtle rotation
jitter added to them. This is to simulate the slight imperfections in
the real world, and to make the generated data more realistic. The
system then rotates the scene to a random angle between 0 and 360
degrees. A tilt is added to the entire scene very slightly (a maximum
of 5 degrees) using the base of the pole as an origin. This is done to
replicate the slight tilt of utility poles in the real world from causes
such as weather, collisions with vehicles, or loose soil.

3.4.4 Point Cloud Conversion. Laser-scanned point clouds have a
distinct pattern that is not easy to replicate. Different laser scan-
ners may produce varying patterns, and other factors such as the
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movement pattern of the scanner also contribute to how the points
in these samples are placed. Through the analysis of many point
clouds, it was found that key features that need to be replicated in
the data are:

o Noise: The points in the point clouds are not perfectly aligned,
and have a slight jitter to them.

o Occlusion: Points are only placed where the scanner can see,
and surfaces occluded from the scanner may not be detected.

o Scaling: Scans are not 100 percent accurate in scale, and may
have slight variations in size.

From these insights, a point cloud conversion system was devel-
oped that would convert the scene into a labeled point cloud. The
first step would be to determine how points are placed on the sur-
faces of the scene. To achieve this there are two possible approaches.
One would be to simulate a laser scanner through simulating a set
of rays in all directions from a given simulated sensor position. This
approach could include several iterations through performing mul-
tiple ray casts in an array of points to simulate the movement of a
sensor attached to a vehicle scanning multiple frames of the target
object. This could then be further optimized by only firing rays in
the general direction of the target object. Going this route proved to
be difficult as for each iteration a very high number of rays would
need to be simulated to achieve a realistic result. To achieve the
desired number of points in the point cloud, the system would need
to fire many more rays as the likelihood of a ray not hitting the
utility pole would be high. If too many points were detected, points
would then need to be discarded, leading to wasted effort. For this
reason a new approach was developed. This approach involved first
uniformly sampling a set of points on the surfaces of the geometry,
and then firing rays towards these points from a simulated sensor
position. This approach allowed the creation of point clouds with a
precise number of points with high efficiency.

The initial point sampling is performed using Open3D [12]’s built-in
sample_points_uniformly method. This method takes in a mesh
and a number of points to sample, and returns a point cloud with
the specified number of points. The point cloud is then used to
generate a set of rays that are fired towards the point cloud from a
simulated sensor position. Open3D’s cast_rays function stores the
index of the triangle that a ray hits, which is used to determine the
label of each hit point by referring to the stored array of triangle
labels. There are edge cases where one or more rays may not hit any
triangle. To work around this, the system does the sampling and ray
casting process in a while loop with the remaining number of points
until the desired number of points is reached. This achieves a consis-
tently acceptable result with a relatively high degree of efficiency in
comparison to the first approach. Finally, the system adds a random
jitter to each point to simulate the noise in the real-world point
clouds. This jitter is a random value between 0 and 2 millimeters
(inclusive) in any direction. The system then saves the point cloud
in the . ply format, which is a widely used format for point clouds.
A strength with this approach is that due to its ability to produce a
specified number of points, the system can easily be adjusted for
compatibility with different laser sensors of varying resolutions.
The position of the sensor is at 1 meter, and is at a pseudo-random
angle with a distance from 3 to 20 meters from the utility pole. This
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emulates a sensor mounted low on a vehicle. It is useful to note that
the point clouds are not normalized in the preprocessing stage. The
data is normalized by the system in-memory when accessed. This is
to allow for further extensibility of the system. In the case where a
model would need to be trained that requires different scaling, the
system can be easily adjusted to accommodate this without needing
to generate an entirely new dataset.

4 EVALUATION AND RESULTS

In this section, how the system was evaluated will be discussed,
along with the results obtained from the evaluation process. First, the
metrics and methods used to evaluate the system will be discussed,
followed by the results obtained from the evaluation process.

4.1 Efficiency

A core detail to measure is the efficiency of the system in terms of
the time and resources required to generate the synthetic dataset.
The time taken to generate the dataset is a crucial factor, as the
system should be able to generate a large dataset in a reasonable
amount of time to be comparable to recording and labeling its real-
world counterpart. The time it takes to generate datasets of varying
sizes will be measured to evaluate its performance. Another factor
that will be varied is the number of points in the point cloud, as this
will also affect the time taken to generate the dataset. Each test was
performed three times to ensure the results are consistent, and the
average of these runs was recorded.

