
Mapping Natural Language Security Text to CWEs using NLP techniques
and SecureBERT vector embeddings
ALEX TOMA, University of Twente, The Netherlands

The fast growth of technology has opened ways of knowledge and sources of
information to humanity but has also significantly increased the exposure to
cyber threats. This increase also resulted in a rise of many vulnerabilities and
weaknesses in software and systems, providing opportunities for malicious
actors to exploit and compromise private data and disrupt key services. The
study addresses the challenge of the lack of labeled datasets for CTI reports
and security blogs.
The research aims to automate the process of extracting unstructured text
security from natural language sources. The goal is to expand the usefulness
of CWE classification beyond CVE, allowing more efficient classification of
vulnerability-related security information. The methodology employs Natu-
ral Language Processing (NLP) techniques, specifically leveraging Secure-
BERT vector embeddings to represent the semantic content of security-
related text from diverse sources such as Cyber Threat Intelligence (CTI)
reports and security blogs.
The research aims to study the behaviour of various NLP techniques over the
performance and interpretation of unsupervised learning using the KMeans
clustering algorithm. It evaluates the performance of the clustering algo-
rithm using the silhouette score. The study aims to sort out which extracted
content represent a vulnerability-related text using the cosine distance met-
ric.

Additional Key Words and Phrases: CVE(Common Vulnerabilities and Ex-
posures), CWE(Common Weakness Enumeration), CTI(Cyber Threat In-
telligence) reports, blog posts, NLP(Natural Language Processing), Secure-
BERT,vector embeddings

1 INTRODUCTION
Nowadays, the digitally connected world makes cybersecurity a
top priority. Due to the complexity of the software and evolution
of the cyberthreats, it is necessary to acquire strong mechanisms
for recognising, comprehending, and mitigating vulnerabilities. In
this process, 2 key frameworks play a meaningful role: Common
Vulnerabilities and Exposures (CVE) and Common Weakness Enu-
meration(CWE)[1].

CVE represents a database containing records about specific vul-
nerabilities discovered in both software and hardware. It serves
as an indexing system of vulnerability, offering a unique identifier
for each of them. CWE represents a framework that catalogs secu-
rity vulnerabilities by storing information about its identification,
mitigation and prevention[2].
The CVE-CWE mapping plays a very important role from mul-

tiple perspectives. The mapping offers valuable context for under-
standing the nature of the vulnerability. This mapping permits a
profound understanding of the causes which led to the rise of the

TScIT 42, January 31, 2025, Enschede, The Netherlands
© 2025 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

vulnerability, making it possible to find mitigation solutions. More-
over, the mapping facilitates a more efficient evaluation of the risks
associated with a specific vulnerability[2].
While the CVE-CWE mapping empowers the communication

between different actors from the cybersecurity field, there are also
challenges and limitations that come along. The mapping leaves a
gap in the ability to classify security information from its unstruc-
tured form.

1.1 ResearchQuestions
RQ1: How does various NLP techniques influence the performance
and interpretability of clustering algorithm?
RQ2: How can CVE-related information be effectively identified
and extracted from blog posts and CTI reports?

This research aims to classify unstructured security text into
vulnerability-related text using NLP techniques and SecureBERT
vector embeddings, to identify vulnerabilities. Section 2 introduces
a literature overview of the relevant studies related to this research
study, Section 3 presents the methodological approach applied dur-
ing this research. The findings of the research study are presented in
Section 4 and discussed in Section 5. The research paper ends with
a conclusion in Section 6 and future research recommendations in
Section 7.

2 RELATED WORK
Every year, the use of security automation technology has increased.
Solutions to protect users from harmful sources, protect mission-
critical servers, and protect sensitive financial data, intellectual prop-
erty, healthcare data, and personal information are widely available
in the cybersecurity business. Businesses spend money on technol-
ogy to manage these security solutions, usually combining a lot
of data into one system to make it easier to organize and retrieve
important information so they can better determine where they are
at risk or where certain traffic starts or ends. The amount of digital
text content has surged recently along with the popularity of social
networks and ubiquitous computing. These textual contents include
a wide range of topics, from straightforward news blog posts or
tweets to more delicate data like financial transactions or medical
records. In the context of cybersecurity, security analysts examine
pertinent data to identify information about cyber threats, including
vulnerabilities, in order to keep an eye on, stop, and manage such
dangers. For instance, every year, cybersecurity organizations like
NIST, MITRE, NVD and CERT spend millions of dollars on human
knowledge to assess, classify, rank, publish, and fix vulnerabilities
that are discovered. Because vulnerabilities increase with the num-
ber of goods, it is imperative to have an automated system that
can identify vulnerabilities and quickly implement an effective se-
curity strategy. Natural language processing (NLP), which allows
machines to quickly construct or synthesize human language, has

