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Power Electronics Research Group

University Of Twente
Enschede, The Netherlands
m.n.banolarias@utwente.nl

Prasanth Venugopal
Power Electronics Research Group

University Of Twente
Enschede, The Netherlands

prasanth.venugopal@utwente.nl

Abstract—This paper investigates the design and feasibility of
an energy management system (EMS) for railway applications
that integrates regenerative braking energy (RBE), photovoltaic
(PV) generation, and hybrid energy storage systems (HESS)
comprising a battery and a supercapacitor (SC). The objective
is to test the performance of the HESS along with RBE and
analyze its feasibility for implementation, as the combination of
these technologies are assured to reduce grid dependency and
operating cost as a result. Using a modified AC microgrid model
that emulates a DC microgrid, simulations were conducted
to evaluate four scenarios: a base case, PV-only, PV with
battery storage, and a combination of PV, battery, and SC. Key
performance indicators (KPIs) such as energy consumption,
daily operational cost, and CO2 emissions were assessed for both
clear and cloudy days. Results demonstrate that incorporating
PV and hybrid ESS significantly reduces grid dependency,
operational costs, and CO2 emissions. The full integration of
PV, battery, and SC achieved the highest energy savings and
environmental benefits. The combination of PV and battery
achieved a 93% reduction in grid energy consumption on
clear days, while adding an SC further reduced consumption
by up to 98%. CO2 emissions dropped proportionally, with
the full integration scenario emitting only 0.735 tons per day
on clear days compared to 33.45 tons in the base case. This
study demonstrates the potential of hybrid renewable energy
systems to enhance energy efficiency and sustainability in
railway operations, while identifying cost barriers that future
technological advancements and subsidies could address.

Index Terms—Energy Management Strategies, Hybrid Energy
Storage System, Photovoltaic, Regenerative Braking Energy,
Supercapacitor

I. INTRODUCTION

As humanity heads towards technological advancement,
an unaddressed problem raises questions about meeting
the increasing demand of public transport electrification,
the waste of Regenerative Braking Energy (RBE) and the
challenge posed by energy storage solutions. Although some
of these are large problems to be solved at society level,
they can start to be approached by creating solutions where
multiple types of energy recovery methods, along with
Energy Storage Systems (ESS), and Energy Management
Strategies (EMS) are applied in reversible substations where
rail stations are found. For decades, humanity has been using
rail transport systems with the knowledge that the energy lost
in the braking process can be recovered at high efficiency

and, as time passes, photovoltaics (PV) have become cheaper
and easier to obtain, if rail stations don’t already have them
installed. What is now being researched involves how we
use an ESS in combination with different energy generation
technologies in rail stations and how to implement optimal
charge and discharge algorithms such that the storage of
generated power is optimized throughout the day. Given this,
many studies have been done in which different technologies
are evaluated in their daily energy savings capabilities for
single- or multiple-line rail systems. Such technologies
include the use of an ESS, PV generation, RBE recovery. and
optimal EMS.

In this paper, a microgrid model found in the Mathworks
Community file exchange [11] will be adjusted to approximate
the operation of a DC Microgrid similar to the one used
in the Netherlands to power trains. Furthermore, the model
will be adapted to include PV generation, RBE, and a hybrid
ESS composed of a battery and a Supercapacitor (SC). The
HESS solution is predicted to perform better than simple ESS
solutions as the addition of the SC will be able to reduce
the impact of grid consumption by recycling the power of
RBE back into traction. The outcome of the paper shall be
to research the feasibility of the aforementioned technology
combination, and speak on its efficiency and capability to
reduce costs for train companies.

II. LITERATURE REVIEW

The study performed in [1] concludes that the best way to
save energy in train stations is by incorporating an ESS like
a battery as a way-side storage that is used to store energy
coming from RBE and PV. The results of this study show
cost savings of up to 35% when all above technologies are
used compared to a base case where no PV, ESS or RBE
is used. Furthermore, this study builds 90 scenarios where
PV variability, state of energy (SoE) of the ESS and pricing
schemes are considered to yield the savings. The study in [1]
also concludes that only the ESS with PV incorporated can
save up to 19% compared to the base case and only the ESS
with RBE incorporated can save costs to 16% daily.



The study in [2] proposes that up to 99.8% of the energy
lost in braking can be recovered. This can be linked to the
claim of Alstom’s HESOP recovery system, which rates a
99% of recovered energy according to their website [9]. The
study in [2] however, considers that their system for efficient
RBE should incorporate a Supercapacitor (SC) storage system
to drive high energy over short time periods. The addition
of the SC outperforms the use of a battery ESS, since the
SC can handle the high power fluctuations over short periods
of time like that coming from RBE, whereas a battery ESS
alone can’t. This is shown with the common power densities
for both technologies, where SC range higher than 10 kW/kg
and batteries range between 100 to 300 W / kg, which are
significantly less in the case of a battery. This affects the
response time to absorb power, where in the case of RBE the
power spikes are high peaks with short durations, correlating
to the behavior of the SC, and with the lower rated power
of batteries, the pulses could be missed if a battery is used.
The SC takes care of many key roles in the model of the
study done in [2], like balancing the currents coming from
the batteries in the train and the DC power supply as well as
regulating the DC source voltage as well. The main operation
is to store the recovered energy while braking to prevent it
from being dissipated as heat in a braking resistor, which
is later used to accelerate the train and improve energy
efficiency this way. Finally, this allows for a dynamic state
of charge control of the SC, where it can be charged or
discharged according to the speed of the incoming train and
to fulfill the high energy requirements of acceleration. SCs
capture up to 95-99% of braking energy, compared to 70-85%
for batteries, which is mainly due to the faster charge rates
mentioned before. Study [2] also models a fuel cell that
charges the train’s batteries, however this technology shall be
exchanged by a grid source, as most trains in the Netherlands
are capable of running 100% electric [10].

Having a device that can handle high amounts of energy in
short periods of time seems to be a common solution among
some studies. Study [3] also uses a similar technology, but
in the mechanical domain in the form of a flywheel. The
flywheel modeled in this study is used in a very similar way
than the aforementioned SC, to meet with energy charge and
discharge characteristics of RBE. The flywheel in this study is
integrated as part of a DC microgrid within the station, where
the supply is provided using a battery in the station microgrid,
and the AC grid as a means of supply for the battery in case
there is not sufficient energy from RBE and PV in the case
of the research planned. Simulations in this study effectively
concluded that the use of the flywheel was necessary to
obtain 0 RBE dissipation. Meaning that the system is highly
effective at recovering breaking energy. Furthermore, the
study also concludes that thanks to the flywheel, the station’s
overall energy demand from the external AC grid was reduced
up to 93%. This links directly to the objective in the research
to be done.

The study in [4] dates back from 2011, and the main
focus of the study is centered around RBE. It provides a
window into the past looking into how long ago scientists
have been working on the same technology that will be
further used for the upcoming research. The model done for
this study considers RBE for generation, an ESS, and finally
it incorporates EV charging stations, which is a nice addition,
but is outside of the scope for the thesis. The authors of the
paper reported back then that the efficiency of RBE ranges
between 77% to 95% depending on the train frequency and
system conditions. This would make sense given that in other
recent studies the efficiency of RBE is above 95% [2], [3], [9]
for all the studies previously analyzed which gives evidence
of the technology being improved since the oldest study
found dated in 2011. This study further proposes that RBE
alone could provide energy savings in the station and EV
charging (part of metro station) between 30% and 38% back
then. It could be claimed that as time has passed, electrical
energy requirements have increased, and from study [1] we
know that the most recent calculated savings with only an
ESS and RBE is of only 16%, which is evidence of the claim.

