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Abstract

This thesis explores the Stochastic Gradient Method (SGM) and Deterministic Gradi-
ent Method (DGM) in the context of non-convex optimization. For SGM, we analyze
the generalization bounds and computational complexity, highlighting that the method’s
performance is significantly influenced by the β-smoothness of the objective function and
the constant step size α. The generalization bound for non-convex SGM with constant
step sizes α exhibits a complexity of O(2n), suggesting the need for further research with
more flexible step size strategies (αt, where t denotes the iteration number) instead of a
fixed α. Additionally, the time complexity scales with the number of samples n and the
problem’s dimensionality d, resulting in a complexity of O(nd). In the case of DGM, we
investigate the relationship between β-smoothness and η-expansiveness. However, this
relationship has not been proven to hold for non-convex functions in general, which im-
plies that DGM’s performance is highly sensitive to the choice of the constant step size
α. Furthermore, we examine the optimization error for DGM, which is shown to have a

complexity of O
((

8µ
L

)T)
, with L being the Lipschitz constant, µ the Polyak-Lojasiewicz

constant, and T denotes the number of iterations in the DGM process. This exponential
complexity is a defining feature of deterministic methods. Additionally, we derive an
upper bound for the population risk R[w], where w represents the model parameters.
Simulations for both SGM and DGM indicate that for complex non-convex functions,
such as

∑
d

√
|x| with dimensions d = 1 and d = 10, β-smoothness decreases significantly

as the dimension increases. Despite the drastic decrease in β, the results show that
convergence worsens, with larger jumps and greater inconsistency as the dimensionality
increases, indicating that higher dimensions have a detrimental effect on performance.
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Table of Notations

Symbol Description
S Dataset consisting of n samples, S = {z1, . . . , zn}.
S ′ A modified dataset differing from S by a single data point.

R[w] Population risk associated with the model parameter w.
RS[w] Empirical risk computed on the sample dataset S.
ϵgen Expected generalization error.
ϵstab Uniform stability error.
ϵopt Optimization error bound.
ϵ Precision.
µ Polyak-Lojasiewicz constant.

f(w; z) Loss incurred by model w on data point z.
T Total number of iterations in the optimization process.
n Number of data samples in the dataset.
d Dimensionality of the optimization problem.

∇F (w), ∇f(w) Gradient of function F and f with parameter w.
G(w) Gradient update rule mapping a point w ∈ Rd to another point.
Rd d-dimensional real vector space.
δt The norm of the difference between two weight vectors wt and w′

t at iteration t.
αt Learning rate (step size) at iteration t.
α Constant learning rate.

wt, xt Model parameter (or data point) at iteration t.
f(wt), F (wt) Function value at wt, where wt is the model’s parameter at iteration t.

F∗ Optimal function value (global minimum).
η Expansiveness constant.
β Smoothness constant.

⟨x, y⟩ Inner product of vectors x and y.
σ 1. Upper bound for the update rule: supw∈Ω ∥w −G(w)∥ ≤ σ.

2. Standard deviation of Gaussian noise, with σ2 as its variance.

Table 1: Summary of symbols and notations used in this report.

Introduction

The Stochastic Gradient Method (SGM) is a widely used optimization technique in ma-
chine learning, particularly suited for handling large datasets efficiently. Unlike tradi-
tional methods that compute gradients using the entire dataset—often a computationally
expensive process—SGM approximates the gradient by using a small, randomly selected
batch of the data. This approach enables faster updates and makes SGM highly effec-
tive for large-scale optimization problems. SGM is especially crucial in fields like deep
learning, where models such as neural networks, including those powering AI systems like
ChatGPT, are trained. It helps speed up the training process by updating the model’s
parameters more frequently, with each update being based on a small, randomly selected
batch of data. This reduces the time spent per iteration and uses less computing power,

3



which is essential for building systems that can handle large amounts of data.

This report explores several key aspects of SGM, with a particular focus on its applica-
tion to non-convex optimization problems. We investigate the stability of SGM through
theoretical proofs and examine how β-smooth and η-expansive properties of functions
influence the performance of the method. Our analysis focuses on deriving generalization
bounds and evaluating computational complexity for non-convex functions. For convex
functions, existing results serve as a reference to compare and highlight the unique chal-
lenges posed by non-convex functions.

In contrast, the Deterministic Gradient Method (DGM) is a classical optimization
technique where the gradient is computed using the entire dataset at each step, rather
than a random subset as in SGM. DGM is typically used for optimization problems where
the objective function is differentiable, and the goal is to find the global minimum of the
function. This report focuses on applying DGM to non-convex optimization problems,
particularly investigating the relationship between β-smoothness and η-expansiveness of
the objective function. We derive theoretical results, such as bounds on the optimization
error, and analyze how the properties such as smoothness and expansiveness influence the
convergence of the method. Additionally, we explore the upper bound for the population
risk R[w].

To validate the theoretical findings, we conduct simulations using Python, applying
SGM and DGM to both one-dimensional and multi-dimensional functions. These sim-
ulations are designed to highlight the practical implications of the theoretical results,
particularly in terms of computational efficiency and the impact of dimensionality on the
method’s performance.

Research questions:

• How does the Stochastic Gradient Method (SGM) perform in optimizing non-convex
functions, particularly in terms of the complexities of generalization bounds and
computational time?

• What are the theoretical implications of applying SGM to non-convex optimiza-
tion problems, and how do smoothness and expansiveness properties influence the
performance of DGM and SGM?

• How does the dimensionality of the optimization problem affect the behavior and
performance of SGM, particularly in non-convex settings?

Deterministic Gradient Method

Stability of Randomized Iterative Algorithms [1].
We consider the general framework of supervised learning. The goal is to learn a model
w that minimizes the risk of incorrect predictions. The data points S = (z1, . . . , zn) are
drawn independently and identically from an unknown distribution D. The population
risk, which measures the average loss of a model w, is defined as:

R[w] := Ez∼Df(w; z),
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where f represents a loss function, and f(w; z) is the loss calculated by the model w when
making a prediction based on z and comparing it to the true outcome.

Since the population risk R[w] cannot be directly calculated (as D is unknown), a
common approach is to use the empirical risk, which is computed using the sample data:

RS[w] :=
1

n

n∑
i=1

f(w; zi).

The difference between the empirical risk and the population risk is referred to as the
generalization error, given by:

RS[w]−R[w]. (2.1)

In cases where w = A(S) is derived from the dataset S using a potentially randomized
algorithm A, it is useful to study the expected generalization error:

ϵgen := ES,A
[
RS[A(S)]−R[A(S)]

]
, (2.2)

where the expectation is taken over both the randomness in the sampling of S and the
random behavior of the algorithm A.

