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Abstract - Smart home devices are becoming increasingly widespread. Some
of these newer smart home applications require more processing power
than is available on-device, and require external computational resources.
While a common option is using cloud computing power, processing locally
on the edge is a better solution in terms of user privacy as data does not
leave the local network. Previous hybrid approaches either lack privacy
considerations or do not consider the future resource availability when mak-
ing offloading decisions. In this paper, we propose a hybrid approach that
minimizes the privacy risk of offloading tasks to remote servers, considering
future resource availability. To reach our goal, we built upon an existing
privacy-enhanced offloading algorithm, with the aim of improving its per-
formance by predicting future state, and scheduling tasks accordingly. These
improvements give more flexibility in scheduling, where a privacy-sensitive
task can wait in queue instead of immediately offloading. The results show
that while the system load is high, ~1-1.5% fewer high privacy-sensitive
tasks are offloaded compared to a baseline without prediction, while CPU
utilization remains nearly identical for both approaches.

Additional Key Words and Phrases: Resource allocation, Smart home, Task
offloading

1 INTRODUCTION
Smart home devices are becoming more ubiquitous [3] and smarter
due to advances in machine learning, which allows for more in-
volved feature sets. However, these more advanced applications
require more computing power. Since most of these devices use em-
bedded hardware, they do not always have enough computational
power to process these tasks on-device. Next to that, with more nec-
essary computation, comes a higher power consumption, and since
a lot of Internet of Things (IoT) devices are in a lower power environ-
ment, such as running on solar power or a battery, this is not desired.

A solution to this problem is offloading the processing towards
another device. Here, a separate device will be responsible for pro-
cessing the data generated by the IoT device. This device can operate
within the local network (Edge computing) or be located in the cloud.
The cloud possesses the unique property of facilitating advanced
data processing capabilities, and allows hardware to scale as much
as is in demand. While this does enable for more advanced soft-
ware, it incurs high costs [1] and poses risks to user data privacy.
On the other hand, offloading workload to an edge device, which
is located in the local network, enhances user privacy by locally
processing data. This approach ensures that data remains within
the local network, avoiding transmission over the internet, external
processing, and storage on third-party servers. Moreover, an edge
device is a one-time investment, instead of a cloud device which
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is rented. However, the limited computational resources of edge
devices lead to scalability issues, often causing delayed processing
or dropped workloads when demand exceeds capacity.

Both solutions discussed above present distinct advantages and
limitations, with their suitability varying depending on the specific
context. Therefore, utilizing a hybrid approach where both local and
cloud resources are utilized is promising. Thereby, all tasks are run
on the local hardware and in the case of insufficient local resources,
tasks are offloaded to the cloud.

However, this approach can be further refined through enhanced
scheduling techniques. Building upon previous work of Rezaei et al.
[6], we propose an adjusted solution of scheduling workloads. While
the previous solution schedule workloads only based on the current
available resources, we also consider the availability of resources in
the future while making decisions. Therefore, we define the follow-
ing terms for scheduling workload: local execution, which refers to
a task being executed on the edge device, remote execution, which
refers to a task being offloaded to the cloud, and later execution,
which refers to a task that will not be executed this timeslot. The
feasibility of scheduling a task for later execution depends on specific
criteria. A task can be deferred if its deadline permits and if there is
a reasonable prediction of available computational resources in the
future. If either of these conditions is not met, the task will not be
scheduled for later execution.

To achieve our proposed improvement, we formulate the following
research questions:
• Research question 1:What are the benefits of predicting the
future state of the edge device on overall system performance?
• Research question 2:What improvements to user privacy
can be made with the benefits of RQ1?

2 RELATED WORK
In this section, we review some of the previous work that studied
workload scheduling and computational offloading for smart homes.

In 2016, Vakilinia et al. [7], present a method for running smart
home applications in the cloud inside virtual machines (VMs). The
paper talks about the minimal amount of resources necessary to sat-
isfy the Quality of Service (QoS) constraints for these applications
to run satisfactorily.

In 2020, Liu et al. [4] took a different approach to hosting smart
home applications, namely using edge devices. They proposed a
resource allocation algorithm that prioritizes workloads with regard
to user preference. This was done by applying an economic model to
the scenario, where edge devices were seen as providers in a market,
and users (and their smart home applications) as consumers. With
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that, they were able to write a pricing-based resource allocation
algorithm that converges within a reasonable time.

Work by Dong et al. [2] focused on smart home applications running
machine learning workloads. They introduced edge devices into
the local network, to allow for local computation. Since machine
learning workloads are usually heavy, they used a technique called
federated learning to offload parts of the workload in to the cloud.
This improves user privacy, since less user data leaves the local
network.

