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Abstract

The carton set optimization problem is about finding a variety of carton sizes that
minimize the total shipping costs within a warehouse. In 2020, Singh and Ardjmand
[10] solved this problem using a genetic algorithm. A genetic algorithm is however
not guaranteed to provide an optimal solution. In this paper, the solution quality of
the genetic algorithm suggested by Singh and Ardjmand is analyzed. We compare
the best-found solutions of the genetic algorithm using an exact mixed-integer pro-
gramming approach to find the approximation error of the genetic algorithm. The
approximation error of the genetic algorithm increases as the number of orders in-
creases, but for order sizes where the mixed-integer program is unable to solve the
problem, the genetic algorithm is a great alternative.

Keywords: carton set optimization problem; genetic algorithm; mixed-integer pro-
gramming

1 Introduction

With sustainability becoming more important and shipping volumes increasing, optimiz-
ing carton usage is a pressing concern in the packaging industry as carton usage highly
influences shipping costs. One potential solution for warehouses to minimize shipping costs
is optimizing the variety of carton sizes they use. By increasing the range of carton sizes,
warehouses can generally provide better-fitting options for each order, which in turn means
lower shipping costs. However, having too many options can overwhelm packers, making
it harder to select the most suitable one. Balancing these factors has proven challenging.

1.1 Related work

The problem has been addressed in many papers but was first introduced as the packaging
problem by Wilson in 1965 [11]. The paper formulates the problem as an integer program-
ming problem and suggests a heuristic approach by rationally selecting carton sizes and
eliminating them one by one until the desired number of carton sizes is achieved. Lee,
Chew, Lee and Thio [7] tackled a very similar problem in 2015, but the objective of their
paper was to minimize the total wasted space in the cartons instead of minimizing shipping
costs. Gurumoorthy and Hinge [5] suggested a decision-tree-based clustering method to
solve the problem that tries to minimize the costs. In 2020, Singh and Ardjmand [10] also
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addressed this problem, naming it the carton set optimization problem. In their paper,
they propose a genetic algorithm (GA) that can find a set of cartons that reduces the
total shipping costs of diverse analyzed warehouses. They used a sample of real-world data
across multiple warehouses. Their research focuses on two parts. The first part of their
paper is about optimally packing multiple items into a cuboid. The second part of their
paper, which is the part that this paper will strictly be focused on, uses the dimensions
of the found cuboids to optimally select cartons such that the total shipping costs of the
orders are minimized. They proposed a genetic algorithm that uses an iterative approach
to optimize the shipping costs. Keeping the number of carton sizes fixed, the algorithm
achieved a 1.3–7.8% reduction in carton usage across the three different warehouses com-
pared to the currently implemented carton sizes in the warehouse. Moreover, the algorithm
achieved a 5.03-7.0% decrease in the total shipping costs compared to what is currently
implemented at DHL [8].

1.2 Contribution

While the paper [10] by Singh and Ardjmand outlines why the packaging industry needs
to look into optimizing the carton sizes that they use, the paper does not grasp how much
optimization is possible. The genetic approach suggested is iterative and is not guaran-
teed to result in an optimal solution. Although the algorithm was able to achieve better
results than the currently implemented carton types at the warehouse, it is still unclear
how far from optimal the newly found set of carton types is. The primary focus of this
paper is evaluating the solution quality of the genetic algorithm applied to the carton set
optimization problem.

Research question: What is the solution quality of the genetic algorithm approach
by [10] on the carton set optimization problem?

In this paper, the suggested genetic algorithm is implemented. Moreover, an exact method
is implemented, namely a mixed-integer programming (MIP) approach to solve the prob-
lem. The issue with an exact approach, as has been touched upon by Singh and Ardjmand
[10], is that this method is unsuitable for larger quantities of orders. However, using the
exact approach on medium-sized instances, such that both methods can find solutions,
one can say something about the solution quality of the genetic algorithm. In this paper,
both methods are implemented and their results are compared on medium-sized instances,
ensuring that the MIP method could provide a solution.

2 Problem description

The name used by Singh and Ardjmand for the problem at hand is the carton set optimiza-
tion problem. As input, we are given the dimensions and weights of all orders to be packed.
Namely, we are given a set K of all orders (lk, wk, hk, xk) where lk, wk, hk represent the
dimensions and xk the weight of each order k. Furthermore, we are given the dimensions
of available cartons to be selected for the carton set. Namely, we are given a set I of
all available cartons (li, wi, hi) where li, wi, hi represent the dimensions of each order i.
Finally, the required number of carton types n in the final set is also given. The problem is
to find a subset A ⊆ I of cartons, such that the total shipping costs for packing all orders
are minimized, assuming that once the cartons are chosen, each order is packed using the
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carton that minimizes the cost for it. Namely, we are looking for a set A containing n
number of cartons selected from the set of available cartons.

