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Abstract

In microscopic travel demand models, all residents are modelled as individuals that
each make their own choices based on their characteristics and circumstances. Modelling
individual behaviour offers detailed insights into mobility patterns and the effects of poli-
cies on specific target groups. The travel demand modelling begins with the generation
of a synthetic population, representing either a reference population or a future scenario.
The current population synthesizer used by Dat.mobility and Goudappel has its limitations.
During the last step, household compositions are not preserved, leading to inconsistencies,
where characteristics of individuals do not reliably represent complete households. To
ensure the new population synthesizer addresses these limitations, and generates consis-
tent households, the population synthesis problem is formulated as a mixed-integer linear
program that enforces both household consistency and compliance with marginal totals.
Additional requirements are incorporated in extensions of the mixed-integer linear pro-
gram. The proposed formulations are evaluated on a full-scale travel demand model using
the open source solver HiGHS.
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1 Introduction

Goudappel is a Dutch consultancy firm in mobility planning. Together with Dat.mobility (part
of Goudappel Group), they develop methods to collect and analyse mobility data. Dat.mobility
converts data into information that leads to insight and knowledge. To be able to advise gov-
ernments and private parties with developing and testing their mobility policy, Dat.mobility
developed a microscopic tour-based travel demand modelling framework, called Octavius [1].
This provides reliable insights into the effects of mobility policy on different target groups.

Octavius differs from classical trip- and tour-based models. In trip-based models, such as
the gravity model [2], separate trips are modelled and all inhabitants have the same average
behaviour (aggregated population). Tour-based models go a step further by generating consec-
utive trips that form a tour. The inhabitants do not all have the same average behaviour, but they
are split in subgroups, which each has its own average behaviour (disaggregated population).
Also with Octavius, tours are generated, but the inhabitants are now individually modelled
and make choices based on their characteristics (microscopic population). Microscopic travel
demand modelling focuses on simulating individual travel behaviours rather than aggregated
averages. The relative position of Octavius in comparison to other models is illustrated in
Figure 1.1.

FIGURE 1.1: Where does Octavius stand?

Besides Octavius, Goudappel also uses the gravity model and has been using it for a long
time. They still use their gravity model, because until about three years ago, it was their only
travel demand model. Also, since Octavius only exists for a couple of years, it is at present set
up for a few cities/study areas. Furthermore, gravity models can give a good approximation
when modelling traffic and the effect on for example emissions, or noise levels.

Octavius is developed because mobility varies greatly by target group. Young people travel
differently than seniors, and two working parents travel differently than a single person in
their thirties. Effective mobility policies should take these differences into account as much
as possible. It is most important that traffic models can more accurately calculate the effects
of policy measures, by taking the characteristics of individuals into account. On top of that,
they should be able to measure and visualise the effects for different target groups. In addition,

6



we see on the streets how our behaviour is increasingly influenced by new mobility forms and
concepts such as shared scooters and e-bikes, MaaS (Mobility as a Service) and hubs, and
eventually self-driving cars. A future-proof traffic model must be prepared to include their
effects in calculations.

Microscopic travel demand modelling with Octavius has various advantages. With Oc-
tavius, it is possible to test the effect of policy measures on specific target groups. The mod-
elling takes place at the individual level instead of using average behaviour, therefore it provides
a detailed insight into the mobility behaviour of different target groups and the effect of a pol-
icy on them. In Octavius, both household and personal characteristics are taken into account.
Furthermore, microscopic travel demand modelling with Octavius gives a better simulation of
reality, as it employs a tour-based approach. Therefore, the complete daily travel behaviour of
individuals is used instead of individual trips without coherence.

The current choice models implemented in Octavius derive daily activity patterns for all
persons and households within a predefined study area using the four stages as shown in Fig-
ure 1.2. In the first stage, the population synthesizer generates a synthetic population. A popu-
lation synthesizer creates a virtual representation of a population by combining individual and
household attributes in a statistically valid manner. In the second stage, tours are generated for
each agent (an individual in the synthetic population). A tour is defined as a round trip that
starts and ends at the home of a synthetic person. During a tour, the person does one or more
activities, such as working or shopping. For each synthetic person, the tour generator produces
the number of tours and the number, type, and order of the activities within each tour. An
example of a tour is home → work → store → home. This tour consists of three trips: home
→ work, work → store, and store → home. The third stage is the destination choice for each
activity in the tour. For example, where a synthetic person works and where he/she shops on
an average day. Finally, in the fourth stage, the modes are selected for all trips in all tours. A
different mode can be selected for each trip in the tour, constrained by a set of modes that are
interchangeable. A person may use public transport to get from home to work but decide to
walk from work to the store, and then travel by public transport again to go from the store to
their home.

FIGURE 1.2: Schematic overview of the four stages in the current travel demand mod-
elling framework in Octavius. The blue boxes represent the population synthesizer and
the choice models, whereas the in- and outputs to the stages are represented as blue text
without background.

Being a micro-simulator, the starting point for any application of Octavius is deriving a
synthetic population, representing either a reference population of the study area, or some
scenario. A reference population represents the current population that aligns with the known
marginal totals. In a scenario, these marginal totals are adjusted to observe how the population
changesfor instance, in response to an increase in the number of individuals or households.

For privacy reasons, there are no complete datasets on the socio-demographic characteris-
tics of individuals on a small geographic scale that can be used directly, since this is not publicly
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available and may not be used in such form. Therefore, a population synthesizer is necessary
to generate a synthetic population representative of the actual population. The population syn-
thesizer thus lies at the foundation of the microscopic travel demand modelling framework
Octavius. A population synthesizer also allows us to do forecasting and what-if scenarios on
the population. This would not be possible with only an observed population.

1.1 Problem description

The primary objective of the population synthesizer is to create a stable synthetic population
for each zone while ensuring consistency with both individual and household marginal totals
on attributes. A zone is a predefined area for which the marginal totals are known, specifically,
the number of individuals and households with certain attributes.

The population synthesizer in Octavius combines personal information (e.g. gender and
age) and household information (e.g. number of people and cars in the household), see Fig-
ure 1.3. Before we discuss the population synthesizer and its limitations in more detail, we
explain the relation between attribute categories, attributes, and segments. The attribute cate-
gories are listed in Figure 1.3, for example “gender” is an attribute category. Under note 1 we
find the attribute categories on the personal level, and under note 2 we find the attribute cate-
gories on the household level. Here, we also find the possible values for each attribute category.
The combination of an attribute category and a corresponding value is called an attribute, for
example, “gender = female” is an attribute. Finally, a segment is a combination of attributes,
for example [social participation = student, age = 18 – 29, gender = female, driver’s license =
yes, ethnicity = Dutch] is a segment.

The first step of the current population synthesizer is determining the number of synthetic
inhabitants and households in each segment per zone using Iterative Proportional Fitting (IPF).
IPF finds the most likely distribution of inhabitants and households across segments, given an
observed sample distribution, that satisfies the zonal marginal totals.

FIGURE 1.3: Schematic overview of the current population synthesizer in Octavius.
Details are discussed in Section 2.2.
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Furthermore, a representative sample of Dutch household compositions is known from the
mobility panel Netherlands (MPN). The household composition data defines the set of valid
combinations of personal and household segments. With the iterative Non-Negative Least
Squares (iNNLS) algorithm, the households in the MPN data are weighted such that the re-
sulting continuous synthetic population corresponds to the personal and household segment
totals from the two IPF results.

The continuous population is integerised using the Statistical Noise Elimination Technique
(SNET) [3]. In this step of discretising the continuous population, the household compositions
cannot be maintained using SNET. Based on the continuous household weights, SNET selects
individuals from households that have the highest value until the exact number of inhabitants in
a zone is reached. In this integerisation process, it sacrifices household consistency. Resulting
problems are, for example, that in a zone there could be only one person that is in a three-person
household, but no others in a three-person household; or two persons with a driving licence can
both use one car at the same time, while in reality they would have to share the car.

As an individual’s decision depends on both the personal characteristics and the household
situation, it is important to generate synthetic populations that take into account both personal
and household information [4, 5]. Personal and household information are both used for choice
modelling in Octavius. With the current population synthesizer there is a consistency issue in
the fact that we do not have complete households. The household information should not only
be seen as attributes of a person, but it is also important to know which persons belong together
in a household and that these households are consistent.

The inter-dependencies among households remain present in the continuous synthetic pop-
ulation obtained after iNNLS. However, the inter-dependencies are not preserved in the final
(integerised) synthetic population using SNET in the current population synthesizer. Generat-
ing a two-layered population (i.e. linking persons and consistent households) remains one of
the most challenging problems in population synthesis [6].

In addition to aligning with the marginal totals, it is important for the synthetic population
to remain stable. Stability ensures that the model produces the same solution each time it is run
with the same input. Achieving this requires a specific condition. The most reliable approach
is to introduce a condition that guarantees a unique solution. A condition with behavioural
significance, such as identifying the most likely solution, is particularly appropriate. This can
be achieved by minimising relative entropy. Furthermore, we want the solution to remain robust
to small changes, avoiding drastic shifts in outcomes. Identifying the most likely solution helps
address these requirements effectively.

1.2 Goal and outline of the report

The goal of this thesis is to develop a population synthesis method that keeps household com-
position intact and matches both personal- and household-level marginal totals. This means
generating a synthetic population where individuals are linked to the same household if they
come from the same household, and the attributes of both people and households add up to
the known marginal totals. Based on this objective, the following research question can be
formulated:

How can a discrete synthetic population be generated such that it is consistent with per-
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sonal and household marginal totals, contains information about household composition,
and is the most likely synthetic population?

To generate a reference population, it is desired to obtain a unique and most likely synthetic
population (unicity). For the scenarios, the resulting synthetic population must be stable in
order to be able to make a good comparison with the reference population (stability).

This thesis focuses on the use of a synthetic population in the microscopic travel demand
models implemented in Octavius. However, synthetic populations are also used in models with
other fields of application such as for the spread of infectious diseases [7], but also in urban
planning and public health modelling in general [8]. Therefore, generalisations of the methods
developed in this thesis may also be used in population synthesizers with other applications.
The various uses for synthetic populations have different attributes of interest [7]. Therefore,
the construction of the population synthesizer may vary across fields of application.

The remainder of this report is structured as follows. In Section 2, literature on population
synthesizers and integerisation algorithms is discussed, as well as the details of the current
population synthesizer used in Octavius. In Section 3, we present the mathematical problem
formulation, that meets the main requirements, and propose some extensions to incorporate
additional requirements. In Section 4, results of the implemented methods are presented and
analysed. In Section 5, limitations and possibilities for further research are discussed. Also, in
this section, concluding and highlights of the research are presented.
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2 Background

This section contains a literature search on population synthesis techniques (Section 2.1), and a
detailed description of the population synthesizer currently used in Octavius (Section 2.2). We
conclude this section with an overview of all methods mentioned in the previous subsections
(Section 2.3).

