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Abstract

In this study the impact of audio codecs on the calibration performance of forensic au-
tomatic speaker recognition is analyzed, addressing challenges posed by mismatched con-
ditions. Using the NFI-FRIDA (Netherlands Forensic Institute - Forensically Realistic
Inter-Device Audio) database, a collection of speech recordings captured simultaneously
with multiple recording devices relevant to forensic analysis, high quality audio samples
are processed through various codecs to simulate real telephone speech and compared to
actual telephone intercepts. The study uses an x-vector based automatic speaker recog-
nition system, VOCALISE (Voice Comparison and Analysis of the Likelihood of Speech
Evidence) for all experiments and system performance is measured in terms of calibration
loss and cost of log likelihood ratio. The study reveals a significant performance loss due
to codec mismatches and emphasizes the complexity of simulating telephone speech and
replicating real world telephony conditions. Additionally, the study highlight the potential
of cross-processing datasets with mismatched codecs to lower the calibration loss.

Keywords: Forensic speaker recognition, audio codecs, calibration, automatic speaker
recognition, calibration loss



Acknowledgements

I would like to express my gratitude to the Netherlands Forensic Institute for providing
me with the opportunity to carry out my thesis project as an intern. This study would

not have been possible without their resources and support.

I am especially thankful to my primary supervisors, Didier Meuwly and David van der
Vloed, for their invaluable guidance, constructive feedback, and continuous support

throughout the project. I also extend my thanks to Luuk Spreeuwers and Florian Hahn,
who served as my supervisors and provided administrative support during this journey.

i



Contents

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 4

2.1 Forensic Speaker Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Forensic Automatic Speaker Recognition . . . . . . . . . . . . . . . . . . . . 5

2.3 Calibration and Likelihood Ratio . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Validation and Performance Metrics . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Lack of Representative Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Interchangeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Codec Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Methodology 13

3.1 Automatic Speaker Recognition System . . . . . . . . . . . . . . . . . . . . 13

3.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Results 20

ii



4.1 Score distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Score-to-LLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Closs and Cllr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 One codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.2 Multiple codecs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Discussion 29

5.1 Codecs impact on system performance . . . . . . . . . . . . . . . . . . . . . 29

5.2 Interchangeability of calibration sets processed through different audio codecs 30

5.3 Limitations of simulated telephone speech . . . . . . . . . . . . . . . . . . . 30

5.4 Reducing performance loss with dual codecs . . . . . . . . . . . . . . . . . . 31

5.5 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Conclusion 33

iii



List of Figures

2.1 Same-speaker and different-speaker comparisons . . . . . . . . . . . . . . . . 6

2.2 Score distributions and LR calculation . . . . . . . . . . . . . . . . . . . . . 7

2.3 Spectogram of clean audio sample . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Spectogram of codec degraded audio sample . . . . . . . . . . . . . . . . . . 11

3.1 Score distributions of AMR-NB codecs . . . . . . . . . . . . . . . . . . . . . 18

4.1 Score distributions of selected codecs . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Score-to-LLR functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Closs(%) values of single codecs . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Cllr values of single codecs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Closs(%) values of dual codecs . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Cllr values of dual codecs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iv



List of Tables

3.1 NFI-FRIDA Recording devices . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 NFI-FRIDA Recording sessions . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Selected devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Selected sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Overview of datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Comparison of Cllr values between direct and cross-processed calibration . . 28

v



Acronyms

AMR-NB - Adaptive Multi-Rate Narrowband
AMR-WB - Adaptive Multi-Rate Wideband
ASR - Automatic Speaker Recognition
Cllr - Cost of Log Likelihood Ratio
Closs - Calibration Loss
DET - Detection Error Trade-off
EER - Equal Error Rate
EVS - Enhanced Voice Services
FAR - False Acceptance Rate
FASR - Forensic Automatic Speaker Recognition
FRR - False Rejection Rate
FSR - Forensic Speaker Recognition
LLR - Log Likelihood Ratio
LR - Likelihood Ratio
MFCCs - Mel-Frequency Cepstral Coefficients
NFI - Netherlands Forensic Institute
PLDA - Probabilistic Linear Discriminant Analysis
RMEP - Rate of Misleading Evidence in favor of the Prosecution
RMED - Rate of Misleading Evidence in favor of the Defence
VAD - Voice Activity Detection

vi



Chapter 1

Introduction

This chapter introduces the significance of forensic speaker recognition (FSR) in forensic
investigations, outlining its challenges and discussing the critical role of representative
data, the impact of mismatched conditions, and the importance of calibration in
automatic speaker recognition (ASR) systems. The research objective is detailed to
provide a comprehensive context for the study.

1.1 Problem Statement

The Netherlands Forensic Institute (NFI) is a world leading forensic laboratory, working
with a variety of forensic analysis [1]. One of their divisions focus on digital and
biometrical traces, playing an important role in modern forensic investigations and
examinations given the increase of digital devices and biometric technologies. One area of
casework and research is on speaker recognition, which entails examining if a speaker is
the source of a questioned recording.

Speaker recognition has long been an interest in forensic practice. In cases where the
primary evidence consists of a recorded speech utterance, the goal is to compare this
recording with that of a potential suspect to determine the likelihood that both
recordings originate from the same speaker. Investigations that rely heavily on speaker
recognition often do so due to a lack of other substantial evidence, which further
increases the importance of the accuracy of these methods. Reliable speaker recognition
is crucial to inform the court correctly and avoid errors that could unfairly influence the
court’s sentencing of a suspect. However, FSR is a difficult task [11].

Analyzing speech as a biometric trace is inherently challenging because the sound and
characteristics of a person’s voice can vary. Voice changes based on the state of the
speaker, someone who is tired will not sound the same as when they are energetic,
emotional state such as happiness, anger or sadness will affect the voice, as well as
different speaking conditions such as whispering or shouting and even intentional altering
of the voice. Additionally, external factors can influence the quality of the capture,
transmission and recording of the speech. Amongst others, background noise, overlapping
speech, low-quality recordings and distortions must all be considered.
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In many applications of speaker recognition, recordings can be made in controlled
environments to ensure high-quality speech samples. However, this is not possible for
forensic traces. Forensically realistic speech recordings come from uncontrolled
environments, such as intercepted phone calls or collected voice notes. This results in
challenging and frequently mismatched conditions between samples, creating a unique
problem when applying speaker recognition in forensic cases [4].

FSR can be performed in a variety of ways. Either by trained forensic practitioners
listening to the recordings and comparing the speech characteristics, or by using machine
learning models in an automatic approach. At the NFI, a combination of
auditory-acoustic analysis and automatic analysis is used [28]. While humans are good at
distinguishing between speakers, ASR allows for the efficient comparison of large amounts
of data while maintaining a scientific and consistent approach. However, improvements
and further research is required for ASR to be more broadly applicable. At the NFI, ASR
is used in almost a third of their forensic speaker comparison cases. The biggest limiting
factor in expanding ASR use is the lack of representative data - models need to be
trained with data that closely match the conditions of the case recordings [28].

Without representative data that corresponds to the specific case conditions, system
performance becomes less reliable. The model will compare the recordings and generate a
score, but if the model is trained on data produced under different circumstances, the
score might be influenced by those differences rather than solely reflecting the actual
speaker similarity [26].