To find such a set, using the given set of orders K and the set of cartons I, one can
create a mapping f : K → P(I) between the orders K and the power set of cartons I
where each order k is mapped to all cartons i that fit the order. This mapping can be
visualized as a bipartite graph with two disjoint, independent sets (K and I) of vertices.
An edge is created between two vertices, an order k and a carton i, if and only if the
carton i is larger in all dimensions than the order k, more formally defined in (1). The
value associated with the edge ck,i corresponds to the cost to ship order i using carton k
as defined in (2). Two new values are introduced here: the dimensional weight factor d
and the price per kilogram Pkg for shipping an order. The dimensional factor [9] and price
per kilogram vary per shipping company. Using this mapping we can easily refer back to
it when we need to calculate the incurred shipping costs of a set of cartons. In Figure 1
we can see a small-sized example of how such a mapping would look.

f : k 7→ f(k), f(k) = {(li, wi, hi) ∈ I : lk ≤ li, wk ≤ wi, hk ≤ hi} k ∈ K, f(k) ∈ I (1)

ck,i = Pkg ·max

(
xk,

li · wi · hi
d

)
(2)
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Figure 1: Bipartite graph that visualizes the mapping from orders K to cartons
I. Vertices on the left correspond to orders with their corresponding dimensions
and weight, and vertices on the right correspond to cartons and their corresponding
dimensions. An edge ck,i indicates that order k can be packed using carton i. The
value assigned to the edge ck,i corresponds to the cost of shipping order k with
carton i.
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3 Instance generation

In this paper, no real-world data is used as there was no such data publicly available.
To compensate for this, a set of orders K = {(l1, w1, h1, x1), . . . , (l|K|, w|K|, h|K|, x|K|)} is
generated. More specifically, the dimensions are generated by assigning random variables
using a probability distribution that tries to mimic real-world data. The value lk is a
random value that combines a Poisson distribution and a discrete uniform distribution
given by (3). The values of wk and hk are random variables that depend on lk, scaled by a
normal distribution, as shown in (4) and (5) respectively. All three variables are rounded
to the nearest integer and represent the dimensions of the order in centimetres. The
dimensions of the order are then reordered in such a way that (6) holds. This corresponds
to turning an order and is mainly important for the implementation of the algorithm. The
weight variable xk (kg) is determined as the maximum between a fixed lower bound (0.5
kg) and a random variable with a normal distribution that depends on the volume of the
order in cm3 as can be seen in (7). This ensures that the weight is proportional to the
order volume as we would expect in real life.

lk = 10× Pois(λ = 4) + U{0, 9} lk ∈ N (3)

wk = N (0.5, 0.1)× lk wk ∈ N (4)

hk = N (0.5, 0.1)× lk hk ∈ N (5)

lk ≥ wk ≥ hk (6)

xk = max(0.5,N (
lk · wk · hk
10, 000

,
lk · wk · hk
100, 000

)) (7)

Together, these equations generated the dimensions and weight of each order k. For
the experiments, the choice of cartons is restricted to the dimensions of all of the orders,
including a carton whose dimensions are the maximum of all possible dimensions. There-
fore, the set of cartons I use the same dimensions as the orders in set K, but without
duplicates. The set of available cartons also includes the biggest carton iB defined as:

iB = ( max
(li, wi, hi) ∈ I

li, max
(li, wi, hi) ∈ I

wi, max
(li, wi, hi) ∈ I

hi) (8)

This ensures a feasible solution exists for any number of cartons to be selected. The
running example presented in Figure 1 is a great illustration of this. Let the objective be
to find the single best carton to ship all orders K. In other words, let n = 1. In this case,
none of the cartons i0 up until i4 would suffice, as none of the cartons can fit all orders.
In the case of the running example, iB = (59, 33, 23) and can fit all orders. Therefore, all
edges between iB and the cartons k0, . . . , k4 exist in Figure 1.
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4 Genetic Algorithm

4.1 Method

One way of solving the carton set optimization problem is using a genetic algorithm as
shown in [10]. In general, a genetic algorithm is used for optimization problem sets where
an exact solution is not feasible as computation times are unrealistic. A genetic algorithm
uses a heuristic approach to evaluate the given problem and is therefore not guaranteed to
provide an optimal solution. A genetic algorithm applies a trial-and-error approach using
generations. Each generation consists of a population A = {A1, A2, . . . , AR} which is a
set of feasible solutions, also called individuals. Each individual A represents a feasible
solution to the problem.

In the context of the carton set optimization problem, this means that an individual A
consists of n cartons that can pack all orders K. To ensure the feasibility of an individual,
iB as defined in (8) is always in the individual. Therefore, if n = 1 then A = {iB} as we
had already established for the running example.

Each generation of the genetic algorithm consists of a new population. This population
is generated using the previous population. To initialise the genetic algorithm, an initial
population A1 is created using Algorithm 1. The initial population A1 consists of R
unique individuals A that are generated independently. One of the parameters of a genetic
algorithm is the value of R. An individual always includes the largest carton iB. The
other n−1 cartons are randomly selected from the set of available cartons I while avoiding
duplicate selection of cartons.

Algorithm 1 Generate population (generate_population)
1: Input: size of population R, size of individual n, set of available cartons I
2: Output: population A
3: A ← ∅
4: while |A | < R do
5: Let iB ∈ I be as in (8).
6: A← {iB}
7: while |A| < n do
8: Let y be chosen uniformly at random from I \ {iB}.
9: Append y to A.

10: end while
11: Append A to A .
12: end while
13: Return: population A

After an initial population A1 has been generated, the genetic algorithm uses the
initial population to generate a new population of individuals. In the case of the carton
set optimization problem, we are looking for a feasible solution that minimizes the total
shipping costs for all orders. In more mathematical terms, we are looking for an individual
A that minimizes the fitness function F as defined in (9).