To analyze the generalization behavior of such algorithms, we use the concept of
uniform stability, which measures how sensitive the algorithm A is to changes in the
input data.

Definition 1 (Uniform Stability). A randomized algorithm A is said to be ϵ-uniformly
stable if, for any two datasets S, S ′ ∈ Zn that differ in at most one element, the following
holds:

sup
z

EA
[
f(A(S); z)− f(A(S ′); z)

]
≤ ϵstab. (2.3)

Here, the expectation is taken over the randomness of the algorithm A. The value of
ϵstab captures the maximum impact of a single change in the data on the output of the
algorithm.

The uniform stability of an algorithm plays a crucial role in bounding its generaliza-
tion error, ensuring that the model’s performance does not vary significantly with small
changes in the input dataset.

Process Overview.
To understand the process of empirical and population loss computation in randomized
algorithms, refer to the concept map in Figure 1. The diagram starts with the population
distribution D, from which a sample dataset S is drawn. This dataset is used to compute
the empirical loss RS, which measures the model’s error on the training data.

The randomized algorithm A processes S and outputs A(S), representing the trained
model or parameter set. The diagram highlights how comparing this to A(S ′), where S ′

differs by one element, allows the evaluation of uniform stability. Uniform stability
measures how much the output A(S) changes when the input dataset changes slightly.
This is key to ensuring that small changes in the dataset do not cause large changes in
the model’s predictions.

5



The concept map, Figure 1, also demonstrates the connection between generaliza-
tion and optimization. While optimization focuses on minimizing the empirical loss,
generalization ensures that the model performs well on unseen data by keeping the differ-
ence between empirical loss and population loss (generalization error) small. The diagram
shows how uniform stability helps in bounding the generalization error, linking it to the
performance of the model on the population distribution.

Population

Population 
loss R[w]

Random 
sample S

Random 
sample S'

A random 
algorithm A

Output A(S)

Output A(S')

Emperical loss 
R_s[A(S)]

After running n 
number of times

Algorithm A 
with sample S

Expectation of their 
difference over A and S

Population 
loss 

R[A(S)]

Generalization 
bound epsilon

Supremum 
expectation of their 
difference over z and A

Uniform Stability

Loss function

Loss function

f(A(S);z)

f(A(S');z)

Figure 1: Concept map illustrating the relationship between population loss, empirical
loss, dataset sampling, and uniform stability.

Theorem 1 (Generalization in expectation). Let A be ϵ-uniformly stable. Then,∣∣ES,A
[
RS[A(S)]−R[A(S)]

]∣∣ ≤ ϵstab.

Proof. Denote by S = (z1, . . . , zn) and S ′ = (z′1, . . . , z
′
n) two independent random samples,

and let S(i) = (z1, . . . , zi−1, z
′
i, zi+1, . . . , zn) be the sample that is identical to S except in
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the i-th example, where we replace zi with z′i. With this notation, we get that

ES,A
[
RS[A(S)]

]
= ESEA

[
1

n

n∑
i=1

f(A(S); zi)

]

= ESES′EA

[
1

n

n∑
i=1

f(A(S(i)); z′i)

]

= ESES′EA

[
1

n

n∑
i=1

f(A(S); z′i)

]
+ δ

= EAES

[
R[A(S)]

]
+ δ,

where we can express δ as

δ = ESES′EA

[
1

n

n∑
i=1

f(A(S(i)); z′i)−
1

n

n∑
i=1

f(A(S); z′i)

]
.

Furthermore, taking the supremum over any two data sets S, S ′ differing in only one
sample, we can bound the difference as

|δ| ≤ sup
S,S′,z

EA
[
|f(A(S); z)− f(A(S ′); z)|

]
≤ ϵstab, (1)

by our assumption on the uniform stability of A. The claim follows.

Remark. Theorem 2.2 proves that if an algorithm is uniformly stable, then its general-
ization error is small.

Basic Definitions and Theorems

To proceed with the proofs and derivations related to generalization bounds, optimization
errors, and computational time complexities, we introduce the following definitions:

Update rule definition and its properties [1].

Definition 2 (Update Rule). An update rule is a function G : Ω → Ω that maps a
point w ∈ Ω in the parameter space to another point G(w). One common form of an
update rule is the gradient update, where the new point is determined by:

G(w) = w − α∇f(w),

where α ≥ 0 is the step size and f : Ω → R is the function to be optimized.

Definition 3. An update rule is σ-bounded if

sup
w∈Ω

∥w −G(w)∥ ≤ σ.

Definition 4 (η-Expansiveness). A mapping G : Ω → Rd is said to be η-expansive if
there exists a constant η ≥ 0 such that:

sup
v,w∈Ω

∥G(v)−G(w)∥
∥v − w∥

≤ η, ∀v, w ∈ Ω.
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Importance. The Definition 4 condition ensures that the mapping G does not expand the
distance between any two points in the domain Ω by more than a factor of η.

Applying these properties, we can derive the following lemma that describes how a
sequence of updates to a model diverges under perturbations to the training set.

Lemma 1 (Growth recursion). Fix an arbitrary sequence of updates G1, . . . , GT and
another sequence G′

1, . . . , G
′
T . Let w0 = w′

0 be a starting point in Ω and define δt =
∥wt − w′

t∥ where wt, w
′
t are defined recursively through

wt+1 = Gt(wt), w′
t+1 = G′

t(w
′
t). (t > 0)

Then, we have the recurrence relation for (t > 0),

δ0 = 0

δt+1 ≤

{
ηδt, if Gt = G′

t is η-expansive,

min(η, 1)δt + 2σ, if Gt and G′
t are σ-bounded.

Proof. The first bound on δt follows directly from the assumption that Gt = G′
t and the

definition of expansiveness. For the second bound, recall from Definition 3 that if Gt and
G′

t are σ-bounded, then by the triangle inequality,

δt+1 = ∥G(wt)−G′(w′
t)∥ ≤ ∥G(wt)− wt + w′

t −G′(w′
t)∥+ ∥wt − w′

t∥

≤ δt + ∥G(wt)− wt∥+ ∥G(w′
t)− w′

t∥ ≤ δt + 2σ,

which gives half of the second bound. We can alternatively bound δt+1 as

δt+1 = ∥Gt(wt)−G′
t(w

′
t)∥ = ∥Gt(wt)−Gt(w

′
t) +Gt(w

′
t)−G′

t(w
′
t)∥

≤ ∥Gt(wt)−Gt(w
′
t)∥+ ∥Gt(w

′
t)−G′

t(w
′
t)∥ ≤ ηδt + 2σ.

Equivalence of smoothness and expansiveness for Deterministic methods [1].