1

TScIT 42, January 31, 2025, Enschede, The Netherlands Alex Toma

been widely used to automate text analysis tasks in a number of
fields, including cybersecurity. As the foundation of contemporary
text analysis technologies, language models are essential to NLP ap-
plications because they allow computers to comprehend qualitative
input and convert it into quantitative representations. A number
of well-known and effective language models, including ELMO [8],
GPT [9], and BERT [10], have been trained on generic English cor-
pora and are utilized for a range of natural language processing
(NLP) applications, including text classification, named entity recog-
nition, machine translation, and semantic analysis. Whether it is
advantageous to use these commercial models as a starting point
and subsequently fine-tune them using domain-specific tasks is a
topic of ongoing debate in the research community. It is assumed
that fine-tuned models will maintain their foundational knowledge
of general English while simultaneously acquiring "advanced" ex-
pertise in the field [11].

2.1 Literature review
Cyber Threat Intelligence (CTI) analysis is an important field of
research in this domain, as it entails automatically extracting and
categorizing information regarding cyber risks from diverse sources
such as security blogs, threat reports, and social media.
Many works use standard NLP approaches such as TF-IDF and
Word2Vec in conjunction with classical ML algorithms such as Sup-
port Vector Machines (SVMs), Naive Bayes, and Logistic Regres-
sion for problems such as threat categorization and topic modeling.
Arazzi et al [2] present an extensive analysis of usingNLP techniques
in the CTI domain. The authors explore the way NLP techniques
can be used to collect, process, analyse and share CTI information,
underlining its meaningful role in identifying and mitigating cyber
threats. Moreover, they elaborate the NLP techniques for extracting
the CTI data from web sources and CTI reports.
Orbinato et.al [3] presents an experimental study about the auto-
matic mapping of unstructured information about cyber threats
(CTI) into attack techniques.The authors were using the MITRE
ATT&CK knowledge base to create 2 datasets of CTI descriptions
in natural language.
The authors of [7] focus on Docker containers’ security. They iden-
tify that the misconfiguration of the containers during the imple-
mentation represent a major vulnerability source, letting attackers
to exploit the systems. Behzadan et al. (2018) developed a method
to gather and classify Cyber Threat Indicators (CTIs) from Twitter
streams. This system classified tweets as security-relevant or irrel-
evant using Convolutional Neural Networks (CNNs) on a binary
and multi-class basis. Adewopo et al. (2020) studied open-source
data for CTI and predicted the relevancy of postings from hacker
forums and Twitter using Logistic Regression with TF-IDF. Due
to the shortcomings of these conventional methods, deep learning
techniques—in particular, transformer-based models like BERT and
GPT—were investigated in an effort to enhance CTI analysis perfor-
mance. FeedRef2022, a dataset for Named Entity Recognition (NER)
in cybersecurity, was developed by Chan et al. in 2022. Using the
FeedRef2022 dataset, the authors assessed how well modified BERT
and other transformer models performed in extracting Indicators of
Compromise (IoCs). BERT was investigated by Alves et al. (2022)

for the classification of Tactics, Techniques, and Procedures (TTPs)
in unstructured text. Using TRAM, an open-source platform that
maps attack strategies from unstructured text, they were able to
obtain greater accuracy than standard methods.

2.2 Research Gaps
Existing NLP and cybersecurity research has advanced significantly
in tackling a number of issues. But there are still a number of re-
search gaps that this study seeks to fill:

2.2.1 Automated CVE-to-CWE Mapping. The current tech-
niques for mapping CVEs to CWEs are frequently rule-based or
manual, which limits their accuracy and scalability. This study sug-
gests automating this mapping via SecureBERT embeddings and
cosine distance in a k-means clustering framework, which may
increase accuracy and efficiency.

