
Measuring Code Modernity of Codebases Written in JavaScript
THIJS BEUMER, University of Twente, The Netherlands

JavaScript, one of the most widely used programming languages, has un-
dergone significant evolution through various versions of its underlying
standard, ECMAScript. This evolution has introduced new features and syn-
tactic changes, which are adopted by developers at varying rates. In this
research, we present a method for measuring the "modernity" of JavaScript
codebases, by analyzing the features used from different ECMAScript ver-
sions. We recall the concept of a modernity signature, which quantifies the
relative adoption of new language features within a codebase, and define its
meaning in the context of JavaScript. Using static code analysis, we develop a
tool that generates modernity signatures for existing JavaScript projects. By
normalizing and visualizing the evolution of these signatures over time, we
gain valuable insights into the development practices employed by JavaScript
developers. The findings of this research contribute to a deeper understand-
ing of how JavaScript codebases evolve in response to changing language
features and developer choices.

Additional Key Words and Phrases: JavaScript, ECMAScript, Modernity,
Static Analysis

1 INTRODUCTION
JavaScript is a dominant language for web development, with over
98% of websites using it as of November 2024 [22]. Its underlying
standard, ECMAScript [13], has been evolving through many ver-
sions, introducing new features and syntax that provide developers
with more tools to build their applications upon.

Despite the constant development happening on the ECMAScript
standard, not all JavaScript codebases immediately adopt newly
available features. The rate at which new features are integrated
and the relative usage of features from different ECMAScript ver-
sions varies significantly between projects. The level of adoption,
along with the usage distribution of features from different versions
of ECMAScript, forms what we will refer to as the ‘modernity’ of a
codebase. Code modernity refers to the extent to which a codebase
leverages features introduced in newer versions of the language,
providing insights into feature adoption patterns, development prac-
tices, and overall evolution of JavaScript projects.
Investigating modernity is particularly valuable as the relative

adoption of newer ECMAScript features, and the evolution of these
usage patterns over time, can serve as indicators of active mainte-
nance and code health [1]. In previous research, active maintenance
has been correlated to software quality [14], enhanced reliability
[16], and a reduction in security vulnerabilities [12]. By extension,
analyzing the modernity of a codebase may provide indirect insight
into these metrics, offering a novel way of determining the state
and evolution of JavaScript projects.

TScIT 42, January 31, 2025, Enschede, The Netherlands
© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

The modernity signature, a concept defined in previous research
[1], can capture the evolution of a codebase by mapping the fea-
tures used in a codebase to their respective ECMAScript versions.
A JavaScript function written in ECMAScript version 15 (ES15)
may look different from one written in ES6, even when serving the
same purpose. Such differences, while not always visible during
code execution, may have impact on maintainability, readability,
and adoption of best practices within the JavaScript development
community.
This paper explores the modernity of JavaScript codebases by

defining and measuring the evolution of their modernity signatures
over time. A static code analysis tool will be developed to calculate
these signatures for various JavaScript projects throughout their
lifetimes. The tool will parse JavaScript files, analyze their Abstract
Syntax Trees (ASTs), and identify which features from which EC-
MAScript versions are being used. By visualizing these signatures
over time, valuable insights into the evolution of JavaScript code-
bases can be obtained.
To structure our study, the following research question is ad-

dressed:
“To what extent can we use static code analysis methods to reliably

detect the modernity of a JavaScript codebase?”
This goal is further narrowed down to the following sub-questions:

RQ1 How can a modernity signature be defined within the context
of the JavaScript language?

RQ2 What methods can be used to determine a modernity signature
for any give JavaScript codebase?

RQ3 What approaches can be used to effectively normalize and vi-
sualize modernity signatures over time to reveal meaningful
patterns and insights?

RQ4 What insights about quality, maintainability, and development
practices can be derived solely from the modernity signature of
a JavaScript codebase?

In this paper we will refer to ECMAScript versions as “language
versions” and features within the ECMAScript specification as “lan-
guage features”.
After going over related work in Section 2, we will go over the

methodology in Section 3 while answering RQ1 and RQ2. Next,
Section 4 focuses on running an experiment. Finally, in Section 5
we discuss the results generated during the experiment and answer
RQ3 and RQ4.

