
Exploring Performance of Reinforcement Learning compared to other
Heuristics in Low Predictability Environments
Applications in Digital Finance

METTE WEISFELT, University of Twente, The Netherlands

Reinforcement Learning has become increasingly popular in addressing
issues in financial environments. A key strength of Reinforcement Learning
lies in its sequential decision-making capability, where each choice influ-
ences future outcomes. This mirrors real-world financial markets, such as
long-term investments. This research paper explores the performance of
Reinforcement Learning by playing two games with different complexities.
The games provide multiple controlled environments where agents must
make decisions that are difficult to predict, simulating the challenges faced
in real-world financial contexts. Results show that the complexity and pre-
dictability of generators significantly influence model performance. Simpler
heuristic algorithms outperform Inferring Models in simple, predictable
environments. The ability to ignore noise and focus on fundamental pat-
terns often outweighs attempts to learn nonexistent patterns. Reward signal
adjustments and hyperparameter tuning can increase performance of the
Reinforcement Learning models.
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1 INTRODUCTION
Over the last few decades the field of digital finance has evolved,
transitioning from basic tools like spreadsheets to complex ma-
chine learning-driven investment strategies, taking over decision-
making from humans. More specifically, Reinforcement Learning5

has gained interest as a supporting tool[5][12]. A key strength of
Reinforcement Learning lies in its sequential decision-making ca-
pability, where each choice influences future outcomes. This mir-
rors real-world financial challenges, such as long-term investments,
where uncertainty plays a big role[4]. To better analyze the practi-10

cal potential of Reinforcement Learning in these financial contexts,
this research will explore its performance in controlled game envi-
ronments, specifically designed to be abstract models of different
financial scenarios. These scenarios simulate market-like dynam-
ics, where multiple agents must make decisions that are difficult15

to predict, simulating the challenges faced in real-world financial
contexts.

2 THEORETICAL BACKGROUND
Reinforcement Learning is a subfield of machine learning that fo-
cuses on learning behavior through repeated interaction with an20

environment[15]. The purpose of Reinforcement Learning is to learn
some strategy that maximizes the reward that accumulates. It differs
from other kinds of supervised learning in that it does not need
any labeled input output pairs[11]. It also does not need suboptimal
actions to be corrected immediately. Instead, its ’success’ is only25

defined as the accumulated reward at the end. Therefore, Reinforce-
ment Learning is well-suited to problems that include a long-term
versus short-term reward trade-off, such as investing, or problems
that do not have a predefined step-by-step solution but where the op-
timal strategy depends on a wide range of factors. A Reinforcement30

Learning agent can be modeled as a Markov Decision Process[10].
Formally, a Reinforcement Learning Model can be described as:

• A set of actions (action space), 𝐴.
• A set of environment and agent states (state space), 𝑆 .
• The transition probability,35

𝑃𝑎 (𝑠, 𝑠′) = Pr(𝑆𝑡+1 = 𝑠′ | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎),

which describes the probability of transitioning from state 𝑠
to state 𝑠′ under action 𝑎 at time 𝑡 .

• 𝑅𝑎 (𝑠, 𝑠′), the reward received after transitioning from state
𝑠 to state 𝑠′ under action 𝑎.

The Reinforcement Learning agent learns by interacting with its40

environment. It sees how the environment or the final score changes
after the interaction, and then decides whether or not that action
had any benefit to the goal. More formally, at each interaction the
agent looks at its current state 𝑆𝑡 (from the state space 𝑆), chooses an
action 𝐴𝑡 (from the action space 𝐴), and moves to a new state 𝑆𝑡+1.45

How the environment changes depends on the transition probabil-
ity, which tells us the chance of moving from one state to another
based on the chosen action. After each move, the agent receives a
reward, 𝑅𝑎 (𝑠, 𝑠′), which tells it how good or bad that action was.
Over time, the agent learns to choose actions that maximize the50

total reward.