F (A) =
∑
k∈K

ck,i∗k where i∗k = argmini∈A{ck,i} ∀k ∈ K (9)
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Using Algorithm 2, we can evaluate individuals and sort them on this fitness value,
where a lower value of F corresponds to a more desirable solution to the problem. The
general idea behind a genetic algorithm is to evaluate the individuals within the population
and use a subset of individuals with a low fitness value to generate a new population to
hopefully obtain even lower fitness values.

Algorithm 2 Fitness of individual (fitness_ind)
1: Input: individual A, orders K
2: Output: fitness value F (A)
3: F (A)← 0
4: for each order k ∈ K do
5: i← argmini∈A{ck,i} ▷ Select carton from A with minimal cost
6: F (A)← F (A) + ck,i
7: end for
8: Return: F (A)

The reproduction and mutation algorithms are what make genetic algorithms distinct
from each other. These algorithms vary immensely and can be customised to fit the type
of individual. In order to analyze the state-of-the-art, we have chosen to replicate the
algorithm suggested in [10]. In Algorithm 3, you can see that the reproduction process
involves keeping the best half of the individuals. All other individuals are discarded as
their fitness value F was too high. The other half is kept for generating new individuals.
More specifically, new individuals A′ are generated by choosing random cartons from the
best half of the individuals from population A . The new individual A′ contains the largest
carton iB. This process repeats until the new population A ′ contains R individuals.

Algorithm 3 Reproduce Population (reproduce)
1: Input: population A , set of available cartons I, size of individual n, fitness value F
2: Output: reproduced population A ′

3: Initialize old population A old ← ∅.
4: Append half of the individuals with the lowest fitness value F from A to A old.
5: Initialize new population A new ← ∅.
6: while |A new| < 1

2 |A | do
7: Initialize new individual A′ ← ∅.
8: Append iB as in (8) to A′.
9: while |A′| < n do

10: Let A be chosen uniformly at random from A old.
11: Let iq be chosen uniformly at random from A/{iB}.
12: Append iq to A′.
13: end while
14: Add A′ to A new.
15: end while
16: Let the reproduced population be A ′ = A old ∪A new.
17: Return: A ′

As one can imagine, this method of reproducing population might shift into a bias
towards specific cartons, as the more individuals that include this carton there are, the
more chance this carton has of becoming one of the selected cartons for the new individual.
To prevent biases, we also mutate some individuals.
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Mutation takes place after reproduction of the population. Each individual A within
the population A has a probability pm of getting mutated as can be seen in Algorithm 5
This mutation probability is another parameter of the genetic algorithm. If an individual
is mutated, a carton iy is randomly selected to be removed, and a carton iz is randomly
selected to replace carton iy. During the selection process, carton iy is chosen in such a
way that iy ̸= iB, as carton iB guarantees the feasibility of an individual. This mutation
process is shown in Algorithm 4 and 5.

Algorithm 4 Mutate individual (mutate_individual)
1: Input: individual A, set of available cartons I
2: Output: mutated individual A
3: Let iB ∈ I be as in (8).
4: Let iy be chosen uniformly at random from A \ {iB}.
5: Let iz be chosen uniformly at random from I \A.
6: Remove iy from A.
7: Append iz to A.
8: Return: individual A

Algorithm 5 Mutation (mutate_population)
1: Input: population A , mutation probability pm
2: Output: mutated population A ′

3: A ′ ← ∅
4: for each individual A in A do
5: Mutate A using Algorithm 4 with probability pm.
6: Append A to A ′.
7: end for
8: Return: A ′

All of these algorithms form the genetic algorithm for the carton set optimization
problem, (largely) unchanged from the genetic algorithm that is suggested in [10]. The
general steps that the genetic algorithm takes are; generating an initial population A1

and repeatedly reproducing and mutating the current population. Let AL be the last
population of the genetic algorithm. At the end the GA reports the best-found individual
argminA∈AL

F (A) and its fitness value minA∈AL
F (A). When the genetic algorithm should

stop running is a parameter of the genetic algorithm. This can be defined in a unit of time
or the number of generations that the genetic algorithm should complete.

Algorithm 6 Genetic Algorithm (GA)

1: Input: number of generations g / maximum time T
2: Output: individual A and corresponding, lowest found fitness value F (A)
3: Generate initial population A1 using Algorithm 1.
4: repeat g times or until T time has passed
5: A ← Reproduce population A using Algorithm 3.
6: A ← Mutate population A using Algorithm 5.
7: end
8: Return: minA∈A F (A); argminA∈A F (A)
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4.2 Implementation

Besides the formal mathematical side of the genetic algorithm, there is also a lot of pro-
gramming involved. The programming of the model is quite important for the efficiency of
the algorithm, as a bad implementation can lead to a slow algorithm. To run the program
as fast as possible some techniques are implemented that speed up the program. The
genetic algorithm is implemented within Python [3], as this was also done by Singh and
Ardjmand [10]. The complete code is uploaded to GitLab [12].

The first technique is a dictionary costs for storing the values of ck,i. Although the
function for ck,i (2) is not very complex, for large instances of set K and set I, the num-
ber of edges ck,i will increase quadratically in |K| under the assumption that K does not
contain too many duplicates. Each time an individual has to be evaluated, the values of
ck,i are needed. To save the time of recalculating each value ck,i every time, a dictionary is
created within Python that saves these values, such that the values can be accessed when
needed. The dictionary costs is structured as follows; the key is the order k that needs to
be packed, and the value assigned to that key is a list of all possible cartons i that fit the or-
der k, together with their corresponding values ck,i. Using this method, all values ck,i need
to be calculated only once. While you lose a bit of time looking up the needed value ck,i
in the dictionary costs, this does not weigh up to the time it takes to recalculate the value.