2 RELATED WORK
Previous research on code modernity has been conducted for several
programming languages, including PHP [20], Python [2], C# [19],
and Rust [5]. These studies have investigated usage of features
from different versions, and patterns observed during the lifetime
of codebases written in these languages. Additionally, research on
normalization techniques for modernity signatures [24], as well as
a study bringing this and the Python and PHP papers together [1],
have laid the groundwork for our research.

1



TScIT 42, January 31, 2025, Enschede, The Netherlands Thijs Beumer

Although significant work has been done in these languages,
JavaScript remains largely unexplored in the context of code moder-
nity. This study builds upon the existing research by applying the
concept of modernity to JavaScript.
Static code analysis of JavaScript codebases has also been the

subject of previous research, with one study focusing on separate
but related JavaScript modules and investigating how they can be
analyzed as one network using these techniques [15]. Another study
explored the detection of potential points of failure in asynchronous
JavaScript programs, specifically analyzing asynchronous structures
[17]. Additionally, an empirical study was conducted on static code
analysis tools for detecting vulnerabilities in Node.js codebases [6].
These works illustrate the use of static code analysis, and highlight
its potential for uncovering otherwise hidden information about
JavaScript codebases.

Looking at the history of JavaScript, the evolution of the language
is tightly linked with the ECMAScript standard, which describes the
language’s syntax, semantics, and features. Studies conducted on po-
litical and technical aspects of ECMAScript’s development [21, 23]
have highlighted the processes that have influenced this standard.
The political landscape around ECMAScript has evolved, where
earlier versions of ECMAScript were subject to more unpredictable
updates. This is partially reflected by usage patterns of features in
JavaScript codebases, and in turn visible in their modernity signa-
tures. Earlier versions introduce a larger amount of unique features,
compared to more modern versions of the language.

3 METHODOLOGY
In this section, we will discuss what a modernity signature means
in the context of JavaScript and this paper, define a method for sys-
tematically generating modernity signatures for existing JavaScript
codebases, and go over the testing approach used to validate an
implementation of the method.

3.1 Defining a Modernity Signature
In line with previous research on modernity signatures [1] we de-
fine a modernity signature as an n-tuple, where n is defined as the
number of different language versions considered. Each entry in the
tuple corresponds to a specific language version, and represents the
extent to which features introduced in that version are used within
the codebase.

Since themajority of features, detectable from the Abstract Syntax
Tree (AST) of a JavaScript project, were introduced in language
versions 3 and 6 [18], we expect those versions to show significantly
higher values within the signature compared to others. To address
this bias, we will define two types of signatures.

First, we define the aggregate signature, where each entry in the
n-tuple reflects the total number of times features, introduced in
the corresponding language version, were used in the codebase.
Secondly, we define the boolean signature, which counts the

number of unique language features used, disregarding the total
amount of times they appear.
To illustrate, consider a hypothetical example, with language

version V and language features A and B. If for a given codebase we
detect A used twice and B used four times, The aggregate signature

will be:
agg = 2𝐴 + 4𝐵 = 6

The boolean signature, however, will simply count whether a feature
appears or not, resulting in a value of:

bool = 1𝐴 + 1𝐵 = 2

During the visualization of the results we will apply various,
previously researched [24], normalization methods on these two
signature types. We do this to mitigate the bias towards language
versions 3 and 6 that will likely dominate the signatures. This ap-
proach is discussed in detail in Section 4.3.2.

3.2 Static Analysis
To generate aggregate and boolean signatures for any JavaScript
codebase, we develop a static analysis tool that parses JavaScript
files into ASTs and analyzes each node to detect language features.

3.2.1 Environment. The tool is implemented using Node.js run-
time environment [10], chosen for its native compatibility with the
JavaScript language and extensive library ecosystem. We use the
espree library [9] from Node Package Manager (npm) [11], the pack-
age manager for Node.js, as it enables us to parse JavaScript files
into their AST representations.