The forensic practitioner is responsible for deciding what should be used as representative
data, but answering this question is not straightforward. There is a multitude of various
conditions to be considered, and it is not always clear which have a significant impact on
system performance. The choice of representative data becomes a subjective choice made
by the practitioner [26] and to ensure that the results generated by ASR systems are
scientifically reliable it is important to conduct proper research on the effects of
mismatched data and explore methods to mitigate any potential negative impact.

Lastly, this raises the question of what we can do if we don’t have enough representative
data for a particular case. Do some speaker conditions have minimal impact on system
performance and can thus be used as representative data despite not being a perfect
match to the case audio? Is it possible to augment the data to better represent the case
audio, or to process it using specific method to mitigate the negative effects of
mismatched data? It is important to recognize that a score produced by an ASR system
does not necessarily mean much on its own, and care has to be taken into calibrating the
models to the specific case.

1.2 Research Objective

The objective of this research is to investigate the impact of mismatched data and
possible compensation strategies to enhance the performance of forensic automatic
speaker recognition (FASR) systems, focusing particularly on the interchangeability of
calibration. Given that forensic practitioners must make subjective judgments regarding
representative data and how to interpret the score, this research aims to support these
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decisions with empirical evidence. This study can contribute to a better understanding of
the significance of various recording conditions and how to compensate for them,
potentially enabling the NFI to extend its use of ASR. Due to the large variety of
recording conditions, this research will focus on audio codec degradation.

To guide this research, the following research questions have been formulated:

1. What impact do different audio codecs in the calibration data have on the accuracy
of an ASR system?

2. Can some audio codecs be used interchangeably in the calibration data of an ASR
system?

3. Can we simulate real telephone speech by applying audio codecs to high-quality
audio without significant performance loss?

4. Can we compensate for any potential performance loss using data augmentation?
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Chapter 2

Background

The following chapter introduces forensic speaker recognition and the process involved in
an automatic system, to gain a foundational understanding of its implementation and
general challenges. Essential concepts such as calibration, likelihood ratio and validation
are explored together with metrics that will be used in the study. Additionally, the
challenges posed by a lack of representative data are assessed, along with a discussion on
interchangeability of calibration sets as well as audio codecs and their potential effect on
system performance.

2.1 Forensic Speaker Recognition

Speaker recognition is a type of biometric technique that utilizes speech to distinguish
one person from another [11]. Biometrics refer to the science of distinguishing individuals
based on their physiological or behavioural traits [13], i.e., based on who they are rather
than objects or information they have access to. Physiological traits include physical
attributes such as fingerprints or facial features, whereas behavioural traits encompass
patterns in behaviour and interactions with the environment, such as body movements or
how one writes their signature. Speech is a type of biometric trait that combines both
physiological and behavioural characteristics and can be influenced by many variabilities.
Not only is the sound of your voice dependent on the physical features of your vocal
tract, but it is also influenced by behaviours and mental states such as emotions, health
and dialect.

Forensic science involves applying scientific principles and techniques to investigate
crimes and gather evidence that can be presented in a court of law. Due to the
widespread use of audio recording devices, speaker recognition has become an important
tool within forensic science. During a case where the primary evidence is an audio
recording, and there is a suspected person, FSR is typically applied to determine if the
questioned speech recording originates from that suspected person. FSR is performed by
comparing the questioned recording with a known recording of the suspect and analyzing
the characteristics between the two speech samples [11]. When carrying out this process,
both the behavioural aspects that can alter the speech as well as external factors
affecting the recordings, must be considered, making FSR a particularly challenging task.

4



When presenting evidence in court, it is not the forensic practitioner’s role to determine
the suspect’s innocence or guilt. Therefore, they should refrain from providing a
definitive answer regarding whether the suspect made the incriminating recording.
Instead, they should provide an objective statement about the strength of evidence at the
source level, indicating how much more likely the observed evidence is under one
hypothesis compared to an alternative hypothesis.

When using an ASR system, the forensic practitioner inputs both the questioned speech
audio and the known speech audio into the software. The system compares the samples
and generates a comparison score. This score alone does not indicate the strength of
evidence. The practitioner evaluates the score in light of the two hypotheses, the
prosecutor’s hypotheses Hp and the defence’s hypotheses Hd [22], typically stated as:

Hp : The two speech samples originate from the same speaker
Hd : The two speech samples originate from different speakers

By calculating the relative likelihoods of observing the score given these two hypotheses,
the practitioner can derive the likelihood ratio (LR), which represents the strength of
evidence. The LR can be presented in court, where the judge can consider it alongside
other relevant information to determine the outcome of the case.

Further details on how the ASR system generates the comparison score and derives the
LR will be provided in the subsequent sections.

2.2 Forensic Automatic Speaker Recognition

In a typical FASR scenario, the forensic practitioner is tasked with comparing two case
recordings, the questioned speech recording (the evidence) and the known speech
recording (the suspect). Before the recordings can be compared in a meaningful way, the
practitioner must first train the model specifically for the case. In general, there are two
datasets required for this, a calibration set and a validation set. The calibration set is
used to calibrate the model to the specific case conditions and compute the final result,
the LR, while the validation set is used to ensure the model’s accuracy. If a sufficient
amount of data is available, a set for reference normalization can also be used to
compensate for minor mismatches in the data [26].

For further details on calibration and the likelihood ratio as well as validation and
performance metrics, see sections 2.3 and 2.4.

To start with, the forensic practitioner must select the calibration data. This data should
be representative of the case [26], meaning that the speakers should belong to the
relevant population and the audio and speaker conditions should correspond to those of
the case recordings. The relevant population may include speakers of similar background
such as gender, approximate age and cultural background. Representative speaker and
audio conditions may include e.g., same spoken language, similar speech duration and the
same type of recording device used.

Once the data has been selected, the forensic practitioner typically performs
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preprocessing to prepare it for analysis. This step often involves e.g., editing audio
samples to remove non-active speech segments and trimming them to match the speech
duration of the case sample. Previous studies have demonstrated that a difference in
duration between the calibration and evaluation datasets can significantly impact system
performance [21]. After preprocessing, the data is divided into calibration, validation,
and, if necessary, reference normalization datasets, each containing known speaker pairs.

Following the preparations, the forensic practitioner inputs the calibration data into the
system. The system performs feature extraction to capture the speaker dependent
features of the voice. One of the most commonly used features in FASR systems is
Mel-Frequency Cepstral Coefficients (MFCCs) [26]. These are numerical representations
of the speech signal that reflect the physical properties of the speaker’s vocal tract,
including the shape and size of the vocal cords and resonating cavities. The extracted
features are then used to create speaker dependent models.

The generated speaker models are compared, producing a similarity score for each pair of
samples. For the calibration data, sets of same-source scores and different-source scores
are produced, see Fig. 2.1, serving as a ground truth used to calibrate the final case score
into an LR [28].

(a) Same-speaker comparisons (b) Different-speaker comparisons

Figure 2.1: Same-speaker and different-speaker comparisons

The validation set is used to assess the system’s reliability, ensuring that the output is
suitable for use in court [20]. The validation set should contain known speaker pairs, but
this information must remain hidden from the system during testing. Comparisons are
carried out as previously described, and the resulting scores from the validation set are
analyzed together with the scores from the calibration set to produce a set of LRs. To
determine the LRs for the validation set, the same-source and different-source scores from
the calibration set are plotted as separate distributions. Each test score from the
validation set is then evaluated relative to these distributions, and the LR is determined
based on its position within the graph, see Fig. 2.2.