2.2.2 Using SecureBERTEmbeddings forClustering. Although
SecureBERT has shown promise in text classification, its applicabil-
ity to clustering applications is still mainly untapped. The goal of
this study is to cluster vulnerability descriptions using SecureBERT
embeddings in order to group related vulnerability-related text ac-
cording to their semantic meaning as determined by a language
model that has been specially trained on cybersecurity material.

2.2.3 Assessing SecureBERT Embeddings’ Performance for
Unsupervised Learning. The purpose of this study is to assess
how well SecureBERT embeddings perform for unsupervised learn-
ing tasks, specifically k-means clustering for vulnerability detection.
This will entail comparing the outcomes to alternative embedding
techniques and evaluating the quality of clusters using measures
such as the silhouette score. The study intends to automate CVE-
to-CWE mapping and categorize related vulnerabilities according
to their semantic similarities by utilizing SecureBERT embeddings
and k-means clustering. This strategy may improve vulnerability
management procedures’ efficiency, which would ultimately lead to
faster cybersecurity procedures.

3 METHODOLOGIES
This chapter outlines the methodological approach applied during
this research. Typical steps applied are as follows:
1. Data extraction: collect a dataset of vulnerability text descriptions
from multiple sources including security blogs, and CTI reports. 2.
Data preprocessing: use common NLP techniques such as tokeniza-
tion, stopwords removal and stemming to clean and normalize the
data.
3. Vector embedding: textual data will be transformed into vector
embeddings using the SecureBERT framework.
4. Clustering: The Kmeans clustering algorithm will be applied to
the preprocessed data and used to classify text segments.

3.1 Data Extraction
Data extraction is an essential process in data analysis, especially
in the case of working with unstructured data such CTI reports text
and blog posts. Table 1 presents a detailed overview over the dataset
used in this research. The dataset consists in 495 CTI reports [6]

2

Mapping Natural Language Security Text to CWEs using NLP techniques and SecureBERT vector embeddings TScIT 42, January 31, 2025, Enschede, The Netherlands

Elements Amount
web pages 10
Blog posts 184
CTI reports 495

CTI paragraphs 12511
blog posts paragraphs 3167

Total Paragraphs 15,678
Table 1. Amount of data extracted from website

and 184 blog posts from The Hacker News1 website. The dataset
contains only unlabeled data. In order to gather the data from the
blog posts, a web scraper was implemented using the following
python libraries: Selenium and BeautifulSoup. Below, all the steps
performed by the scraper in the extraction process are presented:

(1) Create a connection to the main website: the web scraper
uses a headless Firefox webdriver. The website2 is a HMTL
page which needs to be parsed by the webdriver.

(2) Select div tag which stores all the blogs: each page have
in its HTML structure a <div> tag which delimits the main
body from the rest.

(3) Select individual div tag of a single blog post: the con-
densed version of a blog is delimited as inner box in main
body.

(4) Look for the target link: each of the inner box has a <href>
tag which stores the link to the entire blog post

(5) Collect all links: the program collect all the targeted links
(6) Create a new connection for each of the individual links:

for each of the collected links, the webdriver creates a new
request and parse the HTML page (blog post)

(7) Select the article body: every blog webpage contain a div
tag which delimits the targeted data from the rest of the page

(8) Extract the paragraphs: the program searches for the <p>
tags inside the article body

3.2 Data preprocessing
Data preprocessing represents an essential step in preparing un-
structured data for analysis. Cleaning and converting the raw data
into the format that the ML algorithms can use are steps in this
process.

3.2.1 Cleaning.

(1) Eliminating redundant characters: This entails eliminating
punctuation, HTML tags, and special characters that do not
add to the text’s meaning.

(2) Lowercase conversion: guarantees that the same words are
handled consistently regardless the capitalization

3.2.2 Tokenization.

(1) Word-by-word division: This entails dissecting the text into
discrete words, or tokens, which serve as the fundamental

1https://thehackernews.com/
2https://thehackernews.com/search/label/Vulnerability

analytical building blocks for NLP techniques. Sentence tok-
enization functions are offered by libraries such as NLTK.