Not every type of file that can be found in a JavaScript codebase is
suitable for our analysis. Non-code documents (e.g. README files,
configurations files), malformed JavaScript files, or files carrying
the .js extension but using other ECMAScript implementations
such as TypeScript 1, are excluded. These files either do not contain
ECMAScript or require additional steps to parse beyond the scope
of this research. To address this, we identify all files with the .js
extension and attempt to parse each one using espree. Only files that
can be successfully parsed are included in the signature generation
process.

3.2.2 Language Version Determination. After parsing valid files, the
tool traverses the ASTs to assign a language version to each node.
Since no pre-existing tools provide this functionality in the chosen
environment, we implement a custom solution. Our implementation
evaluates a language version for an individual node based on its
type, content and parent node. To determine what node should
receive what version, we use publicly available resources such as, the
ECMAScript language specifications [13], community-maintained
feature changelogs [18], and a full list of node definitions provided
by the eslint-visitor-keys package [7].

Most node types are unique to a single language version. However,
certain nodes require additional information to determine their
version. An example is the Literal node, which represents values
such as booleans, null, undefined, strings and numbers. To determine
the appropriate version for the Literal node, we test its content
against a regular expression that identifies the specific type of Literal
used, and in turn the corresponding language version.

Another notable case is the RestElement node, where the assigned
language version depends on the context in which it is used. The
use of the RestElement within functions or arrays was introduced

1TypeScript is a strongly typed programming language that builds on JavaScript.
https://www.typescriptlang.org/

2



Measuring Code Modernity of Codebases Written in JavaScript TScIT 42, January 31, 2025, Enschede, The Netherlands

in ES6, while its usage within objects was introduced in ES9. To
account for this, we evaluate the parent node of the RestElement to
determine the corresponding language version.

3.2.3 Signature Generation. To generate the aggregate signature,
we count the total number of nodes assigned to every individual
language version. For the boolean signatures, each language feature
is assigned a unique identifier, here we count only the presence of
unique features per language version, regardless of how often they
appear.

3.3 Validating Implementation
Although publicly available sources provide comprehensive infor-
mation on AST nodes and their corresponding language versions,
the available data is vast and intricate. Manually implementing a
mechanism to assign versions to individual nodes is prone to human
error.
To ensure correctness of the version assignment mechanism,

we validate the implementation through a series of tests. For each
language feature, we create a JavaScript file containing a ‘minimal
usage’ example and associate it with the corresponding language
version. Minimal usage here refers to using the least amount of
additional language features to create a valid JavaScript program
containing the language feature in question. For any given test file,
we now check if the following conditions are met:

(1) The file can be parsed successfully using language version V.
(2) The file cannot be parsed using language version V-1.
(3) The modernity signature generated for the file contains at least

one detection of language version V.
(4) The modernity signature generated for the file contains no de-

tections of any language versions higher than V.

By validating against these criteria, we ensure that the implemen-
tation correctly assigns language versions to nodes when traversing
an AST.

4 EXPERIMENT
Our implementation can be found on GitHub as JSModernity [4].
More information on how to install and use the tool can be found
in the README.md file.
In our implementation, we process codebases by analyzing all

releases in chronological order. For every release, the source code is
downloaded, relevant files are determined, signatures are generated,
and the resulting signatures are saved with a timestamp for that
release. Releases are chosen as anchor points to capture meaningful
changes in the codebase, as releases are individual points chosen
by developers themselves that represent actual changes in the code
and/or its functionality.

4.1 Environment / Experimental Setup
The experiment is run using Node.js version 22.11 on a Windows 11
Pro (10.0.26100 Build 26100) machine with 64GB of RAM and a 12-
threadedAMDRyzen 5 2600X processor. As the signature generation
process itself does not depend on a specific system specifications,
the same result should be obtained when running on a different

system while using the same Node.js version. However, the time
needed to generate a signature may vary depending on the system.

