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ABSTRACT
Surgical phase recognition is an important field in medical
image analysis for improving surgical safety, efficiency, and
training. Phase recognition involves predicting the different
phases of a surgery using machine learning methods. This
research proposes a framework for improving phase recog-
nition using a cross-modal multi-visual cue approach. The
proposed model leverages the video frames in combination
with the extracted descriptors of tool presence, segmentation
masks, and action labels. The ablation study conducted in
this study shows the best configuration of visual cues is im-
age data and action triplets, achieving an accuracy of 0.826
and F1 score of 0.871 on the Cholec80 dataset, compared to
0.792 and 0.844 for the baselinemodel. Themodel also outper-
forms state-of-the-art models on the HeiChole benchmark
dataset with an F1 score of 0.796 and an accuracy of 0.732.
These results demonstrate the effectiveness of integrating
multi-visual cues for phase recognition, offering a promising
direction for improving surgical workflow analysis.

1 INTRODUCTION
Surgical phase recognition is an important area of research in the
field of medical image analysis and computer-assisted intervention
(CAI). It has several benefits that include making surgeries safer,
more efficient, and more effective [56]. Phase recognition involves
using machine learning methods to predict the phases and steps
in surgical videos and can offer real-time support and feedback for
laparoscopic surgeries. Around 15 million laparoscopic surgeries
are performed each year, so improving this procedure could have a
great potential benefit [2].

There are various applications where the online recognition of
the phases in surgical videos offers important benefits. By recogniz-
ing and tracking the progression of surgical steps, surgical phase
recognition systems can alert the surgical team about deviations
or anomalies from the standard workflow [21, 56, 69]. This can
potentially reduce errors and increase the patient’s safety. Recog-
nizing deviations from the standard workflow additionally allows
standardizing surgical procedures across different surgeons and
hospitals [69]. Surgical phase recognition also offers a structured
way to evaluate and quantify surgical performance, which is very
useful for training new surgeons [16]. It can give them a clear and
comprehensive view of the surgical process and provide instant
feedback on how they are doing [32, 33, 66]. Postoperative analysis
and feedback are two other benefits of surgical phase recognition.
The data gathered by phase recognition models during surgeries
can be reviewed afterwards in order to see what went well and
what could be improved, helping surgical teams to get better over

time [69]. By managing and predicting the workflow efficiently,
phase recognition can help shorten surgeries and better organize
OR scheduling. This can lead to more efficient usage of operating
rooms decreasing overall healthcare costs [56].

There are several features that can be used for the representation
of surgical videos. These features can be used as the input for a
phase recognition network to improve the performance compared
to generic feature extraction methods. Tool presence is one of these
features. It involves recognizing and identifying which tools are
present in a frame and sometimes also includes segmentation of the
location of different tools. Tool presence can provide valuable in-
formation on the current phase in videos, since the different phases
often use distinct tools. Semantic segmentation in surgical videos is
another descriptor that can be used as input to a recognition model.
This focuses on segmenting the entire surgical field instead of only
the tools present in the frame. Although the surgical field does not
change significantly during laparoscopic surgeries, the position of
the organs can be useful. Especially in surgeries such as cholecys-
tectomies or hysterectomies, in which a specific organ is removed,
segmentation could help the phase prediction [50]. Information on
the current actions of the surgeons can also be a valuable input fea-
ture for phase recognition. Each surgical phase usually has certain
actions that are performed within it, so recognizing these actions
can help the final prediction network. Action recognition is usually
performed by creating an action triplet: three words describing the
subject, verb, and object of the action.

Attentionmechanisms are a popular tool inmachine learning. At-
tention is designed to help models focus on the most relevant parts
of an input [58]. It was originally developed for natural language
processing tasks but has proved very effective in fields like image
and video analysis as well [27]. By focusing on key features while
minimizing distractions, attention allows models to handle complex
and variable data more effectively. In surgical phase recognition,
attention can be especially useful. Surgical videos often include
challenges like motion blur, changes in lighting, and overlapping
actions. Attention mechanisms can help focus on the important
details while ignoring irrelevant or noisy information. This focus
can make predictions more reliable for surgical video analysis tasks.
Cross-modal attention takes this a step further by bringing together
information from different sources, like tool usage or segmentation
maps.

1.1 Problem Statement
Current approaches to surgical phase recognition often use a sin-
gle modality as input. However, many potential input modalities
exist that can possibly improve the performance of phase recog-
nition networks. While single-modality approaches have shown
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good performance, they each have their limitations. Surgical videos
are complex, with challenges such as changes in lighting, cam-
era movements, and overlapping actions. Single-modality methods
sometimes fail to capture contextual information that can be use-
ful to accurately recognize surgical phases [41]. A method that
combines these different types of input modalities in a structured
way could provide models with a more complete understanding
of the surgical progress. This research explores an approach that
uses multiple inputs together, aiming to improve the accuracy and
reliability of surgical phase recognition.

1.2 Research Questions
The goal of this research is to address the following research ques-
tions:

(1) For the task of automatic phase recognition in surgical
videos, what computer vision-based methods exist and
which input features do these methods use?

This question investigates existing methodologies for phase recog-
nition in surgical videos. The first step involves exploring the pre-
diction networks and input features used for this task.

(2) How can we leverage different visual descriptors extracted
from surgical videos in a multi-visual cue framework for
surgical phase recognition?

To address this question, this research presents the pipeline of a
multi-visual cue model. The model integrates visual descriptors like
tool presence detection, segmentation maps, and action recognition.
The process involves creating multiple model configurations to
determine the optimal design, input features, and architectures.

(3) What effect does the inclusion of different descriptors in
a multi-visual cue model have on the performance of au-
tomatic phase recognition in surgical videos compared to
single visual cue models and the state of the art?

Finally, to evaluate the performance of the multi-visual cue model,
the performance for each descriptor will be compared to a baseline
single visual modality model in an ablation study. By comparing it
with the baseline model, this analysis can show whether incorporat-
ing multiple input features is indeed a valuable addition to surgical
phase prediction models. The best configuration of the multi-visual
cue model will be compared to the performance of state-of-the-art
models to show how it compares in the field and whether it offers
significant improvements over existing approaches for the task of
surgical phase prediction. This model configuration will also be
evaluated on an additional dataset to show the robustness of the
model.

1.3 Proposed Approach
To answer the research questions, this study proposes a method for
surgical phase recognition that combines multiple visual modalities,
in order to try to address the limitations of single-modality models.
The approach involves building upon an existing phase recognition
network, MTRCNet [24], and integrating tool presence, segmenta-
tion maps and action labels. The different modalities are combined
using a cross-modal attention mechanism. This mechanism allows
the model to connect relevant information from different sources,
focusing on key details while ignoring irrelevant parts of the input.

For example, segmentation maps can provide information about
organ positions, while tool presence and action labels add con-
text about the current surgical tasks. Together, these modalities
form a comprehensive representation of the surgical workflow. The
proposed model is evaluated on the Cholec80 dataset, comparing
its performance against existing single-modality methods. This
comparison aims to show whether combining multiple visual cues
improves phase recognition accuracy and robustness. The ablation
study is conducted to analyze the contributions of each modality
to the overall performance of the model.

The main contributions of this research include:

(1) Design of a cross-modal attention-based framework for sur-
gical phase recognition that integrates multiple visual cues,
including tool presence, segmentation maps, and action
triplets.

(2) Ablation study showing the impact of combining different
input modalities on phase recognition performance, includ-
ing an ablation study to analyze the contribution of each
individual modality.

1.4 Thesis Outline
This report starts by exploring the scientific background in Section
2. This includes the medical background, the relevant terminologies
and an overview of available datasets. Section 2.4 discusses the
existing methods for surgical phase recognition and a comparison
of their results. Themethodology for the proposed approach and the
extraction of each input modality is outlined in Section 3. Section 4
discusses the implementation details, training procedure, baseline
models and relevant evaluation metrics. The results of the ablation
studies as well as the comparisons with state-of-the-art models are
presented in Section 5. Finally, Section 6 contains a comprehensive
discussion of all results and recommendations for future work,
followed by a conclusion of this research in Section 7.

2 SCIENTIFIC BACKGROUND
2.1 Medical Background
Laparoscopic surgeries are minimally invasive surgeries where
surgical instruments are inserted into the stomach or pelvic area
through several small incisions [26]. A laparoscopic camera is also
inserted and gives the surgeons real-time footage of the surgical
field without making large incisions. Because laparoscopic surgeries
are done using a camera, it makes them very accessible for surgical
phase recognition, as the camera is already present and a great deal
of footage exists.

There are several challenges when it comes to using laparoscopic
surgery videos for automatic phase recognition. The laparoscopic
camera is not static, so there is a great deal of fluctuation in the
scenes that can be seen during the surgery, including motion blur
[56]. Videos can also contain fast camera movements, smoke block-
ing the view, and an array of different tools. Additionally, blood
stains on the lens can obscure or distort the image that the laparo-
scopic camera captures. Different types of surgery can be performed
laparoscopically, common procedures include cholecystectomy (re-
moval of the gallbladder) and hysterectomy (removal of the uterus
and cervix) [10, 38].
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2.1.1 Terminology. When it comes to the task of recognizing the
different phases in a surgery, several terms are used across different
papers. Some papers refer to it simply as phase recognition [11,
53, 56, 63, 65]. Other authors use the term workflow recognition to
describe the recognition of the phases in surgery [23, 25, 56, 69]. A
couple of papers also refer to the process as step recognition [18, 52].
However, this term can be ambiguous because it is also used to
describe the recognition of actions, or a shorter period within a
larger phase.

In this report, the term workflow recognition will be used to refer
to the overlapping research field which focuses on gaining insights
into the processes that happen during surgeries. The actual task
of predicting the phases in a surgical video will be referred to as
surgical phase recognition, in line with the terminology used by
Twinanda et. al [56].

2.2 Multi-Visual Cue Models
Multi-visual cue models for phase recognition are models that use
various types of visual information or cues to predict the current
phase of a video. The usage of multiple visual inputs can poten-
tially increase the performance of prediction models, especially in
surgical videos which sometimes include complex or blurry frames.
The features discussed in Section 2.4.6 can be used as input to a
multi-visual cue model. There are several choices that are important
for the performance of such a model.