This research will focus on a model-free approach, where the agent
learns directly from the consequences of its actions by interact-
ing with the environment and changing its behavior based on the55

rewards it receives[15]. In finance, there is no complete or pre-
cise model of the market. Developing such a model is close to
impossible[3]. Instead of trying to model every detail, the Reinforce-
ment Learning heuristic used will learn from the rewards provided
by correct or incorrect movements and past outcomes. It will aim60

to learn both short and long term patterns and develop strategies
that will maximize the final score.

There are different types of Reinforcement Learning algorithms[9][2].
For this research, a Double Deep-Q Network will be used over a65

traditional Q-Learning Table approach. The primary reason for this
choice is its ability to generalize well, as not all possible states are
seen during training[18]. A Deep-Q Network generalizes well by
studying the relationships between the states instead of trying to
explore all possible states[7]. It supports the incorporation of Tem-70

poral Patterns and other stabilization techniques[10]. It also offers
the flexibility to play with reward structures in our environment[6].

In this research, two games will be played. In each of these games,
two actors can be defined. The first actor is a mathematical genera-75

tor. A generator will be used to generate a sequence of real discrete
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numbers, simulating the natural fluctuations of a stock over time.
The other actor in the game is the observer. The observer is the Re-
inforcement Learning model or other heuristic that will predict the
next number or movement in the sequence of numbers generated80

by the generator. This setup is an abstraction of one of the most
common challenges in finance: forecasting market trends and price
movements. The ability to more accurately predict what the next
price a stock or index will be, could turn a real profit.

3 RESEARCH QUESTION85

In order to examine how effectively Reinforcement Learning can be
applied in this sequential decision-making context, the following
research question arises.

How does Reinforcement Learning perform when interacting with90

generators of diverse complexity compared to other heuristic-based
decision-making algorithms in simple game environments character-
ized by low predictability?

The following three sub questions have been identified to assist95

in addressing the main research question:

(1) How does the complexity or predictability of different gen-
erators impact the performance of Reinforcement Learning
agents compared to other heuristic-based decision-making al-
gorithms?100

(2) Does the rank ordering of generators by predictability correlate
across different observers?

(3) Does the rank-order of the generator correlate with the outper-
formance of Reinforcement Learning approaches?

4 METHOD OF RESEARCH105

In order to address the goal of exploring the performance of Re-
inforcement Learning agents compared to other heuristics, simu-
lations will be performed with different observers and generators
in two simple game environments. The first environment will be a
simple betting game. The second game environment will be a payoff110

game. The generators and observers are categorized into different
classes, each representing a distinct level of increasing complexity.

4.1 Simple Betting Game
The Simple Betting Game serves as the foundation for this research.
In this game environment, a generator produces a time series, and115

observers place bets predicting whether the next value in the series
will be higher or lower compared to the previous value. The choice of
higher or lower avoids the challenge of quantifying bad guesses. In
a financial context, if a stock has a value of 40 and the observer bets
60 but the price rises to 80, the direction is correct yet the magnitude120

of the error makes it a poor bet. In applications of digital finance,
such a bet could still be profitable. One could buy an option based
on the "higher" prediction and still make a profit, even if the exact
value differs significantly from the bet. This shows the flexibility in
certain financial contexts, where the direction of movement matters125

more than the magnitude of the bet. This simplicity of only using
"higher" or "lower" focuses purely on directional accuracy, without

accounting for how far off the prediction might be. The Simple
Betting Game can be mathematically formalized as follows. Let

• 𝑋𝑡 represent a time series value in time 𝑡 , where 𝑋 is gener-130

ated by a generator 𝐺 .
• 𝑂 represent the observer, who makes predictions
𝑃𝑡 ∈ {Higher, Lower}.

At each time step 𝑡 :
(1) Generator: 𝑋𝑡 is updated by generator 𝐺 , so that:135

𝑋𝑡+1 = 𝐺 (𝑋𝑡 ).

(2) Observer: The observer makes a prediction 𝑃𝑡 on the direc-
tion of 𝑋𝑡+1 relative to 𝑋𝑡 :
• 𝑃𝑡 = Higher if the observer predicts 𝑋𝑡+1 > 𝑋𝑡 ,
• 𝑃𝑡 = Lower if the observer predicts 𝑋𝑡+1 < 𝑋𝑡 .