2.1 Literature research

Synthetic populations are a simplified representation of the actual population as only those
variables of interest are to be reproduced [9]. The primary objective of population synthesis
can be summarised as generating an individual dataset in full compliance with the statistical
characteristics of various input data [10]. For synthetic populations in microscopic travel de-
mand models, we are looking for a discrete synthetic population, as opposed to a continuous
synthetic population, that contains consistent households with individuals that each have their
own set of characteristics.

There are three different categories of approaches in generating synthetic populations [11],
namely synthetic reconstruction (SR), combinatorial optimisation (CO), and statistical learning
(SL). SR and CO methods produce synthetic populations by means of replicating individuals,
whereas SL methods draw a population following a joint probability estimation. SR methods
are deterministic, whereas CO an SL are both stochastic. [4]

Population Synthesis

Statistical Learning

· hierarchical MCMC
· Bayesian networks
· hierarchical mixture
· deep generative

modelling
· . . .

Combinatorial Optimisation

· hill-climbing
· simulated

annealing
· genetic

algorithm
· . . .

Synthetic Reconstruction

allocation

· truncate replicate sample
· statistical noise

elimination technique
· . . .

fitting

· (hierarchical) iterative
proportional fitting

· iterative proportional update
· Entropy optimisation
· Generalised ranking
· (iterative) non-negative

least squares
· . . .

FIGURE 2.1: Schematic overview of population synthesis methods.
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2.1.1 Synthetic reconstruction (SR)

SR methods follow a two-step procedure: fitting and allocation. The fitting step assigns positive
weights to the individuals and households. In the allocation step, these non-integer weights are
converted to integer weights, and individuals are replicated in proportion to their weights [? ].

Iterative Proportional Fitting (IPF) is the most widely used algorithm for the fitting step
within SR to generate a synthetic population. For IPF it is important to have an initial, rep-
resentative sample of the true population at hand [12] since the result depends on the input
sample. The advantages of IPF are that it is simple, accurate, fast, and it finds the most likely
population. That is, the population adhering to the minimum relative entropy. However, it is not
able to generate synthetic populations linking persons with households [12, 4, 5]. It is a clear
shortcoming when a method is not able to generate a two-layered synthetic population, as an
individual’s decision depends on both his/her personal characteristics and household situation
[13, 14, 6]. Therefore, it is important to have the individuals linked to households.

Another shortcoming of IPF (and also other SR methods) is the zero-cell problem [4]. It
occurs when one or more cells in the contingency table have a zero value, indicating that a
specific combination of attributes (a segment) does not exist in the sample population that gives
the distribution over the segments (see Figure 1.3). If a cell starts with a zero, no matter how
much adjustment is made, the cell remains zero. A zero-cell implies that the corresponding
segment will not be represented in the synthetic population, even if the real population could
have a small but non-zero count for that combination due to sampling or rounding errors.

Besides IPF, there are more methods that fall under the SR category, also ones that can
generate a two-layered population (e.g. persons and households). Yamogo et al. [4] name
Iterative Proportional Update (IPU) and Hierarchical Iterative Proportional Fitting (HIPF) as
methods that simultaneously estimate both household and individual-level attributes. They
respectively compute the factors and weights linked to individual and household records using
an iterative approach with a cross-categorisation of individual types into household types. HIPF
constantly switches between the household and person domain. Whereas in IPU, weights are
adjusted to satisfy household level constraints first and then updated to satisfy person-level
constraints.

When the population synthesis problem is formulated as a constrained optimisation prob-
lem, it can be solved using one of two approaches: entropy-optimisation (ENT) and generalised
ranking (GR). Entropy-optimisation directly optimises an information-based similarity metric
of the weights and therefore introduces the least possible amount of new information. GR di-
rectly adjusts weights to satisfy both individual and household-level constraints. The aim of
GR is to weight a sample of individuals using information available on calibration variables,
which are the marginals obtained from the aggregated data. These methods generalise the clas-
sical statistical ranking ratio method. This is done by minimising a distance measure between
initial weights and final weights, subject to calibration equations.

All mentioned SR methods generate fractional weights that satisfy the marginals [5]. There-
fore, the weights need to be integerised to construct the final population. This integerisation
process is the allocation step in SR methods. Lovelace et al. [15] describe in total five inte-
gerisation methods: simple rounding, threshold approach, counter-weight method, proportional
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probabilities, and truncate, replicate, sample (TRS). The first three methods are deterministic,
the last two are probabilistic methods. They found that their developed method TRS has the
best performance of the mentioned methods.

Albiston et al. [16], Rahman et al. [17], and Tuccillo et al. [18] use the TRS method
developed by Lovelace et al. [15] for integerisation. Also, Zhou et al. [19] use TRS as their
integerisation procedure. They also mention that the errors increase due to the integerisation
process, and suggest that an improved integer programming algorithm might find a better solu-
tion.

2.1.2 Combinatorial optimisation (CO)

CO methods, also called fitness-based-sampling, directly generate a list of households and per-
sons. Entire individuals or households being allocated to each zone. An advantage of using a
CO method is that the data requirements are less restrictive than those for SR methods. Dis-
advantages are the computational complexity for large population sizes, and the possibility of
getting stuck in a local optimum, global optimum solution can therefore not be guaranteed.
Furthermore, also the zero-cell problem as mentioned in Section 2.1.1 is also present in CO
methods. The CO method, as described by Templ et al. [12] and Voas et al. [20], can be
summarised as follows:

1. Initial step: randomly chose a number of households from the sample to form an appro-
priately sized group.

2. Estimate the fitness of the selected population to the marginals (or relative entropy) for
the group of households.

3. Add, remove, or swap a household with another from the sample, and recalculate the
goodness of fit.

(a) If the replacement improves the fit, the new group of households is accepted.
(b) Otherwise the new group of households is rejected.

4. Repeat step 3 until a certain goodness-of-fit threshold or an arbitrarily fixed number of
iterations has been reached.

Various optimisation procedures have been proposed to determine which household to
add/remove/swapp next, such as hill-climbing (HC) [21], simulated annealing (SA) [22], and
genetic algorithm (GA) [23].

With HC, steps are taken into the direction that improves the goodness-of-fit, as a result,
the algorithm may get stuck in a local optimum. SA works very similar to HC, however, in step
3a, it is also possible to accept the new group of households even though the goodness-of-fit is
worse. This allows the algorithm to find solutions that are eventually better. Therefore SA is
less prone to getting stuck in a local optimum and in practice, finds the global optimum. This
may take a long time depending on the initial sample.

The GA method is based on natural selection, survival of the fittest. In step 3a, parents are
selected from the population, then a new population is generated, and finally, mutations are
possible.
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2.1.3 Statistical learning (SL)

SL methods, also known as simulation-based methods, focus on the joint distribution of all at-
tributes in the sample by directly estimating a probability for each combination, including those
not observed in the sample [11]. A major drawback of SL methods is that they fail to satisfy
the zonal margins while satisfying the marginal distributions of all variables simultaneously.
During the population synthesis process, when margins are available, it is important to match
the generated synthetic population to the observed margins as closely as desired.

Many SL-based methods for generating synthetic populations have been proposed, such
as: hierarchical Markov Chain Monte Carlo (hMCMC), Bayesian Network (BN), hierarchical
mixture (HM), and deep generative modelling (DGM) based on a variational auto-encoder.

Since the margins are not precisely matched using SL methods, Sun and Erath [24] and Sun
et al. [11] both recommend applying SR methods as a post-processing step (when marginals are
available) on a synthetic sample of the population generated from SL methods so as to create a
population matching the marginals. The downside of using an SR method as a post-processing
step is that also an integerisation method is needed.

From this literature research, it is found that generating a two-layered population (i.e. linking
persons and households) is one of the most challenging problems in population synthesis [6].
For a comprehensive overview of population synthesis methods, we refer to the review by
Yamogo et al. [4].

2.2 Current population synthesizer

The current implementation of the population synthesizer falls in the category SR mentioned
in Section 2.1. Here, the fitting part consists of IPF and the iNNLS method. After this part,
we know the continuous weights of each household composition in the data from the mobility
panel Netherlands (MPN). That means, we have the fractional number of times each house-
hold composition in MPN should be in the synthetic population. The allocation part of the
population synthesizer is the use of SNET to integerise the outcome of iNNLS.

2.2.1 Input data

The data that serves as input for the IPF consists of dis-aggregated and aggregated data for both
individuals and households. The aggregated data tells us the total number of individuals and
households with a certain attribute, obtained from the CBS wijken en buurten data.

Furthermore, there is also data available from MPN, this contains observed household com-
positions, thereby defining the feasible solution space. This data links personal information
with household information. The household composition gives us the information about the
household (e.g. number of persons, number of cars) and information of each of the individuals
in the household. The MPN data also gives a representative distribution over the segments.

An overview of the input data used in the current population synthesizer in Octavius can be
found in Table 2.1.
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TABLE 2.1: Overview of available input datasets.

Data Description

CBS wijken (districts)
en buurten
(neighbourhoods)

The district and neighbourhood map data contains the geometry of all mu-
nicipalities, neighbourhoods, and districts in the Netherlands with several
key statistical figures as attributes. The boundaries of neighbourhoods and
districts are largely based on what municipalities report to CBS. From this
data, we obtain the zonal marginal totals for both the personal and the house-
hold attributes.

Size: ± 13000 neighbourhoods.

Mobiliteitspanel
Nederland (MPN)

The Netherlands Mobility Panel (MPN) studies trends in the travel be-
haviour of a fixed group of individuals and households over a long pe-
riod (since 2013). It can be used to determine how changes in personal
and household characteristics and in other travel-related factors correlate
with changes in travel behaviour. The research is carried out by a team of
researchers from KiM Netherlands Institute for Transport Policy Analysis
(Ministry of Infrastructure and Water Management). From this data, we ob-
tain the household compositions of the respondents.

Size: 16487 persons in 7243 households, of which 2495 usable household
compositions for population synthesis.

2.2.2 Iterative proportional fitting (IPF)

IPF is used to find the margins of how many individuals and households there are with each
combination of personal and household attributes. These margins are obtained separately for
individuals and households.

Since IPF minimises the relative entropy, it finds the solution with a distribution that is
closest to the initial sample distribution given by the MPN data.