An interesting study is conducted in [5], where the
approach to improve energy savings is to design an ESS by
using supercapacitors and back-to-back converters (BTBC)
to efficiently recycle recovered RBE. The ESS from this
study was designed with a rated power of 60 MW and rated
capacity of 0.3 MWh, to yield the most efficient result of
9% daily energy savings. This is interesting because PV
is not considered in this study, and the savings with only
the designed ESS provides a higher percentage of savings
than those reported in study [1], which was only 3% for
the same configuration. The designed ESS is also interesting
because along with the BTBC, they balance the energy flow
between two phases, which allows for efficient handling of
high traffic and energy distribution. This system designed in
study [5] maintains stability of DC bus voltage throughout
different modes of operation (charge, discharge, transfer
and standby) as well as a seamless transition between such.
The study [5] has an important advantage in that it has
tested and validated the system in a down-scale version. It
is also important to point out that the SC based ESS was
particularly fit for high-speed railway applications due to the
rapid switching between braking and traction, which creates
fluctuating energy demands. Figure 1 shows a schematic of
the SC-based ESS with BTBC. The schematic shows the
interaction between the energy phases α and β, which is an
interesting concept to consider when you have trains traveling
in opposite directions on the rail. The experimentation in
study [5] describes how the BTBC transfers 0.15 MW of
RBE coming from the β phase into the SC, and after the
SC reaching its Upper charge limit (SoC= 70%), the BTBC
transferred 0.075 MW to α phase. During the duration of the
aforementioned process, the DC bus voltage was reported to
maintain stable, which is attributed to the BTBC. Aditionally,
the system reports recyclying 14.9 MWh of RBE per day



Fig. 1. Layout of the ESS developed in paper [5].

through the supercapacitor, while 32.8 MWh was transferred
between phases for traction consumption per day as well.
The schematic in figure 1 also proposes a way to implement
renewable energy collection, which is of interest to the thesis
at hand.

In a very similar way, the study analyzed in [6] also uses
a Ground-based SC as an ESS. Compared to [5], the study at
hand focuses on Urban rail, and the energy management is
based on DC grid voltage regulation, opposed to the BTBC
system incorporated in the ESS. In [6], the SC is the ESS
and it charges or discharges according to the increase or
decrease of the grid DC voltage respectively. This study
takes into consideration the train intervals to model the
charge and discharge capabilities of the SC, and based on
the different headways it calculates the daily savings. The
study concludes that using a ground-based SC yields more
savings as the frequency of trains increases. A headway of
270s allows for savings up to 21.8% of the maximum energy.
That implies a 12% daily energy savings for an urban rail line.

The study performed in [7] deviates from the other studies
by exploring the comparison between way-side (stationary)
ESS and on-board (mobile) ESS. The study finds that different
traffic levels affect the savings of both stationary and mobile
ESS’s. Stationary ESS yields a lower savings respective to
traffic levels compared to mobile ESS, however the mobile
ESS requires more SC to store RBE. Mobile ESS can give
daily savings of up to 27.3% at high traffic and 36.3% at
low traffic, while stationary ESS can save up to 18.7% and
36.4% respectively per day. This can be compared to the
results from study [1], where just the way-side ESS and PV is
used, yielding a 19% energy savings. The study concludes that

mobile ESS benefits from peak power shaving, voltage drop
reductions in DC bus and reduced losses better than stationary
ESS. Even though the mobile ESS seems to be better, it limits
the size of the future research, as PV and Energy Management
Strategies (EMS) don’t play an important or sensical role. For
this reason, the research is inclined towards stationary ESS
rather than mobile.

Fig. 2. PV HESS developed in study [8].

The study performed in [8] analyzes the integration of SCs
and batteries along with PV generation. The Hybrid Energy
Storage System (HESS) devised in this study can be seen
in figure 2, and it connects a SC to a battery by using a
DC bus, which coincides with the designs of other studies
previously analyzed [5], [7]. In this study the authors are
able to recognize some limitations of SCs, which are its low
energy density and high costs. This leads to the assumption
that an SC alone will not be sufficient to deal with PV
and RBE, therefore the solution proposed in study [8] of
the HESS looks like a promising lead on enery efficiency
considering the findings of studies [2], [3], [5], [6], where an
element like a SC can regulate high power fluctuations from
RBE. The system designed by this study also implements
an EMS using a PI controller, which regulates the voltage
of the DC bus (400V in this study) by distributing energy
between the SC and batteries. In the study, the model built
analyzed the performance of a PV ESS with and without the
integration of a SC. The study concludes that without SCs,
batteries are solely responsible for stabilizing DC bus voltage
and responding to load variations. PV alone can produce
significant current peaks during changes in irradiation [8], and
so can load changes, or energy recovered from RBE, which
leads to high electrical stress and potentially shorter battery
life. The study also concludes that there is a significant peak
current reduction on the batteries when SCs are incorporated,
and the current reaction coming from the batteries is smoother
as the SC handles rapid energy demand changes. Its important
to point out that the study performed in [8] concludes that



the SoC of the battery is more stable with the use of SCs,
which reduces energy consumption from batteries and results
in a more balanced energy distribution, which in turn could
potentially extend the batteries’ lifespan.

Considering all the information gathered, it can be con-
cluded that the best combination of technologies for train
stations include PV and a battery ESS for renewable storage,
a SC or some other component in another domain that can
handle high power fluctuations in short periods of time like
that of RBE or solar irradiance changes, and a metered utility
point access to deliver power demand from loads if there is no
power available in storage. Following this, an appropriate and
simple model needs to be procured in order to experiment
and answer the research question: Is it feasible financially
to implement a SC-Battery HESS along with RBE and PV
generation to reduce operating costs, grid dependency and as
a result, reduce CO2 emissions of railway stations?

III. MODELING

The model obtained was found in the Mathworks commu-
nity file share [11]. It was first made by Jonathan LeSage and
can be seen in figure 3.

Fig. 3. Model procured from Mathworks by Jonathan Lesage [11].

The initial purpose of this model was to implement a
three-phase AC microgrid that is fed by a utility point access
to meet load demand at all cost, but it distributes power
coming from PV to a variable load, like a household. The
excess power is then stored in a battery ESS, which follows
a charge and discharge profile calculated by an EMS. The
model also was intended to implement an optimization
algorithm that was used to drive the EMS based on grid
pricing.

Three-phase AC systems use three power lines that
replicate with a 120 degree phase shift to ensure balanced
and continuous power flow at high reliability. This AC system
is an ideal and common grid application for transportation
systems, and that ensures that the modeling and available
simulation components are reliable in the results they yield.
In the case of the model in figure 3, the components that
can be seen correspond to a three-phase utility access point,

converter and switch combination for the grid component,
a three-phase dynamic load and constant loads for the
loads, a three-phase solar inverter for PV generation, and a
three-phase ESS for the battery. It is important to note that
the three-phase AC system components correspond to signal
domains within Simulink, and it cannot correlate with DC
components, therefore the need surges to approximate that to
DC operation by the use of every component’s parameters.

The choice for this model was made purely out of the
completeness and simplicity that the solution brings. It is
important to point out that the specifics of train systems in
the Netherlands (DC, 1-1.5 kV, Catenary) are different than
the system in the model. However, it can be assumed that
AC operation can be approximated to that of DC systems if
the AC frequency is minimal, and only active power (P) is
acting in the system. More specifically, the reactive power
(Q) must equal to zero. This is possible within the model
since most of the parameters, including component-wise
dynamics parameters, can be adjusted to whatever is needed.
For our case the parameter of the system’s frequency was set
to 1Hz, assuming that is the lowest attainable frequency for
the model’s correct operation. Then for every component, the
reactive power (Q) was set to 0, as well as the phase angle to
avoid transients, and ensure the assumption that we are only
looking at the steady state of the system.