(3) Reward:140

• If 𝑃𝑡 matches the actual direction of 𝑋𝑡+1, the observer
receives a reward 𝑅𝑡 = +1.

• If 𝑃𝑡 does not match the actual direction, the observer
receives nothing.

145

The total reward 𝑅 over 𝑇 time steps is therefore:

𝑅 =

𝑇∑︁
𝑡=1

𝑟𝑡 .

4.2 Payoff Game
The Payoff Game extends the Simple Betting Game by allowing the
observer to place bets among different payoff functions, enabling
it to manage the exposure to the magnitude of movement of the150

next number in the time series. This mirrors real-world investing,
where the use of derivatives allows for complex pay-off structures
that manage exposure to movements. This offers more options to
balance risk and reward. To be able to introduce this new dimension
of complexity, the observer now has to predict the next number155

in the sequence correctly, instead of only predicting the direction
of movement. After making a prediction, the observer can choose
how to allocate its payoff, the possible reward, across different
functions. The choice of allocation between the payoff functions
by the observer implicitly reflects their view and confidence on the160

direction, magnitude, or volatility of the change.

4.2.1 Payoff Functions. In these simulations, the observer can choose
between three types of payoff functions.

• Linear Payoff: ℎ(Δ𝑥) = 𝑘Δ𝑥 , where k is some constant mul-
tiplier.165

• Non-linear Payoff: ℎ(Δ𝑥) = max(Δ𝑥 − 𝐾, 𝑝), modeling an
option-like payoff where the reward is activated only if the
change of x exceeds a threshold K

• Custom Structures: ℎ(Δ𝑥) = 𝑥2 + 𝐾 or ℎ(Δ𝑥) = 𝑥2 − 𝐾 ,
modeling convex and concave payoff functions. This gives170

the ability to represent high-risk and high-reward scenarios,
and diminishing returns where additional risk yields smaller
incremental rewards, respectively.

The Payoff Game can be mathematically formalized as follows. Let:175
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• 𝑋𝑡 represents a time series value at time 𝑡 , where 𝑋 is gen-
erated by a generator 𝐺 .

• ℎ𝑖 (Δ𝑥) represents one of the 𝑛 payoff functions available to
the observer, where 𝑖 ∈ {1, . . . , 𝑛}.

• 𝑤𝑡,𝑖 represents the allocation weight on payoff function180

ℎ𝑖 (Δ𝑥) at time 𝑡 , with
∑𝑛
𝑖=1𝑤𝑡,𝑖 = 1.

At each time step 𝑡 :
(1) Generator: 𝑋𝑡 is updated by generator 𝐺 , so that:

𝑋𝑡+1 = 𝐺 (𝑋𝑡 ) .

(2) Observer:The observer allocates weights𝑤𝑡,𝑖 to each payoff185

function ℎ𝑖 (Δ𝑥)
(3) Reward: The reward 𝑟𝑡 at each time step is determined by

the sum of weighted payoffs across all payoff functions:

𝑟𝑡 =

𝑛∑︁
𝑖=1

𝑤𝑡,𝑖 · ℎ𝑖 (Δ𝑥).

4.2.2 Extension - Cash Budget Reserve and Dynamic Bet Sizing. To
increase the complexity and adaptability of the observer in the190

simulations and make the game more representative of a stock
market, an extension is introduced by incorporating a cash budget
reserve. The observer is assigned a reserve which cannot fall below
zero, effectively modeling the concept of bankruptcy or debt. This
also enables the implementation of dynamic bet sizing, allowing195

the observer to adjust the size of its bets, influencing its potential
reward. This gives an implicit view on the confidence of the bet.