4.2 Corpus selection
Included in the experiment is a set of 100 of the most starred
JavaScript repositories on GitHub [8]. This dataset is chosen to get
exposure to a large variety of developers, as well as codebases that
have existed and evolved over longer periods of time. It should be
noted that this dataset is not representative of the entire JavaScript
landscape and may introduce bias due to its focus on popular repos-
itories. Covering every available JavaScript codebase is beyond the
scope of this research.
Not all 100 codebases are applicable for our experiment. Code-

bases that do not contain JavaScript files or that never had re-
leases are not considered. Examples include codebases containing
JavaScript concepts, style-guides, or job interview questions. After
filtering out non-applicable codebases, we are left with a total of 69
codebases that can be analyzed.

4.3 Results
The results of the experiment can be found in the JSModernity
GitHub repository as Release v1.0.0 [4]. It includes a full list of
result signatures as well as generated plots.

4.3.1 Generation. The signature generation process for the previ-
ously determined dataset was run in batches of 10 at a time, mainly
to prevent spamming the GitHub API when cloning repositories
and fetching releases. Individual signature generation processes
took anywhere from 1 to 15 minutes depending on the amount of
JavaScript code being processed. Codebases containing more and/or
larger JavaScript files, or that have more releases take longer to
analyze.

4.3.2 Normalization. As discussed in Section 3.1, the resulting sig-
natures often show a dominance of language versions 3 and 6. To
address this, we can apply previously researched normalization
techniques within the context of modernity [24]. The normalization
method best suited for suppressing the bias towards language ver-
sions 3 and 6, is the logarithmic transformation. Specifically, we use
the following formula to normalize the aggregate signatures:

𝑥 ′𝑖 =
ln𝑥𝑖

ln
∏𝑖=1

𝑚 𝑥𝑖

For the boolean signature, we use a different normalization ap-
proach. We normalize each entry by dividing the value for a given
language version by the maximum number of features detectable
for that version. Continuing our example from Section ??, given
language version V introduces three features, namely feature A, B
and C. If we detect feature A twice and feature C once, the normal-
ized boolean value for language version V would be calculated as
follows:

bool′ =
1𝐴 + 1𝐶

1𝐴 + 1𝐵 + 1𝐶
=

2
3
≈ 0.667

Note again that feature A is counted only once, as the boolean
signature counts usage of unique language features a single time,
regardless of the frequency at which they are used.

3



TScIT 42, January 31, 2025, Enschede, The Netherlands Thijs Beumer

This normalization approach results in each entry representing
the percentage of language features used relative to the total avail-
able features for that version of the language.

5 DISCUSSION
For each analyzed codebase we visualize the modernity signatures as
3D surface plots. In these plots the X and Y axes represent language
versions and release dates respectively. The Z-axis indicates the
relative abundance of features for each language version.

In the plots, we also include a red line showing the release dates
of different language versions. Since language features should not
technically be used prior to their introduction, we expect to see no
peaks to the right of this line.

In this section, we discuss a selection of the generated plots and
discuss what information, about a codebase, can be deduced by
inspecting them.

5.1 Gradual Adoption of Modern Features

Fig. 1. Aggregate signature evolution for the ‘pdf.js’ repository

Figure 1 shows the evolution of the aggregate signature for the
pdf.js repository by Mozilla. Earlier releases primarily use features
from language versions 3 to 6. At the time, these were the only avail-
able versions of ECMAScript. Over time, as newer language versions
were released (indicated by the red line), features introduced in these
newer versions were gradually adopted.
A sudden peak in ES6 feature usage appears between 2016 and

2019. Further investigation reveals that this corresponds to a release
from August 2017 where portions of the codebase were refactored
to adopt ES6 features, explaining the peak we see.

Figure 2 displays the boolean signatures for the same repository.
New information, not visible initially when analyzing the aggre-
gate signature, becomes visible. For example, we see that, since the
beginning, a large portion of the total available set of features for
language versions 3 and 5 was used. However, for newer versions
such as 6, 8 and 11, we see the usage relative to the total available
features slowly increasing over time.