As mentioned before, the operation of trains in the Nether-
lands are based on DC systems at 1-1.5 kV. In order to
approximate that, the voltage was picked to be 1.5 kV DC
which is comparable to 1.5 kV AC, but in three-phase systems
that is comparable to 1.5 kVL−N (Volts line to neutro. The
model requires a VL−L (Volts line to line) parameter which is
given by:

VL−L = VL−N ∗
√
3 (1)

This results in a VL−L of approximately 2.6 kV.

With these parameters set, some further assumptions that are
made throughout the length of the study need to be addressed:

• We assume the train station already has an RBE system
installed.

• Total weight of each train (number of carts, also number
of passengers) affects the total power recovered and
delivered to every train. We assume that all trains are the
same weight all the time, that way the energy recovered
and delivered can be constant for every train in the
timetable.

• We are looking at steady-state of the system, not at the
dynamics of the physical system. We avoid transients
throughout the project by keeping only P in the system
and setting Q=0 for every component.

• We assume that the approximation of DC to AC is
possible under the conditions mentioned before.



• We assume the average rating of the load for regional
train stations can range from 50 - 100kW; assuming that
60kW for the Enschede train station is the right ballpark.

• We assume that every element works at 100% efficiency
to make the dynamics of power more comprehensible.

• We assume that the Enschede train station can structurally
withstand a measured 1236m2 of PV on its roof.

With that clear, let us evaluate every component:

A. RBE Load

From some initial experimentation, it was determined that
the load initially used for the variable load of the household
is a dynamic load that can follow a predetermined load profile
in which power can be injected or absorbed from the system.
This means that if a load profile was fabricated in which the
behavior of trains coming in and out of the Enschede train
station was approximated, and a base load was selected for
the minimum operation rating of the train station throughout
the day, then the whole system would react correspondingly
to the base load and the loads of the trains throughout the day.

The load profile was fabricated by analyzing the data that
came with the model and determining the number of data
points the input vector had by using the buildTrainloads
script seen in Appendix A. The number of data points was
determined to be 1441, which corresponds to a day evaluated
in minutes (24 h/day * 60 min/h). This meant that by
looking at the timetable of the trains arriving and leaving the
Enschede station [23], the exact time an event happens can
provide a data point that either absorbs power or generates
power. Then under the assumption that Dutch trains operate
in a similar manner as metro systems in different parts of the
world, the study in [1] provides a comfortable approximation
drawing from the study’s conclusion that the amount of
energy obtained from RBE recovery was the same as the
energy used in traction for one day of operation, which was
found to be 4.1 MWh/day on a single metro line. It seems
illogical that the same amount of energy was calculated for
recovery and traction, until the realization that more trains
arrive throughout the day than the ones that leave. In the case
of the Enschede train station the number of trains arriving
throughout the day is 20, whereas 18 trains leave the station
every day.

Following:

ERBE =
RecoveryEnergy

ArrivingTrains
(2)

ETrac =
TractionEnergy

LeavingTrains
(3)

and the assumption that for every hour that the station
operates there is maximum one train that leaves and arrives,
the power for recovery and traction are calculated to be 205
kW and 228 kW respectively. The Recovery Energy and
Traction Energy in equations (2) and (3) are the same value
previously found for traction in study [1]. This is feasible

under the assumption that all trains arriving and leaving the
station have the same number of carriages, and the same
number of people. This is because the amount of energy
recovered by RBE is affected by the weight of the moving
object.

The script buildTrainLoads was then written to construct
the input vector of the dynamic Load component. Another
approximation is then made for a base load consumed
throughout the day for the operation of the train station.
For Regional Train stations, according to different sources
analyzed by a GPT tool [12], [13], [14], typical base power
ratings can range between 50-500kW. So we assume that for
the Enschede train station, the consumption rating lies on the
lower end of the range due to there not being any HVAC
units or any high power demand equipment that runs all day,
which leads us to comfortably pick 60kW as a good ballpark
approximation.

The components that make up the load can be seen in figure
4.

Fig. 4. Components that make up the RBE & base load

Now having the input vector and a base load, then it can be
expected that the power consumed from the grid would follow
the sum of the load input and base.

B. Photovoltaic

The PV initial functionality works in a similar way than the
dynamic load of the previous subsection. A daily irradiance
profile is used as an input, and in the initialConditions script
that irradiance data is used to obtain a vector where the power
is calculated using the following equation:

Ppv(n) = A ∗ irr(n) ∗ eff (4)

where A is the surface area covered by PV, irr(n) is the
irradiance profile used as input which is discrete-time vector
of variable n, and eff is the efficiency of the solar panels.

For the PV implementation we use in the model, the same
components and irradiance data were used from the model’s
intended operation. This was because the data easily provided



a selection between a clear day and a cloudy day in minutes,
comparable to that of the dynamic load input.

To approximate this to the case of the Enschede train
station, the surface area of the panels was adapted to a
realistic sizing by evaluating the rooftop of the train station,
and using google maps scales and a ruler, a clear usable
area was determined. This was evaluated in 1236m2 initially,
however after some initial experimentation, it was decided to
lower the area to 750m2 using the logic that the more PV
being installed, the higher the investment cost would be. The
efficiency is then selected to be 0.3 to match the best available
solar panels as of 2024 [15]. This selection is done under the
assumption that it will take time for a solution like the one
proposed to be realizable, and as the efficiency of solar panels
increases each year, by the time this solution is feasible,
a 30% efficiency solar panel should be commercially available.

The component for PV in the model can be seen in figure
5.

Fig. 5. Components that make up PV

C. Battery ESS

The battery in the model was initially intended to supply
a household and charge using the power generated by PV.
Initially the battery had a capacity of 150 kWh and a
power rating of 150 kW, meaning the battery can be fully
discharged in one hour, that is 1C. Additionally, the battery
is meant to supply the base load of the household when PV
is not available. That said, the battery follows a charge and
discharge profile that is calculated using an EMS, which we
shall explore later on.

Since sizing the battery for any specific case can be a
whole study on its own, a ballpark value was selected based
on recommendations from advisors and one source that
mentions typical capacity for train applications can easily
be above 500 kWh [16]. Based on this, the capacity of the
battery is selected to be 600 kWh and the advice to keep the
battery at 0.5C leads us to pick the power rating at 300 kW
such that the battery can be fully discharged in 2h.

The battery and EMS system components in the model can
be seen in figure 6

Fig. 6. Components that make up the battery and EMS system

D. Energy Management System

The EMS is intended to calculate the operation of the
battery’s charge and discharge throughout the day. This system
is built using Simulink condition charts, and based on the
system’s inputs and an algorithm, it builds a vector that is
used as an input for the battery. The algorithm originally used
in the model follows four main states: Idle, Absorb from PV,
Peak supply, and Night Recharge. The inputs for the intended
operation of the EMS are: power from PV, power of the load,
the battery state of charge (SOC), a battery on/off toggle, and
a 24h clock. The original chart for the EMS can be seen in
figure 7.

Fig. 7. Original EMS algorithm done by Jonathan LeSage.

Taking a closer look into the system in figure 7, it can
be seen that the battery is allowed to charge from the grid
when PV is not available. For the goals to be achieved by
this study the function of charging from the grid is unwanted,
as the objective is to reduce grid consumption as much as
possible. The EMS should calculate the battery’s function
as: absorbing energy when available from PV and discharge



to meet the load’s demand. Additionally, the EMS can be
programmed to maximize profit during the times of high cost,
and sell the energy stored when prices energy are high.

The algorithm to achieve the function previously described
can be seen in figure 8.

Fig. 8. EMS adapted to PV absorption and base load demand discharge.

The component for the EMS in the model can also be seen
in figure 6.