Firstly, it is important to decide when the different features will
be combined for the final prediction. In multi-modal models, such
as a multi-visual cue model, there are two main categories for data
fusion: early fusion and late fusion [43]. Late fusion involves first
training a model for each individual feature, and then combining
the outputs at the end, either by concatenating the outputs or
averaging them in classification tasks. In early fusion, the features
are combined before being fed into the prediction model, and this
way only a single model is trained.

2.3 Datasets
Various benchmark datasets that are commonly used for automated
phase recognition in surgical videos include Cholec80 [56], HeiC-
hole [59], M2CAI16 [53, 56] and AutoLaparo [60]. These datasets
are discussed in the following sections. Figure 1 shows several ex-
ample frames from the videos in each dataset. Table 1 shows a brief
overview of the datasets and their technical details together with
the class labels for each phase in the datasets.

2.3.1 Cholec80. The Cholec80 dataset [56] is a publicly available
dataset which contains 80 videos of laparoscopic cholecystectomy
surgeries. Laparoscopic cholecystectomy is a surgery often used
for surgical phase recognition because it is relatively common with
a highly standardized process that is not entirely linear [53]. This
means that some of the phases of the surgery can be performed
in a different order depending on the surgeon and the specific
situation. The videos in the Cholec80 dataset are labeled with phase
annotations for seven distinct phases. The presence of 7 different
tools is also annotated in the videos, provided by a senior surgeon
at Strasbourg Hospital. These tools are Bipolar, Clipper, Grasper,
Hook, Irrigator, Scissors, and Specimen bag. An example of each tool
is shown in Figure 2a. The videos are captured at 25 frames per

second (FPS) and have been downsampled to 1 FPS. They have a
frame resolution of 1920x1080 or 854x480 pixels, and an average
duration of 39 minutes [33].

Figure 3 shows the distribution of frames per video in the cholec80
dataset. It can be seen that there is a large variety in the number
of frames in each video. Some videos are shorter with around 1000
frames, while longer videos have up to 6000 frames. Figure 4 shows
the number of frames per phase in the surgery. This graph shows
that Calot triangle dissection (P2) and Gallbladder dissection (P4) are
the phases with the most frames in the dataset, and the remaining
phases have a more similar number of total frames.

2.3.2 HeiChole. TheHeiChole benchmark dataset [59] was created
for the 2019 Endoscopic Vision sub-challenge for surgical workflow
and skill analysis. It consists of 33 laparoscopic cholecystectomy
videos, captured at three different surgical centers. 24 of these videos
are part of the publicly available training set, and the remaining 9
videos belong to a private test set. Each video has been annotated
with a phase, tool, and action label, and parts of the video also
include annotations for skill classification. The phase labels are the
same as the phases used in the Cholec80 dataset.

2.3.3 M2CAI16. The M2CAI16 workflow dataset [53] was created
for the M2CAI challenges in 2016 and consists of 41 cholecystec-
tomy surgeries. Some of the videos are taken from the Cholec80
dataset. Similar to the Cholec80 dataset, these videos are captured
at 25 FPS with a resolution of 1920x1080. All videos in the dataset
have been segmented into eight phases by experienced surgeons at
the Hospital of Strasbourg and the Hospital Klinikum Rechts der
Isar in Munich. The M2CAI16 tool dataset was created for the same
challenge and consists of 15 laparoscopic cholecystectomy videos.
The tools annotated in this dataset are the same as those in the
Cholec80 dataset.

2.3.4 AutoLaparo. The AutoLaparo dataset [60] consists of 21
videos of laparoscopic hysterectomy surgeries. Each video is la-
beled with phase annotations for 7 phases. A senior gynaecologist
and a specialist with experience in hysterectomies performed these
annotations. Tools and key anatomy are also annotated in this
dataset. The key anatomy is the uterus, and the 4 annotated tools
are Grasping forceps, LigaSure, Dissecting and grasping forceps, and
Electric hook. An example of each tool can be found in Figure 2b.
The videos have a standard resolution of 1920x1080 pixels and are
captured at 25 FPS. Because of the different levels of difficulty in-
volved in the surgeries, the videos range in length from 27 to 112
minutes, with an average duration of 66 minutes. Similar to chole-
cystectomy surgeries, hysterectomies also have a relatively long
duration which can make the task of phase recognition difficult.

2.4 Related Works
The task of surgical phase recognition has already been discussed
in many papers. The different types of models that were previously
used for the task are discussed, and several different architectures
for each of the model types are presented.

2.4.1 CNN-based Models for Surgical Phase Recognition. Convo-
lution is a linear operation used for feature extraction, where a
matrix of numbers called a kernel is applied across the input [62].
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Dataset Cholec80 [56] HeiChole [59] M2CAI16 [53] AutoLaparo [60]
Nr. of videos 80 33 41 21
Annotations Phase, tool Phase, action, tool, skill Phase Phase, motion, tool
FPS 25 25 25 25
Resolution 1920x1080, 854x480 960x540, 1920x1080, 720,576 1920x1080 1920x1080
Phases 1. Preparation 1. Preparation 1. Trocar placement 1. Preparation

2. Calot triangle dissection 2. Calot triangle dissection 2. Preparation 2. Dividing ligament and peritoneum
3. Clipping and cutting 3. Clipping and cutting 3. Calot’s triangle dissection 3. Dividing uterine vessels and ligament
4. Gallbladder dissection 4. Gallbladder dissection 4. Clipping and cutting of cystic duct and artery 4. Transecting the vagina
5. Gallbladder packaging 5. Gallbladder packaging 5. Gallbladder dissection 5. Specimen removal
6. Cleaning and coagulation 6. Cleaning and coagulation 6. Gallbladder packaging 6. Suturing
7. Gallbladder retraction 7. Gallbladder retraction 7. Cleaning and coagulation of liver bed (haemostasis) 7. Washing

8. Gallbladder retraction
Table 1: An overview of the technical details and class labels of the benchmark datasets for surgical phase recognition. For each
dataset, the general statistics are summarized and the phases are explicitly stated.

(a)

(b)

(c)

(d)

Figure 1: Example frames of videos in the dataset in (a) Cholec80 [56], (b) M2CAI16-tool [53], and (c) AutoLaparo [60].

(a)

Bipolar Clipper Grasper Hook Irrigator Scissors Specimen bag

(b)

Grasping forceps LigaSure Dissecting and
grasping forceps

Electric hook

Figure 2: Example of each of the tools annotated in (a) Cholec80 [56] and M2CAI16-tool [53] and (b) AutoLaparo [60].

This operation is used in a Convolutional Neural Network (CNN),
a network designed to recognize patterns using convolutional lay-
ers, pooling layers [39]. CNNs perform better than other types of
networks for many image-related tasks. The main advantages of
CNNs over fully connected networks are the use of shared weights
in the form of kernels, and the translation invariance. The pooling
layers reduce the dimensionality of these maps. This makes the
network more computationally efficient and improves the feature
extraction. Finally, the fully connected layers calculate the output
classifications.

Twinanda et. al [56] used a CNN to perform the task of work-
flow recognition in surgical videos, a novelty at the time. Their

proposed EndoNet architecture is an extension of the AlexNet ar-
chitecture [28]. The approach fine-tunes the recognition network
in a multi-task manner, simultaneously carrying out the task of
phase recognition and tool presence. After the main set of convolu-
tional layers, the network is temporarily split into two simultaneous
branches. The tool detection branch of the architecture identifies
the presence of specific surgical tools and outputs a binary vector
for each tool. The second branch performs phase recognition by
integrating features extracted by the CNN with the tool detection
output to classify the surgical phase in each frame. It uses a Hier-
archical HMM to learn the temporal information from the videos.
The branches are trained together in an end-to-end manner.
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Figure 3: Histogram showing the distribution of video frames
per video in the Cholec80 dataset [56]. (Bin size is 15)

Figure 4: Distribution of video frames per phase in the
Cholec80 dataset [56], for the phases Preparation (P1), Calot
triangle dissection (P2), Clipping and cutting (P3), Gallblad-
der dissection (P4), Gallbladder packaging (P5), Cleaning and
coagulation (P6), and Gallbladder retraction (P7).

2.4.2 RNN-, LSTM-, and GRU-based Models for Surgical Phase
Recognition. Recurrent Neural Networks (RNNs) are a type of neu-
ral network that is very useful for sequential data processing like
text and speech [51]. The RNN architecture uses cycles that transmit
information back into itself. This allows them to keep information
from previous inputs, which makes RNNs very useful for tasks
where context and structure are important. The looped network
structure of an RNN processes every element of the input sequence
while maintaining a memory of previous inputs in its internal state.
This memory influences the current output and the output of future
states. RNNs are often used in natural language processing, speech
recognition and time series analysis, because the data in these tasks
is usually sequential. However, RNNs have several weaknesses, in-
cluding their susceptibility to vanishing gradients, which makes it
hard for them to learn long-term dependencies in sequences. Also,
RNNs are inherently sequential in nature, limiting their ability to
be parallelized during training, which can lead to longer training
times compared to most other neural network architectures.

Long Short-Term Memory (LSTM) networks [19] were intro-
duced to solve several of the problems encountered with standard

RNNs. LSTM networks consist of memory cells that can store in-
formation over longer sequences. Each memory cell has three com-
ponents. The input gate specifies how much of the new input will
be stored in the memory cell. The forget gate determines which
information should be removed from the cell. Finally, the output
gate chooses how much data the memory cell should use to com-
pute the hidden state. Together, these components make sure only
the important information is kept and everything else is discarded.
Because of the special memory cells, they are better at keeping
track of contextual information spread out over longer sequences
than RNNs are.

Gated Recurrent Units (GRUs) [6] are a model similar to LSTMs
but with a simpler architecture [51]. They only consist of two gates:
the update gate and the reset gate [51]. The update gate determines
which information to keep and the reset gate controls what infor-
mation is discarded. Although the architecture is simpler than an
LSTM, GRUs are still good at capturing long-term dependencies.

Zisimopoulos et al. [69] propose the DeepPhase architecture for
tool and phase recognition. The model first extracts tool presence
information from the surgical videos using a CNN-based architec-
ture with residual connections, specifically the ResNet-152. Then,
two types of data are used in the phase recognition step: the binary
tool classification and tool features gathered from the last pooling
layer of the ResNet-152. The purpose of training on the tool features
as well was to capture tool motion and orientation data and visual
cues such as colour and lighting that could improve phase identifi-
cation. Two RNN-based networks are trained for phase recognition,
an LSTM and a GRU network, both using cross-entropy loss.