3.2.3 Standardization:

(1) Stopwords removal: common words like "the" , "a" and "is"
which are used a lot yet and have little semantic value are
known as stopwords. Eliminating them can increase the effec-
tiveness of analysis and lessen the dimensionality of the data.
NLTK libraries are used by sources to eliminate stop words.

(2) Lemmatization/Stemming: Lemmatization transforms words
into their basic form (lemma), whereas stemming reduces
them to their root form. The consistency of analysis can be
increased by using these strategies to group together various
variants of the same term.

3.3 Vector Embeddings
Vector embeddings are numerical representations of text data that
aim to capture the semantic and contextual meaning of words,
phrases, and sentences. These embeddings in SecureBERT[12] are
designed specifically for cybersecurity-related information, giving
dense vector representations that are extremely useful for applica-
tions such as grouping threat intelligence data.
In this study, the emphasis is on clustering the extracted CTI reports
and blog posts in utilizing SecureBERT’s extensive embedding capa-
bilities rather than employing it as a comprehensive end-to-end text
classification model. This method is consistent with the idea that
text’s semantic meaning can be represented by vector embeddings,
which are then used to compute similarity.
The methodology for creating vector embeddings will be deter-
mined using SecureBERT embeddings as follows: every paragraph
from the extracted data will be entered into SecureBERT. The vec-
tor embedding is represented by the CLS token which is a special
token that is found in the final hidden layer of the Transformer
encoder. This embedding is generated at a paragraph-level and has
a 768-dimension.

3.4 Clustering
An unsupervised learning technique called K-means clustering is
used to put related text input into groups.

(1) Determining the number of clusters: for this experiment, a
number of 2 clusters was used.

(2) Initialising centroids: K-means starts by randomly selecting
k data points as initial cluster centroids. These centroids are
the average points inside each cluster.

(3) Based on their SecureBERT embeddings, vulnerability de-
scription pairs will be compared for similarity using the co-
sine distance. The cosine distance is a metric for measuring
the dissimilarity of two vectors in a multidimensional space.
It is developed from cosine similarity, which measures how
similar two vectors are by taking the cosine of the angle
between them. The cosine distance complements cosine simi-
larity by focusing on the distance between vectors. The closer
the cosine distance is to 0, the smaller the angle is between
the vector embeddings and the more similar the vectors are,
showing a higher degree of similarity between the texts rep-
resented.

3

TScIT 42, January 31, 2025, Enschede, The Netherlands Alex Toma

Fig. 1. Steps involved in the experiments

(4) Assigning Data Points to Clusters: Using a distance metric,
like cosine distance, which is frequently applied to text data,
each data point is allocated to the cluster whose centroid is
closest to it.

3.5 Metrics
3.5.1 Silhouette Score. Silhouette score3 is metric which is used for
evaluating the performance of a clustering technique. The silhouette
score metric is calculated using the formula:

𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒_𝑠𝑐𝑜𝑟𝑒 = (𝑏 − 𝑎)/𝑚𝑎𝑥 (𝑎, 𝑏) (1)

where
a= the average distance between each point within a cluster, or the
average intra-cluster distance
b= the average distance between all clusters, or the average inter-
cluster distance.

The Silhouette score has a range of -1 to 1. A cluster is dense
and well-separated from neighboring clusters if its score is 1. Over-
lapping clusters with samples extremely close to the surrounding
clusters’ decision border are represented by a value close to 0. The
samples may have been assigned to the incorrect clusters if the score
is negative [-1, 0].

3.5.2 Cosine Distance. Cosine similarity quantifies the degree of
similarity between two vectors in an inner product space. It deter-
mines whether two vectors are pointing in about the same direction
and is calculated by taking the cosine of the angle between them. It
is often used in text analysis to measure the similarity between doc-
uments. Cosine distance calculates the cosine of the angle between
two vectors to determine how dissimilar they are.

𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =< 𝑋,𝑌 > /(| |𝑋 | | ∗ | |𝑌 | |) (2)

𝑐𝑜𝑠𝑖𝑛𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 − 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (3)
where
<X, Y> = the dot product of vectors X and Y
||X|| = the magnitude of the vector X

3sklearn.metrics.silhoutte_score

||Y|| = the magnitude of the vector Y

The resulting cosine similarity score indicates how similar two
vectors are in terms of direction. A score of 1 implies that the vectors
are aligned; 0 indicates that they are orthogonal (perpendicular),
and -1 indicates that they are diametrically opposing.