A detailed description of the IPF procedure is given based on the formulation by Reffel
[25]. IPF takes a non-negative input matrix A ∈ Rk×l

≥0 (from MPN) with positive row sums
ai+ ∀ i and positive column sums a+j ∀ j, and two positive vectors r ∈ Rk

>0 and c ∈ Rl
>0 that

represent the known row and column marginals from the CBS wijken en buurten data. The input
problem is formed by the triple (A, r, c). The procedure is initialised by setting A(0) := A. Let
A(t) be the matrix after step t. The IPF sequence A(t) is calculated by iteratively repeating the
following two steps:

1. Odd steps t + 1 fit row sums to row margins. All entries in the same row are multiplied
by the same multiplier

ai,j(t+ 1) :=
ri

ai+(t)
aij(t) ∀ entries (i, j). (2.1)

2. Even steps t+ 2 fit column sums to column margins. All entries in the same column are
multiplied by the same multiplier

ai,j(t+ 2) :=
cj

a+j(t+ 1)
aij(t+ 1) ∀ entries (i, j). (2.2)
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These steps are repeated until the selected level of convergence is reached. Example 1 demon-
strates one iteration of the IPF procedure.

Example 1. The IPF procedure is demonstrated by means of a small example where we have

r =
[
1000 1050

]T
, c =

[
400 1000 650

]
, and A =

[
200 450 350

200 550 300

]
. For the initialisation

we have the following table:

age 0-17 age 18-64 age 65+ sum margin

male 200 450 350 1000 70
female 200 550 300 1050 80

sum 400 1000 650 2050
margin 30 80 40 150

In the first step, we find a1j(1) =
70

1000
a1j(0) ∀ j and a2j(1) =

80
1050

a1j(0) ∀ j. This gives the
following table:

age 0-17 age 18-64 age 65+ sum margin

male 14 31.5 24.5 70 70
female 15.2 41.9 22.9 80 80

sum 29.2 73.4 47.4 150
margin 30 80 40 150

In the second step, we find ai1(2) = 30
29.2

ai1(1) ∀ i, ai2(2) = 80
73.4

ai2(1) ∀ i, and ai3(2) =
40
47.4

ai3(1) ∀ i. This gives the following table:

age 0-17 age 18-64 age 65+ sum margin

male 14.4 34.3 20.7 69.4 70
female 15.6 45.7 19.3 80.6 80

sum 30 80 40 150
margin 30 80 40 150

In the above example, we completed one iteration of the IPF procedure in two dimensions.
IPF is demonstrated here in two dimensions. However, it can easily be extended to multiple
dimensions by performing a step with multipliers for each dimension in one repeat loop of the
procedure. Furthermore, a multidimensional table can be reformulated as a two-dimensional
table, see Example 2.
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Example 2. When given the three dimensions gender (male, female), age (0-17, 18-64, 65+),
and participation (working, student). We can transform this into two dimensions by combining
the attributes of two attribute categories. Then the columns could be for the age: [0-17], [18-
64], and [65+]; and the rows for the combinations of gender and participation: [male, working],
[male, student], [female, working], and [female, student].

If all input data is strictly positive, IPF is proven to converge [26, 27].

Theorem 1. If all entries of (A, c, r) are strictly positive, then IPF converges to a unique
solution.

In our literature search (Section 2.1), we found that one of the drawbacks of IPF is the zero-
cell problem. This problem is explained in Section 2.1.1. The current population synthesizer
deals with this by replacing the zeros by a very small value: 10−5.

2.2.3 Iterative non-negative least squares (iNNLS)

As mentioned before in Section 2.1.1, IPF in itself cannot simultaneously estimate both house-
hold and individual-level attributes. Therefore, another step is needed to link individuals to
households, creating the household compositions. In the current population synthesizer, this
is done using the iterative Non-Negative Least Squares (iNNLS) procedure, self-developed by
Dat.mobility. This is an extension of the Non-Negative Least Squares (NNLS) procedure [28]
to enforce uniqueness of the solution. It ensures that we obtain the same unique solution each
time the model is run. The margins obtained from IPF and the MPN data form the input for
iNNLS. With iNNLS, we find how many households there should be of each household com-
position. NNLS yields the following optimisation problem:

min ∥Aw − b∥22
s.t. w ≥ 0,

(2.3)

where ∥·∥2 represents the Euclidean norm. The matrix A represents the households in the MPN
data. The vector b contains the segment totals obtained from the IPF step. The vector w gives
the weight for each household composition.

Finding linearly independent blocks of households Since we have a lot more households
in MPN than there are segments, there must be linearly dependent households. Having linearly
dependent households may have as a result that there is no unique solution to NNLS. Therefore,
the first step of iNNLS is to find blocks of linearly independent households. To do this, we
follow the following steps:

1. Start with the first household not yet in a linearly independent block.
2. Loop through all other households not yet in a linearly independent block.

(a) If the household is not linearly dependent on the households already in the block,
add it to the block.

3. If no more households can be added to the block, then start a new block with the next
household not yet in a linearly independent block.

4. Repeat until all households are in a linearly independent block.
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Iteratively solve NNLS for linearly independent blocks Now that we have the linearly
independent blocks, we iteratively solve NNSL for each linearly independent block.

1. Initialise weights by setting w equal to the frequency of the households in the MPN data.
2. For each linearly independent block:

(a) Correct the vector b by subtracting the totals contributed by the other blocks given
the previous weights.

(b) Solve the NNLS problem with the block and the corrected values of the vector b.
(c) Update the weights for the household in the block.

3. The weights are now updated for all households, so check the convergence criterion.

(a) If
||updated weights − previous weights||

(number of updated weights > 0)
< ϵ, then iNNLS is finished.

(b) Otherwise, repeat step 2 with previous weights = updated weights

The found weights are continuous values. As mentioned before, we require a discrete popu-
lation, therefore the weights need to be integerised to get a synthetic population that represents
an actual population. How this is done in the current population synthesizer is discussed in the
next section.

In an earlier version of the population synthesizer in Octavius, Iterative Proportional Updat-
ing (IPU) [29] was used before iNNLS was developed. This proved to be a too strict approach
(as it implicitly adheres as much as possible to the distribution across households in the MPN
data). NNLS lets go of that restriction and can use any household in the MPN data; whatever
makes it fit to the margins.

2.2.4 Statistical noise elimination technique (SNET)

The method used to integerise the outcome of iNNLS to create individuals is SNET. The draw-
back of SNET is that it cannot be applied to a two-layered population. Therefore the population
is collapsed into one layer by interpreting the household properties as personal attributes. Each
created agent thus has characteristics in such a way that it not only has personal information
but also information about the agents’ household, such as the number of cars in the household.
SNET is applied to this one-layered population. Therefore, the household compositions are not
maintained and there is no household consistency. Details about SNET are described by Klein
Kranenbarg [3].

Instead of SNET, TRS method was considered in the past for the allocation step to integerise
the outcome of iNNLS. However, it was found that due to the small number of households per
zone, the TRS method results in large deviations because there is not enough sampling to
average out well.

2.3 Summary of population synthesis methods

As shown in the previous paragraphs, there are several population synthesis methods, both in
literature and used in the current population synthesizer in Octavius. Table 2.2 summarises the
pros and cons of these methods.
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All statistical learning (SL) methods lack the ability to match zonal margins and do not
support unicity. The combinatorial optimisation (CO) methods are able to match the zonal
margins, but lack unicity and require a lot of computation time. Most of the synthetic recon-
struction (SR) methods have all the requirements except the ability to generate two-layered
populations. Only IPU/HIPF and iNNLS can deal with this, however, the allocation methods
break the result down to one-layered again.

TABLE 2.2: Summary of pros and cons of each method.

Method Matching zonal margins Two-layered population Most-likely result Unique result Computation time

IPF (SR fitting) + - + + +
iNNLS (SR fitting) +/- + + + +/-
IPU/HIPF (SR fitting) + +/- + + +
ENT/GR (SR fitting) + - + + +
TRS (SR allocation) +/- - - +
SNET (SR allocation) +/- - + +

HC/SA (CO) + + +/- - -
GA (CO) + + +/- - -

hMCMC (SL) - + + - +/-
BN (SL) - + + - +/-
HM (SL) - + + - +/-
DGM (SL) - + + - +/-
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3 Methodology

Based on the problem description, research questions, and background, this section first defines
a concise mathematical problem formulation that meets the basis requirements in Section 3.1.
Furthermore, Section 3.2 discusses additional requirements. In Section 3.3, the basis mathe-
matical program is extended in various ways to incorporate the additional requirements. From
there, we discuss the evaluation framework and define performance metrics in Section 3.4.

3.1 Mathematical problem formulation

In this section, the population synthesis problem is formulated as a mathematical optimisation
problem. The two main requirements for our base model are maintaining household consis-
tency and complying to zonal margins. To achieve this, the mathematical program needs a
well-defined objective. In the context of population synthesis, this objective can focus either on
the marginal totals or on the frequency of each segment within the synthetic population. Since
our primary goal is to create a synthetic population that aligns with the known marginal totals,
we use these as the basis for our objective function. The two main requirements are described
as follows, the additional requirements are discussed in Section 3.2.

• Household consistency
The synthetic population should be comprised of consistent households. Individuals in
the synthetic population are grouped into households that reflect the composition of real-
world households, maintaining relationships and attributes. Details can be found in Sec-
tion 3.1.1.

• Zonal margins
The synthetic population should match all zonal marginal totals. Zonal margins represent
the known marginal totals of attributes within predefined zones. These totals are incorpo-
rated in population synthesis to ensure the synthetic population reflects the demographic
characteristics of each zone. In doing so, the population synthesizer should allow for
prioritisation of attributes. Details can be found in Section 3.1.2.

Before we dive into the mathematical formulations of these requirements and the optimisa-
tion problem, we define the sets, parameters, and variables that will be used from here on. The
notation and descriptions of these can be found in Tables 3.1 to 3.3. The sets and parameters
are all obtained from available input data described in Section 2.2.1.
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TABLE 3.1: Description of sets.

Set Description

SP Set of personal segments.
SH Set of household segments.
AP Set of personal attributes.
AH Set of household attributes.
AZ Set of zonal attributes.
S Set of all personal and household segments, S := SP ∪ SH .
A Set of all personal, household, and zonal attributes A := AP ∪AH ∪AZ .
B Set of attribute categories.
C Set of possible household compositions known from the MPN data.

TABLE 3.2: Description of parameters.

Parameters Description

Ms The values of the known distribution of segments s ∈ S, from MPN.
Ta The known margins for a ∈ A, from CBS wijken en buurten.
nc,s number of times the segment s ∈ S is in a household composition c, is 0 or 1 for

s ∈ SH and N for s ∈ SP .

TABLE 3.3: Description of variables.

Variables Description

wc Weights determining how many households there should be of composition c ∈ C.
ms Variable for the number of times segment s ∈ S is in the synthetic population.
ta Variable for the marginal total of each attribute a ∈ A.
xa Absolute error between known marginal totals and marginal totals in synthetic population.

The weights wc are the decision variables, the remaining variables are auxiliary variables.