E. Supercapacitor
The SC implementation is an added technology apart from

the intended operation of the model. Its need was derived
from the studies analyzed in the literature review section,
where it can be seen that most implementations of RBE
recovery use a technology that can support large fluctuations
of power in short periods of time. In the case of the model
at hand, it was ideal to just copy the battery component and
adjust its dynamics to approximate that of a SC, that is a
small capacity with large power rating. The purpose of the
SC is to successfully absorb the power coming from the RBE
load, and deliver the power to support traction of the same.

From study [6] ballpark values can be obtained for the
aforementioned parameters resulting in a capacity of 5.1
kWh and a power rating of 2000 kW. However, after initial
testing, the capacity of the battery was chosen to be 10 kWh.
This is done to solve the issue of multiple trains arriving into
the station at the late hours of the night without any trains
departing to deliver power stored in the SC. This way, the
SC can hold the energy of three or more trains, which is
expected to be kept and delivered when the first trains depart
in the morning.

The component that makes up the SC in the model can be
seen in figure 9.

F. Grid
The utility access point is a metered point of connection

with the high voltage grid. It is intended that this component
would supply power to the microgrid system if the generating
sources and storage systems can’t supply the load’s demand.
This metered point allows us to calculate, based on the power
absorbed by the system and a pricing profile in unitary money,
the costs of operation for the train station during the day.

It is important to point out that costs of energy throughout
the day change, where at specific times of the day power

Fig. 9. Component used for SC emulation.

Fig. 10. Price of energy throughout the day provided by the model. The x-axis
is time for 24h and the y-axis corresponds to the price of energy (cent/kWh).

can cost significantly higher. These times are specifically in
the morning and the early hours of the night (late afternoon)
as seen in figure 10. We use a cost profile measured in
unitary money, where the cost per day is a key indicator to
the performance of the system designed. The objective is
to calculate the total energy that is consumed by the grid
every day. The focus is only on the energy consumed from
the grid when calculating the energy throughout the day, and
not the energy generated as the point is to calculate how
close the consumption can get to zero throughout the day.
Adding generated energy to the energy consumed would be
counterproductive, and in turn would not allow for accurate
approximation of the amount of CO2 consumed by the train
station during the day.

The components that make up the grid access in the model
are a three-phase transformer and a three-phase switch, and
can be seen in figure 11.

Fig. 11. Components that make up the Grid access point.



IV. SCENARIOS

There are four test scenarios that are proposed in this paper
to be able to quantify data in a basis of Key Performance
Indicators (KPIs). Said KPI correspond to overall cost, energy
consumed from grid throughout the day, and the weight
in tonnes of CO2 consumed throughout the day. All these
indicators will then be calculated for all scenarios using both
clear and cloudy day datasets to have a broader data range to
compare. The four scenarios are chosen as follows:

A. Base Case

The base case is analyzed as only the load and the
grid access point are active. This is the case in which
no technology is added to store energy, or additional PV
generation. In this scenario we assess how much is the energy
consumed by the station every day and the cost of said
consumption. For the cost calculation, it is assumed that the
station can recover braking energy from trains, and that the
energy recovered can be sold at the same rate as that of the
purchase rate described by the cost profile in unitary money
provided by the model’s resources.

It is expected that this scenario will yield the highest
cost per day, but at the same time, it is the most economic
solution. However, there is no improvement to the systems
used today.

B. PV Only

In this scenario we analyze the effect of adding some PV
generation to the system. This enables a separation between
sunny and cloudy days and the effect on the KPIs for each
variation. It is expected that the energy consumed per day,
as well as the amount of CO2 are higher when its cloudy
compared to when its a clear day, as more energy is collected
by PV in a clear day than in a cloudy day. It is also expected
that PV meets the load demand when the power of PV is
higher than the base load.

It is important to keep in mind that PV generation, similar
to RBE, will also add earnings when calculating the costs
per day, but only the energy consumed is considered for the
energy KPI. That means that when calculating the costs of
operation per day PV and RBE will generate profit that will
influence the operation cost per day KPI, but are not included
in the sum of power consumed from the grid throughout the
day to get the energy KPI.

C. PV & ESS

For this scenario, the inclusion of a battery ESS is tested
such that comparable results can be determined for the
aforementioned KPI. The battery allows for storage of power
coming from PV as well as a source to supply the base load
of the station. Due to the high fluctuation of power coming
from RBE, the battery can’t handle storage and supply of

such. The train load in this scenario is therefore met using
power from the grid. The EMS that calculates the profile of
the battery doesn’t allow for the battery to recharge from the
grid, so the battery is designed to be fully reliable on the
power coming from PV.

It is expected however that during most of the day the base
load demand is met using the power stored in the battery. This
raises the expectation that the energy consumed throughout
the day and the amount of CO2 are lower in this scenario
compared to that of the previous scenarios.

D. PV, ESS, & SC

In this last scenario a SC is added to the system such
that RBE can be efficiently recovered and stored. The SC
is expected to charge with the power delivered of up to
three consecutive incoming trains, and is therefore expected
to deliver the stored power to aid in traction of departing
trains. With the SC solution, the energy consumed per day
and the amount of CO2 are expected to be significantly
lower due to the amount of power redistributed from RBE
recovery to traction. The power once consumed from the grid
would significantly reduce without the big peaks of power
that traction consumed, and in turn the disturbances on the
microgrid voltage would become smaller.

The hypothesis of this research claims that this scenario is
the best combination to reduce power consumption from the
grid, however it is the most expensive solution when looking
at the total cost of operation, where cost of investment needs
to be evaluated as well.

Post-simulation Calculations

With the experiments described and the components of the
model evaluated, individual simulations shall be performed for
every scenario where KPI results should be comparable and
make sense between scenarios. For this, the code postCalc
was made to be run after the simulation in Simulink is
complete, which can be seen in Appendix B. This code was
made to calculate the different KPIs in the following ways:

1) Energy Consumed from Grid: Every single data point
on the resulting grid power vector coming from the simulation
is evaluated on whether it consumes or generates, if the point
corresponds to generation, then we skip it, otherwise, we add
the value to a sum. This would however be a sum of power
and to convert it to energy, we multiply with time. Since the
power vector corresponds to 24h of operation, then the sum
is multiplied by 24h to get energy in Watt-hour.

2) CO2 Created by Consumption: The grid energy
previously calculated is then multiplied by the carbon
intensity of the origin of the consumed energy. In the case of
NS in the Netherlands, they claim that 100% of the energy
consumed by their train stations is supplied by wind farms



[10]. Wind energy despite being renewable, does have a
carbon intensity corresponding to 14 g/kWh.

3) Cost of Scenario: The total cost indicator is a combina-
tion of the daily operation cost and the investment cost of the
technologies involved in each scenario. The investment costs
shall be evaluated by using the web, whereas the daily cost of
operation is a feature included in the original Simulink model
and can be seen in figure 12. This however it is measured in
unitary money since the currency is different than the euro,
but most likely USD.

Fig. 12. Cost per day feature included in the original model.

It is important to notice that for every scenario not only the
same KPIs are evaluated, but due to the method of analysis and
the fact that more complex systems yield more precise datasets
with more data points, the same number of data points needs
to be evaluated for every scenario. If more data is added for
every scenario, then the results would be opposite to those
expected, where the energy consumed per day would increase
every scenario. That is why the base case shall be evaluated
first and the number of data points is to be determined. Every
scenario following the base case shall then be divided by a
decimating factor given by the division of each scenario’s data
points with the number of data points of the base case when
calculated the energy consumed by the grid.