This results in a set of same-speaker LRs and a set of different-speaker LRs. The system
performance can then be assessed by comparing the values of the LRs with the ground
truth of the speaker pairs, small LR values for same-speaker pairs and large LR values for
different-speaker pairs indicate good system performance [20]. If the system performance
is satisfactory, the case samples can be processed using the same method as the
validation data, arriving at a final LR.
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Figure 2.2: Score distributions and LR calculation [28]. The calibration scores
determine the same-speaker curve (green) and the different-speaker curve (red), the
LR is computed using the probability densities of the two distributions at the test
score’s location.

2.3 Calibration and Likelihood Ratio

The comparison score computed by an ASR system indicates the degree of similarity
between the two speech samples, but does not provide information on how likely it is that
the samples originate from the same speaker. As discussed in the previous section,
calibration is used to convert these scores into LRs through a score-to-LLR function,
using the calibration score distributions shown in Fig. 2.2. By interpreting the score
using an LR method, we can assess the strength of the evidence in light of the two
hypotheses (Hp) and (Hd). The calibration set used must contain data of similar
conditions to the case data, if not, the LR may end up being too high or too low [26].

This approach enables the forensic practitioner to assess the strength of the evidence,
comparing how likely it is to observe the score if the samples were made by the same
speaker against how likely it is to observe the score if the samples were not made by the
same speaker. Consequently, the forensic practitioner can make an objective statement
regarding the evidence and express it probabilistically. Thus, the LR helps answer the
question of to what extent the evidence favours one hypothesis over the other. The LR
can be described by the following formula:

LR =
P (E|Hp, I)

P (E|Hd, I)
(2.1)

Here, the probability of hypothesis (Hp) against hypothesis (Hd) is determined, where
P (E|Hp) and P (E|Hd) represents the probability density functions of the same-source
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and different-source score distributions respectively, evaluated at the observed evidence
E. I in this context represents other information relevant to the case [6].

The LR is based on a Bayesian framework, which allows for updating the belief in a
hypothesis as new information is introduced. The judge can combine prior background
knowledge with new data to derive a posterior probability or belief of the hypothesis [6].

The prior odds is given by:

P (Hp|I)
P (Hd|I)

(2.2)

That is, the probability of (Hp) being true over the probability of (Hd) being true, given
the background information of the case.

Using the prior odds and the LR, the posterior odds can be derived as [6]:

P (Hp|E, I)

P (Hd|E, I)
=

P (E|Hp, I)

P (E|Hd, I)
× P (Hp|I)

P (Hd|I)
(2.3)

posterior odds = LR × prior odds

2.4 Validation and Performance Metrics

Validation in FASR aims to answer the question of whether a system is performing well
enough to use its output in court. When developing a FASR method, validation can be
split into two distinct phases, technology validation and application validation [23].

The aim is to test the system under conditions as similar as possible to real forensic
casework. For this process, a validation set is used. Like the calibration set, this dataset
should contain same-speaker pairs and different-speaker pairs. It is however crucial that
the system being validated does not know the status of each pair. Additionally, the
validation set should not contain any of the same speakers used in training the model [20].

Technology validation is used to assess the systems discriminative power, i.e., how well
the model separates between the competing propositions [23]. To assess the
discriminative power Equal Error Rate (EER) is used together with Detection Error
Trade-off (DET) plots for graphical representation. EER measures how well the system
discriminates between same-speaker and different-speaker pairs (i.e., does the system
recognize same-speaker pairs better than different-speaker pairs?). There are two types of
errors relevant to this context, false acceptance and false rejection. A false acceptance
error happens when a different-speaker pair is misclassified as a same-speaker pair,
whereas a false rejection error occurs when a same-speaker pair is misclassified as a
different-speaker pair [17]. EER indicates the threshold where the false acceptance rate
(FAR) meets the false rejection rate (FRR). The EER can be visualized using a DET
plot, which plots FAR as a function of FRR, showing the trade-off between the two
errors. The intersection of the DET-curve marks the EER [19].
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Application validation [23] is the second step, where LRs are produced and evaluated for
how well calibrated they are. To assess the performance of the LR system, errors are
measured in terms of the rate of misleading evidence in favor of the prosecution (RMEP)
and the rate of misleading evidence in favor of the defence (RMED). The Cost of Log
Likelihood ratio (Cllr) is used [20]. This metric assess how well the LRs reflect the
ground truth of the speaker pairs (same-source or different-source), and how often the
system might produce misleading evidence.

Cllr is defined by the following formula:

Cllr =
1

2
·

 1

NHp

NHp∑
i

log2

(
1 +

1

LRHpi

)+

 1

NHd

NHd∑
j

log2
(
1 + LRHdj

) (2.4)

Here, NHp represents the number of samples where (Hp) is true, and NHd represents the
number of samples where (Hd) is true. Likewise, LRHp represents the LR values of
samples where (Hp) is true and LRHd represents the LR values of samples where (Hd) is
true. A Cllr value closer to 0 indicates a better performing system [30].

In addition to Cllr, calibration loss (Closs) can be used to quantify the relative difference
between CllrT , which represents the actual Cllr calculated on a specific test set, and
CllrM , which represents the Cllr produced when using a perfectly matched calibration set
for that test set. This metric illustrates the extent to which the calibration performance
deviates from the optimal performance achievable with an ideal calibration set.

Closs is calculated using the following formula:

Closs =
(CllrT − CllrM )

CllrM

(2.5)

2.5 Lack of Representative Data

One of the primary challenges in FASR is the lack of representative data. Calibration is a
critical step in FASR, as it ensures that LRs accurately reflect the strength of the
evidence under real world conditions. However, achieving reliable calibration relies
heavily on the availability of representative data. For calibration data to be forensically
realistic, it must accurately reflect the acoustic, environmental, and device conditions of
the case audio, which can vary significantly. Additionally, forensic practitioner must
consider which conditions are likely to affect the model’s comparison performance. This
decision involves subjective judgment, as including audio with mismatched conditions
could potentially cause the system to misrepresent the strength of the evidence, resulting
in misleading results, while excluding them may result in insufficient data to effectively
use ASR [27].

The lack of representative calibration data has practical implications for forensic
practitioners. Without calibration datasets that reflect the conditions of case data, the
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LRs generated may lack reliability. This issue is heightened by the challenges of acquiring
forensic data that accurately represent real cases.

2.5.1 Interchangeability

Previous studies suggest that device variability can be particularly challenging and
should be considered during calibration [29]. Similarly, mismatches in speech duration
and microphone distance can cause significant performance loss, whereas speakers using
different but closely related languages, or speakers of different genders cause minimal to
no significant performance loss [21]. Thus, if a case involves a female suspect, but the
forensic practitioner only has representative data of male speakers, they may theoretically
still use the male speaker data for the calibration set. This demonstrates the
interchangeability of these datasets, meaning that their score-to-LLR functions produce
similar LRs from the same set of scores [27].