4.3 Observers
The observers are grouped into different classes of complexity. In
earlier research, different frameworks for categorizing the complex-200

ity of algorithms have been proposed[19]. However, these frame-
works often revolve around the efficiency of the algorithm or the
polynomial-time approximation[13], instead of the ’learning’ in-
volved in trying to accurately predict some next movement. In order
to properly address all specific requirements of this research, such205

as the ability to differentiate between time-windowed heuristics and
heuristics that incorporate all historical data, a new framework to
categorize has been developed. See Table 1 for an overview of these
classes.
There will be 7 different observers in 5 classes of complexity playing210

these games. The choice of seven observers was to cover and explore
as many different types of complexity within the limitations of the
study. Only the Reinforcement Learning Observer plays the Payoff
Game, as the other observers do not support any type of different
reward structure.215

4.3.1 Zero Class Observer. A Zero Class Observer makes decisions
based solely on the currently available information, without any con-
text or knowledge of past movements. The specific implementation
used in the Simple Betting Game always bets "higher".

4.3.2 Fixed Rule Class Observer. AFixed Rule Class Observer knows220

about the previous movement. In the simulations for the Simple
Betting Game, its strategy will be to repeat the previous correct
movement.

Class Name Complexity Observer Name

Zero Class
Does not need
any previous
movements

Zero Observer

Fixed Rule Model
Class

Needs the
previous
movement

Fixed Rule Observer

Stationary Stochastic
Model Class

Access to all
historical
movements

Bernoulli Observer,
Mean Reversion
Observer

Dynamic Stochastic
Model Class

Access to all
historical
movements but
uses some
general time-
windowed
heuristic

Dynamic Mean
Reversion Observer

InferringModel Class

Infer patterns
and rules of the
game without
explicit
definitions

Reinforcement
Learning Observer,
Classifier Observer

Table 1. Classes of complexity for observers with associated observer names

4.3.3 Stationary Stochastic Model Class Observers. In this context,
stationary refers to the observer maintaining consistent rules and225

using the same data set as the series progresses, only adding to the
set of movements as the time series continues. This class consists
of two observers with different strategies. The first observer will
attempt a ’Bernoulli’ approach. The observer estimates the probabil-
ity of each outcome based on historical movements. For instance, if230

"higher" has occurred more frequently than "lower" in past bets, the
probability of "higher" is considered greater. This observer will ana-
lyze the ratio of "higher" to "lower" outcomes and bet the option that
has occurred most frequently so far. The second observer employs a
mean reversion strategy using the full history of movements. Rather235

than relying solely on "higher" or "lower" as decision variables, this
observer derives its own variable. Specifically, it calculates the mean
of the set of data and bases its next bet on a movement toward that
mean.

4.3.4 Dynamic Stochastic Model Class Observer. Stationary models,240

which rely on the entire history, are particularly sensitive to outliers.
This makes it interesting to explore how a time-windowed approach
performs, as it has the potential to mitigate the impact of outliers. In
the simulations, the observer will continue to use themean reversion
strategy but will now base decisions only on a fixed number of recent245

movements, instead of the entire set of previous movements. For
simplicity, this observer will use a fixed window length of the last
50 movements, instead of using a percentage of the total history.
This shift in the input data for each bet is considered dynamic.

4.3.5 Inferring Model Class Observers. This class consists of two ob-250

servers. The first observer is a generic classifier. The classifier used
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is an SGD Classifier, as this type of classifier is very effective in clas-
sifying binary decisions and can support real-time training [16]. The
second observer will be a Double Deep-Q Network Reinforcement
Learning agent.255

4.4 Generators
There will be 5 different generating functions used in the game
environments. All but the Stock Data Generator have a starting
value of 0. This initial state is the first number that observers get to
observe.260

4.4.1 Linear Generator. A linear generator will generate a linear
sequence of numbers. Formally, the generator can be described as:

𝑆𝑛+1 = 𝑆𝑛 + 1

4.4.2 Normal Distribution Generator. A normal distribution gen-
erator will generate a time series with values following a normal
distribution. In such a distribution, most of the generated values265

appear around a central mean, with fewer values appearing as they
deviate further from the mean. Formally, the generator can be de-
scribed as:

𝑥𝑛 = N(𝜇 = 40, 𝜎 = 15)
In the simulations, a mean of 40 and a standard deviation of 15
have been randomly chosen. It does not matter which numbers are270

chosen as the Simple Betting Game only focuses on the direction of
movement rather than the exact value of the next number to predict.