Later, Rezaei et al. [6] presented a resource allocation and offloading
algorithm for federated learning (FL) applications in smart homes.
Their algorithm decides whether to execute FL tasks locally on edge
devices, in the cloud, or through a hybrid of both, while minimizing
the privacy leakage. However, their algorithm only has knowledge
of the current resource availability, and cannot predict the future
state of resources to postpone tasks.

3 METHODOLOGY
This section will cover the methods used to conduct the research.

We build upon the previous simulator (RASH) which allocated local
resources among IoT tasks and decides where each task should be
executed, either locally or remotely [5]. While making offloading
decisions, RASH considers available local resources, tasks time bud-
get, tasks computational requirements and the privacy-sensitivity
level of the tasks. When local resources are insufficient for timely
completion of the tasks, RASH offloads some of the tasks, while
prioritizing the lower sensitive tasks for offloading. However, RASH
only considers the current available resources for its decisions. We
expand the decision-making algorithm in RASH so it also considers
the availability of local resources in the future when making deci-
sions.

We define our system model as the following: A system with 1
or more smart home devices, all generating tasks that require com-
putational resources up until the set system load. These tasks are
then scheduled by the offloading algorithm, which is RASH as our
baseline, or our proposed algorithm.

The simulator makes use of an internal data structure for each task,
each holding a lot of metadata which will be used throughout the
paper. When a task is generated, it is defined by three characteristics:

• Time budget: The amount of time that the task should be
finished in. A high time budget allows for a long wait.
• Required computation: The amount of computation re-
sources this task needs.
• Privacy score: Each task comes with a privacy score, rated
2-9. A higher score means that it is more important to process
this locally.

We introduce an additional step on top of RASH’s decisions to
account for the future availability of local resources in the decision-
making process. RASH operates in timeslots, where every timeslot
the decision-making algorithm runs. After each decision, we refine

it based on our predictions. If a task is initially set to be offloaded to
the cloud, the prediction algorithm runs to assess future local pro-
cessing availability. If sufficient local resources are expected within
the task’s time budget, the task is marked for postponement instead
of immediate cloud execution. In the next timeslot, this decision
is reevaluated, and it might be possible that cloud execution is the
chosen solution, or it is again decided that postponing is the best
option. An explanation of how this decision is made is provided
below, broken down into multiple code snippets.

First, we predict the number of time slots required for complet-
ing each running task. This is calculated in Algorithm 1 based on
the assigned computational resources for that timeslot, denoted by
𝑡𝑎𝑠𝑘.𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑟𝑠𝑐 , and the remaining progress, denoted by
task.rem_rsc. With this information, we estimate the amount of
timeslots this task needs to complete execution.

Algorithm 1 Predicting end timeslot

1: function predict end timeslot(𝑡𝑎𝑠𝑘)
2: for each task do
3: 𝑐𝑢𝑟_𝑟𝑠𝑐 ← 𝑡𝑎𝑠𝑘.𝑟𝑒𝑚_𝑟𝑠𝑐 − 𝑡𝑎𝑠𝑘.𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑟𝑠𝑐
4: 𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠 ← 𝑡𝑎𝑠𝑘.𝑟𝑒𝑚_𝑟𝑠𝑐 / 𝑐𝑢𝑟_𝑟𝑠𝑐
5: end for
6: end function

The next step is to examine the tasks that have not yet started and
are scheduled for remote execution. First, we calculate the threshold
for each of these tasks. A threshold is the latest possible timeslot
where it is possible to start execution remotely, without dropping
the task due to exceeding the time budget. When this threshold is
reached, the task will not enter the postponing cycle and will be
executed.

Calculating the threshold is done in Algorithm 2. Here we intro-
duce a new variable, 𝑟𝑖𝑠𝑘 . This variable is predefined before runtime
and influences the threshold by determining the proportion of com-
putation resources a task is expected to receive in each timeslot. If,
for example, 𝑟𝑖𝑠𝑘 is set to 0.10, the threshold is calculated on the
idea that this task will, on average, use 10% of the available computa-
tional resources until it is finished. Setting the 𝑟𝑖𝑠𝑘 higher will result
in a lower threshold (i.e. the task will be kept in the postponing
queue for potentially longer), but setting it too high can result in
the task being dropped due to a missed deadline, in the case the
assigned computational resources were lower than the 𝑟𝑖𝑠𝑘 used for
calculating the threshold.