To calculate the fitness of an individual A, all orders k need to be packed using a
carton i. As stated previously, we assume that once the cartons A are chosen, each order
is packed using the carton that minimizes the cost for it. As can be seen in Algorithm 2,
the selection of the best-fitting carton is done using i ← argmini∈A{ck,i}. However, this
operation is computationally expensive. To lower the computational costs, the dictionary
costs is sorted. That is, the value associated with a key is not only a list of all possible
cartons i that fit the order k but they are also sorted based on their corresponding values
of ck,i. When looking at the running example, the dictionary costs would look as shown
in Figure 2.

{
k0 : [ ( i0 ,c0,0 = 3.231 ) , ( i3 ,c0,3 = 4.672 ) , ( i2 ,c0,2 = 5.189 ) , ( iB ,c0,B = 8.956 ) ] ;
k1 : [ ( i1 ,c1,1 = 4.023 ) , ( i2 ,c1,2 = 5.189 ) , ( iB ,c1,B = 8.956 ) ] ;
k2 : [ ( i1 ,c2,1 = 7.923 ) , ( i2 ,c2,2 = 7.923 ) , ( iB ,c2,B = 8.956 ) ] ;
k3 : [ ( i2 ,c3,2 = 5.189 ) , ( iB ,c3,B = 8.956 ) ] ;
k4 : [ ( i3 ,c4,3 = 8.392 ) , ( iB ,c4,B = 8.956 ) ] ;
}

Figure 2: A visual representation of the dictionary costs of ck,i for the running
example of Figure 1. The values of ck,i have been calculated using (2) where d =
5000 and Pkg = 1. Note that the dictionary is sorted based on the values of ck,i.

The reason for sorting the dictionary in this manner is that we do not need to loop
over the whole list of possible cartons i that fit order k. Instead, we move through the list
until we have found a carton i that is in the individual A of which we are calculating the
fitness value and take the corresponding value of ck,i. In the worst case, we need to loop
over the whole list and only the last carton in the list is in individual A, but more often we
will find a fitting carton that is in the individual much earlier on. The computational time
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of sorting the dictionary costs once is much lower than that for looping over all lists every
time you evaluate an individual. The first carton i that you find that is in the individual
A is guaranteed to be the carton that minimizes the cost of packing order k.

The final technique that is applied is similar to the first technique. Again a dictionary
is created that stores values such that they do not have to be recalculated. This time the
dictionary is created for storing the calculated values of F (A). The key of the dictionary
is individual A and the value associated with the key is the fitness value of that individual
F (A). The best half of the individuals stay in the next population. Recalculating their
fitness values in the next generation would not make any sense. Therefore, we store the
values of individuals that have been evaluated in a dictionary. If the individual is in the
dictionary, we can access the value. Otherwise, we calculate it and add it to the dictionary.

5 Mixed-Integer Programming

5.1 Method

The second approach that is implemented to solve this problem is mixed-integer program-
ming. MIP is a mathematical approach for solving optimization problems. These opti-
mization problems are generally given as in (10).

min
x

c⊤x

s.t. Ax ≥ b (10)
l ≤ x ≤ u

x ∈ Rn

The matrix A has a size of m × n. The vector b has a length of m and l,u and c
are vectors of length n. The optimization problem is to find a vector x of length n that
minimizes (or maximizes) the objective value c⊤x and satisfies the constraints Ax ≥ b and
l ≤ x ≤ u. Mixed-integer programming has the advantage of being able to find an optimal
solution to the problem, contrary to the genetic algorithm, which is not guaranteed to find
an optimal solution. However, the trade-off for this is that the instance sizes it can handle
are very limited as the computational time for solving a problem becomes unrealistic.

The carton set optimization problem can also be formulated as a mixed-integer pro-
gramming problem. The objective of the problem is to minimise the total shipping costs for
all packages. We can formulate this objective as a function by introducing new variables.
First, we introduce a binary variable yi for each carton i. The value of yi is 1 if the carton
is selected in the individual and 0 otherwise. Moreover, we introduce a binary variable
xk,i for each pair of k and i. The value of xk,i is 1 if carton i is used for packing order k,
otherwise the value of xk,i is 0. Now that we have defined our variables, we can formulate
the objective function as the product of ck,i and xk,i for all k and i. The carton set opti-
mization problem is to find an individual that minimizes this objective value as denoted in
(11). There are of course also some constraints that should be added to this model, such
that the model finds a feasible solution. The first constraint is that the number of selected
cartons in the individual should equal n, as this is a given problem constraint. Secondly, to
make sure that all orders get packaged (exactly once), we add the constraint that the sum
of all xk,i for all i ∈ I should equal one. No package should be packed twice or not packed,
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but it should be packed exactly once. Finally, the constraint that an order k can only be
packaged using carton i, if that carton is selected within the individual is added. Therefore
xk,i should be smaller or equal to yi for all k and i. These variables, constraints and the
objective together, outline the problem as the mixed-integer programming problem shown
in (11) which can be solved using MIP.

min
∑
i∈I

∑
k∈K

ck,i · xk,i

s.t.
∑
i∈I

yi = n∑
i∈I

xk,i = 1 ∀k ∈ K (11)

xk,i ≤ yi ∀k ∈ K,∀i ∈ I

xk,i ∈ {0, 1} ∀k ∈ K,∀i ∈ I

yi ∈ {0, 1} ∀i ∈ I

After having formulated our problem as a MIP (11), one needs to solve it. There exist
several implementations of the state-of-the-art solution methods. One of these methods is
the branch and bound algorithm which was developed by [6].

