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Abstract

Autonomous vehicles predict the trajectories of other
road users to estimate future interferences. The au-
tonomous vehicle might need to change its behaviour
based on the future position of surrounding vehi-
cles. This prediction is done using a large number
of sensors. These sensors are used to collect data
and predict trajectories based on these distant ob-
servations. Local data from these surrounding road
users can help to establish a more accurate and ad-
vanced prediction. Data from Inertial Measurement
Unit devices on vehicles is already used for trajectory
predictions, but is not yet applied to bicycles in many
occasions. Smartphones have an IMU device onboard
that can gather data about directions, orientations,
and movements. In this research, the applicability
of the Robust Neural Inertial Navigation model to
do trajectory estimations and predictions is investi-
gated.
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1 Introduction

Cycling comes with many health benefits, such as im-
proved muscle strength, balance, heart health, and
many more[8]. However, at the same time, cyclists
are very vulnerable due to their lack of external pro-

tection. Therefore, cyclists are considered vulnerable
road users and that is why it is important to improve
their safety as much as possible[2]. In addition to the
lack of protection, cyclist detection is one of the most
difficult autonomous vehicle tasks, because of visual
complexity, variety of appearances, and the lack of
labelled datasets[5]. Hence, it is hard to determine
the direction of bicycles, making it difficult to predict
their future movements[9]. This increases the risk of
accidents with cyclists and that is why improving the
trajectory predictions of bicycles is important.

Autonomous vehicles use cameras and other sen-
sors, like LiDAR to detect their environment[1]. The
data that is gathered is used to predict the trajecto-
ries of the surrounding vehicles, pedestrians, and bi-
cycles. Although these predictions are getting much
better, they will always have to respond based on
distant observations without the use data from bi-
cycles themselves. To gather motion data from bi-
cycles, an Inertial Measurement Unit (IMU) can be
used. It consists of 3 accelerometers, 3 gyroscopes,
and in some cases magnetometer sensors[12]. There
is one for each axis per sensor. This device is used to
determine the direction within a GPS system, track
motions of phones and remotes, assist in aircraft ma-
noeuvrers[4], and in autonomous vehicles.

2 Problem statement

Previous research shows that using a bicycle mounted
IMU and camera is effective[6]. A big drawback of us-
ing bicycle mounted hardware is the scalability. It is
costly to install sensors and cameras on bicycles and
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it does not add any features to the product. There-
fore, in this research, the application of inertial navi-
gation for bicycles is investigated. The motion of the
upper leg can be tracked using the IMU in a smart-
phone when the cyclist carries the smartphone in his
or her pocket. Almost every smartphone has an IMU
that is used for activity tracking, health monitoring,
navigating, and many other applications[16]. The
scalability of using smartphones as a sensor is very
high, since many people have such a device and carry
them on their bicycles. Besides the high scalability,
tracking the movements of the cyclist can have ad-
vantages over tracking the movements of the bicycle
itself.
The RoNIN model is investigated to see if and how

it can do trajectory predictions for bicycles. The
model has shown to be very effective for indoor posi-
tion and orientation estimations of moving subjects.
It builds upon the robust IMU double integration
(RIDI) and IONet models, where RoNIN adds neu-
ral architectures to improve on challenging motions.
An important factor that makes this possible, is the
new dataset that is collected. Instead of having a sin-
gle device that collects IMU and VI-SLAM data in
the RIDI and OXIOD (IONet) datasets, the RoNIN
dataset uses two devices. One of the devices collects
IMU, camera, and VI-SLAM data to generate an ac-
curate ground truth, while the other device is the
participant’s smartphone that collects IMU data only
and can be used in a usual manner.
In this paper, the ability to use the RoNIN model