V. RESULTS AND DISCUSSION

The results from the simulations performed using Simulink
will be presented ahead. We shall first address the model
designed and discuss the chosen sign convention to make the
graphs in the results from the scenarios more comprehensive.
Following this, an evaluation of every scenario and its relevant
data shall be performed, as well as the KPI data will be
arranged in a table. A discussion of the data collected will
follow as well as discussion on the experimentation and further
research.

A. Model & Sign Convention

The components previously outlined are arranged in the
model designed for experimentation as seen in figure 13.

Comparing the model in figure 13 to that of figure 3, it
can be appreciated that aside from the added component of
the SC, there is a different structure under the power scope
and its input arrangements. This structure seen in figure 14
is built with the intention of being able to rearrange the
data coming from the distinct power signal that carries the
data for all the powers in the system. This way the data

Fig. 13. Model designed for experimentation by adapting the model in figure
3.

could be flipped in order to make a sign convention that is
understandable and follows physical rules like the conservation
of power. The five signals being manipulated correspond to the
powers of PV, Battery (ESS A), Grid, Loads, and SC. These
signals are retrieved from a from-marker in such a way that its
manipulation would only affect how we see the data whereas
the operation would remain the same.

Fig. 14. Structure built in the model to flip and adapt signals to desired sign
convention and gain.

The sign convention is then chosen as the following:
• PV - less than 0 is Generation.
• ESS A & SC - less than 0 is Discharging, more than 0

is Charging.
• Grid - less than 0 is Consumption, more than 0 is

Generation.
• Loads - less than 0 is Generation, more than 0 is Demand.

The sign convention for the graphs is chosen following
the logic that universally, generative sources are comonly
displayed as negative, indicating power flowing out of the
system. The storage systems like the battery and SC were
chosen such that a logical interpretation of power flowing in
and out of those devices as positive for charging and negative
for discharging. The Grid and Loads sign conventions will be



by nature confusing, since initially and by logic, the power
consumed by the grid should follow the power of the loads
throughout the day. The sign convention for this case is
picked opposite, such that the curve for the power of the grid
to be more comprehensive.

It can also be seen on figure 14 that the signals for the power
of the grid and the power of the load have a gain of 2. This is
added after solving for an initial problem found where these
signals would not display correct values due to their RMS
calculation. Within the model the power for the loads and grid
specifically are calculated as the product of each component’s
voltage and current, which in RMS are expressed as:

VRMS =
VP√
2

(5)

IRMS =
IP√
2

(6)

The voltage and current that are comparable to DC corre-
spond to the peak-peak formulation of these variables such
that AC and DC power can be comparable. So combining
equations (5) and (6) to calculate power yields the following:

Power = VP ∗ IP = VRMS ∗ IRMS ∗ 2 (7)

With these instructions to understand the data provided by
the graphs, the results for the scenarios presented ahead shall
be a seamless read.

B. Scenarios

1) Base Case: Represented by only the combination of
RBE recovery, the base load, and the grid access point,
it provides the lowest investment cost from all scenarios.
There is no added technology that would represent additional
costs other than the RBE recovery system, but this seems
unimportant if we assume that train stations would have them
already, and that we are considering added investment costs
as a metric either way. The total costs of operation for the day
in this scenario is recorded by the feature in figure 12, which
marks 113.1$. This means that the way the station is allowed
to consume from the grid every day would further cost the
station about 113$. If we consider that value in the long term
and thinking that train stations are open and operating 365
days of the year, that adds up to 41.25k$ in a year, 412.45k$
for 10 years.

The grid power vector has 1480 data points. All following
scenarios would have to be decimated with respect to the
number of data points in this scenario. The graph for the power
dynamics of the grid (red) and the loads (green) throughout
the day in this scenario can be seen in figure 15. From this,
we can see the expected behavior of the load following the
grid, but to maintain correct physical laws, the power of the
grid is flipped to perceive the sum of powers equal to zero.

From the grid power curve seen in figure 15 we determine
that the total energy consumed by the grid throughout the

Fig. 15. Powers of different components active in the Base Case scenario.
The x-axis is time for 24h and the y-axis corresponds to Power (kW).

day is 2.39 GWh for this scenario. This makes sense when
considering the high costs of operation calculated throughout
the day.

The amount of CO2 calculated in this scenario from the
energy consumed out of the grid is 33.45 tonnes produced
during the day.

2) PV Only: In this scenario we consider a 750m2 array of
PV cells that would generate power to meet the demand of the
base loads and the traction of trains. First we shall evaluate
this scenario when there is a clear day. All excess power would
be sold at the same rate that is defined by the cost profile of
the day supplied by the model. For that reason the cost of
consumption of energy for the day in this scenario is recorded
as a negative value, which is -28.45$. If the cost is negative,
this can be considered that for the day of operation, profit from
the sale of the solar power overcomes the costs of consumption
leading to a daily profit of about 29$. When a cloudy day is
found in this scenario, the total cost of the energy is recorded
as 14.87$. This means that for cloudy days, the system is not
so good at making enough energy to be profitable, in which
case would cost instead of earn.

When assessing the solar panels, a high efficiency solar
panel was considered, which corresponds to mono-crystalline
panels of 750 W max. power rating per panel and an area
of 3.24m2/panel [24]. The cost for these specific panels is
about 200$/m2 [17], so for 750m2 this would amount to an
investment cost of about 150k$ just for obtaining the solar
panels, which doesn’t include labor and materials.

The number of data points that correspond to the grid power
vector for this scenario when its a clear day is 2089, so this
means that the resulting energy consumed from the grid shall
be decimated by a factor of about 1.41. The graph for the
power dynamics of the system for this scenario can be seen
in figure 16. There it can be seen how the grid responds to
the injection of power coming from PV (yellow), and how
the response of RBE follow the same spikes, just larger when
trains are coming into the station. The energy consumed for
the clear day variation of this scenario was calculated based
on the grid power curve in figure 16, which was 1.04 GWh.
This result is as expected due to the supply of the base load for
a big portion of the day. This in turn suppresses the traction



peaks that demand consumption.
In this 750m2 area, the max. power can be derived using

the data given for the area per panel and the max. power rating
per panel. The number of panels that fit in this area is 231,
which gives a max. generated power of 0.052 MW if 30%
efficiency is considered. This is different than the max. point
in the PV power curve of figure 16, where it can be seen to
be about 0.2 MW. This discrepancy is given by the irradiance
profile used, which is the same as the one that came with the
model. The power of PV is calculated in the model by using
equation (4) where the irradiance is not a vector calculated for
the chosen of panels. More about this will be addressed in the
Points of Improvement, subsection V-E.

Fig. 16. Powers of different components active in the PV Only scenario,
when its a clear day. The x-axis is time for 24h and the y-axis corresponds
to Power (kW).

For the cloudy day variation of this scenario, the number
of data points for the grid power curve is 2584, which yields
a decimation factor of about 1.75. The graph of the power
dynamics for this variation can be seen in figure 17. There it
can be seen the effect of clouds in the environment and how
the power of the grid responds to the disturbances. The energy
consumed from the grid throughout the day was calculated to
be 1.11 GWh. It can be seen from figure 16 and 17 that the
power generation differs significantly between a clear day and
a cloudy day, so that poses the concern that through extended
cloudy periods the autonomy of the station would reduce,
causing the costs of operation to increase. This however, could
be mitigated by the addition of an ESS to store power, and
ensure autonomy for extended periods of time when PV is not
available.

Fig. 17. Powers of different components active in the PV Only scenario,
when its a cloudy day. The x-axis is time for 24h and the y-axis corresponds
to Power (kW).

The amounts of CO2 calculated on this scenario per day
are 14.53 tonnes produced when its clear, and 15.44 tonnes
produced when its cloudy. This makes sense considering that
the energy consumed when its clear is less than when its
cloudy.