The SV-RCNet (Surgical Video Recurrent Convolutional Net-
work) [23] also uses LSTMs for surgical phase recognition. It starts
by extracting discriminative visual descriptors using ResNet-50.
These descriptors are then fed into the LSTM network to capture
the temporal information. The SV-RCNet is trained in an end-to-end
manner and the ResNet and LSTM network are optimized jointly.
The authors also propose the Prior Knowledge Inference (PKI) sys-
tem, which can improve the accuracy and consistency of the phase
predictions by considering the structured and predictable nature of
surgical workflows.

Jin et al. present the MTRCNet-CL (Multi-Task Recurrent Con-
volutional Network with Correlation Loss) [24]. The architecture
is similar to other methods using LSTMs for phase recognition. It
starts with a 50-layer residual convolutional network to extract
visual features. Because the network uses a multi-task approach, it
is split into two branches. The first branch performs tool presence
recognition using a single fully connected layer and sigmoid activa-
tion. The phase recognition branch consists of an LSTM network.
The entire model is trained end-to-end, jointly optimizing the tool
and phase predictions.

Another method that uses an LSTM for surgical phase recogni-
tion is the State-Preserving LSTM [48]. In contrast with many other
prediction models, this approach focuses mainly on learning phase
transitions. This is done by first extracting tool presence informa-
tion using ZIBNet [47]. The state-preserving LSTM is then trained
on the tool predictions to learn the evolution of tool transitions be-
tween surgical phases. This approach focuses only on the presence
of tools as the primary data source, but suggests tool localisation
could be a valuable addition.
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Jalal et al. [22] proposed aCNNand LSTMmodel, a spatio-temporal
deep learning approach for surgical phase recognition. The network
architecture which consists of a CNN model and three LSTM mod-
els. The CNN part uses a ResNet-50 to extract visual features from
the input frames. These features are fed into the first LSTM model,
LSTM-clip, which extracts temporal information within short clips.
LSTM-video and LSTM-phase then capture the temporal dependen-
cies across the entire video, and use fully-convolutional layers to
predict the phases.

2.4.3 Temporal Convolutional Network-based Models for Surgical
Phase Recognition. Temporal Convolutional Networks (TCNs) were
introduced by Lea et al. [30]. As opposed to previous methods that
often used CNNs for spatial information and RNN-like architectures
for temporal information, the TCN architecture captures both lev-
els hierarchically. TCNs use an encoder-decoder framework. The
encoder uses one-dimensional convolutional layers followed by
activation and max-pooling layers. After pooling, channel-wise
normalisation is applied. The decoder is similar to the encoder
structure but uses upsampling instead of pooling. The convolutions
in a TCN are all causal, which means they do not use information
from future time-steps. The input to a TCN can be a sequence of
variable length.

The TeCNO architecture [7] used a dilated, causal Multi-Stage
Temporal Convolutional Network (MS-TCN) for the first time in sur-
gical workflow analysis. The network starts by using a ResNet-50
for feature extraction, followed by stacked predictor stages. These
predictor stages use dilated, causal convolutions for a large recep-
tive field and online phase prediction respectively. The model is
trained using cross-entropy loss after each prediction stage. The
use of multiple stages allows the model to refine the prediction of
the early stages.

2.4.4 Transformer-based Models for Surgical Phase Recognition.
The paper Attention is All You Need [58] originally introduced the
Transformer architecture. Their architecture uses self-attention
to map queries, keys, and values to outputs across long input se-
quences. This solves the problem encountered in earlier models
like RNNs and LSTMs, which struggled with capturing relations
over long sequences. Because the order of data points in a sequence
is very important when dealing with sequential data, Transform-
ers use positional encoding. Positional encoding adds relative or
absolute positional information to each token in the sequence.

Gao et al. [12] present Trans-SVNet, a transformer-based model
that uses both spatial and temporal information to predict the sur-
gical phase. The network first uses ResNet-50 [17] to extract the
spatial embeddings. These spatial embeddings are then used to
extract temporal embeddings using a Temporal Convolutional Net-
work (TCN) called TeCNO [7]. In the next step, the network outputs
a prediction based on the temporal and spatial embeddings. This is
done using an aggregation model consisting of two Transformer
layers. The aggregation model is trained using cross-entropy loss.

Zhang et al. [65] propose a Transformer-based architecture for
phase recognition in surgical videos. Their model is called C-ECT
(Cross-Enhancement Causal Transformer) and is created by modi-
fying the ASFormer [64]. The network first performs feature extrac-
tion using EfficientNetV2 [55]. The features at each timestep are

saved and used as the input to the C-ECT model. This model is sim-
ilar to the ASFormer with a few modifications. The values 𝑉 in the
cross-attention layer in the decoder come from the self-attention of
the corresponding encoder layer. This aligns the decoder with the
encoder’s self-attention layer so the network can learn both global
and local information continuously. The model is trained using
cross-entropy loss and smooth loss. C-ECT is a causal transformer
model because it uses a method that makes sure that the attention
operation is only performed on past information, and not on future
information.

Another method that uses Transformers for phase recognition
is LoViT (Long Video Transformer) [32]. The approach starts by
extracting spatial embeddings from the input frames. These spatial
embeddings are used as the input to the first Transformer layer. This
layer captures small-local features. The second Transformer layer
uses these small-local features to obtain the large-local features.
Then, a global temporal feature aggregator captures the long-range
dependencies more efficiently using an Informer module [68] Fi-
nally, all features are combined in a fusion head, which outputs a
phase transition map and a phase label for each frame.

The SKiT architecture [33] introduces the novel Key-recorder
which can efficiently capture global information. The Key-recorder
provides a way to record key events in a video sequence. First,
the spatial feature extractor extracts spatial features from the in-
put frames. These features are put into a Transformer-based local
temporal feature aggregator that captures local temporal features,
and the Global Key-recorder which records key events by pooling
information across frames using a max operation. Finally, a fusion
head integrates the local and global features to perform the final
phase prediction.

In Friends Across Time: Multi-Scale Action Segmentation Trans-
former for Surgical Phase Recognition [66], the authors introduce the
MS-ASCT (MultiScale Action Segmentation Causal TransformerMS-
ASCT) for online surgical phase recognition. The model builds upon
the ASFormer [64], a Transformer for action segmentation. The
self-attention layer in the encoder and the cross-attention layer in
the decoder of the ASFormer are modified into multi-scale temporal
self-attention and multi-scale temporal cross-attention. Because
the MS-ASCT model has to perform online surgical phase recogni-
tion, causal sliding window attention is used. Similar to the C-ECT
model, MS-ASCT is also trained using cross-entropy and smooth
loss.

2.4.5 Vision Transformer-based Models for Surgical Phase Recog-
nition. Vision Transformers (ViT) are an adapted version of the
Transformermodel in section 2.4.4. The architecture proposed in the
paper An image is worth 16x16 words: transformers for image recogni-
tion at scale [9] is mainly aimed at image-related tasks, whereas the
original Transformers were often used for tasks such as natural lan-
guage processing. The model architecture of a Vision Transformer
is very similar to that of the original Transformer, but the main
difference is the input. In a Transformer the input is usually a piece
of text converted into tokens. Because images cannot be directly
converted into tokens, they are split into fixed-sized patches. These
patches are flattened and serve as the network’s input tokens. After
this, positional embedding is added to the tokens. The rest of ViT
architecture uses the original transformer blocks and stacks them.
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It is important to note that ViT is an encoder only model, whereas
the original Transformer architecture is an encoder-decoder model.

Liu et al. [34] introduced the Swin (Shifted window) Transformer
as a more efficient and powerful adaptation of the vision trans-
former. Swin Transformers are more efficient than regular trans-
formers because of the shifted window-based approach. The model
architecture consists of Swin Transformer blocks, which are similar
to the regular ViT blocks but they use shifted local self-attention
over iterations. In each iteration the local attention is shifted. The
model is divided into stages, and each stage consists of two succes-
sive Swin Transformer blocks. Between stages they apply a tech-
nique called patch merging, which reduces the number of tokens
by a factor of four while doubling the embedding size, effectively
reducing the input size by a factor of two.

Pan et al. [40] propose a novel method for surgical phase pre-
diction that combines a Swin Transformer with an LSTM network.
Using the remote dependencies captured by the Swin Transformer
and the temporal information from the LSTM, the TSTNet can ex-
tract spatiotemporal features with more contextual information.
First, the Swin Transformer is trained based on the Imagenet-22k
dataset. The Swin Transformer then extracts multi-scale visual
features from the input frames. The LSTM network models the tem-
poral information from the input sequences. The Swin Transformer
and LSTM are trained in an end-to-end matter.

2.4.6 Surgical Video Representation. There are several features that
can be used for the representation of surgical videos. These features
can be used as the input for a phase recognition network to improve
the performance compared to generic feature extraction methods.
In this section, five of these representations will be discussed: tool
presence recognition, action recognition, semantic segmentation,
video captioning, and optical flow.

Tool presence is one of the features that can be used as input for
phase prediction networks. It involves recognizing and identifying
which tools are present in a frame and sometimes also includes
segmentation of the location of different tools. Tool presence can
provide valuable information on the current phase in videos, since
the different phases often use distinct tools. In several papers, auto-
matic tool recognition has already been used to successfully predict
phases [29, 56]. These works show that including these signals as
an input feature can improve the network performance.

Information on the current actions of the surgeons can also
be a valuable input feature for phase recognition. Each surgical
phase usually has certain actions that are performed within it,
so recognising these actions can help the final prediction network.
Action recognition is usually performed by creating an action triplet:
three words describing the subject, verb, and object of the action.
Tripnet [36], Attention Tripnet [37], Rendezvous [37], and MT-FiST
[31] are the state of the art models for action triplet recognition.

Semantic segmentation in surgical videos is another descriptor
that can be used as input to a recognition model. This focuses on
segmenting the entire surgical field instead of only the tools present
in the frame. Although the surgical field does not change signif-
icantly during laparoscopic surgeries, the position of the organs
can be useful. Especially in surgeries such as cholecystectomies or
hysterectomies, in which a specific organ is removed, segmentation
could help the phase prediction.

Video captioning in the context of surgical videos refers to the
automatic generation of descriptive text for the actions and events
within surgical videos [3]. This task not only recognises the actions
or tools in a video but also aims to understand the events that are
happening. This can provide a comprehensive description of the
surgical procedure in text format. Video captioning usually involves
a combination of computer vision and natural language process-
ing (NLP) to translate visual information into suitable sentences.
Sequence-to-sequence models, which generally use a combination
of CNNs for feature extraction and LSTMs for sequence generation,
are often used for this task because they can generate accurate and
contextually relevant captions for surgical scenes [44].