with a different dataset is investigated. The ego-bike
dataset contains IMU data and unprocessed visual
information only. The RoNIN model requires pro-
cessed visual data from VI-SLAM software. In the
RoNIN data collection, the Google Tango application
finds pose information using the IMU and camera
data[7]. Google Tango is an augmented reality com-
puting platform that is able to do motion tracking
and can find the orientation in 3D space[14]. To do
this, it uses camera data in combination with IMU
data to generate a vector that describes the pose
of a participant. This information is used to find
an accurate ground truth. The RoNIN dataset con-
tains pose vectors and velocities that are not available
in the ego-bike dataset. Although these vectors are

missing, many of them can be composed from the
IMU features. The features of the ego-bike dataset
are extended to include these pose vectors. Then,
the model can be trained and tested on the ego-bike
dataset. Besides that, a detailed description is given
about the RoNIN model to gain insights in its func-
tionalities and requirements for other applications.

The model is analysed to see how it can be applied
for this use case. The first research question is: what
features does the RoNIN model require to perform on
the RoNIN dataset?. To see if the ego-bike dataset
fulfils these requirements, a sub research question is:
how can the ego-bike dataset be used with the RoNIN
model?.

3 Methodology

An existing dataset will be used that has data from
participants cycling a route with a set of sensors at-
tached to the bicycle. These sensors include a cam-
era and three IMU devices. The IMU devices are
mounted on the frame, the handlebar, and on one of
the pedals. Although this dataset does not include
an IMU device on the leg of the cyclist, the device
that is mounted to the pedal follows a very similar
movement. Therefore, this dataset can still be used
for this research and a data collection phase is not re-
quired. For now, these two positions are considered
similar enough, but in future research it is important
to verify the results with data from an IMU in the
pocket of the cyclist.

The behaviour of a cyclist is expected to have some
relations to the future trajectory of the bike. Al-
though there is barely any information available on
body movements while cycling, there are some ob-
vious assumptions. For example, many cyclists stop
paddling to make a corner. A possible indicator for
the direction of a corner could be the position of the
legs or pedals. To make cornering easier, a cyclist can
lower the outside pedal and apply pressure to be able
to lean the bike to the direction of the corner[13]. A
cyclist would then have its left leg, and therefore the
left pedal, in the lower position to make a right corner
and vice versa. These are assumptions based on my
own experience and must therefore be researched fur-
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ther. The RoNIN model should be able to recognise
these patterns to make predictions about the position
and heading of the bicycle.

3.1 Model

Recurrent Neural Network, RNN in short, is a deep
learning algorithm that uses the previous step as in-
put for the current step stored in the memory state
or hidden state[3]. Long Short-Term Memory, also
known as LSTM, is an extension of RNN. LSTM has
a memory cell that contains data for a longer period
to learn long-term dependencies. The memory cell
can store information that was gained previously but
can also choose to forget if information becomes ir-
relevant[11].
The LSTM model has proven to be very effective

in other prediction applications based on IMU data.
For example, research done by Peng, Zhang, and Li
[19] showed that this algorithm was able to predict a
person falling 360 milliseconds ahead of the collision
with 97,1% accuracy, 100,0% sensitivity, and 96,0%
specificity. The accuracy for the trajectory prediction
is expected to be lower than for the fall detection.
That is because the movements are more similar dur-
ing cycling and the prediction is about movements in
a similar direction of where the cyclist is going. Al-
though the accuracy could be high for prediction if
the bicycle turns left or right, the accuracy for pre-
dicting the future position is expected to be much
lower.
The Robust Neural Inertial Navigation, or RoNIN

for short, is based on either ResNet, Long Short
Term Memory Network (LSTM), or Temporal Con-
volutional Network (TCN)[21]. According to the
results that are presented in the paper by Yan et
al. (2019), the RoNIN model is the best performing
model on the RoNIN dataset, which includes a lot of
complex motions, compared to Naive Double Integra-
tion (NDI), Pedestrian Dead Reckoning (PDR), Ro-
bust IMU Double Integration (RIDI), and their own
version of IONet. The RoNIN LSTM model has a
slightly better performance than the RoNIN ResNet
model on this dataset, but it takes much longer to
train. Since the dataset that is used in this research
contains a lot of complex motions as well, the RoNIN

model with ResNet and LSTM as basis is likely to be
the most suitable for this application.