3) PV & Battery: For this scenario, a battery with a capac-
ity of 0.6 MWh and a rated power of 0.3 MW is incorporated
to absorb and store the power coming from PV. The EMS
that comes with the battery that was previously outlined is
also used to calculate the behavior of the battery. The most
appropriate battery system for the application at hand is likely
to be a Lithium-Ion (Li-Ion) battery pack, due to the high
power density and commercial availability for ESSs. Acording
to an article on Bloomberg Business, as of 2024 the price
of Li-Ion dropped to 115$ per kWh [18]. For 0.6 MWh, the
cost for the battery pack surpassess the 60k$, and adding the
costs of electronics and installment, a ballpark value of 200k$
is analyzed on top of the investment for PV. The costs of
operation for a clear day in this scenario is measured to be
-51.80$, whereas when its a cloudy day, the cost is measured
-8.94$. This means that with this technology combination the
train station is making money every day regardless of there
being a clear or cloudy day.

The number of data points of the grid power vector in the
clear day iteration for this scenario is measured as 28063,
which means that the decimation factor calculated is of about
18.96. The power dynamics for the clear day iteration can be
seen in figure 18, where the curve for the battery (blue) can
be seen responding to the power coming from PV. As the
sun rises, the battery can be seen following the line where
the grid would be receiving the power of PV in the last
scenario, showing that the battery charges from the power
coming from PV as intended. The State of Charge (SoC)
curve is added to show the activity of the battery in terms
of the energy stored, and its intended to make sense of the
power curve from the battery. It can be seen how at the start
of the simulation the battery discharges whatever is left from
the night before (Start charge 50%) and fully discharges until
the minimum limit at the rate of the base load. It can also be
seen how the battery goes into idle state when its full, that is
0 power movement, and the grid takes on to sell the excess
power coming from PV. It is important to point out the spikes
coming from the trains are still present, this is as expected
since the power fluctuations are too large for the battery to
handle. This also means that the loads will keep consuming
from the grid to meet the demand of the train’s traction. For
the clear day iteration, the resulting energy consumed by the
grid throughout the day is 153 MWh. This is as expected
since the grid power line is now most of the time located at 0
throughout the day. This allows for the observation that most
of the power consumed from the grid is still largely caused
by traction of the trains.

For the cloudy day iteration of this scenario, the measured
number of data points jumps to 65758, which is understand-



Fig. 18. Powers of different components active in the PV & Battery scenario,
when its a clear day. The x-axis is time for 24h and the y-axis corresponds
to Power (kW).

able considering the higher complexity of the model and the
variability of the cloudy day scenario. The power dynamics for
the cloudy day in this scenario can be seen in figure 19. By
now the behavior of the grid power following the load should
be evident, and we know that the base load is 60 kW, so
to better visualize the behavior of the battery, the load curve
is turned off in figure 19. Here we can see how the curve
for the battery follows the high varying curve of PV with
precision until the moment it gets full, however it follows the
same behavior calculated by the EMS when compared with
the clear day iteration. It can be also seen for both iterations
the offload function when the price of energy is higher closer
to 17:00 PM, that way the profit is maximized and the slope of
PV can be used in favor for continuing with the supply of the
base load. The energy consumed in the cloudy day iteration
of this scenario was calculated 166 MWh, which follows the
trend of higher consumption of every scenario when compared
to the clear day iterations. Compared to the clear day iteration,
it can be perceived that the effect of the cloudy day affects the
SoC of the battery by delaying the time in which the battery
reaches its full state by only a few minutes. The battery then
stays idle for most of the day once the battery is charged to
its limit. Prolonged cloudy periods will affect the autonomy
if its multiple days, but only in the time it takes to charge the
battery relating to the effect previously addressed.

When its a clear day in this scenario, the amount of CO2

consumed is calculated to be 2.14 tonnes, whereas for a
cloudy day it is calculated to be 2.33 tonnes. The difference
shows that the energy consumed between variations is
somewhat similar, so the observation can be made that the
EMS is sufficiently good to pick up the power from PV when
its available, and its optimal for meeting the base load’s
requirement throughout the day.

4) All Technologies: In this last scenario, a SC is added
with a rated power of 2 MW and a capacity of 0.01 MWh to

Fig. 19. Powers of different components active in the PV & Battery scenario,
when its a cloudy day. The x-axis is time for 24h and the y-axis corresponds
to Power (kW).

absorb and distribute the power spikes coming from RBE and
traction. For that reason the input profile given to the SC is
the same as the train load, that way the SC follows the power
focused on the train loads. When looking at the investment that
corresponds to a SC, it is important to keep in mind that this
is the most expensive piece of technology. High fidelity SCs
can cost between 5000-10000$ per kWh [19]. Assuming that
the higher end of the spectrum is needed to ensure quality and
efficiency, just the SC would cost 100k$. The expensive thing
to make is the electronics and peripherals needed to handle
the high power demand, which can cost 100-200$ per kW,
and with 2 MW of power that would add up to 400k$. With
everything combined and with installation costs considered,
an appropriate ballpark value for the total investment cost
of the SC is about 600k$. Along with PV and the battery
proposed, the total cost of investment for this scenario is about
950k$. The clear day iteration of this scenario has a daily
operation cost of -51.32$, and the cloudy day iteration has
such of -8.47$. These values are slightly lower than those on
the previous scenario, which would mean that there is less
profit. The reason behind the lower profit will become evident
later on.

The clear day iteration of this scenario recorded 51042 data
points for the grid power curve, so the decimation factor used
in this case is 34.49 due to the complexity of the system
increasing by the addition of the SC. The power dynamics
graph for this scenario can be seen in figure 20, and it can be
seen how the SC curve (violet) follows the same curve of the
load, but inverted and without the 60 kW offset coming from
the base load. This shall be analyzed as trains coming into the
station would make a generative peak (negative), for which
the SC curve shall respond with a peak charging (positive) the
device. This shall be vice-versa for trains departing the station,
where a train leaving creates a peak demanding (positive) from
the load and to which the SC shall respond with a discharging
(negative peak). From the graph in figure 20 shows all the



Fig. 20. Powers of different components active in the All scenario, when its
a clear day. The x-axis is time for 24h and the y-axis corresponds to Power
(kW).

curves, and the effect of the SC on the grid power is not very
noticeable, so let us look at figure 21. Here the load and SC
curves are turned off, but its the same graph as figure 20 and
understanding how the SoC curve describes the behavior of the
SC over time, the effect of the SC on the grid power should
be intuitive. The grid power in figure 21 is notably different
than the other scenarios evaluated, where it can be seen that
the peaks corresponding for RBE recovery are gone in the
most part. The SC behaves as expected by fully absorbing the
power of more than two incoming trains. In the same way,
the peaks corresponding to the traction of trains leaving are
visibly lower than that of the previous scenarios. It is safe
to say that the SC behaves as expected, however there seems
to be a problem with the precision of the power consumed
by traction, where the value is calculated to be higher than
it should be by 0.0791 MW. This is odd since even with the
efficiency parameter of the SC set to 100%, the difference is
still there. This would in turn affect the energy consumed per
day, and would in fact be lower than the value calculated of
52.5 MWh throughout the day.

In the cloudy day iteration of this scenario, 134882 data
points are recorded, and that means a decimation factor of
91.14. This jump shows how this is the most complex system
in the most variable scenario. As before, the loads and SC
curves shall be turned off to better appreciate the grid power
curve in figure 22. Here, the same behavior seen on the
grid curve for the clear day iteration can be seen, where the
peaks corresponding to traction are significantly reduced and
the peaks of RBE for the most part disappear. The energy
consumed in the cloudy day iteration of this scenario added
up to 203 MWh troughout the day, which is about 50 MWh
higher than the energy consumed in the cloudy day iteration
of the previous scenario. This could be in part an effect of
the same discrepancy previously found, which would in fact
reduce the energy consumed from the grid in both iterations.