4 RESULTS

4.1 Experiment 1
This experiment consists in grouping the extracted text into two
categories:

• text which describes a vulnerability (vulnerability-related)
• text which does not describe a vulnerability (not vulnerability-
related)

This research aims to see how NLP techniques impact the choice of
the label of the K-Means clustering algorithm. For this, three forms
of data are tested:

(1) raw data: data in the same form was extracted from the web-
site

(2) semi-preprocessed data: data to which was applied punctua-
tion and stopwords 4 removal

(3) preprocessed data: data to which was applied special charac-
ters removal, tokenization, lowercase, stopwords removal3,
stemming 5.

In this study, the 2nd form category was chosen due to the reason
that punctuation marks and stopwords represent low-level infor-
mation, meaning that the spotlight is on the specific security ter-
minology. Moreover, SecureBERT is fine-tuned with an extensive
dataset of specific security terms. By applying stemming, it may
have a negative effect by changing the meaning of words, which
may lead to inaccurate vector embeddings.
The purpose of the tests is to evaluate how NLP techniques in-

fluence the interpretation and the performance of the clustering
algorithm.

4nltk.stopwords(’english’)
5nltk.PorterStemmer

4

Mapping Natural Language Security Text to CWEs using NLP techniques and SecureBERT vector embeddings TScIT 42, January 31, 2025, Enschede, The Netherlands

Elements Silhouette score
raw data 0.134

semi-preprocessed data 0.254
preprocessed 0.127

Table 2. Silhouette Score for the blog posts

Elements Silhouette score
raw data 0.332

semi-preprocessed data 0.295
preprocessed 0.273

Table 3. Silhouette Score for the CTI reports

Table 2 and 3 make an overview of the scores of the conducted
experiment.

4.2 Experiment 2
Since the silhouette score in experiment 1 is not close to its maximal
value, this means that there still exists overlapping in between the
vector embeddings which does not indicate a well-defined cluster-
ing.
Experiment 2 consists in picking 100 random CVE descriptions from
the NVD dataset, embed them and calculate the centroid. After-
wards, calculation of the cosine distance in between the centroid
and each of the vector embedding of the paragraphs is required. For
this experiment, based on the results of the clustering algorithm,
the vector embeddings from the categories which had the highest
silhouette score were picked since the higher the silhouette score
is, the more accurate the vector embeddings are which may lead to
an accurate result. Tabel 4 and 5 make an overview of the results of
the conducted experiment.

Paragraph Cosine
Distance

"Particularly, the vulnerability exploits the ""com-
bination of a carelessly-exposed MSMQ instance
with misconfigured permissions that leverages Bi-
naryFormatter can be reached from any host via
HTTP to perform unauthenticated RCE,"" security
researcher Sina Kheirkhah said."

0.0028

"""This combo allows for a good old unauthenti-
cated RCE,"" the researcher added."

0.0053

Some of the other guidelines to reduce exposure
are listed below -

0.0128

Table 4. Paragraphs with their corresponding cosine distance(blogs)

5 DISCUSSION
Experiments in the field of natural language processing (NLP) fre-
quently seek to determine the best preprocessing techniques for
various types of text.

Paragraph Cosine
Distance

"To summarize CVE-2018-14847, since insufficient
validation is performed on the device during read-
ing and processing input, the file name string
passed as an argument with special characters to
an open system call will lead to directory traversal,
hence allowing arbitrary file read on the device,
and thus information disclosure."

0.0112

Another issue which allowed the abuse of MikroTik
devices is the use of weak password encoding
using the hash of username and the known salt
‘283i4jfkai3389’ while storing user credentials [11].
Details accessed from the user.dat file can easily be
decoded using the logic shown in Figure 14.

0.0090

"A piece of malware [A3] (a Windows PE binary)
was reported in the wild exploiting the discussed
vulnerability by disguising itself as a browser up-
date for Windows [12]. Upon successful execution,
this malware would connect to a MikroTik router
over TCP port 8291 to compromise the device and
inject the Coinhive cryptominer link when any
HTTP request is made."