3.2 Coordinate frame normalisation

The RoNIN model normalises the coordinate frame,
which is important since the orientation of the IMU
devices change continuously. Especially when data is
used from a smartphone in the pocket of the cyclist.
The RoNIN model uses a heading-agnostic coordinate
frame (HACF) to represent the input and the output
where the Z-axis is aligned with gravity [21]. Because
the Z-axis is now normalised for all the frames, the
data now describes the actual horizontal movements.

3.3 Velocity loss

The model finds a velocity for every IMU frame.
This is achieved by calculating the derivative of low-
frequency Visual Inertial and Simultaneous Localiza-
tion And Mapping (VI-SLAM) poses. VI-SLAM is
part of Project Tango [10]. First, the device captures
images from the environment and looks for visual fea-
tures [18]. When these features move around, they
can be used to estimate the position of the camera
by comparing the current location of these features
to the location in previous frames. The visual infor-
mation is able to provide a very accurate position,
but requires a lot of processing power, while process-
ing the IMU data is much more lightweight. There-
fore, it fuses this visual information with IMU data
to quickly find an accurate estimation. Since this VI-
SLAM information is at a much lower frequency than
the IMU data because of the low frequency of the
camera, the velocity that it calculates is very noisy.
Therefore, the RoNIN model applies two robust ve-
locity losses. This results in a better signal-to-noise-
ratio and better motion learning. The so called latent
velocity loss is used for the RoNIN model with LSTM
or TCN as backbone and it adds an integration layer
that sums up 400 or 253 vectors respectively that are
regressed by the model. Then, an L2 norm is applied
to find the positional difference between the ground
truth and the regressed window. This difference that
is estimated by the sum of this window, must be equal
to the positional difference in the ground truth. For
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the RoNIN ResNet model, it regresses positions in-
stead of velocity vectors. Then, the mean squared
error (MSE) is calculated to compare the regressed
frame with the ground truth position.

4 Datasets

The RoNIN model comes with a large dataset con-
taining many features, while the ego-bike dataset has
less features. It is important to understand both
datasets to be able to adjust either the model or the
dataset accordingly. Both datasets are explained in
the next two subsections and will help to get a bet-
ter understanding of the applicability of the model
and the possible required adjustments to the model
or dataset.

4.1 Ego-bike dataset

The ego-bike dataset contains data from 32 partici-
pants cycling on a bicycle with various sensors. On
this bicycle, a number of devices are installed that
gather data from the trips. There are four IMU de-
vices installed. One is mounted to the frame, one to
the steering bar, one to the crank, and one to the
helmet of the participant. The IMU device that is
mounted to the crank is close to the pedal, but ro-
tates with the crank. This means that the device
is upside down at each rotation, instead of following
the angle of the foot or pedal. There is also a GPS
mounted to the frame as well as a camera to the steer-
ing bar. Each IMU provides data from its gyroscope
and accelerometer in three axes measured at 200 Hz.
The GPS provides the latitude and longitude coordi-
nates, as well as velocity, acceleration in three axes,
and gyroscope in three axes.

4.2 RoNIN dataset

The RoNIN dataset is ’the largest inertial navigation
database consisting of more than 42.7 hours of IMU
and ground truth 3D motion data from 100 human
subjects.’[21]. The data is collected using two smart-
phones. The first one is a device that is used by the
participants in a real life manner. The participants

carry and use the phone like they would normally do.
That means that this device can be carried in their
hands being used while walking, be in a pocket and
possibly be upside down, be put in a bag, etcetera.
The orientation of the device is highly variable. De-
spite of this, the goal of the model is to estimate
the position of the person. The features that are
collected are the gyroscope, accelerometer, magne-
tometer, gravity, and pressure data from the IMU, as
well as step count and device orientation (device rv).
The last two features are created by the smartphone’s
software using the IMU data. The second device is
mounted to the chest of the participants using a har-
ness. The data that is collected by this device is used
to collect ground truth data. The same features are
collected as the first device, but it also collects data
that is created by the Tango platform.