4.4.3 Uniform Distribution Generator. A uniform distribution gen-
erator produces a time series in which the values follow a uniform
distribution. Here, all values within a specified range have an equal275

probability of occurring and are not concentrated around a central
value like the mean. Formally, the generator can be described as:

𝑥𝑛 = U(0, 40)
This uniform distribution uses an interval from 0 to 40. Again, this
does not matter as the observer only looks at direction of movement
in the Simple Betting Game.280

4.4.4 Cellular Automaton Generator. A cellular automaton genera-
tor produces a time series based on a cellular automaton model. A
cellular automaton consists of a grid of cells, each of which can be in
one of a finite number of states. The state of each cell is determined
by a set of specific rules that depend on the states of adjacent cells.285

Over time, the states of the cells change according to these rules,
creating complex patterns from simple initial conditions [14]. In
these simulations, a two-dimensional grid will be used. Formally,
the generator can be described as an initial array of cells:

S0 = [0, 0, 0, 1, 1, 1, 1, 0]
With an update function, which is applied based on the current290

value of the cell and its neighbours where the indices of the array
are cyclic:

new_state(𝑖) = rule(𝑠𝑖−1 · 4 + 𝑠𝑖 · 2 + 𝑠𝑖+1)
Here,

• 𝑠𝑖−1 represents the state of the cell to the left of cell 𝑠𝑖 ,
• 𝑠𝑖 represents the state of the current cell,295

• 𝑠𝑖+1 represents the state of the cell to the right of cell 𝑠𝑖 .

After the update function has been applied, the state array has
’evolved’. After each evolution, a new number is generated from the
new state array. Formally, this calculation rule is as follows:

Value =
𝑛∑︁
𝑖=1

(−1)𝑖 · 𝑠𝑖

where 𝑠𝑖 is the latest state array300

4.4.5 Real-world Stock Data Generator. The final generator will
sample from real-world stock data, focusing on a single stock rather
than an index. This is because the composition of stocks within
an index changes over time. In the simulations, the opening and
closing values of Apple stock have been chosen as the numbers the305

generator will generate. The first number will be the value of the
stock as on the first of January 2000.

4.5 Performance Metrics
The outcomes of the games will be evaluated on four metrics. These
metrics will give insights into the final score, but also on how the310

scores and performance evolve over time.

4.5.1 Accuracy over time. All observers will be judged on average
accuracy over time. This will give insights on how the observer
adjusts itself and possibly learns over time. The average accuracy
over time is calculated by taking the average accuracy for each turn315

in all simulations combined.

4.5.2 Distribution of final scores across simulations. The distribu-
tion of scores across simulations is a common analysis metric in Re-
inforcement Learning and other simulation-based experiments[17].
It provides insights into the consistency of the performance. This320

will also detect outlier simulations or other unusual scenarios in
which the observer performed significantly better or worse com-
pared to other simulations.

4.5.3 Training and inference time. In the first four classes of com-
plexity, the training time is zero. For the inference models class, both325

the classifier and the Reinforcement Learning require training time.
Inference time is the time it takes the observer to place their bet. In
certain applications, such as digital finance, the inference time is of
relevance. If it takes too long to place a bet, the optimal bet may no
longer be relevant. For instance, in the context of high-frequency330

trading, where trades are executed in milliseconds, any delay in
decision-making can significantly impact profits.

4.5.4 Prediction error over time. Prediction error over time is a
metric that will only be used for the Payoff Game. This will track
whether the agent is adapting correctly to the environment and thus335

if it makes more or less mistakes as the sequence progresses. The
prediction error is defined as the absolute difference between the
correct value and what the observer predicted it would be.

5 SIMPLE BETTING GAME RESULTS
In this section, the results for the Simple Betting Game will be340

discussed. The results are grouped by generator. Subplots have been
generated for better readability if the differences in range of the
final scores were too large.