Fig. 2. Boolean signature evolution for the ‘pdf.js’ repository

5.2 Usage of Experimental Features

Fig. 3. Aggregate signature evolution for the ‘React’ repository

The aggregate signature for React, shown in Figure 3, reveals an
unexpected peak in ES13 feature usage before its official release.
When inspecting the changes in the repository during this period,
we see that the developers made use of the static class field syntax
before its official inclusion in the ECMAScript standard in 2022.
This early adoption is explained by the use of Babel [3], a popular
transpiler for ECMAScript.
Transpilers (or source-to-source compilers) are a type of com-

piler that translate code written in one programming language, into
equivalent code for another programming language. In the case of
Babel, this is used to convert language features from newer versions
of ECMAScript into code for older versions of the standard. This

4



Measuring Code Modernity of Codebases Written in JavaScript TScIT 42, January 31, 2025, Enschede, The Netherlands

functionality of Babel allows developers to write code using mod-
ern language features while still allowing web browsers or other
environments, that take longer to adopt the newest features, to run
their code.

In addition to transpiling modern language features, Babel often
allows for the transpilation of experimental ECMAScript features,
which are candidates for inclusion in upcoming ECMAScript ver-
sions. This explains the peak we see for language version 13 in the
plot for React.

Fig. 4. Boolean signature evolution for the ‘React’ repository

Looking at the boolean signature for the codebase, as seen in
Figure 4, we can see that not only there is an unexpected peak for
version 13, there is also a peak for language version 9 before its offi-
cial release. Again upon further investigation, we see the developers
use a rest element within an object. A feature introduced in 2018.
However, using Babel, this feature was already available during its
experimental phase. The inclusion of experimental features in the
codebase suggests that the development team behind React are early
adopters of new and experimental language features.

5.3 Minimal Adoption of Modern ECMAScript

Fig. 5. Aggregate (left) & boolean (right) signature evolutions for the ‘Ex-
pressJS’ repository

Not all codebases show adoption of newer language features over
time. Looking at both the aggregate and boolean plots for ExpressJS

(Figure 5), we see that developers are mainly using features from
language versions 3 and 5. This suggests that, in contrast to the
development team behind React, the ExpressJS developers have cho-
sen a more conservative approach to feature adoption, by sticking
to features introduced in earlier versions of ECMAScript.

6 CONCLUSIONS
In this paper we explored the concept of modernity in the context
of JavaScript and the standard it is based upon, ECMAScript.

We introduced the meaning of a modernity signature within the
context of JavaScript and this paper in Section 3.1, answering RQ1.
Amodernity signature is defined as a tuple that represents the extent
to which features from each ECMAScript version are utilized in a
given codebase. Given the relative abundance of features in earlier
ECMAScript versions, we also differentiated between two types of
signatures: aggregate and boolean signatures.

To address RQ2, we defined a method for generating modernity
signatures for any existing JavaScript codebase, and also outlined
our validation process in Sections 3.2 and 3.3. We then applied this
method in Section 4 to analyze the top 100 most popular JavaScript
repositories on GitHub (based on the total amount of stars received).
Of these 100 repositories, we successfully generated 69 signatures,
with 31 repositories not meeting our criteria for inclusion in the
analysis and thus being excluded.

Finally, in Section 5, we used different normalization techniques
and visualized the results by using 3D surface plots, answering RQ3.
We further discussed the insights gained from these plots. The sig-
natures revealed information about different development practices
answering RQ4. In certain cases we saw newer language features
slowly being used more as the codebase evolved, while others were
shown to stick with older language features. We also observed unex-
pected results where language features were used that would only
be introduced into ECMAScript years later. Upon further investiga-
tion, we found this to indicate the usage of transpiler libraries like
Babel.