Table 1. Time taken to generate datasets. p denotes the number of points
in the point cloud for each sample and n denotes the number of samples in
the dataset.

p n 1024 4096 16384 65536
256 36s 3m 40s 9m 28s 40m 32s
512 56s 6mb5s 15m39s 1h11m 14s
1024 | Im59s 7m32s 29m 19s 2h 8s

Table 1 shows the time taken to generate datasets of varying
sizes and point counts per sample, rounded to the nearest second.
Additionally, a graph showing the increase in time with the number
of samples for each value of p (points per sample). The time taken
to generate the dataset is linearly proportional to the number of
samples in the dataset, as expected. The system is capable of gen-
erating a dataset of 65’536 samples with 1024 points per sample in
just 2h 8s, which already greatly exceeds the size of the utility poles
in the Toronto-3D dataset [10]. It took multiple hours to manually
label the Toronto-3D dataset and many more to organize, prepare
and perform the laser scanning process, which is a testament to the
efficiency of the dataset. These values were recorded on a remote
Jupyter [5] server with an Intel Xeon Gold 5220R CPU, two NVIDIA
Tesla T4’s, and 18Gi of RAM free to the instance.

4.2 Performance

In this subsection, the performance of the synthetic dataset genera-
tion method will be evaluated through feeding the synthetic data
into a machine learning model and evaluating its performance on
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performing semantic segmentation on the ground truth dataset.
To evaluate the synthetic dataset generation method, the Point-
Net [9] architecture was used for the Al model. The PointNet ar-
chitecture is a popular deep learning model capable of performing
semantic segmentation on point clouds. Despite it not being the best
performing model available for semantic segmentation, the scale of
the dataset and the simplicity of the PointNet architecture make it
a suitable choice for the evaluation.

The model will be evaluated using the mean Intersection over
Union (IoU) metric, which is a common metric used to evaluate
the performance of semantic segmentation models. This metric is
calculated as follows:

TP
IoUs ———— (1)
TP + FP + FN

Here, TP, FP, and FN denote the number of true positive, false
positive, and false negative values respectively. The mean IoU is
calculated by taking the average of the IoU values for each class. This
metric is a method to measure the overlap between the predicted
segmentation and the ground truth segmentation, where a higher
value corresponds to a better overlap between the two.

Another metric that will be used to evaluate the model is the F1
score. The F1 score is the harmonic mean of the precision and recall
of the model, and is calculated as follows:

precision X recall
X

F1=2 )

This metric balances the precision and recall of the model. A
higher value corresponds to a better balance between the two. The
precision of the model is calculated via dividing the number of true
positives, with the sum of the true positives and false positives. The
recall is calculated by dividing the number of true positives with
the sum of the true positives and false negatives.

Finally, accuracy was used, which is another common metric used
to evaluate the performance of machine learning models. Take note,
however, that accuracy, being the ratio of correct predictions to
the total number of predictions, does not take into account class
imbalances in the dataset.

Using 15 epochs and a point count of 1024 per point cloud, the
model was trained on 65536 of the generated synthetic samples,
and validated and tested on the ground-truth dataset created in
Subsection 3.1, with 20% and 80% splits respectively. As a point
of reference, the same model was trained with a portion of the
ground truth dataset. Due to the lack of models to compare semantic
segmentation of utility poles, a split of 70% to 20% to 10% for training,
testing and validating data respectively was used. The test results
are shown in Table 2.

precision + recall

Table 2. Performance metrics of the model trained on a portion of the
ground truth dataset, versus a model trained on the generated synthetic
data.

Metric Ground Truth | Synthetic
Mean IoU 0.189 0.582
F1 Score 0.235 0.676
Accuracy 0.762 0.922
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Fig. 5. Procedurally generated utility poles and their corresponding labeled point clouds.
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Fig. 6. Comparison of time taken to generate datasets of varying sizes by
point count.

5 DISCUSSION

From what can be seen in the results in Table 2, the model outper-
forms the baseline model in all metrics. This was done using data
generated from an algorithm in just above two hours, as opposed to
spending multiple hours undergoing the scanning process of real-
world data. These results, however, should be taken with a grain
of salt as the dataset used to train the baseline model is relatively
small and does accurately represent the capabilities of a semantic
segmentation model trained on real world laser scans. Despite this,
the synthetic data generation methods still prove to be a viable
alternative to the traditional method of collecting and labeling data.
The results show that the model is capable of performing semantic
segmentation on utility poles with exceptional performance, consid-
ering this research was conducted in a small scale, using a relatively
simple model, and a small dataset.