In the first five seconds, the IMU of the chest-
mounted smartphone and the IMU of the partici-
pant’s smartphone are compared by walking in a
straight line. The data from the chest-mounted
smartphone is then used as the ground truth. The
IMU of the participant’s smartphone is adjusted by
the offset angle, which is the angle between both
smartphones.

4.3 Differences

The ego-bike dataset does not include any pose and
velocity data from the Tango application, while the
RoNIN dataset does have these features. The pose
vectors and velocities provide a high quality ground
truth for the model. There are three options to over-
come this issue. The first option is to change the
ground truth from using the Tango platform, to use
a positional ground truth from the GPS. The trajec-
tories can be constructed by combining the headings
and velocities of every frame, but now that we have
GPS data, the trajectory is already defined. Instead
of finding a heading and velocity for every frame and
comparing it against the one that is given by the
Tango ground truth, the position of the device can
be calculated and compared against the GPS ground
truth instead. Since the GPS provides data at 10 Hz,
the number of data points does not align with the
IMU data that is collected at a rate of 200 Hz. The
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RoNIN ResNet model makes predictions for every five
IMU frames. Therefore, the GPS data must have at
least 40 data points per second. For simplicity, the
GPS data is interpolated to 200 Hz. Changing the
model to use a positional ground truth was tried in
this research, but due to the complexity of the RoNIN
model and the time constraints, it was not possible
to adjust the model and to find results.
A second option is to use VI-SLAM to create

the pose vectors, velocities, and orientations (quater-
nions) using camera data. The ego-bike dataset does
come with camera data that can be analysed by
VI-SLAM. Google Tango is an application that can
do exactly this, but it is developed for indoor nav-
igation and is discontinued in 2017 to be replaced
with their new augmented reality system called AR-
Core[15]. Although Tango proved to be a viable op-
tion for the RoNIN dataset, it might not be suitable
for the dynamic outdoor environment. Song et al.
[20] describes the so called DynaVINS, which is a
robust VI-SLAM framework. It is applicable for dy-
namic environments and is able to detect features
that are both dynamic and static. The model recog-
nises dynamic features that cannot be used to find
an estimation, while the static features are included.
The third option would be to create pose vectors,

velocities, and orientations (quaternions) from the
IMU data. These are the same features that are es-
tablished by the Tango software as well. Because of
that, the model does not need adjustments to work
with a different type of ground truth. This option is
tested in this research. The frame IMU is used for the
ground truth, while the pedal IMU provides the input
data. The gyroscope and accelerometer data can be
combined into the device orientation and presented as
quaternions. First of all, quaternions are established
by integrating angular velocities over time. Then, the
position is calculated by transforming the accelera-
tion into the global frame using the quaternions and
then integrating the global acceleration twice. The
linear acceleration is then found by subtracting the
gravity from the acceleration. After that, the gravity
vector is estimated by rotating the quaternions into
the global frame. Lastly, the game rotation vector is
found by fusing accelerometer with gyroscope data.
The ego-bike dataset does not provide any magne-

tometer, pressure, and step counting data. These are
now the only features that cannot be added. For now,
they are set to zero. That way, the model does not
learn based on these features. The model is trained
on the data of six different trips from three partici-
pants for 1000 epochs.

5 Results

After the model was trained, it was tested on a set of
seen and unseen data. The results are presented in
table 1 and 2. The model performed poorly on the
provided dataset. The mean squared errors and angle
errors are very high for both the seen and unseen
data. During training, the loss was already high and
the model converged very quickly. It is clear that the
model does not learn well on the given dataset and is
not able to provide results that are useful.