The computation of the motion of objects in a video is known
as optical flow estimation. The optical flow is estimated based on
the movement of pixels or features in an image between frames.
The surgeon’s motions and the transitions between these motions
are often generic for various surgical tasks [49]. This makes optical
flow recognition a valuable input feature for phase recognition, as
each phase often has distinct tasks and motions.

Five possible input features have been discussed in this section.
Three of the most promising features are: tool presence detection,
semantic segmentation, and action triplets. Together, these descrip-
tors can give valuable information on the actions performed by the
surgeon, the state of the surgical scene, and the instruments being
used. All of this information can be useful for the prediction of the
current surgical phase, and are therefore valuable visual cues to
implement in a multi-visual cue model.

2.5 Datasets for Surgical Video Representation
For training and evaluating the different descriptors for surgical
video representation, three datasets are used. CholecSeg8K [20] is
used for segmentation tasks and contains pixel-wise annotations
of surgical scenes. Cholec80 [56], a widely used dataset for tool
recognition, consists of 80 videos of laparoscopic cholecystectomy
surgeries annotated with surgical tool labels. CholecT50 [37] is used
for action recognition and contains triplet annotations consisting
of an instrument, verb, and target label.

3 METHODOLOGY
For the task of automatic phase recognition, a cross-modal approach
is proposed, presented in Figure 5. The model architecture consists
of a main phase recognition network and three additional branches
to extract descriptors from the input frames.

3.1 Video Characterization
The first step in the pipeline is video characterization (I). This is
done using three models, one to extract segmentation maps (A),
one for action labels (B) and one for tool labels (C). The models are
trained separately, and the trained models are used to generate the
input data for the phase recognition network.

A) The segmentation model is based on the MaskFormer Swin
Base ADE model [5], which combines the MaskFormer network
with a Swin Transformer [34]. The model is pre-trained on the
ADE20K dataset [67]. For this project, the model was fine-tuned on
the CholecSeg8k [20] dataset to make it more effective for surgical
scene segmentation. The trained and fine-tuned model is used to
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Figure 5: Diagram showing the full phase prediction pipeline including each model for extracting the descriptors (I). Method
(A) uses a fine-tuned version of the MaskFormer model presented in [5]. Method (B) employs the pre-trained action recognition
model MT-FiST [31]. Method (C) is a tool recognition model based on the tool branch of MTRCNet [24]. The phase prediction
model uses two separate cross-attention blocks, one to combine global descriptors with the segmentation maps (II). The output
is fed into the ResNet (III) and a second cross-attention block further combines the tool and action labels (IV). This is followed
by an LSTM (V) and finally themodel outputs the predicted phase. The possible phases are Preparation, Calot Triangle Dissection,
Clipping Cutting, Gallbladder Dissection, Gallbladder Packaging, Cleaning Coagulation, and Gallbladder Retraction. The labels
underneath each block represent the shape of the data.

predict segmentation maps for the frames of the Cholec80 dataset
[56]. The MaskFormer model uses the per-pixel classification loss
and mask classification loss as defined in [5]. The architecture of
the MaskFormer is presented in Appendix A.3.

B) For the action descriptors, theMulti-Task Fine-grained Spatial-
Temporal framework (MT-FiST) [31] is used. The network uses a
ResNet-50 and an LSTM module, and four branches for recognizing
instruments, actions (verbs), targets, and action triplets, which are a
combination of the instrument, verb, and target label. The MT-FiST
model is trained on the CholecT50 dataset [37] and used to generate
the action labels for the Cholec80 dataset. The architecture of the
MT-FiST model is presented in Appendix A.2. For the action labels,
only the predicted triplets are used as a descriptor in the proposed
approach. The MT-FiST model uses the binary cross entropy loss
which is defined as:

𝐿BCE = −
𝑐=1∑︁
2
𝑦𝑐 log(𝑝𝑐 ), (1)

where 𝑦𝑐 is the ground truth label for class 𝑐 and 𝑝𝑐 is the pre-
dicted probability for that class.

C) The Multi-Task Recurrent Convolutional Network(MTRCNet)
[24] is used to extract the tool descriptors from the input frames. The
tool branch of MTRCNet uses a ResNet to extract features, followed

by a fully connected layer to predict which tools are present in the
current frame. The tool label predictions for the Cholec80 dataset
are used as the fourth descriptor for the phase recognition network.
The tool recognition model also uses the binary cross entropy loss
as defined in Equation 1. Appendix A.1 shows the architecture of
the tool branch of the MTRCNet.

3.2 Multi-modal Phase Prediction with
Cross-Attention

The next step in the pipeline consists of the phase recognition net-
work based on the MTRCNet [24]. The MTRCNet consists of both a
tool recognition branch and a phase recognition branch. The phase
recognition branch, consisting of a ResNet and an LSTM module, is
used as the backbone of the main pipeline of the proposed phase
prediction network. The four different descriptors from each ex-
traction method are combined using two cross-attention blocks. In
the first cross-attention block (II), the model aligns the global im-
age descriptors with the generated segmentation maps. The global
features act as the query (Q), and the segmentation map features
act as the key (K) and value (V ).

The attention block uses multi-head attention [58], which is
calculated using:

MultiHead(𝑄,𝐾,𝑉 ) = Concat(head1, . . . , headℎ)𝑊𝑂 (2)
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where head𝑖 is defined as:

head𝑖 = Attention(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖 ) (3)

and:
Attention(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾

𝑇√︁
𝑑𝑘

)𝑉 (4)

The block’s output is an attended representation of the image that
shows the important regions based on the segmentation input. This
attended image forms the input to the ResNet module (III) from
the MTRCNet model.

The second cross-attention block (IV) further combines the out-
put of the ResNet with the tool and action descriptors. Here, the
output of the ResNet serves as the query. A concatenated label
consisting of the action and tool descriptors is used as the key
and value. The same formulas shown in Equation 2 and 4 are used
to calculate the attention. The output of this block is an attended
representation that combines the relevant aspects of the tool and
action features with the original attended image.

After the second cross-attention block, an LSTM (V) performs
the final phase prediction based on the combined inputs. The model
uses cross-entropy loss as the final loss function. Cross entropy is a
commonly used loss in multi-class classification tasks. Using the
predicted phase labels and the ground truth labels, the cross-entropy
loss 𝐿CE is computed as follows:

𝐿CE = −
𝐶∑︁
𝑐=1

𝑦𝑐 log(𝑝𝑐 ), (5)

where 𝑦𝑐 is the ground truth label for class 𝑐 and 𝑝𝑐 is the pre-
dicted probability for that class.

4 EXPERIMENTAL SETUP
This section discusses the data preprocessing steps and data aug-
mentation used for the training of each network. It discusses the
implementation details and training procedure of all experiments
in this study. The baseline models used for comparison with the
proposed model is also described in this section. Finally, it presents
the evaluation metrics used for measuring the performance.

4.1 Data Preprocessing and Augmentation
To fine-tune the segmentation model, the CholecSeg8K dataset [20]
was used. Random horizontal flipping is used to add variation to the
data. For the action recognition model, the dataset CholecT50 [37]
was used. Frames in this dataset are resized to 250 x 250. Random
horizontal flipping and random rotation are applied, as described
in the MT-FiST paper [31].

For the training of both the phase recognition network and the
tool prediction network, the Cholec80 [56] was used. This dataset
consists of 80 videos, as described in Section 2.3. First, the video
in the Cholec80 dataset were converted to frames using the same
method as was used for the MTRCNet [24]. Then, the videos are
downsampled from 25 fps to 1fps. Finally, the orignal frames are
resized to a resolution of 250 x 250. For both networks, data augmen-
tation was implemented by including random horizontal flipping,
and for the phase prediction model random cropping of 224 × 224
was used for additional augmentation. The same methods for data
augmentation are used for the baseline model MTRCNet.

4.2 Implementation Details
All experiments presented in this study are carried out using Py-
Torch [42]. The models are trained on a single GPU using the
EEMCS HPC Cluster of the University of Twente. Weights and
Biases [1] was used to keep track of the progress and results of all
experiments during this research.

For the segmentation model, the HuggingFace library is used.
The facebook/maskformer-swin-base-ade model is loaded and
fine-tuned using the CholecSeg8K dataset. The loss function
BCEWithLogitsLoss with reduction sum was used for the train-
ing of the action recognition model. The tool recognition model
uses the same loss function with reduction mean.

For applying the cross-attention between images and segmenta-
tion and between images and action and tool labels in the phase
recognition model, PyTorch’s MultiheadAttention is used. A pre-
trained ResNet50 from the torchvision library extracts the fea-
tures from the image data in both the phase and tool recognition
models. A custom ResNetBlock layer preprocesses segmentation
maps to match the input format and channel dimensions before
applying cross-attention. Dropout of 0.1 is used in the Resnet blocks.
The LSTM and the fully connected layers use Xavier weight initial-
ization [13], which can improve stability and make convergence
faster during training. Segmentation maps are one-hot encoded.

4.3 Training Procedure
4.3.1 Action Recognition Model. For the action recognition, the
pre-trained MT-FiST model as described in [31] is used. For the
training of this model, the first 36 videos of the CholecT50 dataset
were used. The parameters were chosen based on validation of
the last 9 videos. The weights of the pre-trained model are loaded
and used for inference on the Cholec80 dataset, and the action
triplets predicted by the model are saved. Because the CholecT50
dataset consists of 45 videos that are also in the Cholec80 dataset,
the inference is only done on the remaining 35 videos that were
not used for training or validation of the MT-FiST model.

4.3.2 Segmentation Model. The test set consists of the same 35
videos as the test set for the pre-trained action recognition model
described in the previous section. The training set includes all videos
from the CholecSeg8K dataset that do not appear in the chosen test
set, which is 10 videos in total. Of these videos, 85 percent of the
frames are used for training and the remaining 15 percent are used
for validation.