Calculating this threshold is trivial, where first the predicted amount
of timeslots 𝑝_𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠 is calculated using the 𝑟𝑖𝑠𝑘 parameter ex-
plained above, Then, the latest possible timeslot for postponement is
calculated by adding 𝑝_𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠 to the current timeslot (𝑐𝑢𝑟_𝑡𝑖𝑚𝑒).
Beyond this threshold, postponement is no longer feasible, and the
task must be executed to meet its deadline.

It should be noted that this threshold is only calculated once, the
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first time the task is seen by the algorithm. To do this, the threshold
is defaulted to −1, to signify that no threshold has been set yet.

Algorithm 2 Calculating task threshold
Ensure: 𝑡𝑎𝑠𝑘.𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≠ −1

function calculate threshold(𝑡𝑎𝑠𝑘, 𝑟𝑖𝑠𝑘, 𝑐𝑢𝑟_𝑡𝑖𝑚𝑒)
2: 𝑝_𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠 ← 𝑐𝑒𝑖𝑙 (𝑡𝑎𝑠𝑘.𝑑𝑎𝑡𝑎_𝑓 𝑜𝑟_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 / 𝑟𝑖𝑠𝑘)

𝑡𝑎𝑠𝑘.𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝑐𝑢𝑟_𝑡𝑖𝑚𝑒 + 𝑝_𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠

4: end function

After running both Algorithm 1 and Algorithm 2, we can now
decide on postponing certain tasks. To do this, we loop through
all running tasks, and check if it is possible to schedule the to-be-
planned task afterwards (line 6). If this is possible, we decide on
postponing this task, since we assume that it is going to run in the
future. If this is not possible, the task is flagged as impossible to
postpone, and will be offloaded on the next iteration. Postponing
the task will kick this process off again next iteration, and it might
be possible that the predictions made have changed.

Algorithm 3 Deciding if task is able to be scheduled in the future

function able to schedule(𝑡𝑎𝑠𝑘𝑠, 𝑡𝑎𝑠𝑘, 𝑡𝑖𝑚𝑒_𝑠𝑙𝑜𝑡 )
for all 𝑡 ∈ 𝑡𝑎𝑠𝑘𝑠 do

3: if 𝑛𝑜𝑡 𝑜𝑡ℎ𝑒𝑟_𝑡𝑎𝑠𝑘.𝑑𝑒𝑐𝑖𝑑𝑒𝑑 then
continue

end if
6: 𝑒𝑛𝑑 ← 𝑡𝑎𝑠𝑘.𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠_𝑙𝑒 𝑓 𝑡+𝑜𝑡ℎ𝑒𝑟_𝑡𝑎𝑠𝑘.𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠_𝑙𝑒 𝑓 𝑡

if 𝑒𝑛𝑑 ≤ 𝑡𝑎𝑠𝑘.𝑒𝑛𝑑_𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡 then
return 𝑡𝑟𝑢𝑒

9: end if
return 𝑓 𝑎𝑙𝑠𝑒

end for
12: end function

4 ANALYSIS
In this section, we will discuss how we analyse the performance of
the algorithm, and introduce some metrics to measure against. For
this, we consider RASH as the baseline to evaluate the performance
of our proposed algorithm.

To facilitate developing and testing our methods, we build our pro-
posed algorithms as an extension of RASH, which was explained
in more details above. For analysis of the results, we use a python
script that parses the logging files, and creates graphs using the
seaborn library.

We evaluate the performance of our algorithm using the follow-
ing metrics:
• CPU usage This metric shows the proportion of local edge
device used during the execution of the simulator.
• Privacy sensitivity Every task has a certain privacy score,
where higher is more important. When allocating resources,
tasks with a higher privacy score are prioritized. This metric

will be based on the sum of the total privacy score of all
tasks running locally, and all tasks running externally. Our
algorithm aims to improve the privacy score for local tasks,
by assigning tasks to run in the future, instead of offloading
immediately.
• Task satisfaction This metric measures the fraction of tasks
completed within their deadline.

5 RESULTS
In this section, we will discuss performance of this algorithm, and
compare it in different scenarios. Every scenario ran in the simulator
for 1000 timeslots, with 50 iterations each. Next to that, we test on
system loads of 70%, 90%, 110% and 130%, with the 𝑟𝑖𝑠𝑘 parameter
set to 0.1, 0.2 and 0.3

The 𝑟𝑖𝑠𝑘 parameters were chosen by observing RASH assign com-
putational resources during runtime. We found that, on average,
it assigned a value of ~0.2-0.25. Since 𝑟𝑖𝑠𝑘 is closely related to the
assigned computational resources, we defined 𝑟𝑖𝑠𝑘 based on this
relationship, assigning it the values of 0.1, 0.2 and 0.3.