7 FUTURE WORK
Building on the work presented in this study, there are several
directions for future research that will provide deeper insights into
modernity within ECMAScript-based languages.
As highlighted in Section 3.2, our analysis specifically focuses

on files with the .js extension that contain valid JavaScript. How-
ever, the ECMAScript standard has broader implementations than
JavaScript alone. One notable example being TypeScript, as briefly
touched upon in this paper. Extending our methodology to include
other such implementations of ECMAScript will enhance our un-
derstanding of the modernity concept within the ECMAScript land-
scape.
Furthermore, due to the lack of a universally accepted bench-

mark for selecting JavaScript codebases, our study was limited to
the top 100 most popular repositories on GitHub. Although this
selection provided valuable insights, it is not representative of the
entire set of available JavaScript codebases. Analyzing repositories
with different characteristics will likely provide additional insights.
Codebases with fewer JavaScript could, for example, show more

5



TScIT 42, January 31, 2025, Enschede, The Netherlands Thijs Beumer

sporadic movement in the signature over time, whereas codebases
with fewer developers could show unique signatures shaped by the
individual preference of those developers for certain features.

Another direction for future work should be, exploring different
anchor points beyond the release points used in our analysis. Us-
ing different anchor points could reveal alternative patterns. For
instance, taking every single commit into account might expose
finer details in the evolution of the modernity signature, providing a
more continuous view of how codebases evolve over time, especially
for smaller, more frequent updates.
Finally, our current method, which only inspects the AST of a

JavaScript program, cannot fully capture all features of the EC-
MAScript standard. For instance, we are unable to differentiate be-
tween prototype functions inherently available within ECMAScript
and newly defined functions by developers. Expanding the analysis
beyond inspecting the AST to detect such constructs, would provide
a deeper insight into modernity within ECMAScript.

REFERENCES
[1] C. Admiraal, W. van den Brink, M. Gerhold, V. Zaytsev, and C. Zubcu. 2024.

Deriving modernity signatures of codebases with static analysis. Journal of
Systems and Software 111973 (2024). https://doi.org/10.1016/j.jss.2024.111973

[2] C. P. Admiraal. 2023. Calculating the modernity of popular python projects.
https://essay.utwente.nl/94375/

[3] Babel. 2024. Babel transpiler documentation. https://babeljs.io/docs/
[4] T. Beumer. 2025. JSModernity Release v1.0.0. https://github.com/TBeumer/

JSModernity
[5] C. Bleeker. 2024. Measuring Code Modernity in Rust. https://essay.utwente.nl/

98262/
[6] T. Brito, M. Ferreira, M. Monteiro, P. Lopes, M. Barros, and J. Santos. 2022. Study

of JavaScript Static Analysis Tools for Vulnerability Detection in Node.js Packages.
(2022). https://doi.org/10.1109/TR.2023.3286301

[7] eslint. 2024. eslint-visitor-keys, Constants and utilities about visitor keys to
traverse AST. https://github.com/eslint/js/tree/main/packages/eslint-visitor-keys

[8] EvanLi. 2024. Top 100 Stars in JavaScript. https://github.com/EvanLi/Github-
Ranking/blob/master/Top100/JavaScript.md

[9] OpenJS Foundation. 2024. Espree NPM Package. https://www.npmjs.com/
package/espree

[10] OpenJS Foundation. 2024. Node.js runtime environment. https://nodejs.org/en
[11] GitHub. 2024. Node Package Manager. https://www.npmjs.com/
[12] A. Ikegami, R. Kula, B. Chinthanet, V. Maeprasart, A. Ouni, T. Ishio, and K. Mat-

sumoto. 2022. On the Use of Refactoring in Security Vulnerability Fixes: An
Exploratory Study on Maven Libraries. (2022). https://doi.org/10.48550/arXiv.
2205.08116

[13] Ecma International. 2024. ECMAScript language specification version ES2024
/ 15th edition, ECMA-262. https://ecma-international.org/publications-and-
standards/standards/ecma-262/

[14] B. Lankasena. 2023. Investigating the Impact of Software Mainte-
nance Activities on Software Quality: Case Study. (2023). https:
//www.researchgate.net/publication/384675050_Investigating_the_Impact_of_
Software_Maintenance_Activities_on_Software_Quality_Case_Study

[15] S. Lucz. 2017. Static analysis algorithms for JavaScript. https://ftsrg.mit.bme.hu/
thesis-works/pdfs/lucz-soma-bsc.pdf

[16] A. Mateen and M. Akbar. 2016. Estimating software reliability in maintenance
phase through ann and statistics. (2016). https://doi.org/10.48550/arXiv.1605.00774