The segmentation model uses the weights of the pre-trained
MaskFormer Swin Base ADE [5]. The fine-tuning of the model
is done using a batch size of 32 and the Adam optimizer with a
learning rate of 5e-5. The model is trained for 100 epochs, and
hyperparameters were chosen based on the results of the validation
set. The parameters of the experiment with the highest IoU scores
are chosen for the final training. The mean IoU of the predicted
segmentation maps is saved at every epoch. The fine-tuned model
is saved at every epoch, and after training the model with the
highest IoU score is used for inference on the test set. The predicted
segmentation maps of the test set are saved as a NumPy array, to
be used as input to the phase prediction model.
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4.3.3 Tool Recognition Model. The Cholec80 dataset is used to
train the tool recognition model. The data is split into a train and
validation set the same way as was done for the action recognition
model. The same 36 videos are used for training and 9 videos for
validation. This ensures that the remaining videos have not been
used in the training of any of the separate input models for the
phase recognition network, and can therefore be used for training,
validating and testing that network.

The training is done using a batch size of 100, and Adam opti-
mizer with a learning rate of 1e-3 is used. The model was trained
for 50 epochs. The average accuracy and the individual accuracy for
each tool are saved every epoch. After training, the saved model is
used for inference on the remaining videos of the Cholec80 dataset,
and the predicted tool labels are saved.

4.3.4 Phase Recognition Model. As explained in Section 4.3.1, the
CholecT50 dataset consists of 45 videos from the Cholec80 dataset.
Those 45 videos have been used to train and test the pre-trained
model used for action triplet recognition, which serves as one of
the inputs to the phase recognition model. Because the phase recog-
nition network is trained using the Cholec80 dataset, this could
potentially cause data leakage, if the same videos are used again. In
order to prevent this data leakage, only the remaining 35 videos are
used for the training, validation and testing of the phase recognition
network.

These available 35 videos are split into a train, validation, and
test set, where 20 percent of the data is used to create a test set. The
phase model is trained using 5-fold cross-validation, training on 80
percent of the remaining data and validating on the 20 percent for
each fold. The data split for the train and test sets is done at a video
level, to ensure that subsequent frames from a single video do not
appear in the different subsets. This approach guarantees that the
test dataset consists entirely of actual unseen data. However, due
to the fact that data is randomly split into a train and validation
set in each fold, this split was performed at a frame level. Figure 3
in Section 2.3 showed that the number of frames per video varies
greatly. A random split at the video level would therefore result in
large variations of training and validation set, which is why the
frame-wise split was implemented instead.

Many hyperparameters were tested through experimentation,
and the best subset of hyperparameters was used for all the final
trainings. During training, a batch size of 32 is used for both training
and validation. The model uses the Adam optimizer with a learning
rate of 3e-5. The running loss, accuracy, and F1 score are calculated
and saved every epoch for both training and validation. A sequence
length of 4 is used as the input into themodel. Each fold is trained for
50 epochs, and the model weights are saved for the epochs with the
highest validation accuracy. After the cross-validation, the model
with the highest validation accuracy is evaluated on a separate
test set. This evaluation phase gives a final test accuracy and F1
score that show the model’s performance across both validation
and unseen test data.

4.4 Baseline Model
The pipeline shown in Figure 6 shows the baselinemodel that is used
to compare the results of the cross-modal approach. This pipeline
consists of a similar structure as the proposed architecture but

Figure 6: Pipeline of the baseline model without cross-
attention for phase prediction, based on the phase branch of
MTRCNet [24].

does not include the cross-attention blocks. It is a straightforward
network that starts with a ResNet. The output of the ResNet is fed
into an LSTM layer followed by a fully connected layer to predict
the surgical phases. Similar to the proposed model, the baseline
model is also trained using cross-entropy loss.

4.5 Ablation Study
An ablation study is conducted to show the impact of the different
descriptors. In each experiment, a different combination of descrip-
tors was used for the cross-modal attention, in order to see how
each of them contributes to the final phase prediction results. The
first configuration uses all descriptors, so segmentation, action, and
tool, along with the global image features. In the next experiment,
cross-attention is limited to only segmentation features and global
features. The third configuration uses only action descriptors for
the cross-attention, and in the final experiment, only tools are com-
bined with the global descriptors in the cross-attention block. Each
of these ablation tests shows different insights on how the individ-
ual descriptors contribute to the predictions of the model. A full
ablation table is presented in Table 5 in Section 5.

4.6 Complete Dataset
The initial experiments were conducted using a subset of Cholec80
to avoid data leakage from the pre-trained models for action triplet
recognition and the segmentation model, as they were partially
trained on Cholec80 videos. This ensured that there was no overlap
between the data used for pre-training the descriptor models and
the data used for evaluating the proposed model. To show the
performance of the proposed model without any data constraints,
an additional ablation study was conducted using the complete
Cholec80 dataset. The training procedure followed the same steps
as the original ablation as described in Section 4.5. However, a
different data-splitting method is used, as there are more videos
in the training data for this experiment. The data split used in the
MTRCNet paper [24] was used, with 40 videos for training and 40
for testing. The results of these experiments are presented in Table
7 in Section 5.

4.7 State of the Art Comparison
The baseline model and the best-performing model found in the ab-
lation studies are then compared to state-of-the-art on two different
datasets, Cholec80 [56] and HeiChole [59]. For the Cholec80 results,
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(a) (b) (c) (d) (e)

Figure 7: Examples of the predicted segmentation masks along with the original images.

<bipolar, coagulation,
liver>

<hook, cutting, gallblad-
der>

<grasper, coagulation, ab-
dominal wall>

<grasper, retraction, gall-
bladder>

<hook, coagulation, large
intestine>

Figure 8: Examples of the action triplets predicted by the model.

(a) hook (b) scissors (c) no_tool (d) bipolar, grasper (e) specimen_bag

Figure 9: Examples of the tools predicted by the model, along with the corresponding input frame.

the same training procedure and implementation were used for
the ablation study with the full Cholec80 dataset. For the HeiChole
results, the training procedure is also the same as the ablation study,
but the data splitting method is different. Since the official test set
for the HeiChole dataset is not publicly available, a custom data-
split is used to create a test set from the training data, as detailed
in [45].

4.8 Evaluation Metrics
The different evaluation metrics that measure the performance of
each individual model are described in the following paragraphs.

4.8.1 Segmentation. For the segmentation model, the mean Inter-
section over Union (mIoU) is used, which measures the overlap
between the predicted segmentation map and ground truth masks.
The mean IoU is calculated as follows:

IoU𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑃𝑐 + 𝐹𝑁𝑐
(6)

Mean IoU =
1
𝐶

𝐶∑︁
𝑐=1

IoU𝑐 (7)

where 𝐶 is the total number of classes, 𝑇𝑃𝑐 (True Positives) is the
count of pixels correctly classified as class 𝑐 , 𝐹𝑃𝑐 (False Positives)
is the count of pixels incorrectly classified as class 𝑐 (they belong
to another class but are predicted as 𝑐), 𝐹𝑁𝑐 (False Negatives) is

the count of pixels belonging to class 𝑐 but incorrectly classified
as a different class. Mean IoU is often used in semantic segmenta-
tion tasks and indicates how well the model predicts the different
surgical regions in the segmentation map.

The Dice similarity coefficient (DSC) [8], or Dice score, is also
used to evaluate the performance of the segmentationmodel. It mea-
sures the overlap between the predicted and ground truth masks. It
is calculated as:

Dice𝑐 =
2 ·𝑇𝑃𝑐

2 ·𝑇𝑃𝑐 + 𝐹𝑃𝑐 + 𝐹𝑁𝑐
(8)

Mean Dice = 1
𝐶

𝐶∑︁
𝑐=1

Dice𝑐 (9)

The Dice score ranges from 0 to 1, where a higher score shows
better overlap between the predicted and actual segmentation. The
main difference with the mean IoU is that Dice score weighs correct
predictions higher.

4.8.2 Action Recognition. For action recognition, the same evalua-
tion method as described in the MT-FiST framework for surgical
action triplet recognition [31] is used. The mean Average Preci-
sion (mAP) is calculated on the instrument-verb-target triplets as
detailed in the MT-FiST paper.

4.8.3 Tool Recognition. The performance of the tool recognition
network is evaluated using the average accuracy and the individual
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Method Mean IoU
Mask2Former [4] 0.691
HRNet + SP-TCN [14, 54] 0.6537
Swin base + SP-TCN [14, 34] 0.6938
MaskFormer [5] (fine-tuned on CholecSeg8k [20]) 0.863

Table 2: Surgical scene segmentation result comparison for
Mask2Former, HRNet + SP-TCN and Swin base + SP-TCN.
The models are evaluated on the CholecSeg8K dataset [20].

accuracy per tool class. The average accuracy is expressed as:

Average Accuracy =
Number of Correct Predictions
Total Number of Predictions (10)

For individual tool accuracy, each tool 𝑡 has its accuracy calculated
as:

Accuracy for Tool =
Correct Predictions for Tool

Total Instances of Tool (11)

This metric is calculated for every tool in the set [’Grasper’,
’Bipolar’, ’Hook’, ’Scissors’, ’Clipper’, ’Irrigator’,
’SpecimenBag’] to calculate the model’s performance for each tool
individually.

4.8.4 Phase recognition. To evaluate the performance of the phase
recognition network, the accuracy and the F1 score are used. Ac-
curacy measures the ratio of correct predictions out of the total
number of predictions, and gives an indication of the overall model
performance. It is defined as:

Accuracy =
Number of Correct Predictions
Total Number of Predictions (12)

The F1 score is the harmonic mean of precision and recall and
shows the model’s accuracy on the positive class. It is calculated
using the following formula:

F1 = 2 × TP
2 × TP + FP + FN , (13)

where TP, FP, and FN are the true positives, false positives, and
false negatives, respectively.

5 RESULTS
This section showcases the results of the individual models for
descriptor extraction, the ablation studies of the phase recognition
models, and the comparisons with state-of-the-art models.

5.1 Video Characterization
The segmentation model MaskFormer [5], after being fine-tuned
using the CholecSeg8k dataset [20], achieved a mean IoU of 0.863.
This score shows that the model can successfully generate seg-
mentation masks that closely match the ground truth masks. Table
2 shows the mean IoU of the fine-tuned MaskFormer compared
to the results of three other models: Mask2Former [4], HRNet +
SP-TCN [14, 54], and Swin base + SP-TCN [14, 34]. The fine-tuned
MaskFormer model achieves the highest mean IoU score out of all
of these models. This result seems to indicate that using an already
well-performing pre-trained model as the base, and fine-tuning this
on surgical video data, has improved the result of the segmentation
model. However, certain inputs such as very dark frames or frames

Method 𝑚𝐴𝑃𝐼 𝑚𝐴𝑃𝑉 𝑚𝐴𝑃𝑇 𝑚𝐴𝑃𝐼𝑉𝑇
Tripnet [36] 74.6 42.9 32.2 23.4
Attention Tripnet [36] 77.1 43.4 30.0 25.5
Rendezvous [37] 32.2 47.5 37.7 32.7
MT-FiST [31] 82.1 51.5 45.5 35.8

Table 3: Action triplet recognition result comparison for Trip-
net, Attention Tripnet, Rendevous and MT-FiST. The models
are evaluated on the CholecT50 dataset [35].