Branch and bound is a search tree algorithm that breaks down the problem into sub-
problems that are easier to solve. To explain branch and bound, consider the linear problem
given by the equation and inequalities of (12). The problem involves maximizing a function
with certain constraints and variables, just like the carton set optimization problem.

max
x1,x2

y = 8x1 + 5x2

s.t. x1 + 7x2 ≤ 28

7x1 + 3x2 ≤ 35 (12)
x1 ≥ 0, x2 ≥ 0

x1 ∈ Z, x2 ∈ Z
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x1

x2

(0, 0)

(0, 4)

(5, 0)

(3.5, 3.5)

Figure 3: The visualised feasible region for the example linear problem defined
by (12).

The constraints given by (12) form the feasible region as illustrated by the shaded area
in Figure 3. The coordinates of the vertices of the shaded polygon are (0, 0), (0, 4), (3.5, 3.5)
and (5, 0), with objective values 0, 32, 45.5 and 40 respectively. The linear problem is now
solved with the relaxation that variables x1 and x2 are real numbers instead of integers.
For this example, an optimal solution is found at (3.5, 3.5). Note, however, that (3.5, 3.5)
is not a feasible solution for the linear program defined by (12) as both x1 and x2 are not
integers. This is where branching is needed. We can subdivide the problem by looking
at x1 first. For the problem to be feasible, x1 should be an integer. Therefore, x1 ≤ 3
or x1 ≥ 4 must hold which creates the two different subproblems that are given by the
equation and constraints (13) and (14) respectively.

max
x1,x2

y = 8x1 + 5x2

s.t. x1 + 7x2 ≤ 28

7x1 + 3x2 ≤ 35 (13)

x1 ≤ 3 , x2 ≥ 0

x1 ∈ Z, x2 ∈ Z

max
x1,x2

y = 8x1 + 5x2

s.t. x1 + 7x2 ≤ 28

7x1 + 3x2 ≤ 35 (14)

x1 ≥ 4 , x2 ≥ 0

x1 ∈ Z, x2 ∈ Z
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These subproblems can be solved accordingly and provide new coordinates for the best-
found objective within those bounds. For x1 ≤ 3 this is (3, 3.57) with the optimal value
of y = 41.86 and for x1 ≥ 4 these values are (4, 2.33) and y = 43.67 respectively. This
step is then repeated for x2, as x2 is still not an integer value, which results in even more
subproblems. When this is finished we are left with the binary tree that can be seen in
Figure 4. Interesting to note, is that the combinations of the newly added constraints
x1 ≥ 4 and x2 ≥ 3 do not leave any feasible region and therefore no solution is found and
we set y = ∞. In the end, the best-found integer solution to the problem is (4, 2) with
objective value y = 42.

(3.5, 3.5)

(3, 3.57)

(3, 3) (0, 4)

(4, 2.33)

(4, 2) ×

y = 45.5

x1 ≥ 4x1 ≤ 3

y = 41.86

x2 ≤ 3 x2 ≥ 4

y = 39 y = 20

y = 43.67

x2 ≤ 2 x2 ≥ 3

y = 42 y =∞

Figure 4: Visualisation of the branch and bound algorithm on the example linear
problem defined by (12).

This is the general idea behind the branch and bound algorithm. Of course, this prob-
lem was easy enough to calculate all feasible integer solutions by hand, but for the carton
set optimization problem, the number of variables is |K| · (|I| + 1) which quadratically
increases in |K|. In the worst-case scenario, the branch and bound algorithm will only ter-
minate after having inspected all of the finite subsets A of cartons I. Because the feasible
region is finite, the branch and bound algorithm is guaranteed to find an optimal solution.
However, the potential of the algorithm stems from the hope to be able to discard many
of the subproblems as their objective value is too high and can therefore be completely
discarded. Next to branch and bound mixed-integer programming also utilizes techniques
like presolve, cutting planes, heuristics and parallelism [2].

5.2 Implementation

To solve the mixed-integer programming problem in Python, the model is implemented
using the MIP solver Gurobi [1]. Gurobi takes the variables xji and yi, the objective func-
tion and constraints mentioned in (11) as inputs. Gurobi finds an optimal solution to the
problem, given that the instance size can be handled by Gurobi.
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6 Computational results

Before we can sufficiently compare the genetic algorithm with the mixed-integer program,
we need to choose the right parameters for the genetic algorithm. The genetic algorithm
has two parameters that can largely influence the efficiency of the algorithm. The first
parameter is the population size R, which is the number of individuals evaluated in each
generation. The second variable is the mutation probability pm, which denotes the proba-
bility of an individual to be mutated in the mutation phase of a generation. To find what
value to use for each parameter preliminary experiments are run in which the approxi-
mation error of the genetic algorithm is compared against the mutation probability pm
and the population size R, respectively. To effectively compare the results, mixed-integer
programming is used to compute the exact solution. The preliminary experiments are
run on the problem of selecting the n = 20 cartons that minimize the shipping costs of
|K| = 500 orders. These parameters enable the mixed-integer program to confidently solve
the problem within 10 minutes. Moreover, the dimensional factor d is set to 5000 and the
price per kilogram Pkg to €1.29 for all experiments, unless stated otherwise. The average
approximation error is taken over 5 different order sets to compensate for outliers. The
maximum running time for the genetic algorithm is set to 2 minutes.