Exploring Performance of Reinforcement Learning compared to other Heuristics in Low Predictability Environments • 5

Fig. 1. Global Legend Observers and associated colors

5.1 Linear Generator
The Linear Generator shows an interesting distinction between the345

different complexities of observers. Some observers perform excep-
tionally well, such as the Zero Observer, the Bernoulli Observer,
the Classifier Observer, and the Fixed Rule Observer, all of which
achieve the highest possible score. In contrast, observers in the
Dynamic and Stationary Stochastic Model Classes, specifically the350

Mean and Dynamic Mean Reversion Observer, perform the worst,
consistently achieving an accuracy of 0% that does not improve over
time. The observers in the Inferring Model Class show a different
pattern: they start with a low accuracy in making predictions, but
improve as rounds progress, as can be seen in Figure 3, demonstrat-355

ing their learning over time. The Classifier Observer seems to be
learning the best, quickly getting to a 100% accuracy. The more com-
plex Reinforcement Learning Observer learns but seems to be over
engineered for this simple use case, as for instance the warm-up
phase and any further exploration is unnecessary. Mean reversion360

strategies fail completely due to the incorrect assumption about the
nature of the sequence of numbers generated. This demonstrates
how simpler heuristics can outperform more complex models when
the underlying pattern matches their assumptions.

Fig. 2. Histogram of Final Score Distributions for Linear Generator

Fig. 3. Accuracy over Time per Observer for Linear Generator

5.2 Uniform Distribution Generator365

The Uniform Distribution Generator is a fundamentally different
challenge for the heuristics, as the generator now produces ’ran-
dom’ movements rather than deterministic ones. The Fixed Rule

Fig. 4. Histogram of Final Score Distributions per Observer for Uniform
Distribution Generator

Fig. 5. Accuracy over Time per Observer for Uniform Distribution Generator

Observer and the Reinforcement Learning Observer both performed
significantly worse than the others. The Fixed Rule Observer, the370

Bernoulli Observer, and the Classifier Observer performed slightly
better with an average accuracy of about 50%. The Stationary and
Dynamic Stochastic Models performed the best. Analysis of the
accuracy over time reveals that none of the algorithms showed any
sign of learning or improved performance as the rounds progressed.375

This logically follows from the type of mathematical generator that
the Uniform Distribution Generator is. Because the previous move-
ments are not predictive indicators for the next movement, the
Inferring Model Class observers are not able to learn patterns. This
shows that increased model complexity does not always lead to380

better performance, especially when the generated data is random.

5.3 Normal Distribution Generator
The Normal Distribution Generator and Uniform Distribution Gen-
erator results are very similar. There are no significant differences
between the two generators with regards to the grouping of ob-385

servers. The accuracy over time graph shows roughly the same
results as well.

Fig. 6. Histogram of Final Score Distributions for Normal Distribution Gen-
erator
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Fig. 7. Accuracy over Time per Observer for Normal Distribution Generator

Again, any previous movements are not predictive indicators for
the next number in the generated sequence, which prevents the
Inferring Model Class observers from discovering patterns. The390

difference between the Dynamic Mean Reversion Observer and the
Mean Reversion Observer, the window-based approach, does not
significantly influence the final score either, as future movements
are independent of past movements.

5.4 Cellular Automaton Generator395

The Cellular Automaton Generator histogram shows a similar group-
ing of observers as the other generators discussed so far. The Fixed
Rule Observer, the Reinforcement Learning Observer, the Zero Ob-
server, and the Bernoulli Observer performed significantly worse
than the Classifier Observer and both Mean Reversion observers.400

Their better performance suggests the patterns of this specific Cel-
lular Automaton evolution rule oscillate around a central mean.
The time-windowed approach compared to the full history was
equally effective, with both their final scores averaging 6000 points.
The Classifier performed quite well compared to the Reinforce-405

ment Learning Observer, suggesting that the more complex Deep-Q
Network may have overfit or that the exploration-exploitation bal-
ance was not correct for this use-case. Again, simpler statistical
approaches outperformed more complex heuristics.