Definition 5 (β-Smooth Function). A differentiable function f is said to be β-smooth
if its gradient is Lipschitz continuous with constant β > 0. Formally, this means that for
all v, w ∈ Ω, the following inequality holds:

sup
v,w∈Ω

∥∇f(v)−∇f(w)∥
∥v − w∥

≤ β,

where Ω is the domain of f .

Importance. The β-smoothness property ensures that the gradient changes predictably
within β bound.
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Definition 6 (L-Lipschitz Continuity). A differentiable function f is said to be L-
Lipschitz continuous if its gradient is bounded by L over its domain. Formally, for
all v, w ∈ Ω, the following inequality holds ∥∇f(w)∥ ≤ L which implies:

∥f(v)− f(w)∥ ≤ L∥v − w∥,

where L > 0 is the Lipschitz constant and Ω is the domain of f .

Importance. L-Lipschitz continuity ensures that the gradient of f does not change too
rapidly, which is essential for stability and convergence in optimization algorithms.

Lemma 2. Assume that f is L-Lipschitz from the Definition 6. Then, the gradient up-
date Gf,α, introduced in the Definition 2, is (αL)-bounded.

Proof. By the Lipschitz assumption, ∥w −Gf,α(w)∥ = ∥α∇f(w)∥ ≤ αL.

We will observe that β-smoothness and η-expansiveness are the vital conditions of the
function that allow SGM to produce, within finite time, reasonable results. Thus, with
the following proof we represent how both of these properties relate to each other.

Theorem 2 (Smoothness ⇒ expansiveness). If f is β-smooth according to Definition 5,
then the update rule G from Definition 2, with step size α > 0, is (1 + αβ)-expansive.

Proof:
Using the η-expansiveness (Definition 4):

sup
v,w∈Ω

∥G(v)−G(w)∥
∥v − w∥

= sup
v,w∈Ω

∥v − α∇f(v)− (w − α∇f(w))∥
∥v − w∥

= sup
v,w∈Ω

∥(v − w)− α(∇f(v)−∇f(w))∥
∥v − w∥

Using the triangle inequality:

sup
v,w∈Ω

∥G(v)−G(w)∥
∥v − w∥

≤ sup
v,w∈Ω

[
∥v − w∥
∥v − w∥

+
α∥∇f(v)−∇f(w)∥

∥v − w∥

]

≤ 1 + α sup
v,w∈Ω

[
∥∇f(v)−∇f(w)∥

∥v − w∥

]
As f is β-smooth by assumption, this leads to:

sup
v,w∈Ω

∥G(v)−G(w)∥
∥v − w∥

≤ 1 + αβ.

Which shows that G is (1 + αβ)-expansive.
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Theorem 3 (Expansiveness ⇒ Smoothness). If the update rule G is η-expansive accord-
ing to Definition 4, with step size α > 0, then f is 1+η

α
-smooth.

Proof:
Using the definition of the update rule G (Definition 2):

∥G(v)−G(w)∥ = ∥v − α∇f(v)− (w − α∇f(w))∥
= ∥(v − w)− α(∇f(v)−∇f(w))∥

Taking the supremum and using the assumption that G is η-expansive leads to:

sup
v,w∈Ω

∥G(v)−G(w)∥
∥v − w∥

≤ η

Substitute G(v) = v − α∇f(v) into the supremum:

sup
v,w∈Ω

∥(v − w)− α(∇f(v)−∇f(w))∥
∥v − w∥

≤ η

or

sup
v,w∈Ω

∥α(∇f(v)−∇f(w)) − (v − w)∥
∥v − w∥

≤ η

Applying the triangle inequality:

sup
v,w∈Ω

α∥∇f(v)−∇f(w)∥ − ∥v − w∥
∥v − w∥

≤ η

sup
v,w∈Ω

[
α∥∇f(v)−∇f(w)∥

∥v − w∥
− 1

]
≤ η

sup
v,w∈Ω

[
α∥∇f(v)−∇f(w)∥

∥v − w∥

]
− 1 ≤ η

Rewriting:

α sup
v,w∈Ω

[
∥∇f(v)−∇f(w)∥

∥v − w∥

]
≤ 1 + η

sup
v,w∈Ω

∥∇f(v)−∇f(w)∥
∥v − w∥

≤ 1 + η

α
.

Thus, f is 1+η
α
-smooth.

Remark. These two proofs show that the smoothness of the function f and the expansive-
ness of the update rule G are tightly linked. If f is β-smooth, then the update rule will
have controlled, bounded expansions, ensuring stable and efficient convergence. Similarly,
if G is η-expansive, it provides an upper bound on the smoothness of f , which guarantees
that the function behaves in a way that the optimization algorithm can handle effectively.
Thus, both of these relations are vital to ensuring that DGM produces meaningful results
within a finite number of iterations.
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Population risk and Optimization error of DGM

In this subsection, we analyze how well the Deterministic Gradient Method generalizes
and how efficient it is in terms of complexity. The goal is to explain the balance between
stability (how consistent the results are with changes in the data) and optimization ac-
curacy (how well DGM minimizes the training error). We first establish an upper bound
for the expected risk using both the optimization error and the stability term. Then,
we define the optimization error as a way to measure the difference between the training
error and the smallest possible empirical error.

Decomposing Population Risk with Optimization Error

The optimization error quantifies the gap between the empirical risk of the model pa-
rameter w and the minimal empirical risk achievable by the optimal parameters wS

⋆ in
expectation. It is defined as:

ϵopt(w) := E
[
RS[w]−RS[w

S
⋆ ]
]
, (2)

where wS
⋆ = argminw RS[w]. Here, w

S
⋆ represents the model parameters that achieve the

minimum value of the empirical risk RS[w]. The notation argminw RS[w] refers to the
argument w that minimizes RS[w], i.e., the set of weights w that minimizes the training
error for the given dataset S.

Building upon Theorem 1, the following result establishes an upper bound for the
expected risk of a model produced by DGM.

Theorem 4 (Population risk upper bound). The expected population risk of a model w
learned by DGM is bounded as:

ES,A[R[w]] ≤ ES[RS[w
S
⋆ ]] + ϵopt + ϵstab, (3)

where ϵstab denotes the stability term, ϵopt represents the optimization error, and the expec-
tations are taken over both the dataset sampling S and the randomness of the algorithm A.

Proof. In the context of supervised learning, where S = (z1, . . . , zn) is sampled i.i.d. from
an unknown population distribution D, the population risk R[w] measures the expected
loss:

R[w] = Ez∼D[f(w; z)].

Given that w = A(S) is generated by a randomized algorithm A, the expected population
risk can be expressed as:

ES,A[R[w]] = ES,A
[
Ez∼D[f(A(S); z)]

]
.