2.6 Codec Degradation

A codec, a blendword of coder/decoder, is a component that encodes and decodes a
signal to enable more efficient file transfers. When an audio signal is transmitted over a
network, an audio codec compresses the signal to save space, while simultaneously trying
to maintain the quality of the signal as it is decompressed at the end-point. However,
some information is typically lost during this process, degrading the quality of the audio
recording [32], it is unclear how this quality reduction may affect the performance of an
ASR system. Fig. 2.3 and 2.4 provide a visual representation of how running an audio
sample through an Adaptive Multi-Rate Narrowband (AMR-NB) codec with a bitrate of
4.75kbps can affect the audio quality. The spectogram captures the amplitude at
different frequency ranges over time, with the amplitude illustrated by the color.
Amplitude represents the loudness of the audio signal, while frequency represents the
pitch of the audio signal. A clean, high-quality, audio sample, seen in Fig. 2.3, was
passed through a codec using FFmpeg, seen in Fig. 2.4. The resulting spectogram shows
that some information loss has occurred in the process, with lower and more erratic
amplitude accross all frequency ranges.
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Figure 2.3: Spectogram of clean audio sample

Figure 2.4: Spectogram of codec degraded audio sample, the same audio sample
as in Fig. 2.3 was passed through an AMR-NB codec with a bitrate of 4.75kbps
and a sample rate of 8000Hz

In telephony, the AMR-NB and AMR-WB (Adaptive Multi-Rate Wideband) codecs are
commonly used. These codecs dynamically adjust the transmission bitrate based on the
channel’s capacity and current conditions. AMR-NB operates at bitrates ranging from
4.75 to 12.2 kbps, while AMR-WB ranges from 6.6 to 23.85 kbps [24]. Other widely used
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telephony codecs include G.711 and Enhanced Voice Services (EVS) [16], a successor of
AMR-WB.

2.7 Related Work

While previous research has examined the effects of various mismatched conditions in the
calibration and evaluation data of FASR systems, studies specifically focusing on the
impact of audio codecs and mismatched codecs on calibration remain limited. Some
studies have investigated the impact of audio codecs on ASR systems, analyzing how
codec induced distortions influence system performance when applied to training data.

[2] passed audio samples through GSM speech codecs and investigated their influence on
speaker verification performance, finding that GSM coding significantly degrades both
identification and verification accuracy.

[32] investigates speech recognition (distinct from speaker recognition, which identifies
who is speaking rather than what is being said) using telephony data. The study applies
various codecs, including G726, G722, G723.1, GSM full-rate and half-rate, Opus, and
AMR-NB, to simulate real world distortions. The severity of these distortions is analyzed
through spectrogram visualizations of different audio samples. The codecs are categorized
into four groups, ranging from highly distorted to minimally distorted. The results show
that models trained with highly distorted codec augmented data achieved better
performance on real telephony data, suggesting that these codecs better reflect real world
conditions.

[18] investigated the impact of codec degraded speech on a speaker recognition system
based on various PLDA training scenarios. They found that including noise and
reverberant speech in the PLDA model improved robustness to codec effects.
Additionally, they found that the best performance was achieved when the PLDA model
was trained with codec data that matched the evaluation conditions.

[14] found that a GMM-based speaker recognition system performs well for
text-independent speaker identification and verification when the training and test data
are encoded with the same audio codec and sample rate. Under these matched
conditions, the increase in EER is minimal compared to uncoded speech. However, the
system fails when there is a mismatch between the codecs of the training and test data.

These studies have explored codec induced distortions in training data for speaker and
speech recognition systems, with the goal of improving recognition accuracy. In
comparison, this studdy will examine the impact of codec mismatches on calibration,
investigating how well the system can be calibrated under varying codec conditions to
maintain reliable forensic likelihood ratios.
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Chapter 3

Methodology

This chapter provides an introduction to the system and dataset used in the study, along
with an overview of the data preprocessing steps undertaken. These steps include
filtering the data to only include relevant samples, removing silent segments, and
trimming audio samples to a consistent length. The data augmentation process is
detailed, including the codecs applied and the implementation of a frequency filter to
align the audio samples more closely with realistic telephony conditions.

3.1 Automatic Speaker Recognition System

For this study, VOCALISE 2019, a speaker recognition system based on the x-vector
framework was used. A pre-trained model using probabilistic linear discriminant analysis
(PLDA) for scoring and MFCC’s for feature extraction was used [15]. This choice was
made because VOCALISE 2019 is the system used locally at the NFI [28] and an
x-vector framework is currently the state of the art of speaker recognition systems.
PLDA outputs LRs, but due to the potential mismatches between the data that the
underlying system is trained on and the case data, it is common practice to still apply
calibration on the output and turn them into calibrated LRs [21]. Additionally,
VOCALISE offers the option to turn on voice activity detection (VAD) to omit any
potential silent parts in the audio samples, however, the datsets used were already edited
and thus VAD was turned off.

3.2 Database

This study made use of the NFI-FRIDA (Netherlands Forensic Institute - Forensically
Realistic Inter-Device Audio) database. This is a database collected to support forensic
speaker comparison casework at the NFI [29].

The database consists of speaker-sessions recorded simultaneously across multiple
devices, see Table 3.1, allowing for an in-depth evaluations of how different devices affect
system performance. The database includes 250 male speakers, primarily aged 18-35.
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The participants come from various backgrounds, including native Dutch,
Turkish-immigrant and Moroccan-immigrant populations. However, all recordings are
conducted in Dutch, ensuring that the speaker-sessions belong to a similar linguistic and
demographic population. This consistency facilitates a more reliable assessment of the
influence of differing recording conditions on system performance.

Device Recording device
d1 Shure WH20 HQ Headset
d2 Shure SM58 close
d3 AKG C400BL close
d4 Shure SM58 far
d5 Intercepted telephone iPhone/Nokia
d6 Video iPhone

Table 3.1: NFI-FRIDA Recording devices

Each speaker underwent two days of recording with 8 sessions per day, see Table 3.2,
captured across 3-6 different devices. Sessions were split evenly between indoor and
outdoor environments, each containing sessions in both quiet and noisy settings. One of
the recording devices used was that of an intercepted phone call, alternating between the
use of Nokia 1280 and an iPhone 4. The rest of the devices used include a high-quality
headset, microphones at varying distances and a video recording, resulting in recordings
of varying quality and levels of background noise. For a detailed breakdown of recording
sessions, refer to [29].

Session Indoors/Outdoors Noise level Telephone
s1 Indoors Quiet Nokia 1280
s2 Indoors Quiet iPhone
s3 Indoors Noisy Nokia 1280
s4 Indoors Noisy iPhone
s5 Outdoors Quiet Nokia 1280
s6 Outdoors Quiet iPhone
s7 Outdoors Noisy Nokia 1280
s8 Outdoors Noisy iPhone

Table 3.2: NFI-FRIDA Recording sessions

3.3 Data preprocessing

Data preprocessing was performed to prepare the dataset for speaker comparisons. This
process involved filtering the data to retain only samples relevant to the study,
eliminating any residual silent segments and standardizing the speech duration by
trimming all samples to 30 seconds. These steps ensured consistency and reliability in the
subsequent analyses. These preprocessing steps were automated and executed using
batch processing scripts to ensure efficiency and consistency across the dataset.
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Data filtering

The objective of this study is to analyze the role of audio codecs within the calibration
data of forensic speaker recognition. To achieve this, the aim was to compare three
distinct types of audio samples, i.e., high-quality audio recordings, real intercepted phone
calls and audio samples processed through various codecs. Therefore, there were two
recording devices from the FRIDA database that were of importance for the study, i.e.,
the high-quality Shure WH20 headset and the intercepted telephone. Recordings from
other devices were excluded from the analysis as they were not relevant to the study’s
focus.