Figure 5: The average approximation error of the genetic algorithm over 5 in-
stances for different mutation probabilities. The approximation error represents
the percentual difference to the optimal solution that is calculated on the same
instance using mixed-integer programming.

The experiment is done on all mutation probabilities in increments of 5%. The results
in Figure 5 show that for higher values of the mutation probability pm the approximation
error gets larger. This means that the objective value found by the genetic algorithm
is further away from the optimal solution found by the mixed-integer programming. In
Figure 5 we see that the best value for the mutation probability lies somewhere around 5%
or 10% as their corresponding approximation errors are the lowest.
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Figure 6: The average approximation error of the genetic algorithm over 5 in-
stances for different mutation probabilities pm between 0% and 20%. The approx-
imation error represents the percentual difference to the optimal solution that is
calculated on the same instance using mixed-integer programming.

To pick the best value for mutation probability pm the experiment is rerun for mutation
probabilities between 0% and 20% with smaller increments of 2.5%. Using the results of
Figure 6, the mutation probability pm of the genetic algorithm is set to 10%. This value
is chosen as it has a low approximation error on average and the variance is low compared
to a mutation probability of 7.5%.

Figure 7: The average approximation error of the genetic algorithm over 5 in-
stances for different population sizes R. The approximation error represents the
percentual difference to the optimal solution that is calculated on the same in-
stance using mixed-integer programming.

When running the experiment of the approximation error compared to population size
we see an initially unexpected result. A smaller population size seems to correspond to a
lower approximation error, where R = 50 gives the best result. This can be explained by
the fact that each population is sorted to reproduce and mutate the population. A larger
population size increases the complexity of sorting and has a longer computation time.
The trend line in Figure 7 suggests that a population size smaller than R = 50 might be
even better.
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Figure 8: The average approximation error of the genetic algorithm over 5 in-
stances for smaller population sizes R. The approximation error represents the
percentual difference to the optimal solution that is calculated on the same in-
stance using mixed-integer programming.

To confirm if this is the case, an additional experiment is run on smaller population
sizes. The results of Figure 8 show that indeed smaller population sizes correspond to a
smaller approximation error, while R = 3 may not be able to provide enough variance
in the population. Based on the results of this experiment, the population size R of the
genetic algorithm is set to R = 6, as it provided the lowest approximation error in these
preliminary experiments.

Figure 9: The average approximation error over 5 instances of the genetic algo-
rithm for different numbers of cartons n. The fraction below each bar represents
the number of times the mixed-integer program was able to find an optimal solution
within the 10-minute time limit.
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Now that the parameters of the genetic algorithm are set, the experiments that evaluate
the solution quality of the genetic algorithm were initialized. Two main experiments were
run. First, an experiment was run on the number of cartons selected. Just like in the
preliminary tests, the number of orders |K| is set to 500, but the number of unique cartons
n that pack these orders is the variable in this experiment. In Figure 9, the approximation
error is plotted against the number of cartons. Although the number of cartons decreases
the total shipping costs as can be seen in Table 1, it seems like there is no strong relation
between the variable n and the actual approximation error of the genetic algorithm. In
other words, although more carton sizes decrease the costs, the solution quality of the
genetic algorithm does seem to be affected.

Table 1: The average cost of shipping 500 orders over 5 instances using a fixed
cost of Pkg =€1.29/kg. The maximum is taken between the actual weight and the
dimensional weight of the carton to determine the weight.

n Total price Price per order
5 €9780.61 €19.56
10 €7101.86 €14.20
20 €6555.32 €13.11
40 €5739.50 €11.48
80 €5230.34 €10.46
160 €5043.65 €10.09

Figure 10: The average number of generations that the genetic algorithm was
able to run within the time limit over 5 instances for different numbers of cartons
n.

In Figure 10, the number of generations is plotted against the number of cartons. The
genetic algorithm was able to run the most number of generations for n = 20 which is quite
odd. To clarify why this is the case, an additional experiment should be run on how much
of the running time is spent on which process of the genetic algorithm. This experiment
could give more insight into the time spent on reproducing the population, mutating the
population and sorting the population, which might explain the behaviour that is seen in
Figure 10.
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Figure 11: The average run time of the mixed-integer program over 5 instances for
different numbers of cartons n. The fraction below each bar represents the number
of times the mixed-integer program was able to find an optimal solution within the
10-minute time limit.

In Figure 11, the run time of the mixed-integer program is plotted against the number
of cartons. What is notable about this plot is that the run times for n = 20 and n = 40
are significantly higher. This behaviour can be explained by the number of possible com-
binations there are of picking a subset A of size n from the set of available cartons I.
However, it should be noted that the sudden decrease in runtime for n = 80 and n = 160
can not be explained using the same logic as the possible number of combinations is even
larger. An explanation for this might be that an excessive number of carton sizes for 500
orders makes it easier for the mixed-integer program to find a near-optimal solution as any
selection of a large number of carton sizes can pack the orders effectively. And using a
near-optimal solution the mixed-integer program can discard many subproblems. This is
confirmed when looking at the approximation error over time graph for n = 160 in Figure
33d. It shows that the genetic algorithm started with a solution that had an approximation
error of around 7% for this instance, while the initial approximation error was higher for
all other values of n as can be seen in Figure 28d, 29d, 30d, 31d and 32d.