By Theorem 1, the population risk can be bounded in terms of the empirical risk ES,A[RS[w]]
and the stability term ϵstab, which measures how sensitive the algorithm is to small changes
in the dataset:

ES,A[R[w]] ≤ ES,A[RS[w]] + ϵstab.
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Now, consider the empirical risk ES,A[RS[w]]. By introducing the optimal empirical risk
RS[w

S
⋆ ], where wS

⋆ minimizes the empirical risk over S, we can further break down the
bound:

ES,A[RS[w]] ≤ ES[RS[w
S
⋆ ]] + ϵopt,

where ϵopt represents the optimization error of the algorithm A when approximating wS
⋆ .

Combining these two bounds gives:

ES,A[R[w]] ≤ ES[RS[w
S
⋆ ]] + ϵopt + ϵstab.

This result accounts for both the randomness in sampling from the population and the
randomness inherent in the algorithm A, completing the proof.

We decomposed the population risk into three components: the minimum training
error, the optimization error, and the stability term. The optimization error measures
the gap between the empirical risk of the trained model and the empirical risk minimizer.
Understanding this term is important for identifying areas where the optimization process
can be refined, eventually leading to improved generalization and efficiency of DGM.

Optimization Error in Non-Convex DGM.

Similar to the proof of the Theorem 4 from the report [2], we conduct the proof for the
optimization error of the DGM.

Theorem 5 (Optimization Error Upper Bound for SGM). Let F (w) be a smooth function
that satisfies the Polyak-Lojasiewicz (PL) Inequality [2] with some constant µ > 0 (the
PL constant), meaning that:

1

2
∥∇F (w)∥2 ≥ µ (F (w)− F⋆) , ∀w.

Here, F⋆ is the minimum value of F (w), and w⋆ is the corresponding minimizer. Ad-
ditionally, assume that F (w) is L-Lipschitz continuous [2], i.e., for all w, v ∈ Rd, we
have:

F (v) ≤ F (w) + ⟨∇F (w), v − w⟩+ L

2
∥v − w∥2.

Suppose we use the iterative update:

wt+1 = wt − αt∇F (wt),

where αt = α = 2
L
is a constant step size. Then the optimization error after T iterations

is bounded as:

F (wT )− F⋆ ≤
L

2
∥w1 − w⋆∥2

(
2− 8µ

L

)T−1

.

Proof. We begin with the following assumptions:

wt+1 = wt − αt∇F (wt),

∥∇F (wt)∥2 ≥ 2µ(F (wt)− F⋆),

|F (w)− F (v)− ⟨∇F (v), w − v⟩| ≤ L

2
∥w − v∥2.
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Now, using the update rule for wt+1, we have:

|F (wt+1)− F (wt)− ⟨∇F (wt), wt+1 − wt⟩| ≤
L

2
∥wt+1 − wt∥2,

F (wt+1)− F (wt) + αt∥∇F (wt)∥2 ≤
Lα2

t

2
∥∇F (wt)∥2,

F (wt+1)− F (wt) +

(
αt −

Lα2
t

2

)
∥∇F (wt)∥2 ≤ 0.

If
(
αt − Lα2

t

2

)
≥ 0, then:

F (wt+1)− F (w⋆) ≤ 2

(
1− µαt −

µLα2
t

2

)
(F (wt)− F⋆).

Taking a constant step size αt = α = 2
L
that minimizes the expression

(
1− µαt − µLα2

t

2

)
,

the inequality simplifies as follows:

F (wt+1)− F⋆ ≤
(
2− 8µ

L

)
(F (wt)− F⋆).

By applying this iteratively from t = 1 to T − 1, we obtain the telescopic product:

F (wT )− F⋆ ≤
(
2− 8µ

L

)T−1

(F (w1)− F⋆).

Smoothness Property:
Given the smoothness property of F , we have:

F (w) ≤ F (w⋆) + ⟨∇F (w⋆), w − w⋆⟩+
L

2
∥w − w⋆∥2.

Lemma 2.22 from [3] says that ∇F (w⋆) = 0, thus this simplifies to:

F (w1)− F⋆ ≤
L

2
∥w1 − w⋆∥2.

Substituting this into the earlier bound gives:

F (wT )− F⋆ ≤
L

2
∥w1 − w⋆∥2

(
2− 8µ

L

)T−1

.

This result highlights the exponential convergence of the function value towards F⋆, mod-
ulated by the distance of the initial point w1 from w⋆ and constants L and µ. This ex-
ponential bound arises due to the deterministic nature of the update rule; further details
are provided in the Discussion section.

Additionally, [3] stated a Corollary 3.5 which can be exploited to calculate the op-
timization error complexity for convex functions. We apply the same corollary to state
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that non-convex functions have optimization error complexity as O((8µ
L
)T ).

Computational time complexity.
Referring to [1] the computational time complexity for convex DGM and SGM are O(n1.5)
and O(n) respectively, where n represents the number of samples or data points. While
based on the Appendix code the computational complexity for the non-convex SGM is
O(Td), where T is the number of iterations for the SGM and d is the dimension of the
non-convex function. We could choose T = n, with n as the number of samples and
obtain O(nd).

Stochastic Gradient Method

Generalization bound for convex SGM

Definition 7 (Convex Function). A function f : Ω → R is convex if, for all u, v ∈ Ω,
we have

f(u) ≥ f(v) + ⟨∇f(v), u− v⟩.

According to [1], the generalization bound, from the equation (2.2), is given by:

ϵstab ≤
2L2

n

T∑
t=1

(αt)
T−t.

where:

• αt: Step size at iteration t.

• L: Lipschitz constant of the gradient of the loss function.

• n: Number of samples in the dataset.

• T : Total number of iterations.

• ϵstab: Uniform stability measure from the Definition 1.

This result highlights several key dependencies. The bound inversely depends on the
number of samples n, implying that larger datasets generally improve generalization.
Additionally, the learning rate αt plays a crucial role in the stability of the method, as
it exponentially affects the bound through the term (αt)

T−t. This suggests that careful
tuning of αt over iterations is essential to control the generalization error, particularly in
longer training processes.

Generalization bound for non-convex functions in SGM

The definition of the non-convexity can be derived from the definition of convexity (Def-
inition 7):
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Definition 8 (Non-Convex Function). A function f : Ω → R is non-convex if it does
not satisfy the convexity condition. This means that there exist points u, v ∈ Ω where the
inequality

f(u) < f(v) + ⟨∇f(v), u− v⟩
holds.