5.1 CPU usage
The first metric we test is the CPU usage. We ran the simulator for
70%, 90%, 110% and 130% (Fig. 1) system load. We compare the CPU
usage of our proposed method and RASH in Fig. 1. Next, these tests
were repeated at different settings for the 𝑟𝑖𝑠𝑘 parameter. These
were set to 0.1, 0.2 and 0.3.

From the results, several observations can be made. First, an in-
crease in system load correlates with higher CPU usage, rising from
55% CPU usage at 70% system load, to 95% CPU usage at 130%
system load, across both methods. Next, it can be observed that
both methods yield approximately the same CPU usage. This in-
dicates that while our proposed method does not enhance system
performance, it also does not negatively impact it due to the extra
processing required. From these findings, we can directly address
RQ1, concluding that while no performance benefits are observed,
there are also no degradations in system performance.

5.2 Privacy score
The next test, is the privacy score of each iteration. To recall, ev-
ery task has a certain privacy score attached, ranging from 2-9. A
higher score means it has priority over the local hardware. For this
section, we computed the percentage of tasks executed locally and
on the cloud for each privacy score, categorized by method. Privacy-
sensitive tasks should be prioritized for local execution, while less
privacy-sensitive tasks should run externally, given there is no room
locally.

The results can be found in Fig. 2 for risk 0.1, Fig. 3 for risk 0.2, and
Fig. 4 for risk 0.3.

For loads under 100%, almost all tasks ran locally. This is expected
behaviour, as in these cases it is rare to have the system overloaded
enough that offloading should occur.
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(a) Risk: 0.1 (b) Risk: 0.2 (c) Risk: 0.3

Fig. 1. CPU usage with and without scheduling at 70%, 90%, 110% and 130% load

At 110% and 130% system load, we see that tasks start being of-
floaded, as the local resources are now not enough to fully satisfy
the resource demand. First, it can be observed that, for both methods,
tasks with a lower privacy-score are more likely to be executed in
the cloud. Of course, not all tasks with a high privacy score can
be executed locally, as that depends on the current computational
resources available. Next, we can observe the differences between
the baseline and our proposed method. When 𝑟𝑖𝑠𝑘 is set to 0.3, we
can note that overall, tasks with a higher privacy score run around
1-2% more locally with our proposed method. When 𝑟𝑖𝑠𝑘 is set to a
lower value, similar observations can be made. Curiously enough,
this pattern is inverted at a system load of 130% with 𝑟𝑖𝑠𝑘 set to 0.2.
This leads us to address RQ2, where it can be noted that, while the
improvements are minimal, there is some degree of enhancement.
These improvements could likely be further optimized through fine-
tuning the algorithm and the 𝑟𝑖𝑠𝑘 parameter.

5.3 Task satisfaction
Across all tests, task satisfaction nears 100%. Overdue tasks are
exceedingly uncommon, and across all iterations of every task, only
20 tasks were dropped. To bring that into perspective, every test
consists of 50 iterations * 4 system loads * two methods * ~250 tasks,
which would make all overdue tasks insignificant.

6 CONCLUSION
In this paper, we try to improve performance of a IoT workload
offloading algorithm by predicting the future state of the local edge
device, and scheduling accordingly. The main aim of this improve-
ment is to run more privacy-sensitive workloads locally. We try
to implement this by first running a regular offloading algorithm
and optimizing its results further. This result will consist of tasks
scheduled to run locally or externally. Next, a schedule is compiled
of all running tasks, of which the decision is made for all externally-
marked tasks to wait until resources are available, or to run a task
externally.

Our result should that our proposed method improved local ex-
ecution of privacy-sensitive tasks by ~1-1.5%, but this difference is

not statistically significant. While the proposed method shows po-
tential for improved privacy-aware scheduling, the observed gains
were marginal, indicating a need for further refinement. Future work
could focus on refining the algorithm and parameters used, explor-
ing alternative approaches to future prediction, or incorporating
additional parameters to enhance its performance and applicability.
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(a) Load: 70% (b) Load: 90% (c) Load: 110% (d) Load: 130%

Fig. 2. Percentage of tasks ran on cloud/local, at risk 0.1

(a) Load: 70% (b) Load: 90% (c) Load: 110% (d) Load: 130%

Fig. 3. Percentage of tasks ran on cloud/local, at risk 0.2

(a) Load: 70% (b) Load: 90% (c) Load: 110% (d) Load: 130%

Fig. 4. Percentage of tasks ran on cloud/local, at risk 0.3
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