5.1 Strengths

A key strength of this approach to gather labeled point clouds is
the ability to generate very large amounts of labeled data in a short
amount of time. The system can produce large datasets in just a
matter of hours, as opposed to the days or weeks it would take to
manually label the same amount of data. This gives a significant
advantage in scenarios where resources (or time) are limited, such as
where a new system is being developed and there is a need for a large
amount of labeled data to quickly prototype the system. Another
such application would be where the system is being developed in an
ever-changing environment, such as in systems that need to perform
semantic segmentation on scans of urban areas. Governments may
introduce new signs or mount new models of traffic lights, and
the system would need to be updated to maintain its performance.
Using such an algorithm would just mean implementing new rules
for newly added, changed or removed components, and generating
new datasets to train the model. These implementations could also
be done before or during the deployment of these new components,
allowing for consistent performance of the system in a changing
environment.

5.2 Limitations and Future Work

The system as it is currently implemented, however, does have some
limitations and drawbacks. Due to time, scale, and resource con-
straints, there are many areas of improvement that remain. The
method presented in this research makes tradeoffs on realistic scans
by using methods such as random point placement on the generated
geometry as opposed to simulating the actual scanning patterns of
a LiDAR scanner. The distinct lined pattern of the points on real
LiDAR scans is not present in the generated data, which potentially
harms the performance of the system. In addition to this, other
aspects of points in the data, such as the normal vectors, colors,
or reflection intensities are not accounted for in the data. These
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Fig. 7. Predictions done by a PointNet model trained with synthetic data (top) vs. ground truth samples (bottom).

attributes can provide much more context to the data, and could
potentially result in a better performing model. The Toronto-3D [10]
dataset does contain color information in its scans, so this could
be a potential area of improvement without the need to wait for or
gather new data.

Another known limitation of the system is the lack of balance in
the dataset. The current method uses random chances to decide
on whether each component should be present or not in a sample,
without taking into account the distribution of components in the
dataset or the real world. This potentially causes the model to have
a bias towards certain labels.

There is also little variation for more complex shapes such as street-
lamps and traffic lights. The current method uses 3D models made
after the existing utility poles in the Toronto-3D dataset, using the
point clouds and images of the location on the internet as a reference.
Some of these components vary more and may have customized
features, such as the length of the arms of the traffic lights. These
models may also not accurately represent their real-world coun-
terparts as they were created by hand and not sourced from the
original manufacturers. Using manufacturer-sourced models and
professionally informed rules of placement and variation would
allow for a more accurate representation of the target data.

To use this system on real data, the system depends on either a
highly accurate semantic segmentation model to isolate utility poles
from the rest of the point cloud, or manually isolated utility pole
point clouds. One must also make sure to remove objects such as
cables and other unknown objects from the point cloud before feed-
ing it into the system for segmentation.

In future work, the system’s performance and efficiency could be sig-
nificantly improved. The current system does not take into account
optimization methods such as multithreading, multiprocessing, or
GPU acceleration and relies mainly on the CPU and Open3D [12]’s

Python bindings. Potentially, the system could be optimized to gen-
erate data on the fly, where the model is trained on the data as it
is generated, rather than needing to save the data to storage and
loading it back when needed. This would open up possibilities such
as removing the need to transfer any training data but instead just
needing to send a seed to the recipient.

6 CONCLUSIONS

Exploring the possibilities of generating synthetic point clouds for
use in semantically segmenting utility poles has been challenging,
with many dead-ends, tedious labeling and experimentation, but
in the end, resulted in an exciting and a rewarding experience. De-
veloping a method to procedurally generate and scan utility poles
has proven to be an exciting and still quite unexplored field, with
promising results and potential for many applications.

6.1 Answering Research Question 3

With these results, research question 3 can be answered in saying
that a model can be trained purely with fully synthetic data from
the proposed method to reliably perform semantic segmentation on
utility poles. In addition to this, there is also significant potential for
improvement. The performance of the model in the state presented
in this paper would not be reliable for very advanced tasks such as
for autonomous driving. The system would be more than capable
in scenarios such as assisted labeling of data, or in a system that
requires a quick and efficient way to label data.
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