The study aimed to isolate the effects of audio codecs on system performance while
minimizing the influence of other factors. Consequently, speaker sessions recorded in
noisy environments as well as sessions made with the Nokia 1280 were excluded. The
Nokia 1280 session were omitted due to the low quality of these recordings, which made
them unsuitable for reliable analysis. By narrowing the dataset in this manner the study
ensured that the analysis remained focused on codec related variations.

Ultimately, the data used for this research consisted of samples recorded with the Shure
WH20 HQ Headset (device d1) and the intercepted iPhone (device d5) under controlled
conditions, session s2 (indoors/quiet) and session s6 (outdoors/quiet). The final selection
of audio samples is detailed in Table 3.3 and 3.4, marked with green. This selection
resulted in a total of 710 recordings for both the high-quality headset and the intercepted
telephone samples respectively, distributed across 210 speakers. Each speaker contributed
up to 8 recordings.

Device Recording device
d1 Shure WH20 HQ Headset
d2 Shure SM58 close
d3 AKG C400BL close
d4 Shure SM58 far
d5 Intercepted telephone iPhone/Nokia
d6 Video iPhone

Table 3.3: Selected devices

Session Indoors/Outdoors Noise level Telephone
s1 Indoors Quiet Nokia 1280
s2 Indoors Quiet iPhone
s3 Indoors Noisy Nokia 1280
s4 Indoors Noisy iPhone
s5 Outdoors Quiet Nokia 1280
s6 Outdoors Quiet iPhone
s7 Outdoors Noisy Nokia 1280
s8 Outdoors Noisy iPhone

Table 3.4: Selected sessions
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Removing silent parts

Despite prior editing of the dataset some audio samples were found to still contain silent
segments. To address this issue all samples were processed using the silence filter in SoX
Sound eXchange [5]. This approach was chosen over the built-in VAD filter in
VOCALISE as the latter does not guarantee uniform speech duration across samples.
Ensuring consistent duration was an important requirement for this study as it allowed
for more reliable comparisons during speaker analysis.

Trimming samples

Since it has been shown in previous reserach that a mismatch in speech duration between
calibration data and evaluation data can have a significant impact on system
performance [21], all samples were trimmed to the same length of 30 seconds using the -t
flag in FFmpeg [8].

3.4 Data augmentation

The next step involved augmenting the high-quality speech samples by processing them
through various audio codecs. This was done to evaluate the calibration performance of
different codecs and to simulate real telephone speech. The goal was to determine
whether simulated telephone speech, produced by applying codecs to high-quality
recordings, could achieve comparable calibration performance to real intercepted
datasets, thereby enabling their interchangeable use in forensic applications. The codecs
were applied to the high-quality samples using FFmpeg [9].

Codecs

The codecs selected for this study were AMR-NB, AMR-WB and G.711, as these are
among the most widely used telephone codecs in modern communication systems. EVS
was another codecs also considered for the study, but ultimately it was excluded from
analysis due to the lack of a reliable implementation method. The G.711 codecs was
pre-configured within the FFmpeg framework [9], whereas the AMR codecs required the
intergration of external libraries. Specifically, OpenCORE AMR was used for AMR-NB
[7], and VisualOn was used for AMR-WB [25].

For AMR-NB and G.711, audio files were encoded with a sample rate of 8000 Hz, while
AMR-WB files were encoded at 16000 Hz. These sample rates were selected to align with
real world telephony standards. During encoding with the AMR codecs, the bitrate
settings were also configured. AMR codecs operate at variable bitrates that changes
dynamically during a call based on how much traffic there is in the network. For
AMR-NB, the bitrate ranges from 4.75 kbps to 12.2 kbps, and for AMR-WB, it ranges
from 6.60 kbps to 23.85 kbps. To investigate the impact of these varying bitrates, a
separate dataset was generated for each bitrate setting across both AMR codecs. In
contrast, G.711 uses a fixed bitrate, resulting in a single dataset for this codec.
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In total, 20 distinct datasets were prepared for analysis. These included one dataset
containing real intercepted telephone recordings, one dataset of high-quality audio, and
18 datasets of simulated telephone speech processed through various codec configurations.
All datasets comprised speech from the same recording session to ensure consistency in
the analyses. An overview of the available datasets is provided in Table 3.5.

Datasets
Real telephone intercepts
High quality audio
G.711
AMR-NB (4.75, 5.15, 5.90, 6.70, 7.40, 7.95, 10.2, 12.2 kbps)
AMR-WB (6.60, 8.85, 12.65, 14.25, 15.85, 18.25, 19.85, 23.05, 23.85 kbps)

Table 3.5: Overview of datasets

Frequency filter

Finally, a frequency filter was applied to the simulated telephone speech datasets to more
closely align them with real world telephony conditions. Before this adjustment, the score
distributions of the simulated datasets were visualized and compared against those of the
real intercepted telephone recordings. The curves of the simulated datasets did not fully
align with the real intercepts, see Fig. 3.1, indicating a discrepancy in the audio
characteristics. To address this issue, a consistent frequency filter range of 180 Hz to 3600
Hz was applied across all simulated datasets. This range was selected based on the
typical bandwidth characteristics of the codecs, however, it does not fully reflect the
broader bandwidth of AMR-WB. Despite this limitation, the chosen filter range made for
consistent processing and comparison across all datasets. In real world conditions the
bandwidth of G.711 is 300–3400 Hz, AMR-NB operates within 200–3400 Hz, and
AMR-WB has a significantly wider bandwidth of 50–7000 Hz.

The filter range was designed to account for the roll-off effect seen in telephone systems,
where frequencies near the cutoff point are attenuated rather than entirely removed.
Consequently, the selected bandwidth slightly extends beyond the actual ranges of G.711
and AMR-NB to reflect this more accurately. The frequency filter was applied using the
highpass and lowpass filter of SoX Sound eXchange [10].

After visualizing the score distributions, a subset of the simulated telephone datasets
were selected for further evaluation based on their impact and relevance, while the
remaining datasets were discarded.

3.5 Analysis

Once the data had been gathered, selected and processed, it was analyzed using the
VOCALISE system, where speaker comparisons were made within each dataset. Each
audio sample in a dataset was compared to every other sample within the same dataset,
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Figure 3.1: Score distributions of AMR-NB codecs compared to real intercepts
and high-quality audio, there were similar results for the simulated AMR-WB and
G.711 audio samples

generating a set of same-source and different-source scores for each dataset. These scores
provided the foundation for further analysis through various metrics and visualizations.

To better understand the system’s performance, several types of plots were utilized to
visualize the generated scores. Score distributions were plotted to provide insights into
the separation between same-source and different-source scores, offering a direct
comparison of the simulated telephone datasets against the real telephone intercepts and
high-quality datasets. Score-to-LLR functions were plotted to evaluate the datasets as
calibration sets, these plots illustrate the relationship between raw similarity scores and
their corresponding likelihood ratios, highlighting how different calibration sets influence
the interpretation of the same similarity scores. For the calibration process, linear logistic
regression [3] was applied using the NFI’s LiR library [12], with ELUB boundaries [31] to
limit extreme log likelihood ratio (LLR) values which might skew the interpretability of
the results.