A number of problems could cause this poor per-
formance. First of all, the pose vectors that are used
for the ground truth will probably have drifted. In
the RoNIN dataset, the VI-SLAM application is able
to create a very high quality ground truth, because it
can correct the position and pose based on visual fea-
tures. The Tango application creates a 3D map and is
able to find the position and orientation within that
space resulting in a ground truth of high quality with
minimal drift.

Second, the ego-bike dataset does not come with
bias or calibration details. Without proper calibra-
tion and alignment, it is impossible to draw proper
conclusions from the data. For example, calculat-
ing the linear acceleration requires accurate orienta-
tion estimations to be able to compensate for gravity
properly. If the orientations are off, then the grav-
ity is not aligned correctly with the Z-axis. This will
result in improper coordinate frame normalisations.
As described before, this is done using the heading-
agnostic coordinate frame and is an important aspect
of the model.

Third, not all the features that are missing from in
the ego-bike dataset compared to the RoNIN dataset
are filled. The missing pressure and step counting
data is not likely to be much of an issue, but the
missing magnetometer can affect the results signifi-
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MSE Angle error
Data 1 0.9456649 1.513229
Data 2 1.0183111 1.592365
Data 3 0.86745447 1.3723118

Combined 0.94381016 1.4926354

Table 1: RoNIN body heading test results on seen
data

MSE Angle error
Data 1 0.9481063 1.5153573
Data 2 1.0217904 1.5909898
Data 3 0.8415387 1.321282

Combined 0.9371452 1.4758763

Table 2: RoNIN body heading test results on unseen
data

cantly. The magnetometer data can help to improve
the quality and reliability of the features that are
extracted from the accelerometer and gyroscope by
using sensor fusion.

6 Future work

For future research it is useful to explore the options
that are described in section 4.3. Most important
are the options to improve the dataset. Using a VI-
SLAM application to use the camera data will result
in a much better ground truth. Besides that, the
features that are extracted from the IMU can be im-
proved using sensor fusion and the Extended Kalman
Filter (EKF) as described by Laurell, Karlsson, and
Naqqar [17]. In this research, just a small part of
the ego-bike dataset could be used due to time con-
straints. But, improving the quality of the data and
using a larger portion of the dataset will result in a
model that performs much better.

7 Discussion

Trajectory predictions of bicycles is very complex be-
cause of visual complexity, variety of appearances,
and the lack of labelled datasets. Yet it is a very im-
portant task for autonomous vehicles, since cyclists

are very vulnerable. Models have been developed for
indoor position estimations and predictions using in-
ertial navigation. Applying such a model to bicycles
could help to improve the trajectory predictions that
are done by autonomous vehicles. The RoNIN model
is an example of such a model for indoor inertial nav-
igation. Applying this model to the ego-bike dataset
has proven to be difficult. This dataset is lacking
pose vectors, velocity, and orientations from a VI-
SLAM application. Without it, the RoNIN model
cannot define a proper ground truth that is required
to train and test the model. There are three options
to overcome this issue. The first option is to change
the RoNIN model to only use the GPS as the ground
truth. Then, another option is to use VI-SLIM to
create these missing features. DynaVINS is a robust
VI-SLAM framework that works in dynamic environ-
ments. The third option is to create the pose vec-
tors, velocities, and orientations from the IMU data.
This last option is explored in this research. The
model was not able to provide good results on the
dataset that was created using this method. Some of
the features have been set to zero, which will affect
the model negatively. Based on a magnetometer and
step count of zero, the model expects that there is no
movement in certain directions. The magnetometer
should be added to the dataset and the step count
would have to be removed from the RoNIN model,
since the step count is irrelevant for bicycle trajecto-
ries. Recommendations for future research are given
and include the use of VI-SLAM (DynaVINS) and the
use of sensor fusion in combination with the EKF to
improve the quality of the dataset.
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