Tool EndoNet [56] FCN_ESP_Msk [57] MTRCNet [24]
Grasper 0.844 0.967 0.820
Bipolar 0.869 0.955 0.990
Hook 0.956 0.996 0.932
Scissors 0.586 0.500 0.993
Clipper 0.801 0.823 0.991
Irrigator 0.744 0.943 0.969
Specimen bag 0.868 0.935 0.976
Mean 0.810 0.874 0.953

Table 4: Tool presence detection result comparison for En-
doNet, MTRCNet-CL and FCN_ESP_Msk. The models are
evaluated on the Cholec80 dataset [56].

with motion blur in it still present some issues for the model. Figure
7 shows some examples of the predicted segmentation masks to
illustrate the model performance qualitatively. Figure 7a, 7b and 7c
show some of the better outputs of the segmentation model. The
predicted masks are clear, most of the borders are accurate and the
masks seem to match the input images well. Figure 7d shows an
example of a dark frame. The tool in the bright foreground seems to
be segmented well, while the segmentation of the dark background
matches the input image less well. Finally, in Figure 7e, a frame
with motion blur is shown. The predicted segmentation for this
frame also shows less clear boundaries and incorrectly segmented
areas on the left and right where the scene is blurred.

After re-running the experiments using the pre-trained model,
the results for the action recognition model are the same as pre-
sented in the MT-FiST paper [31]. The individual𝑚𝐴𝑃 for the in-
strument, verb and target labels are 82.1, 51.5, and 45.5 respectively.
The𝑚𝐴𝑃 for the full triplets is 35.8. Table 3 shows these results
compared to three state of the art models: Tripnet [36], Attention
Tripnet [37], and Rendezvous [37]. The results of these models are
presented in Table 3.𝑚𝐴𝑃𝐼 ,𝑚𝐴𝑃𝑉 ,𝑚𝐴𝑃𝑇 and𝑚𝐴𝑃𝐼𝑉𝑇 denote the
mean average precision of the instrument, verb, target, and triplet
recognition tasks. While the scores for the full action triplets are
not incredibly high, Table 3 shows that the MT-FiST model obtained
the highest scores on action triplet recognition out of these three
state of the art models. Figure 8 presents several examples of images
and their corresponding predicted action triplet label to show the
results of the model on the Cholec80 dataset.

For the tool recognition branch, theMTRCNet model was trained.
Table 4 shows the accuracy of this model on the individual tool
classes, along with two other state of the are models for comparison.
The MTRCNet achieved the highest accuracy for almost all seven
classes, except for the classes Grasper and Hook. For these classes,
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the model FCN_ESP_Ms showed the best results. The class Scissors
shows a large difference between the score of the MTRCNet and
the other two models, with accuracies of 0.993, 0.586 and 0.500
respectively. This gap gives a mean accuracy for the MTRCNet of
0.953, which is significantly higher than the other models (0.810 and
0.874). The class Grasper was the hardest for the model to predict
correctly with an accuracy of 0.8195. Figure 9 shows some examples
of images in the Cholec80 dataset along with their predicted tool
label. Even in the case where there is some motion blur present in
the frame, such as in Figure 9d, the model can accurately predict
the tools present in the image.

5.2 Ablation Study
Table 5 shows the results of the ablation study for the phase recog-
nition model described in Section 4.5 after training on the subset of
Cholec80 [56]. On the validation set, Model 4 has both the lowest
accuracy and F1-score, with scores of 0.966 and 0.976 respectively.
Model 5, the model that incorporates cross-attention with segmen-
tation, action triplets and tool labels, has the best performance on
the validation set with an accuracy of 0.972 and an F1-score of 0.981.
All models have higher accuracies and F1-scores on the validation
set than on the test set. This will be discussed in detail in Section 6.

The results on the test set are distributed differently than on the
validation set. Model 3 outperformed the other ablationmodels with
an accuracy of 0.823 and an F1-score of 0.739 on the test set. The
model using all three visual cues, Model 5, consistently performs
worse than most of the ablation models. Models incorporating
cross-attention between images and only one other visual cue seem
to achieve higher accuracies and F1 scores in this ablation study.
It is worth mentioning that both Model 2 and 3 outperform the
baseline Model 1 when it comes to the F1 score, with scores of 0.732,
0.739 respectively compared to 0.726 for Model 1. Only Model 3
outperforms the baseline model in accuracy. In general, Model 3
shows the most promising results out of the 5 ablation models
presented in Table 5.

Table 6 shows the individual accuracies of these ablation models
for each phase. For all models, the highest accuracy is achieved
on the phase Gallbladder Dissection. The phase Preparation shows
the lowest scores across almost all models. An interesting observa-
tion is that Model 2, which incorporates segmentation maps, is the
only model to achieve an accuracy above 0.5 for this phase (0.627).
There is no model that consistently outperforms the others in ev-
ery phase. Model 4 outperforms the other models in most phases,
achieving the highest accuracies in Calot Triangle Dissection (0.839),
Cleaning Coagulation (0.800), and Gallbladder Retraction (0.733).
Model 3 achieves the best performance in Clipping Cutting with
an accuracy of 0.730, while Model 5 performs best in Gallbladder
Packaging at 0.805. Although the baseline model (Model 1) achieves
the highest accuracy for Gallbladder Dissection (0.909), it generally
underperforms compared to models incorporating multiple visual
cues.

Figure 10 shows confusion matrices for the baseline Model 1, and
the best-performing model in the ablation study, Model 3. For both
models the diagonal values, representing correctly classified phases,
are higher compared to the values outside of the diagonal for each
phase. Figure 10b shows that Model 3 misclassified 6 percent of

Gallbladder Dissection as Calot Triangle Dissection, compared to
only 4 percent by Model 1. Similarly, both Model 1 and 3 incorrectly
predict the label Gallbladder Dissection for 15 and 14 percentof
ground truth label Calot Triangle Dissection respectively, and 26
and 18 percent of Clipping Cutting respectively. Both models also
shows a high number of misclassifications for the Preparation phase.
Model 1 incorrectly predicted 46 percent as Calot Triangle Dissection
compared to 44 and correctly predicted labels Model 3 has a slightly
lower number of misclassification for this class, with 42 percent
incorrect predictions compared to 48 correct ones. Overall, the
confusion matrix of Model 3 shows less significant misclassification
than the percentages in Model 1.

Table 7 presents the results of the ablation models trained and
evaluated on the complete Cholec80 dataset, with no data con-
straints. The baselineModel 1, which uses only image data, achieved
an accuracy of 0.792 and an F1 score of 0.844. Of the models incor-
porating cross-attention with multiple visual cues, Model 3, which
integrates action triplets with image features, achieved the highest
accuracy and F1 score of 0.826 and 0.871, respectively. Model 5,
which combines all three visual cues (segmentation maps, action
triplets, and tool labels), achieved a slightly lower performance,
with an accuracy of 0.801 and an F1 score of 0.852. Only models 3
and 5 outperform the baseline Model 1 on both the accuracy and
F1 score.

Figure 11 shows several example frames from the Cholec80
dataset along with the predicted label and the ground truth label.

5.3 State of the Art Comparison
Table 8 shows the accuracy and F1 score on the Cholec80 dataset
for the models presented in Section 2.4 and for the baseline model
and the best ablation model proposed in this research. The two
best-performing models on the Cholec80 dataset are EffNetV2
C-ECT+CAFF and EffNetV2 MS-ASCT. Both of these models are
Transformer-based methods as discussed in Section 2.4.4. When it
comes to both the accuracy and F1 score, the proposed model does
not outperform the state-of-the-art models. The best ablation model
proposed in this research achieved an accuracy of 0.826 and an F1
score of 0.871, which, while not outperforming the state-of-the-art
models, falls within the error margins of the highest reported F1
score, 0.928 ± 0.061.

Table 9 shows an overview of the accuracy and F1 score of
the model on the HeiChole benchmark dataset [59]. The best-
performing existing model, MuST, achieved an F1 score of 0.773.
The best ablation model proposed in this research achieved an F1
score of 0.796, outperforming the performance of state-of-the-art
models CUHK, HIKVision, and CAMMA 1, which had F1 scores of
0.650, 0.654, and 0.688, respectively. It is important to note that the
models marked with an asterisk (*) in the table were evaluated on
a separate test set, which is not publicly available.

6 DISCUSSION
This section discusses the obtained results of the ablation study
and the state of the art comparisons in detail. It also answers the
research questions for this study, and gives recommendations for
future work.
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Visual cues Validation Set Test Set
Model Image Segment-

ation
Action
triplets

Tools Accuracy F1 Score Accuracy F1 Score

1 ✓ 0.970 0.979 0.816 0.726
2 ✓ ✓ 0.970 0.979 0.786 0.732
3 ✓ ✓ 0.971 0.981 0.823 0.739
4 ✓ ✓ 0.966 0.976 0.804 0.719
5 ✓ ✓ ✓ ✓ 0.972 0.981 0.796 0.720

Table 5: Accuracy and F1 score for the ablation models trained on a subset of Cholec80 [56]. Model 1 is the baseline model
using only image data as input. Models 2, 3, and 4 use cross attention between images and segmentation masks, action triplets
and tools respectively. Model 5 incorporates cross attention between images and the three visual cues.

Phase P1 P2 P3 P4 P5 P6 P7
Model 1 0.443 0.815 0.674 0.909 0.788 0.694 0.634
Model 2 0.627 0.728 0.623 0.906 0.788 0.672 0.630
Model 3 0.480 0.826 0.730 0.888 0.775 0.717 0.675
Model 4 0.348 0.839 0.602 0.864 0.725 0.800 0.733
Model 5 0.456 0.790 0.627 0.881 0.805 0.746 0.583

Table 6: Individual accuracies for the ablation models on the test set. The phases are Preparation (P1), Calot triangle dissection
(P2), Clipping and cutting (P3), Gallbladder dissection (P4), Gallbladder packaging (P5), Cleaning and coagulation (P6), and
Gallbladder retraction (P7).