Lastly, Cllr and Closs values were calculated and visualized using heatmaps to evaluate
calibration performance across mismatched conditions. Each dataset was split into two
parts, one for calibration and one for testing. Each test set was calibrated using all
available calibration sets, including one matched set. This process was then repeated,
swapping the roles of calibration and test sets. The resulting Cllr values were pooled to
calculate the corresponding Closs values.

In a final experiment, datasets processed with one codec were subjected to additional
processing with another codec to create dual-processed datasets. This approach aimed to
investigate the effects of initially mismatched conditions, where the calibration set is
processed using codec A and the evaluation set is processed using Codec B, and to
explore whether performance could be improved by subsequently matching these
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conditions. Specifically, the experiment involved processing datasets with Codec A
through Codec B and vice versa. The purpose was to evaluate whether aligning the codec
conditions, even in varying sequences, could mitigate the impact of the initial mismatch
on system performance. Cllr and Closs values were calculated for these dual-processed
datasets and visualized on heatmaps, offering insights into the extent to which codec
matching can enhance calibration reliability and overall system performance.
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Chapter 4

Results

This chapter presents the research findings, detailing the evaluation and analysis of
calibration performance for speaker recognition systems under various audio codec
conditions. Key metrics include score distributions, score-to-LLR functions, Cllr and
Closs.

4.1 Score distributions

Figure 4.1: Score distributions of selected codecs compared to real intercepts and
high-quality audio. Sets labeled with a lowercase f in the beginning of the name,
such as fAMR-NB 4.75 represent a dataset processed through a frequency filter

Fig. 4.1 shows the score distributions for same-source and different-source comparisons
across various datasets, including high-quality, real telephone intercepts and simulated
telephone speech processed with different codecs. These distributions provide insights
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into how closely the simulated datasets align with the real intercept data and how the
choice of codec impacts the system’s ability to differentiate between same-source and
different-source audio samples.

The high-quality dataset demonstrates a more pronounced separation between
same-source and different-source scores, as indicated by the clear gap between the
respective curves, in comparison to the real telephone intercepts which displays some
overlap between same-source and different-source scores. This reflects the challenges
posed by real world telephony conditions.

The simulated datasets, processed through various codecs, show distributions that do not
fully match the curves of the real intercept dataset. The same-source and different-source
score distributions indicate a closer alignment with high-quality speech rather than with
real intercepts. This suggests that additional processing may be required to bring the
simulated datasets closer to realistic conditions.

A frequency filter was applied to the simulated datasets to better reflect the bandwidth
limitations inherent in telephone systems. However, while the datasets processed through
both a codec and a frequency filter show a slightly closer alignment with the real
intercept dataset, they still align closer to the high-quality dataset.
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4.2 Score-to-LLR

(a) AMR-NB comparison (b) AMR-WB comparison

(c) G.711 comparison

Figure 4.2: Score-to-LLR functions

Fig. 4.2 presents the score-to-LLR functions for datasets processed with AMR-NB,
AMR-WB, and G.711 codecs, alongside real telephone and clean high-quality audio
datasets. These plots visualize the relationship between similarity scores and their
corresponding LR values, providing insights into the calibration performance of the
system under different conditions. Two sets are interchangeable if their respective
score-to-LLR functions generate similar sets of LRs given the same scores [27], meaning
that they could be used interchangeably with each other as calibration sets.
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To generate the score-to-LLR functions, the same-source and different-source scores from
all datasets respectively were used to train separate calibration functions. A set of all the
scores were used to calculate LRs, once using each calibration function [27].

Looking at the three functions in Fig. 4.2, the simulated datasets demonstrate a closer
alignment with the high-quality audio dataset, failing to fully replicate the calibration
characteristics of the real intercepts dataset. These results are consistent with those
obtained from the score distribution plots, further highlighting the challenges in
simulating realistic telephony conditions.

4.3 Closs and Cllr

To evaluate the calibration performance of the speaker recognition system both Closs and
Cllr are presented. The Cllr value is as an absolute measure of calibration quality,
representing how effectively the system transforms similarity scores into meaningful LRs.
A lower Cllr indicates better calibration, with a value of 0 representing a perfectly
calibrated system.

While Cllr provides a detailed and absolute evaluation, it does not show the extent of
degradation relative to perfect calibration. This is why Closs has been calculated
alongside Cllr. Closs expresses the relative calibration loss as a percentage, offering an
intuitive understanding of how far the system’s performance deviates from the ideal, and
is calculated directly from the Cllr values.

Closs alone does not provide sufficient information, as it lacks the absolute calibration
context. A high Closs value would suggest that the system’s calibration is noticeably
worse compared to an ideal calibration set, however, this does not necessarily mean that
the system performs poorly. It means that its performance is significantly degraded
compared to a perfectly calibrated system. Therefore, both metrics are presented
together to provide a comprehensive analysis.

4.3.1 One codec

Calibration performance was first evaluated for datasets processed through a single
codec. This section shows the effect that each type of codec has on calibration
performance. Fig. 4.3 presents the Closs(%) values for the real intercepts dataset,
high-quality dataset and simulated telephone speech datasets. On the x-axis of Fig. 4.3
are the test sets whose underlying scores are converted into LRs using the calibration
sets, the y-axis represents the calibration sets used for this conversion. Each test set has
a corresponding perfectly matched calibration set, these values are 0 by definition. Some
Closs values are negative, meaning that the corresponding calibration set achieved better
calibration performance than the perfectly matched calibration set.
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Figure 4.3: Closs(%) values of single codecs, real intercepts and high-quality
audio. Datasets labeled with a lowercase ’f’ at the beginning of their names, such
as fAMR-NB 4.75, represent those processed with the frequency filter

All of the calibration sets, except for the matched set, performed poorly on the test set of
real intercepted telephone calls, with high Closs values accross all sets. Among the
simulated telephone sets, the datasets processed with the G.711 codec outperformed the
high-quality dataset when used to calibrate the intercepted telephone calls set, while all
other simulated datasets underperformed in relation to the high-quality set. The datasets
processed through the AMR-NB 4.75 codec displayed the highest Closs value for the
intercepted telephone calls test set, indiciating that these were the worst performing
calibration sets for that test set.

Datasets with the frequency filter applied generally show improved calibration
performance compared to their unfiltered counterparts, with the exception of the G.711
dataset which showed a slight degradation in performance when filtered. Analyzing the
Closs values for the column and row corresponding to the intercepted telephone calls as
both the test set and the calibration set reveals that the simulated datasets fail to
replicate the calibration performance of real telephone speech. Additionally, the
distinction between the performance among the different codecs highlights the impact of
codec selection on calibration performance.

Fig. 4.4 shows the underlying Cllr values, used to calculate the Closs values of Fig. 4.3.
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Figure 4.4: Cllr values of single codecs, real intercepts and high-quality audio.
Datasets labeled with a lowercase ’f’ at the beginning of their names, such as fAMR-
NB 4.75, represent those processed with the frequency filter

4.3.2 Multiple codecs

Calibration performance was then evaluated for datasets processed through two codecs.
The high quality dataset was first processed through one codec (referred to here as Codec
A) followed by a second codec (referred to here as Codec B), and then processed in the
reverse order (Codec B followed by Codec A). Fig. 4.5 shows the Closs values for the real
intercepts dataset, the high-quality dataset and the simulated telephone speech datasets
processed through a combination of two codecs each.