Together with the application of Lemma 3 [1], which is essential for deriving the general-
ization bound for non-convex SGM, the resulting bound is expected to resemble the form
of the convex generalization bound but with increased sophistication:

Lemma 3. Assume that f is β-smooth. Then, the following properties hold:

1. According to the Definition 2, the update rule Gf,α is (1 + αβ)-expansive.

2. Assume in addition that f is convex from the Definition 7. Then, for any α ≤ 2
β
,

the gradient update Gf,α is 1-expansive.

Theorem 6 (Generalization bound of non-convex SGM). Assume that the loss function
f(·, z) is β-smooth, non-convex, and L-Lipschitz for every z. Suppose that we run SGM
with a constant step size αt = α for T steps. Then SGM satisfies

ϵstab ≤
2L2α

n

T∑
t=1

(1 + αβ)T−t.

where ϵstab is a uniform stability measure.

Proof. Suppose S and S ′ are two samples of size n, differing in only a single example.
Consider the gradient updates G1, . . . , GT and G′

1, . . . , G
′
T induced by running SGM on

samples S and S ′, respectively.

Fix an example z ∈ Z and apply the Lipschitz condition on f(·, z) to get

E|f(wt, z)− f(w′
t, z)| ≤ LE[δt], (1)

where δt = ∥wt −w′
t∥. Observe that at step t, with probability 1− 1

n
, the example selected

by SGM is the same in both S and S ′. In this case, Gt = G′
t. From Lemma 3.1, we can

use the fact that the update rule Gt is (1 + αβ)-expansive due to non-convexity and the
constant step size.

With probability 1
n
, the selected example is different, in which case we use that both Gt

and G′
t are αL-bounded as a consequence of Lemma 2. Hence, we can apply Lemma 1

and linearity of expectation to conclude that for every t,

E[δt+1] ≤
(
1− 1

n

)
E[(1 + αβ)δt] +

1

n
(E[(1 + αβ)δt + 2αL]) =

= (1 + αβ)E[δt] +
2αL

n
Expanding this recursion we derive the inequality:

E[δT ] ≤
2L

n

T−1∑
t=0

(1 + αβ)T−t−1α.
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Here δ0 = 0 and by appending T ’s step leads to:

E[δT ] ≤
2L

n

T∑
t=1

(1 + αβ)T−tα.

Plugging this back into Equation (1), we obtain

E|f(wT , z)− f(w′
T , z)| ≤

2L2α

n

T∑
t=1

(1 + αβ)T−t.

Since this bound holds for all S, S ′, and z, we obtain the desired bound on the uniform
stability.

This bound, while similar to the convex case, shows a more complex dependence on
smoothness and expansiveness. The term (1 + αβ)T−t can grow exponentially if αβ > 0,
which poses a significant challenge when analyzing the stability of SGM for non-convex
functions. This exponential growth highlights the instability introduced by large step
sizes or high smoothness constants β in non-convex optimization.

Complexity of the Generalization Bound
The complexity of the generalization bound of SGM can be derived from Theorem 6:

ϵstab ≤ 2L2α

n

T∑
t=1

(1 + αβ)T−t.

By selecting specific parameter values, such as the step size α = 1
β
and the number of

iterations T = n, the expression simplifies, leading to:

ϵstab ∈ O(2n).

This result highlights the exponential growth of the generalization bound complexity
with respect to n, emphasizing the limitations of using fixed step sizes.

Summary table

We conclude the final results using the results of [1] and the results for non-convex SGM
in the Table 2.

DGM-convex SGD-convex SGD non-convex
Computational time: O(n1.5) O(nd) O(nd)
Generalization bound: O(1/

√
n) O(1/

√
n) O(2n)

Table 2: Comparison of DGM and SGM for Convex and Non-Convex Functions

Discussion/Extensions to SGM

Deterministic Nature of Updates and Optimization Error Bounds

The proof of Theorem 5 establishes the iterative update rule for wt+1 as:

wt+1 = wt − αt∇F (wt),
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where the deterministic nature of the gradient update dictates the trajectory of wt. A
vivid illustration of the deterministic nature of the gradient update in 3D is represented by
[4]. Unlike stochastic methods that introduce randomness, deterministic updates ensure
that the sequence of iterates wt is uniquely determined by the initial value w1 and the
step size αt.
This deterministic path yields a telescoping product in the error bound:

F (wT )− F⋆ ≤
L

2
∥w1 − w⋆∥2

(
1− 4µ

L

)T−1

,

where the convergence rate is influenced by the Polyak-Lojasiewicz (PL) constant µ and
the smoothness constant L.

The term
(
1− 4µ

L

)T−1
arises directly from the deterministic nature of the update rule,

where each step deterministically drives the iterate closer to the optimal minimizer w⋆.
This predictable trajectory leads to an exponential decay in the optimization error. More
precisely, as it was shown after proving Theorem 5 the optimization error is of the form:

F (wT )− F⋆ ∈ O

((
4µ

L

)T
)
,

indicating exponential growth in the error over time. This exponential growth is a direct
consequence of the absence of random fluctuations or dynamic adjustments in the step
size, which would otherwise influence the convergence rate.

In contrast, for Stochastic Gradient Methods, deriving optimization error bounds requires
distinct approaches due to the inherent stochasticity in the gradient estimates. Several
methodologies have been proposed to handle the challenges posed by this randomness:

• Variance Decomposition: This approach involves decomposing the error into
deterministic and stochastic components, which helps in accounting for the variance
introduced by gradient sampling. A relevant discussion of this technique can be
found in [5], where they explore how variance reduction strategies can improve
convergence.

• Averaging Techniques: Averaging over multiple iterates or gradient estimates
helps reduce noise and improve convergence stability. For instance, [6] discuss how
mini-batching and averaging strategies can enhance parallel Stochastic Gradient
Descent(SGD) for regression.

• Expected Error Analysis: This method focuses on estimating the expected error
by making specific assumptions about the distribution of the stochastic gradients.
For example, [7] examine how such assumptions can be used to analyze the gen-
eralization error of SGD in classification problems, particularly under low-noise
conditions.

These approaches typically rely on the smoothness assumptions of the objective function
(e.g., Lipschitz continuity as defined in Definition 6, and the Polyak-Lojasiewicz inequality
as stated in Theorem 5), along with the properties of the stochastic gradients. A more
detailed exploration of these methods within the context of SGM requires further analysis,
which falls outside the scope of the deterministic framework discussed here.
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Possibility for Other Superior Methods to SGM

Proximal Stochastic Gradient Algorithms, such as ProxSVRG, have gained attention due
to their effectiveness in optimizing non-convex functions with non-smooth regularizers.
These methods address the main limitations of standard Stochastic Gradient Methods,
including their difficulty in efficiently handling non-smooth terms and their reduced con-
vergence speed when optimizing functions with sharp variations or irregular structures
[8]. By including proximal operators, ProxSVRG can effectively deal with non-smooth
regularizers (e.g., ℓ1-norms or total variation penalties), ensuring more stable updates and
avoiding oscillations [8]. As a result, ProxSVRG achieves faster convergence and better
scalability compared to SGM, which often relies on assumptions of smoothness and can
become inefficient when these assumptions are violated [1].