Fig. 8. Histogram of Final Score Distributions for Cellular Automaton Gen-
erator

5.5 Stock Data Generator410

The Stock Data Generator produces results that differ significantly
from the other generators. In the simulations conducted, the Clas-
sifier Observer performs the worst, alongside the Mean Reversion
Observer from the Stationary Stochastic Model Class. Interestingly,
the Dynamic Mean Reversion Observer shows an improvement415

Fig. 9. Accuracy over Time per Observer for Cellular Automaton Generator

in its final score compared to the Mean Reversion Observer. The
Simple Reinforcement Learning Observer, the Fixed Rule Observer,
and the Zero Observer outperform the others, achieving an average
score of around 600. There are no real trends in the accuracy over
time, showing that none of the heuristics learn over time. Statistical420

heuristics that use simple mean values capture market behavior
more effectively than complex models. This further confirms that
stock prices tend to move around moving averages, which research
has shown to roughly be the case[8][1].

Fig. 10. Histogram of Final Score Distributions for Stock Data Generator

Fig. 11. Accuracy over Time per Observer for Stock Data Generator

6 PAYOFF GAME RESULTS425

This section contains the results for the Payoff Game. The simu-
lations below are only run with adjusted Reinforcement Learning
observers, as they are the only observers in the classification that
can incorporate both the payoff structure and extension in the game.
Three extra simulations have taken place. In the first simulation,430

the only adjustment that was made was the ability to predict real
discrete numbers instead of only the direction of movement.
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Fig. 12. Average Score over Time

Fig. 13. Average Prediction Error over Time

As can be seen in Figure 12 and 13, the Reinforcement Learning Ob-
server does not perform well. Average score drops down drastically,
and the average prediction error increases as the game continues.435

The observer might be overfitting to historical data patterns. There
could also be an accumulation of errors in the learning process. The
observer might be trapped in small local optimal strategies, losing
sight of the big picture and long-term strategies. This simulation
suggests that without any form of external reward signal, the Rein-440

forcement Learning model is unable to accurately predict the price
of the stock over time.

The second simulation, a payoff structure was added to control
this external reward signal. In this case, the Reinforcement Learning445

Observer must now not only correctly predict the next number,
but allocate some points across the payoff functions mentioned in
section 4.2.1 Payoff Functions. Each round, the observer got a fixed
number of 10 points to invest across these payoff functions. This
model is the first model to actually turn a large profit. It also is450

the first model where the average prediction error over time trends
downwards. This suggests that the external reward signals that the
payoff functions provide increase the models ability to predict the
next number. The model has learned to favor higher-risk strategies,
the Linear and NonLinear Payoff Functions denoted in red and blue455

respectively, when prediction errors are low, as can be seen in Figure
14. During high error periods there is a more balanced allocation.
This is especially clear to see when the model notices the prediction
error trending upwards. It uses the Linear and NonLinear Payoff
Functions less, preferring the Convex and Concave Payoff Functions,460

denoted in green and purple, respectively. There is no single strategy
dominating. The correlation between prediction error and allocation

Fig. 14. Results Game with Payoff Structure

strategy suggests the model is learning to correctly balance the risk
and reward profiles.

465

The third and last type of simulation done with the Payoff Game in-
troduced the cash reserve and dynamic bet sizing. The observer has
a reserve of previously earned points and is allowed to invest these
points in later rounds. As can be seen in Figure 15, the performance

Fig. 15. Results Dynamic Bet Extension

is significantly worse after implementing this extension. The graphs470

suggest that the observer cannot maintain consistent performance
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Fig. 16. Results Investment Ratio Dynamic Bet Extension

over time. The investment ratio strategy shows a risk-responsive
behaviour, shown in Figure 16. It increases the investment if the
score is going up and uses a more defensive strategy when perfor-
mance deteriorates. This indicates that while the risk management475

aspects of the observer are functioning as intended, the core predic-
tion capabilities need improvement to maintain performance over
time. This dynamic bet sizing does not offer a strong enough reward
signal to compensate for wrong predictions.
In all simulations ran, the Reinforcement Learning observers took480

less than a millisecond to determine its prediction and point alloca-
tion.