As in the previous heatmap, the x-axis displays the test sets and the y-axis displays the
calibration sets and each test set has a corresponding matched calibration set where the
Closs value is 0.
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Figure 4.5: Closs(%) values of dual codecs, real intercepts and high-quality au-
dio. Simulated telephone speech datasets are processed through two codecs with a
frequency filter each

The results presented in Fig. 4.5 and 4.3 together demonstrate that calibration
performance improves when datasets encoded with different codecs are processed through
each other’s codecs prior to calibration.

The main comparison lies between two scenarios, i.e., (1) the calibration performance
when a test set encoded with Codec A is directly calibrated using a calibration set
encoded with Codec B, and (2) the calibration performance when the test set encoded
with Codec A is processed through Codec B, and the calibration set encoded with Codec
B is processed through Codec A. This approach of cross-processing the datasets
minimizes the mismatch between the test and calibration sets, thereby enhancing
calibration performance.

Calibrating the test set processed through an AMR-NB 4.75 codec (with the frequency
filter applied) directly with the calibration set processed through a G.711 codec (with the
frequency filter applied) results in significant calibration loss, producing Closs values of
52.2% and 69.4% when reversed (fG.711 as the test set and fAMR-NB 4.75 as the
calibration set), as shown in Fig. 4.3. However, when the datasets are processed through
each other’s codecs (e.g., fG.711 processed through the AMR-NB 4.75 codec with a
frequency filter and vice versa), the calibration loss decreases drastically to 7.0% and
1.5%, respectively, as shown in Fig. 4.5.

A similar improvement is observed with fAMR-NB 4.75 and fAMR-NB 12.2. Direct
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calibration between these datasets results in calibration losses of 61.5% and 59.9%,
respectively, as shown in Fig. 4.3. However, processing both datasets through each
other’s codecs reduces the calibration loss significantly, giving Closs values of 3.3% and
1.8%, as shown in Fig. 4.5.

Fig. ?? shows the underlying Cllr values, used to calculate the Closs values of Fig. 4.5.

Figure 4.6: Cllr values of dual codecs, real intercepts and high-quality audio.
Simulated telephone speech datasets are processed through two codecs with a fre-
quency filter each

To further analyze the impact of cross-processing on calibration performance, Cllr values
were evaluated for the described scenarios. Table 4.1 summarizes the Cllr values for
direct calibration and cross-processed calibration, corresponding to the Closs results
shown in Fig. 4.3 and 4.5.
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Calibration Type Test Set Calibration Set Cllr
Direct fAMR-NB 4.75 fG.711 0.258
Direct fG.711 fAMR-NB 4.75 0.147
Cross-Processed fAMR-NB 4.75 >fG.711 fG.711 >fAMR-NB 4.75 0.168
Cross-Processed fG.711 >fAMR-NB 4.75 fAMR-NB 4.75 >fG.711 0.169
Direct fAMR-NB 4.75 fAMR-NB 12.2 0.271
Direct fAMR-NB 12.2 fAMR-NB 4.75 0.155
Cross-Processed fAMR-NB 4.75 >fAMR-NB 12.2 fAMR-NB 12.2 >fAMR-NB 4.75 0.201
Cross-Processed fAMR-NB 12.2 >fAMR-NB 4.75 fAMR-NB 4.75 >fAMR-NB 12.2 0.171

Table 4.1: Comparison of Cllr values between direct and cross-processed calibra-
tion

For the fAMR-NB 4.75 test set calibrated with the fG.711 calibration set, direct
calibration resulted in Cllr values of 0.258 and 0.147, depending on the direction.
Cross-processing reduced these values to 0.168 and 0.169, reflecting an overall
improvement in calibration performance. Similarly, for the fAMR-NB 4.75 and fAMR-NB
12.2 datasets, direct calibration produced Cllr values of 0.271 and 0.155, while
cross-processing overall reduced these values to 0.201 and 0.171.

These reductions align with the observed decreases in Closs, as shown in Fig. 4.3 and 4.5.
This indicates that cross-processing mitigates calibration errors caused by codec
mismatches, improving both absolute calibration quality and relative performance.

The Cllr values from cross-processed calibration sets (e.g., 0.168 and 0.169 for fAMR-NB
4.75 and fG.711) are lower than the worst case direct calibration values (0.258) but
slightly higher than the best case direct calibration values (0.147). Thus, while
cross-processing may not always achieve the optimal performance of a specific direct
calibration pairing, it results in more consistent Cllr values accross both directions and
reduces the overall mismatch. Even if it slightly increases the Cllr in the "better"
direction, the trade-off is that it significantly reduces the worst case calibration error,
resulting in more balanced and robust performance.
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Chapter 5

Discussion

This chapter discusses the implications of the findings presented in Chapter 4, addressing
the impact of codecs on system performance, the limitations of simulated telephone
speech, the potential benefits of minimizing mismatch between test and calibration sets
by cross-processing and finally directions for future research.

5.1 Codecs impact on system performance

To address the first research question, codecs do have a clear impact on system
performance, with different codecs influencing calibration performance to varying
degrees. The heatmap of ClosS values for datasets processed through a single codec in
Fig. 4.3 illustrates this. When the high-quality dataset is used as the test set,
calibrations sets processed through AMR-WB 6.60 and AMR-NB 4.75 codecs have a
significant calibration loss, while the other simulated telephone speech datasets have an
insignificant calibration loss. This suggest two key points, first, codecs can degrade
calibration performance likely due to their destructive nature, altering the underlying
acoustic features. Second, not all codecs have the same impact and some codecs cause
more significant degradation than others.

The results also highlight a clear mismatch between not only the different codecs, but
also between the varying bitrate settings within the same codec. As an example,
AMR-NB 4.75 performs poorly as a calibration set on all other simulated telephone
speech datasets, but the calibration loss is significantly higher when used with AMR-NB
12.2 and G.711 test sets compared to the AMR-WB 6.60 test set. This emphasizes the
complexity of how different codecs and variations in bitrate settings affect the
preservation of speaker specific features and may reflect how each codec encodes and
compresses the audio signal differently, e.g., lower bitrate settings, such as AMR-NB 4.75,
are designed for efficiency in telecommunication environments but sacrifice fine grained
acoustic detail which is crucial for reliable speaker recognition. These findings
demonstrate the need for careful consideration of both codec type and bitrate
configuration when analyzing forensic speaker recognition systems.
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5.2 Interchangeability of calibration sets processed through
different audio codecs

The alignment of the score-to-LLR functions shown in Fig. 4.2 indicates that the
calibration sets produce similar transformations of scores into LRs. This suggests that, in
theory, the simulated datasets and the high-quality dataset could be used
interchangeably for calibration without significant differences in the LRs produced from
the same scores. Essentially, the mapping of scores to LRs for these datasets is
comparable. However, the interchangeability of calibration sets should not be treated as
a universal conclusion but rather as a context dependent judgment that must account for
the specific contexts of the case.