0.01175

Table 5. Paragraphs with their corresponding cosine distance(cti reports)

Experiment 1 investigates the impact of text preprocessing on
blog posts and CTI reports. Based on the results of this experiment,
the first research question can be answered. Since blogs seek to
present information in a narrative format, they are renowned for
being verbose and descriptive. The analysis shows that for this kind
of text, Category 2, which entails semi-preprocessing, produces the
best outcomes. Because blogs tend to be verbose, it is very important
to maintain contextual meaning and nuances while preprocessing.
Excessive simplification of a text might eliminate very important
features, resulting in a loss of coherence and meaning. Applying
Category 2 preprocessing allows the system to preserve enough in-
formation for precise analysis by finding a balance between raw and
outrageously simplified text. In case of CTI, category 1 represented
by the raw text, produces the best results, meaning that none of
NLP techniques applied in this experiment make an improvement.
This may be happening because of the specific cybersecurity lan-
guage usage. Fig.2 and 3 show how different language have both
information sources.

Experiment 2 investigates how vulnerability-related paragraphs
can be efficiently identified and extracted from the collected data.
Based on the result from this experiment the second research ques-
tion can be answered. Each of the CVE description consists in a
series of elements which provide a informative overview of a vul-
nerability:

(1) Affected systemor software component: it specifieswhich
product, system or service is vulnerable; it may include a ven-
dor name or a particular version

5

TScIT 42, January 31, 2025, Enschede, The Netherlands Alex Toma

Fig. 2. Sample of a sentence from a CTI report

Fig. 3. Sample of a sentence from a blog

(2) Nature of vulnerability: it describes the root cause or flaw
of the issue

(3) Potential attack vendor: it indicates how the vulnerability
can be overburdened

(4) Impact of the vulnerability: it underlines the consequences
or outcomes in case of the vulnerability is exploited

In order to accurately specify which paragraph is vulnerability-
related, a threshold is needed. Based on the example below, a thresh-
old can be defined.
The paragraph "Particularly, the vulnerability exploits the "com-

bination of a carelessly-exposed MSMQ instance with misconfigured
permissions that leverages BinaryFormatter can be reached from any
host via HTTP to perform unauthenticated RCE," security researcher
Sina Kheirkhah said." has a cosine distance of 0.0028. This paragraph
can be considered because it covers all the elements from the above.

(1) Affected system and software: "carelessly-exposed MSMQ
instance"

(2) Nature of vulnerability: misconfigured permissions and
BInaryFormatter usage

(3) Potential attack vendor: "can be reached from any host via
HTTP"

(4) Impact of the vulnerability: RCE(Remote code execution)
The paragraph "AI systems often involve complex algorithms, vast
amounts of data, and can have far-reaching impacts on users and
businesses." has a cosine distance of 0.0093 and it may be considered
a bottom-line. In this experiment, for a more accurate identification,
it is needed for a paragraph that it contains at least 2 of the elements
from above, which is not applicable in this case.

In case of the CTI, because of its very unstructured style, it is
harder to define a threshold.

6 CONCLUSION
The results show that using language models like SecureBERT that
have been specially pre-trained on cybersecurity text can improve
the effectiveness of unsupervised learning methods in the field of
cybersecurity. This strategy is in line with the expanding corpus of
research showing how well some of the NLP approaches work with
blog posts paragraphs. SecureBERT embeddings can be clustered
using k-means clustering, which ease the requirement for large

amounts of labeled data by grouping related vulnerability descrip-
tions. This method provides a scalable and effective way to automate
vulnerability classification.

The study’s conclusions can be used practically in a number of
cybersecurity fields, such as:

1)Vulnerability Management. By integrating the automatic CVE-
to-CWE mapping system with vulnerability management tools and
procedures, vulnerability evaluation and prioritization may be done
more accurately and efficiently.

2)Threat Intelligence Analysis. By grouping related security risks
together, security analysts may better analyze threat intelligence
data, spot new threats, monitor attack campaigns, and create effi-
cient defenses.