Complexity and Performance.
According to the report by [8], where in the Table 1 they illustrateed the complexities as
follows:

• ProxSVRG [8]:

– Stochastic First-Order Oracle (SFO) Complexity: O(n+ n2/3ϵ−2).

– Proximal Oracle (PO) Complexity: O(ϵ−2).

ProxSVRG exhibits an efficient dependency on the accuracy parameter ϵ, achieving
ϵ−2 for the proximal oracle and leveraging minibatch sizes for scalability.

Comparing it to the complexities of the SGM for the non-convex case we refer to [9]
where it was stated that:

• Non-Convex Stochastic Gradient Descent [9]:

– Complexity: O(ϵ−4).

The SGM complexity scales worse with ϵ, reflecting a slower convergence rate when
high precision is required.

Challenges and Future Directions.
While ProxSVRG+ offers significant advantages, it also presents certain challenges. The
increased computational cost per iteration can be problematic in environments with lim-
ited resources. Moreover, ensuring that the required smoothness conditions are satisfied
in practical applications can be difficult, which may limit the method’s applicability in
some real-world scenarios.

Future research could focus on the following:

• Developing adaptive methods that reduce the dependence on strict smoothness
assumptions.

• Looking into combined methods that merge ProxSVRG with other algorithms to
improve the trade-off between the time needed per iteration and the overall speed
of convergence.

• Expanding ProxSVRG to work with a wider variety of non-smooth and non-convex
regularizers, making it more flexible for different types of problems.
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Simulation

In this section, we analyze the behavior of Stochastic Gradient Methods together with
Deterministic Gradient Method through experiments that examine smoothness, expan-
siveness and other theoretical properties. We aim to validate key theorems, explore the
impact of noise and dimensionality, and highlight practical discrepancies with theoretical
predictions.

Behavior of DGM on Smooth and Non-Smooth Functions.
On the comparison between the behavior of DGM applied to the 1-smooth function
f(x) = x2 and the non-smooth function f(x) =

√
x on the interval [0, 1].

• 1-Smooth Function: The function f(x) = x2 was tested, which is convex and
1-smooth. During the simulation, DGM did not converge exactly within the prede-
fined number of iterations, yielding an average result of approximately wt ≈ 0.2663
for the 1000-point setup. After reducing the interval to 500 points, the result im-
proved to wt = 0.0931. However, this outcome is influenced by the randomness of
selecting a specific point on the interval [0, 1]. In this case, fewer iterations yielded
more accurate results in less time, which aligns with the findings of [1], who sug-
gested that for Gradient Methods, fewer iterations with sufficiently small steps are
often sufficient to achieve good results without needing many iterations.

• Non-Smooth Function: The function f(x) =
√
x, which is not beta-smooth,

was also tested. Despite its non-smooth nature, SGM converged to the exact so-
lution after appropriately adjusting the dataset size. This behavior is attributed
to the numerical methods in Python packages, which approximate the gradient of
non-smooth functions. On the interval [0, 1], the gradient approximations caused
monotonic jumps toward zero, facilitating convergence. This outcome reflects the
interaction between the algorithm and the numerical properties of the domain and
gradient approximations.

• Challenges with Non-Smooth Functions: Simulations revealed that certain
function calls for non-smooth functions, particularly those implementing η-expansiveness,
led to infinite running times. To ensure efficiency, these function calls should be
either removed or appropriately adjusted for handling non-smooth functions in the
DGM framework.

These two examples underline the importance of the β-smoothness property, which
ensures that the simulation can progress smoothly, converge effectively, and terminate
within a reasonable time frame. Additionally, they illustrate how η-expansiveness impacts
the performance of DGM. Although η-expansiveness is crucial in theory, its application
to non-smooth functions introduces challenges, such as causing infinite idle time in the al-
gorithms. This highlights the need for more effective methods to manage η-expansiveness
in practice, particularly when dealing with non-smooth functions.
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Simulation with Stochastic Gradient Method and Deterministic
Gradient Method

To analyze the stochastic aspect of the gradient descent method, we simulate its behavior
by introducing Gaussian noise to the gradients at each iteration. We observe how ran-
domness or stochasticity affects convergence and explore its impact on uniform stability.
The procedure is as follows:

1. The function f(x) =
√

|x| is selected for analysis.

2. A random starting point x0 is chosen uniformly from the interval [−1, 1].

3. n samples of Gaussian noise with zero mean and variance σ2 = 0.01 are generated.

4. Over T = 1000 steps of stochastic gradient descent:

• Compute the exact gradient f ′(xt).

• Choose a noise sample st uniformly from the n samples.

• Compute a stochastic gradient gt = f ′(xt) + st.

• Perform the descent step xt+1 = xt − αtgt.

Using parameters T = 1000, n = 100, and σ = 0.1 and step size αt = α = 0.001 the
experiment is repeated three times with random initial values. The table below represents
the results of the simulation:

Sample Initial xt (Iteration 0) Final xt (Iteration 1000)

Sample 1 -0.01034 0.01509
Sample 2 -0.69577 -0.01286
Sample 3 0.53296 -0.01369

Table 3: Results of Stochastic Gradient Descent

SGM Plots.
The following figures illustrate the behavior of the functions f(x) = x2 and f(x) =

√
|x|

under different conditions. The Figure 2 and Figure 3 show f(x) = x2 without any
noise(DGM) and with noise(SGM). The second set of figures shows f(x) =

√
|x| with

Gaussian noise applied to the gradient at each iteration.

Function Analysis Results.
For the function f(x) = x2, the results are as follows:

• The function is convex.

• β − smoothness =2.0.

• γ − expansiveness = 1.0.

For the function f(x) =
√

|x|, the results are as follows:
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• The function is non-convex.

• β − smoothness = 225, 020, 049.

• γ − expansiveness = 14, 434.

Figure 2: DGM:f(x) = x2. Figure 3: SGM:f(x) = x2

Figure 4: Comparison of DGM and SGD behavior for f(x) = x2.

Figure 5: DGM of f(x) =
√

|x| Figure 6: SGM of f(x) =
√

|x|

Figure 7: Comparison of DGM and SGD behaviors for f(x) =
√
|x|.