(a) Model 1 (b) Model 3

Figure 10: Confusion matrices showing the predictions of the baseline Model 1 and Model 3 (images and action triplets). The
phases are Preparation (P1), Calot triangle dissection (P2), Clipping and cutting (P3), Gallbladder dissection (P4), Gallbladder
packaging (P5), Cleaning and coagulation (P6), and Gallbladder retraction (P7). Colours and values in the matrix are normalized
based on the number of class instances.

6.1 Ablation Study
The results on the validation set in Table 5 show no clear immediate
difference in performance between the different descriptors. The
results do show quite a large difference between the performance
on the test set and the validation set. The most probable reason for

this contrast is the way the data is split for both sets. As explained
in Section 4.3, the train and validation set are split in a frame-wise
matter, and the test set is split at a video level. This means that
the test set results show the performance on entirely unseen data,
while the validation results might show the performance on frames
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Visual cues
Model Image Segment-

ation
Action
triplets

Tools Accuracy F1 Score

1 (baseline) ✓ 0.792 0.844
2 ✓ ✓ 0.771 0.827
3 ✓ ✓ 0.826 0.871
4 ✓ ✓ 0.777 0.831
5 ✓ ✓ ✓ ✓ 0.801 0.852

Table 7: Accuracy and F1 score for the ablation models trained on the full Cholec80 dataset [56]. Model 1 is the baseline model
using only image data as input. Models 2, 3, and 4 use cross-attention between images and segmentation masks, action triplets
and tools respectively. Model 5 incorporates cross-attention between images and the three visual cues.

GT: Preparation
Pred: Preparation

GT: Preparation
Pred: Gallbladder Retraction

GT: Calot Triangle Dissection
Pred: Calot Triangle Dissection

GT: Calot Triangle Dissection
Pred: Gallbladder Dissection

GT: Clipping Cutting
Pred: Clipping Cutting

GT: Gallbladder Dissection
Pred: Gallbladder Dissection

GT: Gallbladder Dissection
Pred: Calot Triangle Dissection

GT: Gallbladder Packaging
Pred: Gallbladder Packaging

GT: Gallbladder Packaging
Pred: Cleaning Coagulation

GT: Gallbladder Packaging
Pred: Gallbladder Retraction

GT: Cleaning Coagulation
Pred: Cleaning Coagulation

GT: Pred: Gallbladder Retraction
Pred: Pred: Gallbladder Retraction

Figure 11: Examples of the predicted phases along with the original image and the ground truth phase label. All predictions are
made by ablation Model 3 on the Cholec80 dataset [56]. All images are normalized and resized to 256x256, as per the training
and testing transforms.

adjacent to those seen in the training set. In this study, this was
mainly done because k-fold cross-validation was used for training,
and randomly splitting at a video level would result in large varieties
between dataset sizes. However, splitting all datasets at this level

could give more realistic and robust results of the performance of
the models.

The results on the test set in Table 5 show that while the per-
formance is similar, cross-attention does not always give higher
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Method Year Accuracy F1 Score
EndoNet [56] 2016 0.817 ± 0.042 0.765 ± 0.055
SV-RCNet [23] 2018 0.853 ± 0.073 0.821 ± 0.072
MTRCNet-CL [24] 2019 0.892 ± 0.076 0.874 ± 0.056
MTRCNet [24] 2019 0.859 ± 0.076 0.823 ± 0.108
MTRCNet SingleNet [24] 2019 0.853 ± 0.069 0.816 ± 0.110
State-Preserving LSTM [48] 2020 - 0.814
TeCNO [7] 2020 0.886 ± 0.078 0.871 ± 0.069
Trans-SVNet [12] 2021 0.903 ± 0.071 0.897 ± 0.062
CNN+LSTM [22] 2021 0.929 0.875
LoVit [32] 2023 0.924 ± 0.063 0.903 ± 0.052
TSTNet-PRA [40] 2023 0.928 ± 0.086 0.906 ± 0.086
SKiT [33] 2023 0.934 ± 0.052 0.913
EffNetV2 C-ECT+CAFF [65] 2023 0.949 ± 0.040 0.928 ± 0.061
EffNetV2 MS-ASCT [66] 2024 0.953 ± 0.04 0.925 ± 0.071
MTRCNet SingleNet (own training) 2024 0.792 0.844
Proposed model 2024 0.826 0.871

Table 8: Accuracy and F1 scores of the models discussed in this research on the Cholec80 dataset [56], the baseline model
MTRCNet SingleNet (own training) and the best-performing ablation model, Model 3.

Method Year F1 Score
CUHK* [59] 2021 0.650
HIKVision* [59] 2021 0.654
CAMMA 1* [46] 2021 0.688
MuST [45] 2024 0.773
MTRCNet SingleNet (own training) 2024 0.761
Model 3 2024 0.796

Table 9: F1 score of Model 3 and the state-of-the-art models
on the HeiChole benchmark dataset [59]. Models marked
with *were evaluated on a separate test set that is not publicly
available.

accuracies or F1 scores when compared to the baseline Model 1.
This can partially be explained by the use of trained models for
descriptor extraction, as mentioned earlier in this section. As shown
by the results of the three separate branches for feature extraction
in Section 5, the models do not perform perfectly. The extracted
tool and action labels and segmentation maps are a prediction, and
this prediction can be wrong. This means sometimes the descriptors
do not match the input frames and can lead to the model receiv-
ing conflicting information. For example, if the tool recognition
model incorrectly predicts the tool label, or the action model mis-
classifies an action, the cross-attention mechanism might focus on
wrong or irrelevant features. This could decrease the effectiveness
of the cross-attention block. Possible improvements for this will be
discussed in future work in Section 6.4.

An interesting observation from the ablation study is the higher
F1 scores achieved on the test set by Model 2 and Model 3 (0.732
and 0.739 respectively) compared to both Model 1 and Model 5
(0.726 and 0.720 respectively). This indicates that segmentation
maps and action triplets seem to provide more valuable information
for phase recognition compared to tool features. The relatively

lower F1 score of Model 5 suggests that adding tool features may
introduce noise or confusion to the model that negatively affects the
performance when combined with the other descriptors. Overall,
these findings show that segmentation and action triplets are the
most critical visual cues for understanding surgical workflows, as
they outperform the single visual cue model as well as the model
with all visual cues combined. Improving the segmentation and
action triplet extraction methods could therefore likely have the
most significant effect on the overall model performance.

The accuracies of the individual phases in Table 6 gave a more
in-depth look into the performance of the ablation models. Even
though the accuracy and F1 score for Model 3 were the highest, the
individual accuracies do not outperform the other ablation models
for each class. Table 6 shows that only for the phaseClipping Cutting
(P3) this model achieves the highest individual class accuracy. This
discrepancy between the best total accuracy and best individual
accuracies can be explained by the class imbalance. Phases with
more frames, such as Calot Triangle Dissection (P2) and Gallbladder
Dissection (P4), contribute more to the overall accuracy and F1 score
Models can perform well in these phases despite not consistently
achieving the highest individual accuracy for all phases. However,
the fact that Model 3 also achieved the highest F1 score indicates
that it balances precision and recall across all classes.

The pie charts in Figure 16 in Appendix C provide further in-
sights into the challenges the model faces, especially for Model 4
and 5. These models incorporate tool data, but Figure 16 shows
that there is a significant overlap in the tool usage across phases.
The phases Calot Triangle Dissection and Gallbladder Dissection are
often confused by the model, and the charts show that both of these
phases mainly use the tools Grasper and Hook. Other phases that
show very similar tool usage are Gallbladder Packaging and Gall-
bladder Retraction. As shown in the confusion matrices of Model 4
and 5 presented in Figure ?? in Appendix D, these phases also show
some misclassification by the models, but not as much as the phases
Calot Triangle Dissection and Gallbladder Dissection. The reason for
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this could be that visually, Gallbladder Packaging and Gallbladder
Retraction look more different because a completely different action
is performed, and the other two phases perform the same action
(dissection), just on a different target.

The confusion matrices in Figure 10 presented which phases the
baseline Model 1 and best-performing Model 3 performed well on
and which phases they struggled with the most. It shows that, for
Model 3 mainly in Preparation (P1), Calot Triangle Dissection (P2)
and Clipping Cutting (P3) there are a lot of misclassifications. For
the Preparation phase, this is because many frames are classified as
Calot Triangle Dissection frames. These are two subsequent phases
and share several similarities. Calot Triangle Dissection is also one
of the longer phases in the surgery, while Preparation only has very
few frames in the Cholec80 dataset, as shown in Figure 4.

The two other phases that show a decent amount of misclassifica-
tions are Calot Triangle Dissection and Clipping Cutting (P3). Model
3 predicted Calot Triangle Dissection (P2) as Gallbladder Dissection
(P4) in 14 percent of the cases. Clipping Cutting is predicted as
Gallbladder Dissection 18 percent of the time. The confusion matrix
for the baseline Model 1 shows very similar results. The most often
misclassified phases are also Preparation, Calot Triangle Dissection
and Clipping Cutting, as seen in Figure 10b. This confusion of the
models is likely due to the similarities between the phases Calot Tri-
angle Dissection, Clipping Cutting and Gallbladder Dissection. Calot
Triangle Dissection and Gallbladder Dissection are both dissection
phases, and actions in phase Clipping Cutting are very similar to
dissecting. This could explain the fact that the model sometimes
struggles to correctly predict these specific phases.

The results for the ablation study using the full Cholec80 dataset,
presented in Table 7, shows the potential of using multiple vi-
sual cues in an attention mechanism framework, especially when
enough data is available. The fact that Model 5, which combines
all visual cues, outperforms the baseline model indicates that us-
ing additional input modalities improves the model’s performance.
However, similar to the ablation study on the subset of the data,
the lower performance of Model 5 compared to Model 3 suggests
that it is important to be selective when it comes to choosing the
visual cues, otherwise the input can be confusing to the model and
decrease the effectiveness of the cross-modal attention.

The higher scores for Model 3 compared to the other ablation
models also reinforce the claim that action triplets are the most
valuable modality in the multi-visual cue model. This can be ex-
plained by the amount of information present in the action labels.
Including the full triplet (instrument, verb and target) in the label
gives the full context of the current surgical activity taking place,
compared to, for example, only using a tool label. This allows the
model to better differentiate between phases and achieve a higher
performance on the recognition task.