7 LIMITATIONS AND FUTURE WORK
The method presented in the research does have some limitations.
The web scraper which is used for extracting data from the website
assumes that all the blogs have a similar structure. This means that
all the text inside the blog is stored in the <p> tag. In some cases,
some blogs have different tags such as tags which are avoided
in this study.
Future work on this subject’s performance offers several possible
areas of improvement, such as:
1)Managing Specificity in CVE Descriptions. The model’s

capacity to generalize is hampered by the frequent use of extremely
detailed terminology and technical jargon in CVE descriptions. By
concentrating on crucial semantic components, methods like key
term extraction and embedding may improve mapping accuracy.
2)Investigating Different Approaches. Alternative strategies

that could boost performance include fine-tuning LLMs like GPT
for direct CWE prediction, utilizing key phrase extraction, and fine-
tuning instructor models for improved embedding creation.
3)Absence of complete and labeled Datasets. The model’s

capacity for training and assessment is restricted by the lack of
comprehensive labeled datasets for security blogs and CTI reports.
Future studies in this field would greatly benefit from the creation
and open sharing of such datasets. By addressing these drawbacks
and investigating different approaches, the suggested strategy can
be made even more effective, opening the door for automated vul-
nerability management solutions that are more reliable and accurate.

REFERENCES
[1]K. Kota, M. A, and S. V. S, “CWE Prediction Using CVE Descrip-

tion - The Semantic Similarity Approach,” Procedia Computer Sci-
ence, vol. 235, pp. 1167–1178, May 2024, doi: https://doi.org/10.1016/j.
procs.2024.04.111.
[2]M. Arazzi et al., “NLP-Based Techniques for Cyber Threat In-

telligence,” arXiv.org, Nov. 15, 2023. https://arxiv.org/abs/2311.08807
(accessed Dec. 18, 2023).

[3]V. Orbinato, M. Barbaraci, R. Natella, and D. Cotroneo, “Auto-
matic Mapping of Unstructured Cyber Threat Intelligence: An Ex-
perimental Study,” arXiv (Cornell University), Jan. 2022, doi: https://
doi.org/10.48550/arxiv.2208.12144.

6

Mapping Natural Language Security Text to CWEs using NLP techniques and SecureBERT vector embeddings TScIT 42, January 31, 2025, Enschede, The Netherlands

[4]Daegeon Kim, Huy Kang Kim, September 24, 2019, "Cyber
Threat Intelligence (CTI) dataset generated from public security re-
ports andmalware repositories", IEEEDataport, doi: https://dx.doi.org
/10.21227/dpat-qd69

[5]“Vulnerability | News & Insights,” The Hacker News.https://
thehackernews.com/search/label/Vulnerability
[6]MaxWijnbergen, “GitHub - MaxWijnbergen/ Thesis_BIT_-

MOD12,” GitHub, 2024. https://github.com/MaxWijnbergen/Thesis_-
BIT_MOD12 (accessed Nov. 21, 2024).

[7]V. B. Mahajan and S. B. Mane, “Detection, Analysis and Coun-
termeasures for Container basedMisconfiguration using Docker and
Kubernetes,” IEEE Xplore, Jun. 01, 2022. https://ieeexplore.ieee.org/
abstract/document/9885293
[8]Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C.,

Lee, K., Zettlemoyer,L.: Deep contextualized word representations.
arXiv preprint arXiv:1802.05365 (2018) https://doi.org/10.48550/arXiv.
1802.05365

[9]Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Im-
proving language understanding by generative pre-training (2018)

[10]Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pretrain-
ing of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018)

[11] Beltagy, I., Lo, K., Cohan, A.: Scibert: A pretrained language
model for scientific text. arXiv preprint arXiv:1903.10676 (2019)
[12] Aghaei, E., Niu, X., Shadid, W., Al-Shaer, E. (2023). Se-

cureBERT: a Domain-Specific language model for cybersecurity.
In Security and Privacy in Communication Networks (pp. 39–56).
https://doi.org/10.1007/978-3-031-25538-03

A APPENDIX

A.1 Github
To see the code enter the following github:
https://github.com/althomx1/m12project

7

	Abstract
	1 Introduction
	1.1 Research Questions

	2 Related Work
	2.1 Literature review
	2.2 Research Gaps

	3 Methodologies
	3.1 Data Extraction
	3.2 Data preprocessing
	3.3 Vector Embeddings
	3.4 Clustering
	3.5 Metrics

	4 Results
	4.1 Experiment 1
	4.2 Experiment 2

	5 Discussion
	6 Conclusion
	7 Limitations and Future work
	A Appendix
	A.1 Github