Validation of Theorem 2 and Theorem 3 through Simulation.
According to Theorem 2, if f is β-smooth, then G is (1+αβ)-expansive. For the function
f(x) = x2, we have β = 2.0 and step size α = 0.001, which results in an expansiveness
of:

1 + αβ = 1 + 2.0× 0.001 = 1.002 > 1.0.

This is consistent with the theory, confirming that the function is convex and exhibits
the expected behavior.
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For the non-convex function f(x) =
√

|x|, with β = 225, 020, 049 and α = 0.001, we
compute the expansiveness as:

1 + αβ = 1 + 225, 020, 049× 0.001 = 225, 022 > 14, 434

which also aligns with the expected outcome of a highly expansive function, as predicted
by Theorem 2.

Additionally, from Theorem 3, for G being η-expansive, we expect f to be 1+η
α
-smooth,

with the same step size α = 0.001.
For the convex function f(x) = x2, we found that the expansiveness of G is η = 1.0.

Substituting this value into the relation:

β =
1 + η

α
=

1 + 1.0

0.001
=

2

0.001
= 2000.0 > 2.0.

This large value of β = 2000.0 contrasts with the actual smoothness of the func-
tion, which is β = 2.0, suggesting that there are additional factors at play that influence
the smoothness of the function, such as the step size or the specific nature of the function.

For the non-convex function f(x) =
√
|x|, we found the expansiveness of G to be

η = 14, 434. Substituting this value into the relation:

β =
1 + η

α
=

1 + 14, 434

0.001
=

14, 435

0.001
= 14, 435, 000 < 225, 020, 049

The expected value of β = 14, 435, 000 is much smaller than the observed value of
β = 225, 020, 049, indicating a discrepancy. The actual smoothness for the non-convex
function is much higher than predicted by the relation, suggesting that the theoretical
relation does not fully capture the complexities of the non-convex function’s gradient,
which may be more irregular and erratic than expected.

Summary. The discrepancies between theoretical and actual values of β-smoothness can
be attributed to the limitations of the relations that describe smoothness and expan-
siveness. For the convex function f(x) = x2, the expansiveness was consistent with the
theory, but the expected β-smoothness from Theorem 3 was much higher than the actual
value, suggesting that factors such as step size influence smoothness. For the non-convex
function f(x) =

√
|x|, the expansiveness value was much larger than expected, and sub-

stituting the observed expansiveness into the relation produced a smaller β, indicating
that the theoretical relations do not fully capture the complexities of non-convex func-
tions.

Adjustment of Findings: The discrepancies between theoretical and observed values of
β-smoothness can be explained by the sensitivity of the relations to the step size α.
Specifically, by adjusting the step size α (e.g., from 0.001 to 0.1), we can align the theo-
retical and simulated results, which shows that the conditions of the theorems are highly
dependent on a ”reasonably chosen” step size α. This adjustment allows the relations to
hold, but emphasizes the importance of carefully selecting the step size α in simulations
and practical applications to ensure consistency with theoretical expectations.
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These results suggest that while the relations provide a vague estimate, they do not
fully capture the behavior of these functions, essentially for non-convex functions where
irregularities in the gradient can have a significant impact.

Multidimensional SGM

We simulate the SGM for two functions in d = 10 dimensions:

• F1(x) =
∑d

i=1 x
2
i (Euclidean norm squared).

• F2(x) =
∑d

i=1

√
|xi| (sum of square roots of absolute values).

Two scenarios are considered: with Gaussian noise(SGM) and without noise(DGM).
The results are presented below.

Trajectories with Gaussian Noise(SGM).
The SGM trajectories for the functions are shown in Figure 8.

Figure 8: SGM Trajectories for d = 10. Left: F1(x) =
∑d

i=1 x
2
i . Right: F2(x) =∑d

i=1

√
|xi|.

Trajectories Without Noise(DGM).
The DGM trajectories for the functions are shown in Figure 9.
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Figure 9: DGM Trajectories for d = 10. Left: F1(x) =
∑d

i=1 x
2
i . Right: F2(x) =∑d

i=1

√
|xi|.

Analysis of Convergence Behavior.
The results from the Figure 8 and Figure 9 clearly show differences in the conver-
gence behavior of the SGM and DGM for the two test functions, F1(x) =

∑d
i=1 x

2
i and

F2(x) =
∑d

i=1

√
|xi|, under identical experimental conditions.

For F1(x), which is convex, with β = 2.00, the smoothness properties remain well-
suited for optimization even as the dimension increases to d = 10. This is consistent with
the observations for d = 1, where the updates remained stable, and both SGM and DGM
reliably converged to the global minimum. Table 5 further confirms this, showing that
wt approaches zero as the number of iterations progresses.

In contrast, for F2(x), which is non-convex, with β = 60.28, both methods continue to
exhibit poor convergence behavior as d increases. The instability in the updates, caused
by the large β-value, which was first observed for d = 1, becomes more pronounced at
higher dimensions. This results in inconsistency and jumps in wt, even after 1000 itera-
tions.

This extension to d = 10 reinforces our earlier conclusion: the β-smoothness of the
function has a significant impact on the optimization process. While F1(x) benefits from
a manageable β, the large β of F2(x) hampers optimization efficiency and makes con-
vergence impossible. Notably, the performance worsens as the dimensionality increases,
confirming that higher dimensions exacerbate the difficulty of convergence.

Table of the results.
Take the parameters for the table: T = 1000, d = 10, and σ = 0.1. We do again the
experiment 3 times with random initial values. The tables below represent the results of
the simulation:
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Sample Initial xt (Iteration 0) Final xt (Iteration 1000)

Sample 1 0.235272 -0.000134
Sample 2 0.583524 0.059467
Sample 3 -0.232673 0.058326

Table 4: Results of Stochastic Gradient Descent for F1(x) =
∑d

i=1 x
2
i

Sample Initial xt (Iteration 0) Final xt (Iteration 1000)

Sample 1 0.224963 0.432106
Sample 2 0.576978 0.038964
Sample 3 -0.222307 0.037623

Table 5: Results of Stochastic Gradient Descent for F2(x) =
∑d

i=1

√
|xi|

Conclusion

This thesis explored the application of the Stochastic Gradient Method (SGM) and De-
terministic Gradient Method (DGM) to non-convex optimization problems, with a focus
on their generalization bounds, computational complexity, and the impact of smoothness
(β) and expansiveness (η) properties on performance.

The analysis revealed that the performance of both SGM and DGM is highly in-
fluenced by the properties of the objective function, particularly its β-smoothness and
η-expansiveness. For SGM, the generalization bound complexity for non-convex func-
tions with constant step sizes is O(2n), highlighting the limitations of fixed step sizes and
the need for further research on adaptive step size strategies (αt). Additionally, the time
complexity of SGM scales with the number of samples n and the problem’s dimensionality
d, resulting in a complexity of O(nd).