7 CONCLUSION
This paper explored the performance of Reinforcement Learning
in sequential decision-making tasks in low-predictability environ-485

ments, specifically comparing its performance to other heuristic-
based decision-making algorithms across generators of varying com-
plexity. The complexity and predictability of the generators signifi-
cantly influenced the performance of the Reinforcement Learning
models. In simple environments with higher predictability, heuristic490

algorithms, such as the Fixed Rule or Bernoulli Observer, performed
better than algorithms in the Inferring Models Class. One would
expect that in environments with greater complexity and less pre-
dictability, such as the Stock Data Generator, the Inferring Models
would perform better. In the results, it is shown that this is not495

the case. The counterintuitive results suggest that in the game en-
vironments, the ability to ignore noise and focus on fundamental
patterns can be more valuable than the ability to try and learn pat-
terns that might not be there. Furthermore, in the Payoff Game, it
can be observed that if certain reward signals for correct predictions500

are adjusted and additional rewards are incorporated, the Inferring
Model Class Observers can achieve significantly higher scores and
even turn a profit. The rank ordering of generators by predictability
generally correlate across observers when the environments are
simple and noise-free, as discussed in the results. As complexity and505

unpredictability increase, however, the correlation starts to differ
between different observers as they have varying capabilities to
process noise and infer patterns. The rank-order of the generator
by predictability correlates with the outperformance of Reinforce-
ment Learning heuristics to some extent, but the relationship is510

nuanced and depends on the complexity of the environment and
the capabilities of the Reinforcement Learning models. In simple
environments, the correlation is negative because Reinforcement

Learning is often less efficient than heuristics. In more complex
environments, the correlation becomes positive as Reinforcement515

Learning models use their learning capabilities. In very complex
environments, the correlation depends on the ability of the Rein-
forcement Learning approach to adapt to noise and align with the
reward structure. To conclude, the complexity and predictability of
generators significantly influence model performance. Other heuris-520

tic algorithms outperform Inferring Models in simple, predictable
environments. Inferring Models might be expected to perform bet-
ter in more complex environments. However, results show that the
ability to ignore noise and focus on fundamental patterns often
outweighs attempts to learn nonexistent patterns. Reward signal525

adjustments, particularly in the Payoff Game, can increase the per-
formance and profitability of the Reinforcement Learning Observer.

8 DISCUSSION
Something that was not taken into account when taking the data
from the Stock Generator is the handling of share and stock splits.530

In financial markets, share and stock splits can significantly change
the numerical face value of an asset without changing its economic
value. For instance, when a stock has a 2-for-1 split, the price of
each share is halved, but the total value of the investment remains
the same. The observer, however, only sees a sudden drop in value.535

Especially observers from the Inferring Models Class might have
trouble and learn patterns or scenarios that do not have any real
meaning with regards to actual value of the stock. Additionally, the
performance of the Reinforcement Learning Observer and Classifier
Observer is very sensitive to the choice of hyperparameters. This540

includes, for example, the learning rate, kernels, temporal pattern
sizes, discount factor, and exploration-exploitation balance. While
quite some effort was invested in tuning the hyper parameters and
reward signals to optimize the performance of both observers, it is
important to acknowledge the possibility that the chosen parameters545

may not be optimal. It can be the case that a completely different set
of hyperparameters and reward signals might perform even better.

9 FUTURE WORK
While this research explores the performance of different types of
heuristics in low predictability environments, more work can be550

done to create a better understanding of making predictions based
on different generators . This could, for instance, be achieved by
adding more context to the model as information to study and see
patterns in to support the prediction. One could, for example, create
a Natural Language Processing model to scrape the internet about555

positive or negative messaging, follow political trends, or study
yearly financial reports. In addition to adding more contextual in-
formation, future work could involve implementing more different
types or structures of payoff functions. This would allow the model
to explore different strategies to balance risk and reward more ef-560

fectively. The Reinforcement Learning Model could also be further
developed, with its hyperparameters optimized for better perfor-
mance. Another interesting thing to explore would be training the
model on data from different stocks before applying it to predict a
new one. This transfer learning approach could reveal how well the565

model generalizes across different datasets and market conditions.
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