[17] T. Sotiropoulos and B. Livshits. 2019. Static Analysis for Asynchronous JavaScript
Programs. (2019). https://doi.org/10.48550/arXiv.1901.03575

[18] Jonna Sudheer. 2024. ECMAScript Features or Cheatsheet. https://github.com/
sudheerj/ECMAScript-features

[19] M. Troicins. 2024. Measuring Code Modernity of the C# Language Codebases.
https://essay.utwente.nl/101016/

[20] W. van den Brink. 2022. Weighed and found legacy: modernity signatures for
PHP systems using static analysis. https://essay.utwente.nl/91794/

[21] J. Vepsäläinen. 2023. ECMAScript – The journey of a programming language
from an idea to a standard. (2023). https://doi.org/10.48550/arXiv.2305.01373

[22] W3Techs. 2024. Historical trends in the usage statistics of client-side programming
languages for websites. https://w3techs.com/technologies/history_overview/
client_side_language/all

[23] A. Wirfs-Brock and B. Eich. 2020. JavaScript: the first 20 years. Proceedings
of the ACM on Programming Languages 4, HOPL (2020), 77:1–77:189. https:
//doi.org/10.1145/3386327

[24] C. Zubcu. 2023. Effect of Normalization Techniques on Modernity Signatures in
Source Code Analysis. https://essay.utwente.nl/96034/

6

https://doi.org/10.1016/j.jss.2024.111973
https://essay.utwente.nl/94375/
https://babeljs.io/docs/
https://github.com/TBeumer/JSModernity
https://github.com/TBeumer/JSModernity
https://essay.utwente.nl/98262/
https://essay.utwente.nl/98262/
https://doi.org/10.1109/TR.2023.3286301
https://github.com/eslint/js/tree/main/packages/eslint-visitor-keys
https://github.com/EvanLi/Github-Ranking/blob/master/Top100/JavaScript.md
https://github.com/EvanLi/Github-Ranking/blob/master/Top100/JavaScript.md
https://www.npmjs.com/package/espree
https://www.npmjs.com/package/espree
https://nodejs.org/en
https://www.npmjs.com/
https://doi.org/10.48550/arXiv.2205.08116
https://doi.org/10.48550/arXiv.2205.08116
https://ecma-international.org/publications-and-standards/standards/ecma-262/
https://ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.researchgate.net/publication/384675050_Investigating_the_Impact_of_Software_Maintenance_Activities_on_Software_Quality_Case_Study
https://www.researchgate.net/publication/384675050_Investigating_the_Impact_of_Software_Maintenance_Activities_on_Software_Quality_Case_Study
https://www.researchgate.net/publication/384675050_Investigating_the_Impact_of_Software_Maintenance_Activities_on_Software_Quality_Case_Study
https://ftsrg.mit.bme.hu/thesis-works/pdfs/lucz-soma-bsc.pdf
https://ftsrg.mit.bme.hu/thesis-works/pdfs/lucz-soma-bsc.pdf
https://doi.org/10.48550/arXiv.1605.00774
https://doi.org/10.48550/arXiv.1901.03575
https://github.com/sudheerj/ECMAScript-features
https://github.com/sudheerj/ECMAScript-features
https://essay.utwente.nl/101016/
https://essay.utwente.nl/91794/
https://doi.org/10.48550/arXiv.2305.01373
https://w3techs.com/technologies/history_overview/client_side_language/all
https://w3techs.com/technologies/history_overview/client_side_language/all
https://doi.org/10.1145/3386327
https://doi.org/10.1145/3386327
https://essay.utwente.nl/96034/

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Defining a Modernity Signature
	3.2 Static Analysis
	3.3 Validating Implementation

	4 Experiment
	4.1 Environment / Experimental Setup
	4.2 Corpus selection
	4.3 Results

	5 Discussion
	5.1 Gradual Adoption of Modern Features
	5.2 Usage of Experimental Features
	5.3 Minimal Adoption of Modern ECMAScript

	6 Conclusions
	7 Future work
	References