3.1.1 Household consistency

Since the synthetic population must include household composition, we need to know which
agents are in which household. We know this when we have a solution to the population syn-
thesis problem that tells us how many (integer) times we should have each possible household
composition from MPN (Section 2.2.1) in our synthetic population. Each household compo-
sition includes in which segment the individuals in that household are. That way agents can
directly be extracted from the household, including the household identification. Household
consistency is thus maintained when the household weights wc ∈ N.
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3.1.2 Zonal margins

Ideally, the synthetic population should perfectly match all marginal totals. However, this is
often not feasible for every attribute because we are limited to the possible household compo-
sitions in the MPN data. Therefore, there may not be a combination of households that adds up
to the given attribute totals. To address this, the mathematical program minimises the absolute
differences between the known marginal totals and those derived from the synthetic population.

As the synthetic population should match the zonal margins, we need a measure for deter-
mining the difference between the margins in the synthetic population and the known marginal
totals. Let ta be the margins in the synthetic population, and let Ta be the known marginal totals
for a ∈ AP ∪AH . There are several error-based measures where a lower value is preferred. For
example, the total absolute error (TAE):

TAE =
∑
a∈A

|Ta − ta| . (3.1)

A drawback of the TAE is that it does not consider the size of the population or the number
of attributes and attribute-values. Based on the TAE, we have the standardised absolute error
(SAE), which scales with the actual population size. This enables the comparison between the
goodness-of-fit of populations of zones with different population size:

SAE =
TAE

Tzone inh
=

∑
a∈A |Ta − ta|
Tzone inh

. (3.2)

Furthermore, there are also error measures based on the sum squared error (SSE):

SSE =
∑
a∈A

(Ta − ta)
2 . (3.3)

Similar to TAE, SSE does not consider the size of the population or the number of attributes
and attribute-values. The SSE differs from the TAE by giving a heavier penalty to larger errors.
Based on the SSE, we have the root mean squared error (RMSE), which considers the number
of attributes:

RMSE =

√
SSE
|A|

=

√∑
a∈A (Ta − ta)

2

|A|
. (3.4)

A drawback is that smaller populations can be reported as closer to the actual population, while
the absolute number of errors might be the same. The standardised RMSE compensates for
this:

SRMSE =
RMSE∑

a∈A Ta

|A|

=

√∑
a∈A(Ta−ta)

2

|A|∑
a∈A Ta

|A|

. (3.5)

Any of these error-based measures can be used in the objective function of the mathematical
program. If all margins in the synthetic population are equal to the known margins, then Ta −
ta = 0, and thus any mentioned error-based measure will be zero.
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3.1.3 Mixed-integer program

A mathematical formulation of the population synthesis problem is formulated for generating
a two-layered synthetic population using the SAE (eq. (3.2)) in the objective function. We
choose this error measure, because we do not want to assign a higher penalty to one large
error than to multiple smaller errors. The total of absolute errors over personal attributes are
standardised with the known total number of inhabitants per zone, and the total of absolute
errors over household attributes are standardised with the known total number of households
per zone. We formulate the following mixed-integer linear program (MILP) to find the weights
of each household composition.

min

∑
a∈AP xa

Tzone inh
+

∑
a∈AH xa

Tzone hh
(3.6a)∑

{s∈S where a∈s}

∑
c∈C

wcnc,s = ta ∀ a ∈ AP ∪ AH (3.6b)

∑
c∈C

wc = tzone hh (3.6c)∑
s∈SP

∑
c∈C

wcnc,s = tzone inh (3.6d)

Ta − ta ≤ xa ∀ a ∈ A (3.6e)

−Ta + ta ≤ xa ∀ a ∈ A (3.6f)

Tzone inh − tzone inh = 0 (3.6g)

wc ∈ N ∀ c ∈ C (3.6h)

ta ∈ R ∀ a ∈ A (3.6i)

xa ∈ R ∀ a ∈ A (3.6j)

The objective (3.6a) minimises the standardised absolute error. Constraints (3.6b) sets the
marginal totals for each attribute a ∈ AP ∪ AH . Constraints (3.6c) and (3.6d) determine the
marginal totals for the total number of households and inhabitants in the synthetic population.
Constraints (3.6e) and (3.6f) determine the absolute errors xa. Constraint (3.6g) set the absolute
error for the number of inhabitants to zero. The known marginal total of inhabitants is the
most important explanatory variable for the overall use of the mobility system, therefore it is
considered the most important margin. As a result, the number of individuals in the synthetic
population must equal the known marginal total of inhabitants. Constraints (3.6h) make sure
the variables wc are natural numbers (integer and non-negative). Constraints (3.6i) and (3.6j)
make sure the variables ta and xa are real numbers. Since the weights wc are integer, the
totals ta and absolute errors xa are by definition also integer without setting additional integer
constraints.

This MILP includes the household consistency requirement as it finds weights wc ∈ N on
household level, where households are constrained to feasible compositions through the set
of possible household compositions from MPN data. It also complies to the total number of
inhabitants exactly, the other marginal attribute totals in the synthetic population are as close as
possible to the known totals by minimising the SAE over personal and household attributes.
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3.2 Additional requirements

Synthetic populations will be generated for each zone individually, following a zone-by-zone
approach. This means that the population synthesis process will be conducted separately for
each predefined area or zone, ensuring that the characteristics of each zone are accurately rep-
resented in the synthetic population. By treating zones independently, we can better account
for the unique attributes, demographics, and marginal totals associated with each area, creating
a synthetic population that reflects the specific conditions of each zone.

To achieve this, the population synthesizer must meet several requirements. These require-
ments ensure that the synthetic populations do not only comply to the marginal totals, but also
stable and consistent. The synthesizer must align with the given marginal totals at both the
household and personal levels, maintain realistic household compositions, and produce stable
outputs. Furthermore, the synthesizer should be robust enough to handle variations in zone
characteristics and support scalability to accommodate a large number of zones effectively. To
address these aspects, we outline the following requirements.

• Stability
The resulting synthetic population from a scenario run should, compared to the reference
output, only have changes that are related and proportional to the changes in input. E.g.
adding a few more inhabitants should not change the composition of the already existing
population in a zone. Details can be found in Section 3.2.1.

• Unicity
The result should be unique. This may be achieved by finding the most likely solution.
Therefore, we want the solution that is the most likely given the input data. The most
important herein is that the distribution over the segments in the solution should be simi-
lar to the distribution over the segments in the OViN/MPN data. This can be achieved by
minimising the relative entropy. Details can be found in Section 3.2.2.

• Performance
The method should not be complex in both space and time. The model should be able
to generate synthetic populations without needing an extensive amount of memory and
computation time. The implemented methods will be tested and compared with each
other using a small instance. However, the final method should also work for real-world
instances. Details can be found in Section 3.2.3.

The household consistency and the zonal margin on total number of inhabitants (discussed
in Section 3.1.3) are the most important, followed by the stability and matching the remaining
zonal margins as closely as possible. The least important requirements are unicity and perfor-
mance. However, these requirements do have some bound to make sure the methods are usable
in practice.

3.2.1 Stability

The stability requirement consists of two parts: comparability and sensitivity. Comparability
is required when running a scenario with changes in the attribute totals of the population. For
example, when a newly build street is added to a zone, or when the distribution over segments
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and/or attributes changes because of demographic changes, we want to be able to compare the
results of the reference with the scenario. Therefore, changes in the input of the population
synthesizer should result in proportional and related changes in the output. For example, when
adding agents in a scenario, we do not want the agents in the reference population to change
characteristics.

Sensitivity is when we are talking about the effect of very small changes (noise) to the totals
on the households that are selected. Such small changes or noise should ideally not change the
household weights very much.

Since we are optimising the weights for each household composition in the MPN data, our
goal is to minimise changes in the weight vector. To measure the distance between two vectors
x and y, we can use either the Manhattan distance∑

i∈I

|xi − yi| , (3.7)

or the Euclidean distance:√∑
i∈I

(xi − yi)
2. (3.8)

We opt for the Manhattan distance because, in our context, one large deviation is not necessarily
worse than multiple small errors.

The objective is to ensure that differences in input data do not result in unnecessary re-
allocation of individuals between household categories. When the margins for one attribute
category are adjusted, we aim to minimize the impact on other attributes. While we recognize
that strong correlations between attributes mean some changes are inevitable, our goal is to
limit these changes as much as possible.

Metric using number of times each segment is in a household
With this metric, we compare the two households sets (which contains individuals as well) by
calculating the distance between the segments in each household in the reference set with the
segments each household in the scenario set. The number of times segments are in a household
is represented by a vector. To determine the distance between a household vector in the refer-
ence set and a household vector in the scenario set, we use the Manhattan distance as mentioned
in Section 3.2.1.

Let HHR be the set of households in the reference solution and HHS the set of households
in the scenario solution. Then the distance on the segment level between household u ∈ HHR

and v ∈ HHS is calculated as follows:∑
s∈S

|us − vs| . (3.9)

With these distances, we find the best assignment that minimises the total distance between
the two sets using a distance matrix. In this matrix, each row corresponds to a household in
the reference set and each column corresponds to a household in the scenario set. If one set
contains more households than the other, then the households that are not assigned to another
household are not considered in calculating the distance. The best assignment is found using
the Hungarian algorithm.
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Hungarian algorithm The Hungarian algorithm works for square matrices. For us, the two
household sets we are comparing, are not necessary of the same size. If this is the case, then
we add extra rows or columns containing zeros to make the matrix square. In the end, the
assignment of households to added rows of zeros are discarded.

1. Row reduction: subtract the smallest value of each row from all values in the row.
2. Column reduction: subtract the smallest value of each column from all values in the

column.
3. Test for an optimal assignment: minimum number of lines required to cover all zeros in

the matrix. If this number is equal to the number of rows (and columns), then an optimal
assignment can be found, and go to step 5.

4. Shift zeros:

(a) Find smallest uncovered value.
(b) Subtract this value from all uncovered values, and add it to each value that is inter-

sected by two lines.
(c) Remove lines and go back to step 3.

5. Making the final assignment: choose zeros such that only one zero is selected per row
and column. The indices of the chosen zeros are the assignment. There may be multiple
options, in that case the total costs (in our case distance) is the same.

In order to compare runs with different noise added, we standardise the total distance of the
best assignment by dividing it by the sum of absolute change of attribute totals. Furthermore,
to compare between zones, we can also divide the total distance between two household sets
by the known number of households in the zone.

A similar metric was also considered, but based on the number of times each attribute is in
a household. For details, see Appendix A. We choose not to use this metric as it does not give a
representative idea of what changes in a synthetic population when attribute totals are changed.