The limitation and reason why the carton set optimization problem is not solved exclu-
sively using a mixed-integer program is because of the computational time. If the instance
size becomes too big, the mixed-integer program is unable to solve the problem within the
time limit. This is nicely illustrated in Figure 13, where you can see that the run time
increases as the number of orders increases. It should be noted that the mixed-integer
program was only able to solve 3 out of 5 problems for an instance size of 750 cartons
within the 10-minute time limit, and none of the larger instances. For the instance of 750,
the average time was calculated only using the runs that finished before the time limit, not
including the two runs of more than 10 minutes. In Figure 12, the correlation between the
approximation error of the genetic algorithm and the instance size of the problem is shown.
There seems to be an increasing trend line within this plot, although it is not very clear.
One reason for this might be that taking a 5-time average is not enough to compensate for
outliers.
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Figure 12: The average approximation error over 5 instances of the genetic algo-
rithm for different numbers of orders |K|. The fraction below each bar represents
the number of times the mixed-integer program was able to find an optimal solution
within the 10-minute time limit.

Figure 13: The average run time of the mixed-integer program over 5 instances
for different numbers of orders |K|. The fraction below each bar represents the
number of times the mixed-integer program was able to find an optimal solution
within the 10-minute time limit.
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Figure 14: The average number of generations over 5 instances of the genetic
algorithm for different numbers of orders |K|.

While running the main experiments, experiments were also run using another cost
function that represents a real-world scenario more closely than having a factor Pkg that
makes costs linear to the weight. To be more specific, the experiments were run on the step-
wise cost system of UPS Standard delivery in the Netherlands [4]. The price of shipping
a package increases at certain weight thresholds. All experiments using this new step-wise
cost function are coloured blue. The principle of the problem stays the same, but the prices
do differ from the linear cost function, as can be seen in Table 2. The dimensional factor
d is kept the same, as this is also the dimensional factor that UPS wields.

The experiments gave some surprising results, as it turned out that the mixed-integer
program was able to handle way larger instance sizes than before as can be seen in Figure
16. The mixed-integer program was able to provide an optimal solution for 2 out of
the 5 instances for 2000 orders, which is a significant difference. This difference might
be explained by the fact that the price is rounded to 2 decimals, while in the previous
experiments, the factor Pkg was multiplied directly with the weight, which was not rounded
to 2 decimals. Rounding the costs to 2 decimals enables the mixed-integer program to
discard all solutions that have more decimals, which significantly reduces the complexity
of the problem. Another explanation might be that the number of possible costs ck,i is
significantly decreased, which also reduces the complexity of the problem.

Table 2: The average cost of shipping 500 orders over 5 instances using the step-
wise cost function of UPS Standard shipping in the Netherlands [4].

n Total price Price per order
5 €13588.59 €27.18
10 €11948.54 €23.90
20 €11384.38 €22.77
40 €10871.39 €21.57
80 €10501.25 €21.00
160 €10463.61 €20.93
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Because of this observation, all main experiments were also done using the step-wise cost
function to analyze the differences. The experiments on the number of cartons provided
very similar results to the experiments on the linear cost function as can be seen in Figures
34, 35 and 36. The only notable difference in that experiment was that the run time was
way lower for the step-wise cost function than for the linear cost function. The experiments
on the number of cartons do however provide major new insights.

In Figure 15, the plots of an individual instance are shown for the base case |K| = 500
and n = 20 using the step-wise cost function of UPS. In Figure 15a it can be seen that
the genetic algorithm can quickly improve to a good solution but needs a lot of additional
time to improve further. Therefore, for order sizes |K| where the mixed-integer program is
unable to solve the problem, the genetic algorithm is a great alternative. Figure 15b clearly
shows that the MIP needs some initial time for defining variables and constraints, before
finding a first solution to the problem. For this instance size of 500 orders that process
takes about 4.4 seconds, but for larger instance sizes like n = 1000 or n = 1500 this takes
about 15 seconds and 40 seconds respectively as can be seen in Figures 25 and 27. Figure
15d clearly shows that, whenever the MIP can solve the problem, the approximation error
is initially smaller for the GA, but after a while the MIP can find the better carton set.
For this specific experiment, the found carton sets are shown in Table 3.

(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 15: An example of the plots for |K| = 500 and n = 20 using the step-wise
cost function.
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Table 3: The dimensions of the carton sets found by the genetic algorithm and
the mixed-integer program on the instance |K| = 500 and n = 20 that is shown in
Figure 15. The total shipping costs are €12109.55 and €11853.05 for the GA and
the MIP respectively. The approximation error of the genetic algorithm was 2.16%
in this instance.

(a) Genetic algorithm

Length (cm) Width (cm) Height (cm)
28 14 12
35 19 15
45 26 21
46 23 18
53 28 26
55 24 22
61 32 30
69 39 29
74 48 38
78 54 44
84 41 37
88 56 41
90 58 32
95 54 43
95 65 47
97 50 38
104 63 48
110 56 47
120 54 25
120 70 62

(b) Mixed-integer program

Length (cm) Width (cm) Height (cm)
29 14 12
35 19 15
46 23 18
49 29 24
53 25 20
61 31 26
63 37 30
71 40 27
74 48 38
78 54 44
84 41 37
85 56 35
93 59 45
95 54 43
95 65 47
97 50 38
104 63 48
110 56 47
120 54 25
120 70 62

Figure 16: The average run time of the mixed-integer program over 5 instances
for different numbers of orders |K|. The fraction below each bar represents the
number of times the mixed-integer program was able to find an optimal solution
within the 10-minute time limit. The experiments were run using the step-wise cost
function.
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Figure 17: The average number of generations over 5 instances of the genetic
algorithm for different numbers of orders |K|. The experiments were run using the
step-wise cost function.