For the DGM, we explored the relationship between β-smoothness and η-expansiveness
but found that this relationship has not been proven for non-convex functions in general.
This suggests that DGM’s performance is particularly sensitive to the choice of constant
step size α.

Simulations for both SGM and DGM validated several theoretical findings, especially
concerning stability and optimization performance, and demonstrated the critical role of
parameter tuning, such as the step size (αt). The experiments highlighted the complex
relationship between smoothness (β) and expansiveness (η), providing practical insights
into how these properties influence optimization behavior. The results also showed that
higher dimensionality exacerbates convergence issues, with larger jumps and greater in-
stability, confirming that dimensionality has a detrimental impact on performance.

In conclusion, this thesis analyzes the performance of SGM and DGM in non-convex
optimization, highlighting both their advantages and limitations. While the results pro-
vide useful insights, they also point to gaps in the analysis, particularly around generaliza-
tion bounds and optimization error for non-convex functions. Future work should focus
on improving theoretical frameworks for adaptive step size αt schedules and investigating
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their practical impact in large-scale, high-dimensional optimization problems.
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Appendix

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 d = 10
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5 eta = 0.01

6 iterations = 1001

7 sigma = 0.1 # Noise standard deviation

8

9

10 def F1(x):

11 return np.sum(x ** 2) # Euclidean norm squared

12

13

14 def grad_F1(x): # O(d)

15 return 2 * x

16

17

18 def F2(x):

19 return np.sum(np.sqrt(np.abs(x)))

20

21

22 def grad_F2(x): # O(d)

23 # Gradient of F2: 0.5 * sign(x) / sqrt(|x|)

24 grad = np.zeros_like(x)

25 non_zero_indices = x != 0 # division by zero avoided

26 grad[non_zero_indices] = 0.5 * np.sign(x[non_zero_indices ]) /

np.sqrt(np.abs(x[non_zero_indices ]))

27 return grad

28

29

30 # Lipschitz constant and smoothness checks

31 def check_conditions(func_grad , points =1000):

32 u = np.random.uniform(-1, 1, size=(points , d))

33 v = np.random.uniform(-1, 1, size=(points , d))

34

35 # Compute the supremum of ||\ nabla f(u) - \nabla f(v)|| / ||u

- v||

36 diff_grad = np.linalg.norm(func_grad(u) - func_grad(v), axis

=1)

37 diff_points = np.linalg.norm(u - v, axis =1)

38 valid = diff_points > 0

39 ratios = diff_grad[valid] / diff_points[valid]

40 return np.max(ratios)

41

42

43 def check_convexity(func , points =1000):

44 u = np.random.uniform(-1, 1, size=(points , d))

45 v = np.random.uniform(-1, 1, size=(points , d))

46 theta = np.random.uniform(0, 1, size=(points , 1)) # Random

theta values in [0, 1]

47

48 # Evaluate convexity condition

49 lhs = func(theta * u + (1 - theta) * v)

50 rhs = theta.flatten () * func(u) + (1 - theta.flatten ()) *

func(v)
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51

52 # Explicit check for known problematic cases

53 u_explicit = np.array ([1])

54 v_explicit = np.array ([ -1])

55 theta_explicit = 1

56 lhs_explicittt = func(theta_explicit * u_explicit + (1 -

theta_explicit) * v_explicit)

57 rhs_explicit = theta_explicit * func(u_explicit) + (1 -

theta_explicit) * func(v_explicit)

58

59 return np.all(lhs <= rhs) and lhs_explicittt <= rhs_explicit

60

61

62 # checks for the functions

63 sup_grad_F1 = check_conditions(grad_F1)

64 sup_grad_F2 = check_conditions(grad_F2)

65

66 is_convex_F1 = check_convexity(F1)

67 is_convex_F2 = check_convexity(F2)

68

69

70 print("Function F1:")

71 print(f"Supremum of ||\ nabla f(u) - \nabla f(v)|| / ||u - v||: {

sup_grad_F1 :.6f}")

72 print(f"Function is {’convex ’ if is_convex_F1 else ’non -convex ’}"

)

73 print("Function is beta -smooth")

74

75 print("\nFunction F2:")

76 print(f"Supremum of ||\ nabla f(u) - \nabla f(v)|| / ||u - v||: {

sup_grad_F2 :.6f}")

77 print(f"Function is {’convex ’ if is_convex_F2 else ’non -convex ’}"

)

78 print("Function is beta -smooth")

79

80 # initialize random starting point

81 x_t = np.random.uniform(-1, 1, size=d)

82

83

84 trajectory_F1 = [F1(x_t)]

85 trajectory_F2 = [F2(x_t)]

86

87 # Log iterations

88 print("\nLogging iterations:")

89

90 for _ in range(iterations): # O(T)

91

92 noise = np.random.normal(0, sigma , size=d)

93

94 # Gradient step for F1

95 grad_f1 = grad_F1(x_t) # O(d)
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96 stochastic_grad_f1 = grad_f1

97 x_t = x_t - eta * stochastic_grad_f1

98 trajectory_F1.append(F1(x_t))

99 print(f"Iteration {_}: F1 w_t = {x_t [0]:.6f}, Gradient = {

grad_f1 [0]:.6f}, Noise = {noise [0]:.6f}, "

100 f"Stochastic Gradient = {stochastic_grad_f1 [0]:.6f}")

101

102 grad_f2 = grad_F2(x_t)

103 stochastic_grad_f2 = grad_f2

104 x_t = x_t - eta * stochastic_grad_f2

105 trajectory_F2.append(F2(x_t))

106 print(f"Iteration {_}: F2 w_t = {x_t [0]:.6f}, Gradient = {

grad_f2 [0]:.6f}, Noise = {noise [0]:.6f}, "

107 f"Stochastic Gradient = {stochastic_grad_f2 [0]:.6f}")

108

109 plt.figure(figsize =(9, 6))

110

111 plt.subplot(1, 2, 1)

112 plt.plot(trajectory_F1 , color=’blue’)

113 plt.title("SGM Trajectory for F(x) = sum(x_i^2)")

114 plt.xlabel("Iteration")

115 plt.ylabel("F(x)")

116

117 plt.subplot(1, 2, 2)

118 plt.plot(trajectory_F2 , color=’orange ’)

119 plt.title("SGM Trajectory for F(x) = sum(sqrt(|x_i|))")

120 plt.xlabel("Iteration")

121 plt.ylabel("F(x)")

122

123 plt.tight_layout ()

124 plt.show()
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