Metric for changes in marginal totals per attribute category
We also look at a metric that focuses on the changes in marginal totals per attribute category.
Per attribute category, we determine how much change there is in the attribute totals, both in the
input totals and in the totals of the resulting population, compared to the reference totals. For
each attribute category b ∈ B, where B is the set of attribute categories, we use the following
equations to determine the difference between the reference case and the scenario case. Let cb,in
be the change in input of attribute category b, and let cb,out be the change in output of attribute
category b.

cb,in =
∑
a∈b

|Ta −Qa| (3.10)

cb,out =
∑
a∈b

|ta − qa| , (3.11)

where Ta are the input attribute totals of the reference, Qa are the input attribute totals of the
scenario, ta are the attribute totals in the solution to the reference case, and qa are the attribute
totals in the solution for the scenario.
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3.2.2 Unicity

The unicity requirement consists of two parts, namely, the most likely solution and a unique
solution. Finding the most likely solution does not imply that the solution is unique as there may
be multiple most likely solutions that are evenly likely. First, let us discuss the requirements to
find the most likely solution. A most likely solution can be found by minimising the relative
entropy, also known as the Kullback-Leibler divergence:

DKL(P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
, (3.12)

where P represents the distribution in the outcome of the model, and Q represents the distribu-
tion in the known sample. Since P and Q represent distributions, it must be that

∑
x∈X P (x) =

1 and
∑

x∈X Q(x) = 1.
We want to compare the distribution over the segments in our synthetic population with the

known distribution over the segments from MPN. Since the segment totals do not sum up to
one, we need to normalise the values. Therefore, we split the relative entropy into two parts,
one for the household segments and one for the personal segments. The values of household
segments are divided by the total number of households in the set. The values of personal
segments are divided by the total number of individuals in the set. Let m∗

s and M∗
s be the

normalised values for s ∈ S. Then the relative entropy for household and personal segments
is:

DH
KL(m

∗||M∗) =
∑
s∈SH

m∗
s log

(
m∗

s

M∗
s

)
for household segments, (3.13)

DP
KL(m

∗||M∗) =
∑
s∈SP

m∗
s log

(
m∗

s

M∗
s

)
for personal segments. (3.14)

Adding the relative entropy minimisation objective to the MILP (eq. (3.6)) does not need to
result in a unique solution. There can still be differences in the outcome of two separate runs
of the model when they have identical objective values.

While unicity is one of the requirements because of practical application for users, it should
be mentioned that a stochastic component allows the model to consider and produce alternative
and potentially more realistic populations [22].

3.2.3 Performance

The performance of the software implementations of the algorithms is important in both time
and space. Time performance concerns the computational time the population synthesizer re-
quires given a certain input size. The memory or space required by the population synthesizer
may play an important part in the performance of the algorithm, especially in cases when the
memory is limited.

The prototype implementation should give results within 16 hours on a high-end machine.
Whereas memory requirements should be lower than 64GB.
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3.3 Extensions of the mixed-integer program

The MILP (eq. (3.6)) in Section 3.1.3 meets the requirement of household consistency and
zonal marginal totals. This MILP is used as a basis and can be extended in various ways
to improve the performance on the metrics mentioned in Section 3.4 by taking into account
relative entropy, and a suggestion to add stability when a scenario is run and compared to the
reference.

To incorporate unicity, we add the relative entropy component. There are two options for
this. In the first option (Section 3.3.1), we determine the segment totals in the synthetic popu-
lation found by solving the mathematical program and add the relative entropy to the objective
function to minimise. In the second option (Section 3.3.2), the segment totals determined
during the IPF step of the current population synthesizer in Octavius are used, then the SAE
between those segment totals and the segment totals in the synthetic population found when
solving the mathematical program is minimised. Finally, in Section 3.3.3, we include an exten-
sion that improves the stability when a scenario is run.

3.3.1 Adding relative entropy to the objective function

When the relative entropy is added to the objective, the objective function (3.6a) is replaced by:

min

∑
a∈AP xa

Tzone inh
+

∑
a∈AH xa

Tzone hh

+
∑
s∈SP

m∗
s log

(
m∗

s

M∗
s

)
+

∑
s∈SH

m∗
s log

(
m∗

s

M∗
s

)
,

(3.15a)

where

m∗
s = ms/tzone inh ∀ s ∈ SP ,

m∗
s = ms/tzone hh ∀ s ∈ SH ,

M∗
s = Ms/Tzone inh ∀ s ∈ SP ,

M∗
s = Ms/Tzone hh ∀ s ∈ SH .

The constraints to add to determine the distribution over segments are:∑
c∈C

wcnc,s = ms ∀ s ∈ S. (3.15b)

The function for relative entropy adds non-linearity to the objective function. Not only
because of the log-function, but also because the variables m∗

s ∀s ∈ S are determined by
dividing one variable by another. To solve this problem with a MIP, to objective needs to be
linearised.

The first thing we can do is to linearise the m∗
s variables by replacing tzone inh by Tzone inh.

This will not change the values of m∗
s ∀s ∈ SP , because constraint (3.6g) ensures that tzone inh =

Tzone inh. Similarly, for m∗
s ∀s ∈ SH we can replace tzone hh by Tzone hh. However, it should be

mentioned that for the total number of households there is no constraint that sets tzone hh =

Tzone hh. Therefore, the values of ms/tzone hh need not be equal to ms/Tzone hh. But since we
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minimise the SAE, the values of tzone hh and Tzone hh are as close as possible. So ms/Tzone hh will
give a good approximation. (The larger Tzone hh, the better the approximation since an absolute
error on the total number of households has less effect on larger values than on smaller values.)

Since we know what values the ms variables are possible beforehand, we can create indi-
cator variables zi,s ∈ {0, 1} for each possible value of ms, where i is the value of ms. For the
zi,s variables we have zi,s = 1 if ms = i, else zi,s = 0. To ensure this, we need to add some
constraints for the consistency of the zi,s variables.∑

i∈IH
izi,s = ms ∀ s ∈ SH (3.16a)∑

i∈IH
zi,s = 1 ∀ s ∈ SH (3.16b)∑

i∈IP
izi,s = ms ∀ s ∈ SP (3.16c)∑

i∈IP
zi,s = 1 ∀ s ∈ SP (3.16d)

where IH = {0, . . . , Tzone hh} and IP = {0, . . . , Tzone inh}.
Furthermore, to remove the non-linearity caused by the log-function from the objective,

we can calculate the values of m∗
s log

(
m∗

s

M∗
s

)
for both s ∈ SH and s ∈ SP beforehand. The

objective function then becomes

min

∑
a∈AP xa

Tzone inh
+

∑
a∈AH xa

Tzone hh

+
∑
s∈SP

∑
i∈IP

i∗ log

(
i∗

M∗
s

)
zi,s +

∑
s∈SH

∑
i∈IH

i∗ log

(
i∗

M∗
s

)
zi,s,

(3.16e)

where

i∗ = i/Tzone inh ∀ i ∈ IP ,

i∗ = i/Tzone hh ∀ i ∈ IH ,

M∗
s = Ms/Tzone inh ∀ s ∈ SP ,

M∗
s = Ms/Tzone hh ∀ s ∈ SH .

The i∗ log
(

i∗

M∗
s

)
terms are constants and thus the objective is now linear.

3.3.2 Using segment totals from the IPF step in Octavius

The second option would be to use the IPF step of the current population synthesizer in Oc-
tavius and then minimise the SAE between the segment totals from IPF and the segment totals
in the synthetic population found when solving the mathematical program. As mentioned in
Section 2.2.2, IPF minimises the relative entropy and meets the requirement of marginal to-
tals. Therefore, we would not need to include relative entropy in the mathematical program
and thus avoid non-linearity. Furthermore, the objective function can be changed to minimise
the SAE over segment totals instead of marginal totals on attributes. In this case, the objective
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function (3.6a) changes slightly to minimise the absolute error between the segment totals ob-
tained from IPF and the segment totals in the synthetic population. The absolute error variables
xa ∀ a ∈ AP ∪ AH are replaced by absolute error variables ys ∀ s ∈ S for the absolute error
between the segment totals from IPF and the segment totals in the synthetic population. The
objective function (3.6a) is replaced by:

min

∑
s∈SP ys

Tzone inh
+

∑
s∈SH ys

Tzone hh
. (3.17a)

Again, we need to add a constraint to determine the segment totals:∑
c∈C

wcnc,s = ms ∀ s ∈ S. (3.17b)

The constraints (3.6e) and (3.6f) for determining the absolute errors are replaced by:

Ms −ms ≤ ys ∀ s ∈ S (3.17c)

−Ms +ms ≤ ys ∀ s ∈ S (3.17d)

Ta − ta ≤ xa ∀ a ∈ AZ (3.17e)

−Ta + ta ≤ xa ∀ a ∈ AZ (3.17f)

3.3.3 Adding stability for scenarios

In order to add stability to compare a scenario to the reference, the Manhattan distance (eq. (3.7))
between the known weights in the reference and the weights in the synthetic population of the
scenario can be added to the objective function. The weights of the reference are additional
input to the model, and thus constant. The objective function for the basis MILP (3.6) then
becomes

min

∑
a∈AP xa

Tzone inh
+

∑
a∈AH xa

Tzone hh
+

∑
c∈C rc

Tzone hh
(3.18a)

where rc is the absolute difference between the weights of household composition c ∈ C with
the following additional constraints for the absolute values:

W r
c − wc ≤ rc ∀ c ∈ C (3.18b)

−W r
c + wc ≤ rc ∀ c ∈ C (3.18c)

We add this to each of the models, not only to the basis model (3.6) in Section 3.1.2, but also
to the extensions mentioned above.

The added term

∑
c∈C rc

Tzone hh
can also be added to the objective functions of the extensions in

Sections 3.3.1 and 3.3.2, where then the additional constraints are also added to the MILPs.
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3.4 Evaluation framework

In this study, we solve the MILPs proposed above using the open source HiGHS solver [30]
with the JuMP package [31] in Julia programming language. The requirements for our pop-
ulation synthesis method and the resulting synthetic population are mentioned in Sections 3.1
and 3.2. Based on these requirements, we formulate the metrics below that are used in our
evaluation framework. All metrics except the stability performance metrics are evaluated with
the reference population. The stability performance metrics are evaluated in the sensitivity and
stability analysis.

Household consistency

The main goal of the proposed methods is to get household consistency. However, it is quite
difficult to formulate something neatly, because there is no household consistency in the current
population synthesizer. Therefore, in the evaluation of the methods, we just check whether there
is household consistency or not.

Metric for fit on marginal attribute totals

Of the generated synthetic population, we calculate the standardised absolute error of the
marginal attribute totals. The SAE is calculated for personal and household attributes sepa-
rately, using the following equations:

SAEP =

∑
a∈AP |ta − Ta|
Tzone inh

(3.19)

SAEH =

∑
a∈AH |ta − Ta|
Tzone hh

(3.20)

Stability performance metric

The stability performance metrics are used to evaluate the performance of the algorithm when
applied to scenario studies. In Section 3.2.1, we discussed two metrics that give a good idea
whether two household sets are similar. As the changes in the output should relate to the
changes in input, we standardise the total distance between two household sets by dividing by
the sum of absolute differences in input. The metric will thus give us how many segments are
different per one household or person change in attribute totals.