The plots of the number of generations against the number of orders for both the linear
cost function in Figure 14 and the step-wise cost function in Figure 17 seem to closely
follow the reciprocal function. This can be explained by the fact that having double the
cartons requires double the calculations and is thus able to run half as many generations.

Figure 18: The average approximation error over 5 instances of the genetic algo-
rithm for different numbers of orders |K|. The fraction below each bar represents
the number of times the mixed-integer program was able to find an optimal solution
within the 10-minute time limit. The experiments were run using the step-wise cost
function.

The trend line in Figure 18 is clearer than that in Figure 12 which uses the linear cost
function, because the experiments could be done for more instance sizes. Therefore, the
experiments conclude with more confidence that there is an increasing trend line in the
approximation error for larger instance sizes. Note that the horizontal axis in Figure 18 is
not linear.

22



7 Conclusion

In this paper, two methods have been proposed to solve the carton set optimization prob-
lem. The mixed-integer program was implemented to evaluate the solution quality of the
genetic algorithm. For smaller instances, the genetic algorithm is not able to find the
optimal solution, in contrast to the mixed-integer program. For order sizes where the
mixed-integer program is unable to solve the problem, the genetic algorithm is a great
alternative. We see that the genetic algorithm can provide a near-optimal solution to the
problem if the genetic algorithm is given enough time.

Although there does not seem to be a correlation between the number of cartons and
the solution quality of the genetic algorithm, we can conclude that increasing the number
of cartons decreases the average shipping costs of all orders. However, inventory costs and
initial set-up costs for such carton sizes are not considered in this paper. Additionally, the
prices of certain cartons might be much higher than other more standard carton sizes. To
get a more accurate representation of a real-world situation, one should consider updating
the model to include the costs of varying carton sizes, initial set-up costs and upkeep costs.

In this paper, the available carton sizes were limited to the generated order dimensions.
To find the actual optimal carton sizes one should consider all possible combinations of
dimensions. Note that this drastically increases the number of available cartons and thus
increases the computation times of the mixed-integer program. This may also harm the
solution quality of the genetic algorithm.

In the model, it is assumed that an order can be packed using a carton of the same
dimensions. This is not completely accurate as the cartons have a thickness themselves.
Additionally, for calculating the fitness value it is assumed that each order is packed using
the optimal carton. In real-world scenarios, this might not be the case as packing might
be done by humans or outsourced to machines who are both not flawless.

It is noted that taking the average values over 5 instances still seems to cause rela-
tively big outliers within the data. To compensate for outliers, follow-up experiments are
recommended to be run on more instances to ensure representative data. Moreover, to
give an adequate representation of the real world, one should consider obtaining and using
real-world data for follow-up experiments.
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A Figures

(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 19: An example of the plots for |K| = 125 and n = 20 using the step-wise
cost function.
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(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 20: An example of the plots for |K| = 250 and n = 20 using the step-wise
cost function.
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(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 21: An example of the plots for |K| = 375 and n = 20 using the step-wise
cost function.
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(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 22: An example of the plots for |K| = 625 and n = 20 using the step-wise
cost function.
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(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 23: An example of the plots for |K| = 750 and n = 20 using the step-wise
cost function.
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(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 24: An example of the plots for |K| = 875 and n = 20 using the step-wise
cost function.
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(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 25: An example of the plots for |K| = 1000 and n = 20 using the step-wise
cost function.
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(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 26: An example of the plots for |K| = 1250 and n = 20 using the step-wise
cost function.
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(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 27: An example of the plots for |K| = 1500 and n = 20 using the step-wise
cost function.
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(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 28: An example of the plots for |K| = 500 and n = 5 using the step-wise
cost function.
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(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 29: An example of the plots for |K| = 500 and n = 10 using the step-wise
cost function.
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(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 30: An example of the plots for |K| = 500 and n = 20 using the step-wise
cost function.

36



(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 31: An example of the plots for |K| = 500 and n = 40 using the step-wise
cost function.
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(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 32: An example of the plots for |K| = 500 and n = 80 using the step-wise
cost function.
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(a) Best-found price using the GA over
time.

(b) Best-found price and lower bound
using the MIP over time.

(c) The best-found price for both meth-
ods combined in one figure.

(d) The solution quality of both meth-
ods over time.

Figure 33: An example of the plots for |K| = 500 and n = 160 using the step-wise
cost function.
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Figure 34: The average approximation error over 5 instances of the genetic algo-
rithm for different numbers of cartons n. The fraction below each bar represents
the number of times the mixed-integer program was able to find an optimal solution
within the 10-minute time limit. The experiments were run using the step-wise cost
function.

Figure 35: The average number of generations over 5 instances of the genetic
algorithm for different numbers of cartons n. The experiments were run using the
step-wise cost function.
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Figure 36: The average run time of the mixed-integer program over 5 instances for
different numbers of cartons n. The fraction below each bar represents the number
of times the mixed-integer program was able to find an optimal solution within the
10-minute time limit. The experiments were run using the step-wise cost function.
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