The amount of CO2 produced per day of operation in

Fig. 21. Same graph as the one in figure 20, but with the SC and loads curves
turned off. The x-axis is time for 24h and the y-axis corresponds to Power
(kW).

Fig. 22. Powers of different components active in the All scenario, when its
a cloudy day. The x-axis is time for 24h and the y-axis corresponds to Power
(kW).

the clear day iteration was recorded to be 0.735 tonnes.
This makes the clear day iteration the less polluting solution
found. The cloudy day iteration recorded 2.84 tonnes of
CO2 produced throughout the day, which is corresponding
to the higher energy consumed, and is also higher than the
comparable iteration of the previous scenario.

C. KPI Data

In Table I, we can find the results from the simulations for
every scenario arranged in a more clear and concise fashion. It
is important to point out that all data collected corresponds to a
single train line so when we say that the train station consumes
x energy per day, we mean for a sinlge line. Reality would be
3 train lines in the case of the Enschede train station, which
are handled by the company NS.



TABLE I
KPI VALUES RECORDED THROUGH EXPERIMENTATION

Scenario Eg Cost CO2 Data
(kWh/day) ($/day) (Ton./day) Points

Base Case 2.39x106 113.1 33.45 1480
Pv Only (Clear) 1.04x106 -28.45 14.53 2089

Pv Only (Cloudy) 1.11x106 14.87 15.44 2584
PV & Bat. (Clear) 1.53x105 -51.8 2.14 28063

PV & Bat. (Cloudy) 1.66x105 -8.94 2.33 65758
All (Clear) 5.25x104 -51.32 0.735 51042

All (Cloudy) 2.03x105 -8.47 2.84 134882

D. Discussion

Results: The base case scenario provides a look into
the system with no added technology. This system shows
the highest daily energy consumption and CO2 emissions,
with values of 2.39 GWh and 33.45 tonnes respectively.
In this scenario the loads’ demand is purely met by using
power from the grid, which explains the staggering amounts
of energy consumed and CO2 emitted. In this scenario
there is no daily profit, every day the operation of the
station will cost 113.1$, so with the objective to reduce
costs in mind, this solution is counterproductive. If long term
is considered, close to 500k$ would be spent in a 10 year span.

The PV only scenario improves the system with the addition
of 750m2 of high efficiency solar panels. This scenario, adds
a weather factor that determines the amount of power that can
be generated throughout the day, which must be mentioned
that can be a limitation when there is no irradiation. In this
scenario however, the system designed reduces the energy
consumed from the grid by half compared to the base case
regardless of the weather conditions. This system provides
adequate profitability when its a clear day, with daily profit
of 28.45$, but when clouds roll in the system’s profitability
diminishes with an operating cost of 14.87$. This solution
comes with an investment cost of over 150k$, where if the
assumption is made that the weather is cloudy 60% of the
time in the Netherlands (and 40% of the time its sunny),
then an average cost/profit per year can be derived by using
equation (8). For this scenario the annual cost is calculated to
be -897.2$/yr and this would consider both evaluated weather
iterations throughout the year. The negative value represents
profit, and using that the Payback Period (PbP) can be derived
using equation (9). With this profit margin it would take longer
than 300 years to recover investment from the sale of power
alone.

Costav./yr = CostCle ∗ 365 ∗ 0.4+CostClo ∗ 365 ∗ 0.6 (8)

Where CostCle is the cost of the clear day scenario and
CostClo is the cost of a cloudy day.

PbP =
InitialInvestment

AnnualProfit
(9)

It is important to point out however, that compared to the
base case, the PV only scenario is indeed profitable. Over
a 300 year span, the base case would have spent close to
12M$, whereas in that time the investment made on the PV
system would have been made back and profiting would start.
However, this is a surrealistically long time.

For this scenario, the emission of CO2 is significantly
reduced by almost half of the emission of the base case,
meaning that the solution at first glance is greener than purely
consuming energy from the grid all day.

The PV & Battery scenario further improves the system
with the addition of a Li-Ion battery pack with a capacity of
0.6 MWh and a rated power of 0.300 MW. With this scenario,
the battery provides a method to store the power generated
from PV only, as the battery cannot handle the high power
peaks caused by RBE and traction. From the data collected
in Table I, it can be calculated that the power consumed by
both iterations of this scenario is more than 6 times lower
than that calculated for the PV only scenario, and at least 14
times lower than the base case for both iterations. In the same
way the emissions calculated respond to the same factor of
reduction. The daily cost of operation for the clear and cloudy
day iterations are respectively -51.8$ and -8.94$, and using
this to calculate the yearly profit the same way using equation
(8), it is calculated to be 9.52k$/yr. This solution comes with
a ballpark investment cost of about 350k$, so in such way as
it was calculated the previous scenario, the time that would
require to return the investment is calculated to be closer to
52 years using equation (9).

When analyzing the profitability, this system shows great
potential to reduce costs and the fact that the initial investment
of that magnitude can be recovered in 52 years by just the sale
of power alone. Its interesting to see that the investment cost
for this scenario is comparable to the cost of operation for
10 years calculated in the base case. If the same 52 years
elapsed in the base case scenario, this would correspond to
a total cost of 2.15M$. This shows that the PV & Battery
scenario could be the best option for implementation so far,
but its important to point out that this solution does nothing
to approach the storage of energy coming from RBE, which
is one of the targets of this study as well.

The emissions of CO2 for this scenario are further reduced
compared to that of the previous scenario. Similar to the
calculated consumed power, emissions are reduced by a factor
of 6, and compared to the base case by a factor of 14.

The last improvement done in the All scenario is the
addition of a SC with capacity 0.01 MWh and a rated power of
2 MW. This scenario gains the sought capability of absorbing
and distributing the power of RBE and traction, and it does
so for the most part. From Table I, the results of the energy
consumed from the grid, the emissions, and the operation costs
don’t show major improvement from the previous scenario.
When in a clear day, the energy consumed from the grid is
only 3 times lower than the last scenario, whereas for the



Fig. 23. Same graph in figure 21, but with data points marked to show
constancy of the discrepancy found.

Fig. 24. Same graph in figure 22, but with data points marked to show
constancy of the discrepancy found.

cloudy day scenario the energy consumed is calculated to be
close to 0.04 MW higher than that of the last scenario. As
previously mentioned, there seems to be a discrepancy on the
peaks corresponding to traction in the grid power line, where
the results obtained differ from what was expected by 0.0791
MW. It can be observed in figures 23 and 24 that in the same
graph obtained in figures 21 and 22 are tagged with different
data points to allow us to see that the value found for the
discrepancy in the traction surges remains constant. This is
a shortcoming in the process that didn’t have the time to be
investigated and more about it can be found in the Points of
Improvement, subsection V-E. This however does affect every
KPI value calculated for this scenario, as the calculation of
the energy consumed from the grid will be higher than what is
expected in both iterations, and the operation cost would also
be higher (or less profit) as more energy is being consumed
than it should.

The operation costs recorded by Table I for this scenario
shows -51.32$ for a clear day and -8.47$ for a cloudy day.
Compared to the last scenario, both iterations of the All
scenario perform slightly worse at generating profit with a
difference of at least 0.5$ per day. With the addition of the SC
to the system, the investment costs jump up to approximately
950k$, which is a significant amount higher than that of the
previous scenario. Using equations (8) and (9) the annual
profit is calculated to be 9.35k$/yr, and with that the PbP
is calculated to be 102 years. Comparing to the base case
scenario, 102 years would mean expenses of 4.19M$, which
is more than 4 times the cost of investment.