∑max{|HHR|,|HHS |}
j=1

∑
s∈S |uj,s − vj,s|∑

b∈B cb,in
(3.21)

where HHR is the set of households in the reference solution, HHS is the set of households in
the scenario solution, and b ∈ B are the attribute categories.

Also, the metric for changes in marginal totals per attribute category is standardised in the
same way, to be able to compare between different runs with different noise.∑

b∈B |cb,in − cb,out|∑
b∈B cb,in

(3.22)
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Unicity metric

The relative entropy is calculated for personal and household attributes separately, using the
following equations (these are eqs. (3.13) and (3.14) in Section 3.2.2):

DP
KL(m

∗||M∗) =
∑
s∈SP

m∗
s log

(
m∗

s

M∗
s

)
(3.23)

DH
KL(m

∗||M∗) =
∑
s∈SH

m∗
s log

(
m∗

s

M∗
s

)
(3.24)

Performance

The requirements for performance are upper bounds. Therefore, we look at whether they are
exceeded or not. The run time will be measured in seconds or minutes, whichever is most
appropriate. For the space requirement, we look at the memory usage of the machine.

Car availability metric

In the current population synthesizer, there are several rules to determine whether a person can
drive a car and/or be a car passenger. The rules for car usage are as follows:

• Car driver: a person must have a drivers license, and there must be at least one car in the
household.

• Car passenger: besides the person itself, there must be at least one (other) adult and at
least one car in the household.

The rule for car passengers is incomplete, because an adult would need to have a drivers
license in order to be able to drive a passenger. In the current population synthesizer there is
no household consistency and this cannot be check. When household compositions are main-
tained, it is possible to incorporate the requirement of a drivers license for the adult that may
drive a passenger. By incorporating this, we expect the car availability for passengers to de-
crease. This metric is used to test whether the car availability decreases when household con-
sistency is maintained.

3.5 Solution approaches

In the overview of population synthesis methods (Section 2.3), we mention pros and cons of the
methods. Based on those findings and the problem formulation, we discuss suitable solution
possibilities. In general, there are three approaches:

1. Solve the MILP directly.
2. Use parts of the current population synthesizer and use a different or adjusted method for

the allocation (integerisation) step.
3. Use another population synthesis method for the entire population synthesizer.

The approaches that we consider in this report are solving the MILPs proposed in this
section, and using the IPF step of the current population synthesizer and then solve a MILP
instead of using iNNLS and SNET.
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The statistical learning (SL) methods were not considered as they do not match zonal
marginal totals and this is one of the main requirements. Combinatorial optimisation meth-
ods were considered, but due to the time complexity found to not perform well on a small test
instance. Therefore, also these methods were not explored further.

The methods that are evaluated are as follows:

• Current population synthesizer, Section 2.2
• MILP SAE attributes, eq. (3.6)
• MILP SAE segments, eq. (3.17)
• MILP SAE attributes + relative entropy, eq. (3.16).
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4 Case study

To test the performance of the methods, they are applied to the strategic transport model of
Zwolle. In this project, the city of Zwolle is the main study area. The zones in and near Zwolle
are small (area wise), and get larger the further away from Zwolle. In total, there are 1380
zones in this project, of which 515 in the main study area, 487 in the influence area, and 343
in the outer area. Zones outside the Netherlands are not included in the case study. The areas
are visualised in Figure 4.1. Between the study area and the influence area, there are 35 zones
without any inhabitants. Also within the three areas there may be zones without any inhabitants.

The mathematical programs formulated in Section 3 are implemented in Julia programming
language using the JuMP package [31], and are solved using the open source HiGHS solver [30]
on a 2.6 GHz Intel Core i7 Notebook with 32GB RAM.

FIGURE 4.1: Map of the three areas in the transport model of Zwolle. The purple zones
belong to the outer area. The orange zones belong to the influence area. The blue zones
belong to the main study area.

Box-plots For showing the results, we use box-plots. A box-plot is a graphical representation
of data distribution that summarizes key descriptive statistics. It is constructed using five key
statistics, often referred to as the five-number summary:

1. Minimum: The smallest data point, excluding any outliers.
2. First Quartile (Q1): The value below which 25% of the data fall.
3. Median (Q2): The middle value of the data, splitting the data into two equal halves.
4. Third Quartile (Q3): The value below which 75% of the data fall.
5. Maximum: The largest data point, excluding any outliers.
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These components are used to draw a box-plot as follows:

• Box: Encloses the interquartile range (IQR), which spans from Q1 to Q3. This represents
the middle 50% of the data. In our plots represented by the light blue box.

• Median: A line inside the box marks the median (Q2), providing a measure of central
tendency. In our plots represented by a pinkish red line.

• Whiskers: Extend from the box to the smallest and largest data points within a range of
1.5 · IQR from Q1 and Q3, respectively.

• Outliers: Represented as individual points beyond the whiskers.

4.1 Results for reference population

In this results section, we discuss the results from the models for the reference population. We
split this in two or three parts: results of the main study area, results of the influence area,
and results of the outer area. This approach is used because the zones increase in size as their
distance from Zwolle grows. With larger zones, the runtimes are expected to increase; and
the metrics regarding the standardised absolute errors and the relative entropy will likely give
lower values, as deviations from the known margins and distribution over segments is averaged
out more.

4.1.1 Main study area

In this section, we look at the results for the zones in the main study area of the Zwolle project
using the current population synthesizer, solving the MILP minimising SAE over attribute totals
and relative entropy, solving the MILP minimising SAE over segment totals obtained using IPF,
and solving the MILP minimising the SAE over attribute totals.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
SAE over household attributes

MILP SAE 
attributes

MILP SAE 
segments 

from IPF

MILP SAE 
attributes +

rel ent

Current 
pop synth

(A) Box-plot of the SAE’s of household at-
tributes with different methods.
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Current 
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(B) Box-plot of the SAE’s of personal at-
tributes with different methods.

FIGURE 4.2: Box-plots of the fit on margins (SAE of attributes) of different population
synthesis methods when applied to the zones in the main study area in the Zwolle project.

In Figure 4.2a, we see that there are some outliers for which the fit on marginal totals is
(very) poor. Figure 4.3 identifies these outliers.
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FIGURE 4.3: SAE’s of household attributes per zone in the main study area in the
Zwolle project. The horizontal black line represents SAE = 10.

The SAE of household attributes with the different methods is large in the same zones, as
can be seen in Figure 4.3. In Table 4.1, we see that in these “difficult” zones, the average
number of persons per household is very high. In the first five zones listed, this average is
higher than the maximum household size found in MPN data (9 persons, which only occurs
five times in the MPN sample).

TABLE 4.1: Highest SAE’s of household attributes per zone, and the number of persons
per household on average.

Zone
SAE hh attributes

persons households avg. # persons/hh
MILP att MILP seg MILP att + rel ent current pop synth

407 42 189 60 287.667 127 1 127
269 24 114 29 175.533 75 1 75
115 8 36 8 64 25 1 25
369 6 41 6 48.333 23 1 23
506 3.462 14.462 5 23.908 152 13 11.69
343 0 14 0 22 7 1 7
332 0 6.5 1 12.75 10 2 5
413 0 6.667 0.667 11.611 15 3 5

These zones with on average more than 9 persons per household are clearly consistency
errors for which the method is cannot provide a good solution. Therefore, in the remainder of
the results, these zones are excluded from further results. It was found that the five zones listed
above are the only ones with on average more than 9 persons per household.
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(A) Box-plot of the SAE’s of household at-
tributes with different methods.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
SAE over personal attributes

MILP SAE 
attributes

MILP SAE 
segments 

from IPF

MILP SAE 
attributes +

rel ent

Current 
pop synth

(B) Box-plot of the SAE’s of personal at-
tributes with different methods.

FIGURE 4.4: Box-plots of the fit on margins (SAE of attributes) of different population
synthesis methods when applied to the zones in the main study area in the Zwolle project.
Here, the results of the zones where the average number of persons per households is
too high are removed.

What is interesting to see in Figure 4.4, is that the current population synthesizer performs
the worst of the four methods on the SAE for both personal and household attributes. This may
be, because in the SNET step, individuals are selected based on probabilities and until the exact
number of inhabitants is reached. It does not consider any other attributes.

Furthermore, we see that solving the MILP that minimises the SAE over attribute totals
performs best for the metrics on the SAE over attributes, as is to be expected since this is the
only goal of this MILP. The MILPs that minimise the SAE over attribute totals and relative
entropy, and minimise the SAE over segment totals from IPF score in between the current
population synthesizer and the basis MILP that only minimises the SAE over attribute totals.

Even though the MILP that minimises the SAE over attribute totals performs best for the
metrics on the SAE over attributes, it performs the worst for the metrics on the relative entropy,
see Figure 4.5. This can also be expected, as this MILP does nothing to minimise the relative
entropy.
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(A) Box-plot of the relative entropy of
household segments with different meth-
ods.
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(B) Box-plot of the relative entropy of per-
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FIGURE 4.5: Box-plots of the results on the unicity metric of different population syn-
thesis methods when applied to the zones in the main study area in the Zwolle project.

When looking at the relative entropy for household segments in Figure 4.5a, we see that the
MILP SAE attributes & relative entropy appears to perform a bit better than the current popu-
lation syntheziser and the MILP SAE segments. We see more distinction in Figure 4.5b, where
the MILP SAE attributes & relative entropy clearly performs the best over the four methods.
Here, the MILP SAE segments appears to perform a bit better than the current population syn-
theziser as its box is closer to zero than the box of the current population syntheziser. That the
current population syntheziser and the MILP SAE segments perform similar on the relative en-
tropy can easily be explained, as they both use IPF, which minimises the relative entropy. The
other steps (iNNLS and SNET in the current population synthesizer and solving the MILP) do
nothing to minimise the relative entropy further.

From the results above, one might say that the MILP SAE attributes & relative entropy
performs quite well and may be a good method to consider for population synthesis. However,
due to the complexity of the MILP, the run times are quite high for this model, as can be seen
in Figures 4.6 and 4.7. Given the relative large run times, in these figures, a logarithmic scale
is used on the vertical axis.

Finally, we have a look at the car availability in Figure 4.8. We expect the number of car
passengers to decrease in the synthetic populations resulting from the MILPs. There are a lot
of zones where this is the case, however not for all zones. This may be because the synthetic
populations found using each method could be very different from each other when looking at
the composition of the selected households.
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FIGURE 4.6: Plot of the run times for each zone with different methods on a logarithmic
scale.
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FIGURE 4.7: Box-plot of the run times using different methods for population synthesis
applied to the zones in the main study area in the Zwolle project on a logarithmic scale.
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4.1.2 Influence and outer area

When the methods are applied on zones that are part of the influence area of the Zwolle model,
the methods behave very similar compared to the main study area. The same holds for the
outer area. We see that, compared to the zones in the main study area, the run time for the
larger zones in the influence and outer area are generally larger. This is to be expected, as the
size (number of inhabitants and households) of the zones increase as we get further away from
Zwolle. Also the standardised fit on margins is smaller with the larger zones, that is because the
absolute errors are averaged out more. This also yields for the relative entropy of the unicity
metric The plots corresponding to the synthetic populations in the influence and outer area can
be found in Appendix B.