6.2 State of the Art Comparison
The best performing model in the ablation studies, Model 3, was
compared to the state-of-the-art models discussed in Section 2.4 as
well as the baseline Model 1. Table 8 shows that Model 3 achieves
an accuracy of 0.826 and an F1 score of 0.871, outperforming earlier
methods such as EndoNet (accuracy: 0.817, F1: 0.765) and MTRCNet
SingleNet (accuracy: 0.792, F1: 0.844). These results further indicate

that incorporating action triplets in a multi-visual cue framework
has positive effects on the performance on the phase recognition
task. However, the model’s performance does not reach the scores
of transformer-based architectures like EffNetV2 MS-ASCT (accu-
racy: 0.953, F1: 0.925) and SKiT (accuracy: 0.934, F1: 0.913). These
transformer models can understand long-term patterns and spatial
features, which explains their higher performance [27].

The improvement of Model 3 over the baseline does demon-
strate the potential of integrating multiple visual cues for sur-
gical phase recognition, even if it does not outperform the best
current models. The baseline model itself was already one of the
older, lower-performing models. Applying the cross-modal atten-
tion mechanisms proposed in this research to the best-performing
state-of-the-art models could result in an even higher performance
of the models.

Table 9 presents the comparison between the state-of-the-art
models trained on the HeiChole dataset [59]. Model 3 achieves an
F1 score of 0.796, outperforming MuST (0.773) and the MTRCNet
SingleNet trained in this research (0.761). This result shows the
robustness of the proposed approach. Compared to earlier methods
like CUHK (0.650) and HIKVision (0.654), the best-performing ab-
lation model, Model 3, shows significant improvement. Although
these models were evaluated on a private test set, the difference in
performance clearly shows the advantage of the proposed frame-
work for phase recognition.

6.3 Research Questions
Based on the obtained results, the answers to the research questions
in Section 1.2 are described below.

(1) For the task of automatic phase recognition in surgical
videos, what computer vision-based methods exist and
which input features do these methods use?

This research described several different computer vision methods
for surgical phase recognition in Section 2.4. These methods includ-
ing CNN-based, RNN-, LSTM-, and GRU-based models, as well as
Transformer-based architectures and Vision Transformer-based net-
works. Each of these methods has its own strengths in processing
the spatial or temporal data of surgical videos. Transformer-based
models showed the highest performances, likely because of their
ability to recognize patterns over longer sequences.

Input features commonly used include tool presence, seman-
tic segmentation maps, and action triplets. Tool labels and action
triplets can give contextual information about the current surgical
steps, while segmentation maps can add important spatial informa-
tion. These features can give a good representation of the surgical
scene in a video, but have not been studied together. This study
contributes by investigating the combination of these features.

(2) How can we leverage different visual descriptors extracted
from surgical videos in a multi-visual cue framework for
surgical phase recognition?

The proposed multi-visual cue model for surgical phase recogni-
tion incorporates three additional descriptors, along with the input
frame. These descriptors are tool presence, segmentation maps,
and action triplets. They are combined using cross-modal atten-
tion mechanisms. The descriptors are extracted from input frames
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using trained models. The model pipeline uses two separate cross-
attention blocks, one to align the raw image with the segmentation
maps, and one to further integrate the action and tool features.

Cross-modal attention has become increasingly important in
research because of its ability to capture relationships between dif-
ferent types of data, leading to improved performance in complex
tasks. By using cross-modal attention, the proposed framework
aligns and combines information from multiple visual cues, al-
lowing a better representation of surgical procedures. This work
aims to further explore the use of cross-modal attention within
for task of surgical phase recognition, contributing to the ongoing
research that uses this technique to enhance multi-modal learning.
By focusing on the combination of multiple visual cues through
cross-modal attention, the proposed approach addresses the limi-
tations of single-cue models and builds upon existing methods for
multi-modal learning.

(3) What effect does the inclusion of different descriptors in
a multi-visual cue model have on the performance of au-
tomatic phase recognition in surgical videos compared to
single visual cue models and the state of the art?

The proposed multi-visual cue framework using cross-attention
achieved mixed results. The results presented in Tables 5 and 7
showed that mainlyModel 3, which combines image data and action
triplet labels through cross-attention, achieves competitive scores
on the task of automatic phase recognition. This model outperforms
the baseline, single visual cue Model 1 when trained and evaluated
on the Cholec80 dataset. It does not, however, outperform the best
state-of-the-art models on this dataset. As discussed in Section 6.2,
the chosen baseline model could be one of the reasons for this, as
that model already performs lower than the newer state-of-the-art
models presented in this research. This model was chosen because it
is the best-performing open-source model. When comparing Model
3 to the state-of-the-art models on the Heihole benchmark dataset,
the results are even more promising. Model 3, the best configuration
of the cross-modal attention framework as shown in the ablation
study, improves upon existing methods and achieves a higher F1
score than the best performing state-of-the-art model MuST [45].

Another important finding in this research is the fact that when
using cross-modal attention, it is important to be selective with
the choice of input visual cues. The ablation studies showed that
while the combination of multiple visual cues could improve the
performance of the model, using the wrong descriptors or using
too many descriptors could result in lower results than the single-
visual cue baseline model. Especially the use of action triplets as
additional visual cue improved the model performance according
to the experiments conducted in this study.

6.4 Future Work
This research presented several limitations that can be addressed
in future work. First of all, the same training setup and hyperpa-
rameters of the baseline model were used for all experiments of the
phase prediction network, and also for the proposed model which
uses attention mechanisms. This includes the number of epochs the
models were trained for, as well as the batch size, sequence length
and the learning rate. This decision was made to keep the com-
parison between the baseline model and the proposed model fair.

Future work could investigate whether a new training setup and
additional hyperparameter tuning would benefit the cross-attention
in the proposed model. This could focus in particular on the train-
ing duration, as the model was only trained for 25 epochs due to
hardware and time constraints. This is the same amount of epochs
as the baseline model uses in the MTRCNet paper [24]. However,
as attention mechanisms can often benefit from longer training,
future work could include training the proposed model for more
epochs to see if this positively affects the performance.

The models used for the extraction of the descriptors also pre-
sented limitations. It could be useful to further improve these input
models, to make the descriptors more accurate. This way, the model
can train with high-quality data, and future work could investigate
if this enhances model performance. Additionally, an end-to-end
framework could also be implemented instead of using separate
models for descriptor extraction.

Another possibility for future work lies in applying the cross-
modal attention mechanism to newer, better-performing state-of-
the-art models. The proposed framework was based on an older
baseline model and did not outperform the newest models on this
task. The best-performing models discussed in this research are
transformer-based methods, and cross-attention aligns better with
these architectures since they already have attention mechanisms
[58]. Combining the use of multiple visual cues with such a model
as the baseline could therefore result in an even higher-performing
model.

Another relevant area of future work is further investigating
which of the modalities is the most relevant for the model. The
ablation study presented in Section 5.2 is a start, but other methods
can be used to better explain exactly which modality provides the
most valuable information for the model. Works on the importance
of specific modalities within multi-modal models already exist, as
well as methods for determining the effect of each modality [15, 61].
Implementing such approaches can give a more comprehensive
evaluation of different modalities and help in the development of
more efficient and interpretable multi-modal models.

7 CONCLUSION
This study introduced a multi-visual cue method framework using
cross-modal attention for automatic phase recognition in surgical
videos. By using descriptors such as tool presence, segmentation
maps, and action triplets, the proposed pipeline addresses certain
limitations of single-modalitymodels and provides a robust network
for phase prediction. The results demonstrate that while the multi-
visual cue model can represent the surgical scene in more detail,
its performance is very dependent on the choice and combination
of descriptors.

The best-performing configuration in the ablation study con-
ducted in this research was the model using image data and action
triplets, which outperformed the baseline model in accuracy and
F1 score on the Cholec80 dataset. However, the model did not out-
perform other state-of-the-art, transformer-based models on this
dataset. The results on the HeiChole dataset do show an improve-
ment compared to the existing state-of-the-art methods. The model
using action triplets achieved a higher F1 score than MuST, CUHK,
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HIKVision, and CAMMA 1, indicating that the proposed approach
performs well across different datasets.

Despite these results, the approach still has several limitations.
The training duration was constrained by computational resources,
and hyperparameters were kept constant across the different mod-
els in order to make a fair comparison. Future work should explore
longer training durations, more specific hyperparameter tuning,
and the use of better-performing descriptor extraction methods. Ad-
ditionally, integrating the proposed approach with state-of-the-art
transformer models instead of the current baseline model could fur-
ther improve the model performance, since transformers naturally
align with cross-attention mechanisms.

Overall, this study presents a comprehensive analysis of surgical
phase prediction models, and contributes to this field by introduc-
ing a cross-modal attention-based framework that integrates tool
presence, action triplets, and segmentation maps. The field shows
promising results that, after some refinements, can improve surgi-
cal workflow management, error reduction, and feedback during
surgeries in real-life applications.
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A MODEL DIAGRAMS
This section presents the model diagrams of the three models used for feature extraction: MTRCNet [24], MT-FiST [31], and MaskFormer [5].

A.1 Tool Recognition Model

Figure 12: Architecture of the MTRCNet for tool presence detection [24]. Only the tool branch is used for tool label extraction.

A.2 Action Recognition Model

Figure 13: Architecture of the MT-FiST model used for action triplet detection [31].
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A.3 Segmentation Model

Figure 14: Architecture of the MaskFormer used for segmentation [5].

B VALIDATION PLOTS

Figure 15: Graphs showing the validation loss, accuracy and F1 scores of the proposed model and the MTRCNet (own imple-
mentation) for a single fold of the training.
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C CHOLEC80 TOOL DISTRIBUTION

Figure 16: Pie charts showing the appearance of each tool per phase in the Cholec80 dataset [56].

D CORRELATION MATRICES

(a) Model 2 (b) Model 4 (c) Model 5

Figure 17: Confusion matrices showing the predictions of the remaining models in the ablation study presented in Table 5. The
phases are Preparation (P1), Calot triangle dissection (P2), Clipping and cutting (P3), Gallbladder dissection (P4), Gallbladder
packaging (P5), Cleaning and coagulation (P6), and Gallbladder retraction (P7). Colours and values in the matrix are normalized
based on the number of class instances.
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