When evaluating the CO2 emissions in this scenario, it
can be seen from Table I that similar to the energy consumed

throughout the day, the improvement done in reducing
emissions follows the same trend. For the clear day there is
an improvement of almost 3 times lower emissions, but for
the cloudy day iteration the system performs worse than that
of the PV & Battery scenario.

Overall the analysis of every scenario provides a clear
picture on the feasibility of the proposed solution. It is evident
that the cost of investment of the All scenario is too large
for the improvement the SC adds to the system based on the
results obtained. It is important to mention again however,
that the error in the traction found in the All scenario would
significantly change the results, but further research should be
conducted where all these issues are addressed, and a more
realistic study can be conducted, but in the case of this study
there was not enough time. In any case, the feasibility of this
scenario would have been subjected to evaluation relating
cost and improvement, but the investment costs appear to be
too high either way.

Using the base case as a common point of comparison,
it can be seen that the PV & Battery scenario poses the
highest energy savings, cost of operation, and the least
CO2 emissions with the most reasonable initial investment.
From the 350k$ that the investment poses, a big portion
corresponds to power electronics and installment, which is
estimated in today’s prices for power electronics and labor.
With this considered, and the fact that power electronics
are bound to reduce in price as time passes [20], the PV &
Battery solution significantly increases feasibility if applied a
few years down the line. The PV & Battery solution does not
succeed in reducing grid dependency however, which is the
target of this study.

Furthermore, it was discovered while doing some final
research that the company responsible for the technical main-
tenance and infrastructure of the Dutch train system is a
company called ProRail, when it was assumed that it was
NS itself (they just handle everything passenger related).
When digging deeper into the company, it was discovered
that the government provides subsidies for their operation and
infrastructure work, and in 2023 the cash flow of the company
amounted to 249M€ [21], which is higher if converted to
USD. It is mentioned that the amount of money that the com-
pany moved doesn’t only go into station and track renovations,
but it is a big part of their yearly budget. It was also found that
the government is not shy to upgrade rail systems when there
is business to be made as seen in the article in [22]. With this
in mind, the limitation posed by investment cost loses pressure
when the fact that the company that handles this, at least in the
Netherlands, is aware and able to handle the high investment
costs.

E. Points of Improvement

The biggest point of improvement found for this solution
is found in the data used for the PV generation. Since the



beginning of this research, the data used for the irradiance
profile of PV was the data that came along with the model,
without realizing that that data set provided is definitely not
from Enschede and most likely, not from the Netherlands
at all. For better approximation to local application, a data
set of the irradiance of the zone would have been better to
yield more realistic results. For this, an online program called
PVGIS was found that could provide a dataset of exactly the
location where the panels would be installed on the roof. This
program can provide a 24h irradiance vector as a .csv file but
the limitation is that the vector measures the day by hours,
when the input of the component in figure 5 takes a vector
of a day in minutes. This could have easily been solved
by up-sampling the vector provided by PVGIS such that it
would include the number of points of a day in minutes. The
use of PVGIS for a more realistic irradiance profile would
also solve the discrepancy found with the power generated
from PV compared to what was calculated, as the online tool
provides a way to input numerous parameters like the max.
power rating and panel area.

Another point of failure that can be determined was the
error previously mentioned with the spikes from traction
of the grid power curve. The source of this error is still
unknown, but an educated assumption can be made on the
source if we consider the addition of data points that the
model goes through as the complexity of the model increases.
Because of this, it is possible that the surges felt by the
grid were slightly shifted in time, and the activity of the SC
should follow the train load, so this would mean that the short
duration of the pulse done by the SC attempting to follow
the load falls out of synchrony with the grid, and the surges
wont match in time anymore. This does pose the question of
what happens to the power charged into the SC however, if
the SC shows it fully discharges? If that could be justified,
then a correction process can be done on the peaks related
to traction, as it can be seen from figures 23 and 24 that the
peaks are constant for both weather iterations, and the peaks
are the only place where discrepancy is found. With that,
the KPI values for both iterations of the All scenario can
be recalculated and the performance would show significant
improvement for both weather iterations.

Aside from errors on the model, a point of improvement
is found on the reality, or rather the approach of reality for
the system. Throughout this study, many assumptions are done
in order to make an approach to reality, yet both the battery
and SC are programmed with an efficiency of 100%. This
was done initially to verify the correct operation of both these
components, but in reality, neither of these components can
have such efficiencies on physical systems. Another significant
point of improvement on the reality of the system lies on
the difference between AC systems and DC systems which
this model tries to emulate. Even though an approximation
can be made to the DC system, it is not fully the same. The
AC implementation used in this model was chosen due to the

simplicity it provides, but the system in essence should be a
DC system for correct approximation to train systems in the
Netherlands.

As a further improvement on the system, the use of predic-
tive algorithms could mitigate the issue with extended cloudy
periods and handling the battery SoC. The original model has a
way to toggle a day-ahead optimization that uses a predictive
algorithm, but due to the lack of time this feature couldn’t
be looked into. This however could be key to improving the
EMS of the system by making predictive calculations and
adjusting the behavior of the battery such that grid autonomy
can be further improved. Predictive algorithms could also be
beneficial in the price profile used to calculate costs, as energy
doesnt only have different costs throughout the day, but it also
differs from day to day.

VI. CONCLUSION

The system created shown in figure 13 successfully accom-
plishes the targets set out to reduce the energy consumed from
the grid, reduce operation costs, and reduce CO2 emissions,
but due to the number of approximations and assumptions
made for this model, implementation in the real-world would
require more rigorous studies where a system that approaches
reality is used. Throughout this paper, different scenarios are
evaluated where different technology combinations are tested
and analyzed for the aforementioned metrics. The results show
how the PV & Battery scenario, where the technologies added
are only PV and a battery from a base case (Grid and Loads
only) shows the best performance compared to investment
cost. For the energy consumed from the grid per day, 24 MWh
was calculated when its a clear day and 175 MWh when its
cloudy. With negative values recorded for both iterations of
the weather, costs per day turn to profit per day with 57.57$
for a clear day and 14.72$ for a cloudy day. The amount of
CO2 emitted from the daily consumption of energy from the
grid for a clear day is calculated 0.336 tonnes and 2.44 tonnes
for a cloudy day. Although the solution proposed by the last
scenario assumes a high investment cost, this paper concludes
that if not now, in a couple of years when the cost of power
electronics have reduced, it will still be a feasible option.
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APPENDIX A
CODE FOR BUILDTRAINLOADS.M

RBEload= readmatrix("LoadTrain.xlsx");
veclengy= size(RBEload(:,1));

rbe=205e3;
trac=228e3;

for i=1:1:7
if i<=4

for j=1:1:veclengy
if RBEload(j,i) == 1

RBEload(j,i)= RBEload(j,i
)*trac;

elseif RBEload(j,i) == -1
RBEload(j,i)= RBEload(j,i)*

rbe;
end

end
elseif i==5

RBEload(:,i)= 0;
elseif i==6

RBEload(:,i)= -300000;
elseif i==7

RBEload(:,i)= 300000;
end

APPENDIX B
CODE FOR POSTCALC.M

Pgrid=0;
Pload=0;
Pgrid = simout.Grid.Data;
sumGrid=0;
Egrid=0;
CarInt_win= 0.014; % kgCO2/kWh Wind

Carbon Intensity
baseLen=1480;
l=0;
l = length(Pgrid);



for i=1:1:l
Pgrid(i) =Pgrid(i); % factor 2

multip. for p-p instead of RMS
if Pgrid(i) <= 0

sumGrid = sumGrid;
else

sumGrid = sumGrid + Pgrid(i);
end

end

decfac=l/baseLen;
Egrid= sumGrid*24/decfac; %kWh
Co2= Egrid*CarInt_win; %kg