4.2 Sensitivity analysis

To test the sensitivity of the model, we add noise to certain attribute categories. The attribute
categories that we (separately) add noise to are: number of cars in households, and social
participation. The categories are selected based on (1) the importance of the attributes in the
decisions individuals make in the rest of the model, and (2) the reliability of the input data/data
gathering of the attribute totals. The number of cars has high importance and does not have the
desired reliability. The social participation is the most important personal attribute category in
the choice models that follow the population synthesizer, and also has low reliability.

For each attribute, a standard normally distributed noise component was added and scaled
to 10% of the actual attribute total. We do this so that the noise is proportional to the original
values of the attribute totals. Any negative attribute totals are truncated to zero, as we cannot
have a negative number of persons or households. The resulting attribute totals are not inte-
gerised, because in determining the reference synthetic population with MILP SAE segments
we also used continuous values (since the IPF outcome in continuous). Therefore, it is not
appropriate to round the values here if they were not rounded in previous calculations.

We conduct the sensitivity analysis on only a couple of zones to allow for a detailed dis-
cussion of the results, rather than performing a superficial analysis across all zones. The zones
chosen for this analysis are located within the main study area, as these zones have the greatest
influence on travel behaviour within the region. The selection criteria for the zones include
their size (the number of individuals and households) and the runtime required for calculations.
Since the analysis involves adding random noise multiple times to assess variability, it is im-
portant to select zones where the model can quickly converge to a solution for each run. The
zones that we apply the discussed noise to, are listed in Table 4.2.

The MILP SAE attributes + relative entropy exhibits a considerable runtime for zone 198.
This zone has been included due to its larger size and comparatively lower runtime with the
other MILP models.

For each zone, attribute category and MILP, we conduct 100 sensitivity analysis runs using
different draws for the noise for each combination of method and zone (except MILP SAE
attributes + relative entropy for zone 198), and determine the distance between the synthetic
population with the noisy totals and the synthetic population of the reference. Values closer
to zero are desired as we model the effect of noise, and thus do not want large changes in the
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TABLE 4.2: Zones selected for analysing sensitivity.

Zone Inhabitants Households
Runtime (seconds) for reference population

MILP SAE
attributes

MILP SAE
segments

MILP SAE attributes
+ relative entropy

16 73 38 7.92 2.50 5.88
20 216 119 8.93 5.54 25.42

198 1258 427 8.30 5.34 2394.06

resulting synthetic population.
The results for the different zones turn out to be very similar, also both noise categories

give comparable results. Therefore, in this results section, we focus on the first run with noise
added to the number of cars in the households in zone 16.

The result we get from one run with noise is which households (from MPN) are in the synthetic
population of the zone. We compare this to the households in the reference synthetic popula-
tion. Each household in the reference set is assigned to a household in the run with noise, such
that the total distance between the two household sets is minimised.

For example, for the MILP SAE attributes, the first run with noise added to the number
of cars in households in zone 16 gives the following assignment of households between the
reference and 1st run with noise:

• Household 0 in reference → household 2 in the run with noise (distance 2)
• Household 1 in reference → household 7 in the run with noise (distance 2)
• Household 2 in reference → household 8 in the run with noise (distance 2)
• Household 3 in reference → household 9 in the run with noise (distance 2)
• Household 4 in reference → household 10 in the run with noise (distance 2)
• . . .

• Household 37 in reference → household 25 in the run with noise (distance 7)

The total distance of the assignment standardised by the change in input (eq. (3.21)) is
95.96. On average, this comes down to a change of 2.5 segments per one household change in
the input.

The distance between assigned households for the first run with noise added to the number
of cars in households is visualised for each MILP in Figure 4.9. We see that the distribution
of the distances shifts closer to zero when looking at the histograms from left to right. This
indicates that incorporating relative entropy makes that there are more households that are both
in the reference and the run with noise. This effect is bigger with the MILP SAE attributes +
relative entropy compared to the MILP SAE segments.
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FIGURE 4.9: Histograms of the distance between matched households of the 1st run
with noise on the number of cars in households for zone 16.

The above results are from the distances between assigned households for one run with
noise. These results are also obtained for all other runs with noise. In Figure 4.10, we see the
distance between assigned households in all 100 runs cumulatively. We see similar results here
as we had for the first run. With MILP SAE attributes there is the least overlap in households
between the reference and the run with noise. With MILP SAE segments, this is already better,
as is to be expected since relative entropy is incorporated via the IPF step that is done first.
When the relative entropy is minimised in the MILP directly (with MILP SAE attributes +
relative entropy), there are even more households that are both in the reference and in the runs
with noise.
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FIGURE 4.10: Histograms of the distance between matched households in all 100 runs
with noise on the number of cars in households in zone 16.

Also the standardised total distance for all 100 runs can be visualised. In Figure 4.11,
we do this again for zone 16 with noise added to the attribute totals of the number of cars in
the households. We see that the distances are smaller for the MILP SAE attributes + relative
entropy compared to the MILP SAE segments. The MILP SAE attributes results in the largest
standardised distances. This is as expected since there is nothing in this MILP that tries to get
the results of the run with noise close to the reference. Adding relative entropy to the objective
of the MILP results in a synthetic population for the run with noise, that overlaps the most with
the reference population compared to the other MILPs.
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FIGURE 4.11: Box-plot of the standardised distance between the households in the
reference and the scenario with noise added to the attribute totals of the number of cars
in the households in zone 16.

Next to the distance between the households in the reference and scenario, we also look at
the change in the input of attribute totals and the change in the attribute totals of the synthetic
populations. Again for zone 16, we plot the total absolute change per attribute category in
the 100 runs in a box-plot, see Figure 4.12. We see that indeed only the input attribute totals
regarding the number of cars in households are changed.
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FIGURE 4.12: Total absolute change in the input attribute totals of zone 16 when noise
is applied to the attribute totals of the number of cars in the households in 100 runs.

Looking at the change in attribute totals in the resulting synthetic populations gives Fig-
ure 4.13. We see that with the MILP SAE attributes and the MILP SAE attributes + relative
entropy there are no changes in the output attribute totals in attribute categories other than the
one we applied noise to. With MILP SAE segments, we do see changes in other attribute cat-
egories. This may be explained by the fact that we first do the IPF step in which the segment
totals are calculated before we use the MILP. The additional step may cause more variation in
output attribute totals.
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(A) MILP SAE attributes.
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(B) MILP SAE segments.
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FIGURE 4.13: Total absolute change in the output attribute totals of zone 16 with dif-
ferent MILPs when noise is applied to the attribute totals of the number of cars in the
households in 100 runs.
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The summarising results for the other zones and noise category can be found in Appendix C.
Here, we see similar results as we see here with noise added to the attribute totals of the number
of cars in households in zone 16.

4.3 Stability analysis

To analyse the stability when running a scenario, we apply the scenario of 180 additional indi-
viduals in each zone, regardless of the current size of the zones. The 180 individuals are added
to the attribute total using the distribution over the attributes in the reference, rounded to the
nearest integer.

We analyse the results for the same three zones as were used in the sensitivity analysis
in the previous section. When running a scenario, we use the methods with the proposed in
Section 3.3.3.

With the added term to keep the weights of the reference and scenario the same as much as
possible, we see that indeed the households that were already in the reference are also in the
scenario, as all distances are zero. This is also because the added households and persons are
distributed over the attributes according to the distribution of the reference. In these results, the
distances of households in the scenario that are not matched to a household in the reference are
zero.

Only for the MILP SAE attributes + relative entropy we see that we do not get the house-
holds that were already in the reference synthetic population. There is no clear explanation for
this, except that the relative entropy term in the objective may cause the MILP to find solutions
that are closer to the “most likely” solution. We see this as well for zone 20 and 198, see Ap-
pendix D. This is unusual, as the sensitivity analysis showed that incorporating relative entropy
into the objective produces scenario solutions that partially include the same households as in
the reference, despite not constraining the weights to be as close as possible to the reference
weights.

Just as in the previous section, we look at the results of zone 16 here. The figures regarding
zone 20 and 198 can be found in Appendix D
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FIGURE 4.14: Histograms of the distance between matched households for the scenario
in zone 16.
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5 Concluding remarks

This study aimed to develop method(s) to create synthetic populations that adhere to the house-
hold consistency requirement. Household consistency is an important aspect in synthetic pop-
ulations, because decisions in the following steps of a travel demand model may depend on
decisions made by others in the household. Having household consistency in the synthetic
population give us the option to not only determine car availability better but also include other
household decision, such as MaaS plans, the need for a babysitter for the kids, or working from
home.

We have looked at population synthesis methods across three categories: synthetic recon-
struction, combinatorial optimisation, and statistical learning. And we looked closely at the
current population synthesizer (which falls in the synthetic reconstruction category) to see
where the issues with household consistency arise. Next to household consistency, we also
had the requirements of complying with the marginal attribute totals. Furthermore, compatibil-
ity (all changes in outputs are related to changes in input) was important, this was achieved by
incorporating relative entropy to find the most likely synthetic population.

The current population synthesizer has household consistency until the iNNLS step, but
with continuous weights. The household consistency is not maintained in the final integerisa-
tion step. Just rounding the weights would preserve household consistency, but gives very bad
results looking at the marginal attribute totals, because there are many weights close to zero.
To gain a clear understanding of the population synthesis problem, we formulated it as a math-
ematical program. Adding the constraint that the weights must be integer and non-negative
ensures household consistency, the main goal. By minimising the standardised absolute error
of the attribute totals, the resulting synthetic population complies with the known totals as much
as possible.

We extended the mathematical program to find the most likely synthetic population by also
minimising the relative entropy in the objective of the mathematical program. This caused
non-linearity in the mathematical program, for which we found a way to linearise it. This
added a lot of variables to the mathematical program. An alternative method to incorporate
relative entropy minimisation is by using the results from the first step of the current population
synthesizer: iterative proportional fitting. It is known that IPF minimises the relative entropy,
while complying to the marginal attribute totals. So the idea is that by minimising the absolute
difference to the segment totals obtained from IPF, we both minimise the relative entropy and
the absolute error to the attribute totals.