Despite the general alignment of the score-to-LLR functions, there are some deviations to
be considered. The AMR-NB codecs, particularly at lower bitrates, and the AMR-WB
6.60 codec deviate more noticeably from the score-to-LLR function of the high-quality
dataset, as opposed to the G.711 codec which is more closely aligned with the
high-quality dataset. This is also consistent with the results from the score distributions
plot in Fig. 4.1 and the Closs values presented in Fig. 4.3 where the calibration loss from
using AMR-NB 4.75 and AMR-WB 6.60 to calibrate the high-quality dataset is higher
compared to AMR-NB 12.2 and G.711, although all simulated datasets show relatively
low Closs values when compared to the higher calibration loss observed when the real
telephone intercepts are used either as the test set or as the calibration set with the
simulated datasets. These results also consistently indicate that the simulated telephone
speech datasets and the high-quality dataset are not interchangeable with the real
telephone intercepts dataset. The score-to-LLR functions for the real intercepts deviate
significantly from those of the simulated datasets and the high-quality dataset, as shown
in Fig. 4.2.

5.3 Limitations of simulated telephone speech

One of the key findings of this research is the inability to fully simulate real telephone
speech by applying codecs and a frequency filter to high quality audio. While these steps
mimic some aspects of telephony conditions, real telephone speech is influenced by a
multitude of additional factors that are not accounted for in this experiment. This
highlights the inherent limitations of relying on simulations when working with forensic
audio. Real telephone audio is subject to complex processes and environmental influences
that extend beyond the application of codecs.

Real telephone calls are subject to dynamic codec changes, since, e.g., the AMR-NB and
AMR-WB codecs are not static, but they instead adapt dynamically to network
conditions. This can cause variations in bitrate and compression artifacts within a single
call, during periods of high network traffic codecs may lower the bitrate resulting in
additional audio degradation that is not captured in a fixed simulation like in this
experiment. Another factor that is not captured in this experiment is that of base station
transitions, audio signals often pass over multiple base stations during a call, when, e.g.,
the user physically moves around. Transitioning between base stations can cause
disturbances such as packet loss, jitter or temporary drop in signal quality. A real
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telephone call also include environmental factors such as background noise and
reverberations which are absent in the simulated datasets of this study, these are factors
that can further obscure speaker specific features that are important for the speaker
recognition system to make reliable distinctions. Lastly, real world telephone
communication involves simultaneous processing of incoming and outgoing audio streams,
and all of these mentioned factors come from each side of the phone call, potentially
causing cumulative distortions.

The more pronounced gap between same-source and different-source score distributions
in the high-quality dataset compared to the real intercepts dataset seen in Fig. 4.1
illustrates these challenges. High-quality audio is recorded using high-fidelity equipment,
ensuring a cleaner and more detailed signal. This allows the ASR system to extract
speaker specific features with greater precision, resulting in more distinct and separated
scores for same-source and different-source comparisons. As seen in the results of the
comparisons made with the simulated telephone speech datasets, processing through
codecs and applying a frequency filter was insufficient to fully replicate the technical
factors of a real telephone call and there is more to it that affect the ASR system
performance. While simulations can provide valuable insights under controlled
conditions, they fall short of capturing the full complexity of real world telephony.

5.4 Reducing performance loss with dual codecs

Another finding of this research is the potential to reduce mismatched codec calibration
performance loss by processing datasets through both codecs.

Imagine a forensic scenario where calibration data and test data contain different
telephony conditions, such as different codecs, e.g., if the evaluation data is encoded
using Codec A but the available calibration data is encoded using Codec B. Using dual
codec processing could prove valuable in helping to mitigate the mismatch and produce
more reliable LRs. Additionally, the concept of cross-processing raises a broader question,
can the strategy of mixing mismatched data to create matched conditions be applied to
other mismatched scenarios beyond codecs? For instance in cases of mismatched
environmental noise conditions, it may be possible to "normalize" datasets by
introducing comparable noise characteristics to both calibration and test data. Similarly,
mismatches in recording equipment, such as microphone types, could potentially be
mitigated by processing audio through filters or transformations that emulate the
characteristics of the other device. These ideas could be explored further to determine
whether the principle of cross-processing extends to other mismatched conditions
impacting calibration performance.

Lastly, this finding raises a critical question, should practitioners deliberately reduce
audio quality by, e.g., introducing an additional codec to improve calibration
performance? On one hand, this approach enables more reliable LRs which can be highly
beneficial when forensic practitioners face mismatched calibration and test data. On the
other hand, deliberately degrading audio quality compromises the integrity of the
evidence by reducing its original detail.

The decision to cross-process mismatched conditions likely depends on the context of the
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case. In scenarios where reliable calibration is paramount and codec mismatches are
unavoidable, cross-processing offers a pragmatic solution. However, the trade-off in audio
quality must be carefully considered, particularly when the integrity of the evidence is
critical.

5.5 Future research

Future research in this area holds significant potential for advancing the field of forensic
speaker recognition and aiding practitioners in making more informed subjective
judgments when selecting representative data for calibration. The multitude of conditions
that can affect calibration performance makes this an ongoing process with no clear
endpoint. This highlights the importance of continually expanding the scope of research
to investigate how different factors influence system calibration and reliability. While this
study focused on the effects of audio codecs, future work could explore other conditions
that may impact performance. These conditions could, e.g., include environmental
factors such as varying levels of background noise or reverberation, or new factors that
have not been commonly considered such as the impact of speaker emotion or speech
styles. Another promising direction for future research is the exploration of combinations
of conditions and how they interact with each other. Given the endless possibilities of
conditions and their potential interactions future studies are crucial in broadening the
understanding of how FASR systems perform under diverse conditions.

Researching cross-processing with other conditions presents another intriguing
opportunity for future work. While this study demonstrated the benefits of
cross-processing datasets through mismatched codecs to reduce calibration loss, this
concept could be extended to other mismatched conditions. By extending the principle of
cross-processing to a wider range of mismatched conditions, future research could provide
a more generalizable framework for improving calibration performance in diverse forensic
scenarios.

Additionally, the search for a well simulated telephone speech dataset remains an
interesting area for future research. Current simulations are limited in their ability to
fully replicate realistic telephony conditions. Future work could build on the
understanding of how various codecs impact performance by incorporating more complex
variables, for instance, dynamic bitrate changes within single audio samples could be
simulated to reflect how real codecs adapt to fluctuating network conditions. Similarly,
adding background noise and reverberations could make the datasets more
environmentally realistic and network specific factors, such as jitter in phone calls or
packet loss, could also be included to simulate inconsistent networks and their impact on
audio quality. Ultimately, these efforts would aim to bridge the gap between simulated
and real telephone speech, providing forensic practitioners with datasets that better
reflect the challenges of real world conditions.
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Chapter 6

Conclusion

This study explored the impact of audio codecs on the calibration performance of FASR
systems, focusing on mismatched conditions and methods to mitigate their effects. The
findings demonstrate that audio codecs influence calibration performance with varying
effects depending on the codec and the bitrate setting. While some simulated datasets
and the high-quality dataset exhibited close alignment in their calibration functions,
suggesting potential interchangeability, the real telephone intercept dataset remained
distinct.

The research showed that while processing high quality datasets with codecs and
frequency filters approximated some aspects of real telephone conditions, these
simulations were insufficient to fully replicate the complexity of real world telephony.
This limitation highlights the influence of additional factors such as, e.g., dynamic bitrate
changes, network transitions, and environmental noise on the performance of FASR
systems.

Additionally, the introduction of dual codec processing was shown to mitigate calibration
loss caused by mismatched datasets, providing a promising strategy for improving
performance. While effective in reducing calibration loss, this approach introduces
questions regarding integrity of the data.

In summary, this study contributes to a deeper understanding of the role of audio codecs
in FASR system calibration and potential mitigation strategies of mismatched conditions.
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