It turned out that solving the (basis) MILP performed better then expected with respect to
computational requirements. Therefore we decided to continue the path of solving the MILP
directly and incorporated the additional requirements in the MILPs as well. Adding relative
entropy to the objective function made it more difficult to solve because we added a lot of vari-
ables to make it linear. Indirectly minimising the relative entropy, by using the segment totals
obtained in the IPF step, performed a lot better looking at the computational requirements. The
other performance metrics for these two MILPs were similar. In the sensitivity analysis, the
MILP SAE attributes + relative entropy performed the best. However, in the stability analysis,
it produced some unexpected results for which we could not identify a clear explanation. Al-
though the MILP SAE segments approach performed slightly worse in the sensitivity analysis,
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it generates synthetic populations significantly faster than the MILP SAE attributes combined
with relative entropy. Therefore, the MILP minimising the SAE of the segment totals is advised
to include household consistency in the synthetic populations.

Discussion

For all population synthesizer applications in this report, we used data from MPN. The MPN
data contains household and the persons in these household. However, there are only 2193
unique complete household compositions in the data, while there most likely are a lot more
feasible combinations of segments to create complete households. We know that the MPN
questionnaire is mostly filled in by “standard” household and does not contain a lot of house-
holds that are more unusual. For example, there are very few student houses in the data. These
can be households with many similar persons, looking at the segment of these persons. This
means that in zones (certain neighbourhoods of a city) where there live many students, the
synthetic population is not very representative of the actual population.

Zones containing facilities such as elderly homes, for example, pose challenges in gen-
erating a representative synthetic population and make it difficult, if not impossible, to align
with the marginal attribute totals. In the marginal data, all the persons living in the elderly
home are in the same household. The same is the case with jails. This give situations as found
in Table 4.1, where in one zone there are 127 persons living in one household. There are of
course more zones with elderly homes or jails, but in larger zones the average number of per-
sons per household is weighted out by the more normal household sizes. Also, the marginal
totals are (manually) checked beforehand to remove impossibilities such as a zone having more
households than persons. In future implementation, there should be an input validation step that
checks for obvious input consistency errors such as on average too many persons per household
in a zone.

The sensitivity and stability analysis were not done in comparison to the current popula-
tion synthesizer. The reason behind this is that in the current synthetic populations, there is
no household consistency and therefore the reference and scenario populations cannot be com-
pared to each other in the same way as suggested in this report. Because of this it is also difficult
to say what the desired bounds for the performance metrics are.
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A Metric using number of times each attributes is in a house-
hold

The second metric is an alternative for the aforementioned metric. Instead of using the number
of times each segment is in a household as a vector, we create a vector containing the number
of times each attribute is in a household. Again, let HHR be the set of households in the
reference solution and HHS the set of households in the scenario solution. Then the distance
on the attribute level between household u ∈ HHR and v ∈ HHS is calculated as follows:∑

a∈AH∪AP

|ua − va| . (A.1)

With these distances, we find the best assignment that minimises the total distance between
the two sets. If one set contains more households than the other, then the households that are
not assigned to another household are not considered in calculating the distance. The best
assignment can again be found using the Hungarian algorithm.

This metric is not a good metric for our purpose. It could be that some persons change
segment, but the total number of attributes stays the same, see Example 3. Therefore, this
metric is not used in our evaluation framework.

Example 3. In the reference there is a household containing 2 persons: a man with drivers
licence and a woman without a drivers licence. In the scenario solution, there could be a
similar household with a man without a drivers licence and a woman with a drivers licence.
The attribute totals is both these households is the same, so the metric will return 0 difference.
But the households are not actually the same.
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B Results of reference populations in the influence and outer
area

B.1 Influence area
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(A) Box-plot of the SAE’s of household at-
tributes with different methods.

0.0 0.5 1.0 1.5 2.0
SAE over personal attributes

MILP SAE 
attributes

MILP SAE 
segments 

from IPF

Current 
pop synth

(B) Box-plot of the SAE’s of personal at-
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FIGURE B.1: Box-plots of the fit on margins (SAE of attributes) of different population
synthesis methods when applied to the zones in the influence area in the Zwolle project.
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(A) Box-plot of the relative entropy of
household segments with different meth-
ods.
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(B) Box-plot of the relative entropy of per-
sonal segments with different methods.

FIGURE B.2: Box-plots of the results on the unicity metric of different population syn-
thesis methods when applied to the zones in the influence area in the Zwolle project.
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FIGURE B.3: Plot of the run times for each zone with different methods on a logarithmic
scale.

B.2 Outer area
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(A) Box-plot of the SAE’s of household at-
tributes with different methods.
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FIGURE B.5: Box-plots of the fit on margins (SAE of attributes) of different population
synthesis methods when applied to the zones in the outer area in the Zwolle project.
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FIGURE B.6: Box-plots of the results on the unicity metric of different population syn-
thesis methods when applied to the zones in the outer area in the Zwolle project.
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FIGURE B.7: Plot of the run times for each zone with different methods on a logarithmic
scale.
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C Additional results of sensitivity analysis

C.1 Distance between households in reference and noise scenarios
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FIGURE C.1: Histograms of the distance between matched households in all 100 runs
with noise on the number of cars in households in zone 20.
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FIGURE C.2: Histograms of the distance between matched households in all 100 runs
with noise on the number of cars in households in zone 198.
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FIGURE C.3: Histograms of the distance between matched households in all 100 runs
with noise on social participation of inhabitants in zone 16.

57



0 1 2 3 4 5 6 7 8 9 10 11
distance between matched households

0

600

1200

1800

2400

3000

3600

4200

4800

5400
# 

of
 h

ou
se

ho
ld

s

(A) MILP SAE at-
tributes.

0 1 2 3 4 5 6 7 8
distance between matched households

0

800

1600

2400

3200

4000

4800

5600

# 
of

 h
ou

se
ho

ld
s

(B) MILP SAE segments.

0 1 2 3 4 5 6 7 8 9 10
distance between matched households

0

800

1600

2400

3200

4000

4800

5600

# 
of

 h
ou

se
ho

ld
s

(C) MILP SAE attributes
+ relative entropy.

FIGURE C.4: Histograms of the distance between matched households in all 100 runs
with noise on social participation of inhabitants in zone 20.
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FIGURE C.5: Histograms of the distance between matched households in all 100 runs
with noise on social participation of inhabitants in zone 198.

C.2 Standardised total distance between households in reference and noise
scenarios
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FIGURE C.6: Box-plot of the standardised distance between the households in the ref-
erence and the scenario with noise added to the attribute totals of the number of cars in
the households in zone 20.
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FIGURE C.7: Box-plot of the standardised distance between the households in the ref-
erence and the scenario with noise added to the attribute totals of the number of cars in
the households in zone 198.
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FIGURE C.8: Box-plot of the standardised distance between the households in the ref-
erence and the scenario with noise added to the attribute totals of social participation
in zone 16.
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FIGURE C.9: Box-plot of the standardised distance between the households in the ref-
erence and the scenario with noise added to the attribute totals of social participation
in zone 20.
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FIGURE C.10: Box-plot of the standardised distance between the households in the
reference and the scenario with noise added to the attribute totals of social participation
in zone 198.

C.3 Input change compared to output change
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FIGURE C.11: Total absolute change in the input attribute totals of zone 20 when noise
is applied to the attribute totals of the number of cars in the households in 100 runs.
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(A) MILP SAE attributes.
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(B) MILP SAE segments.
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(C) MILP SAE attributes + relative entropy.

FIGURE C.12: Total absolute change in the output attribute totals of zone 20 with
different MILPs when noise is applied to the attribute totals of the number of cars in the
households in 100 runs.
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FIGURE C.13: Total absolute change in the input attribute totals of zone 198 when
noise is applied to the attribute totals of the number of cars in the households in 100
runs.
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(A) MILP SAE attributes.
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(B) MILP SAE segments.

FIGURE C.14: Total absolute change in the output attribute totals of zone 198 with
different MILPs when noise is applied to the attribute totals of the number of cars in the
households in 100 runs.
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FIGURE C.15: Total absolute change in the input attribute totals of zone 16 when noise
is applied to the attribute totals of social participation in 100 runs.
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(A) MILP SAE attributes.
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(B) MILP SAE segments.
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(C) MILP SAE attributes + relative entropy.

FIGURE C.16: Total absolute change in the output attribute totals of zone 16 with
different MILPs when noise is applied to the attribute totals of social participation in
100 runs.
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FIGURE C.17: Total absolute change in the input attribute totals of zone 20 when noise
is applied to the attribute totals of social participation in 100 runs.
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(A) MILP SAE attributes.
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(B) MILP SAE segments.
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(C) MILP SAE attributes + relative entropy.

FIGURE C.18: Total absolute change in the output attribute totals of zone 20 with
different MILPs when noise is applied to the attribute totals of social participation in
100 runs.

67



Zon
e_i

nw

Zon
e_H

H

HHSa
men

ste
llin

g

HHAuto

HHPer
son

en

Maa
tsP

art

Gesl
ach

t

Herk
om

st

Rijbe
wijs

Lee
ftij

d

Attribute category

0

5

10

15

20

25

30

35

Ab
so

lu
te

 c
ha

ng
e

FIGURE C.19: Total absolute change in the input attribute totals of zone 20 when noise
is applied to the attribute totals of social participation in 100 runs.
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(A) MILP SAE attributes.
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(B) MILP SAE segments.

FIGURE C.20: Total absolute change in the output attribute totals of zone 198 with
different MILPs when noise is applied to the attribute totals of social participation in
100 runs.
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D Additional results of stability analysis

D.1 Distance between households in reference and scenario
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FIGURE D.1: Histograms of the distance between matched households for the scenario
in zone 20.
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FIGURE D.2: Histograms of the distance between matched households for the scenario
in zone 198.
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D.2 Input change compared to output change
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FIGURE D.3: Total absolute change in the input attribute totals of zone 16 when noise
is applied to the attribute totals of the number of cars in the households in 100 runs.
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FIGURE D.4: Total absolute change in the input attribute totals of zone 20 when noise
is applied to the attribute totals of the number of cars in the households in 100 runs.
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FIGURE D.5: Total absolute change in the input attribute totals of zone 198 when noise
is applied to the attribute totals of the number of cars in the households in 100 runs.
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(A) MILP SAE attributes.
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(B) MILP SAE segments.
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(C) MILP SAE attributes + relative entropy.

FIGURE D.6: Total absolute change in the output attribute totals of zone 16 with dif-
ferent MILPs when noise is applied to the attribute totals of the number of cars in the
households in 100 runs.
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(A) MILP SAE attributes.
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(B) MILP SAE segments.
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(C) MILP SAE attributes + relative entropy.

FIGURE D.7: Total absolute change in the output attribute totals of zone 16 with dif-
ferent MILPs when noise is applied to the attribute totals of the number of cars in the
households in 100 runs.
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(A) MILP SAE attributes.
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(B) MILP SAE segments.
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(C) MILP SAE attributes + relative entropy.

FIGURE D.8: Total absolute change in the output attribute totals of zone 198 with
different MILPs when noise is applied to the attribute totals of the number of cars in the
households in 100 runs.
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