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Abstract

Wearable devices are evolving rapidly, with earables’ popularity being on the rise as they gain
new and sophisticated sensing capabilities. Their growing complexity, however, also poses height-
ened security risks. As these devices lack the interface to support traditional input-based au-
thentication such as PIN or lock patterns, there is a call for new methods to provide reliable
user verification. Gait-based behavioral biometrics, particularly in the context of leveraging IMU
data, remain greatly underexplored for earables. This work investigates the feasibility of gait-
based user recognition using IMU-equipped earable devices. The authors collect a new dataset
consisting of 30 participants performing several different gait-related exercises at varying inten-
sities. Traditional ML models (Random Forest, SVM, kNN, MLP) and a CNN-LSTM hybrid are
benchmarked on authentication and identification tasks, in within-activity and across-activity
scenarios, averaging at an EER below 2%. Feature selection and post-training quantization are
shown to significantly reduce model size and inference cost without sacrificing accuracy. These
findings confirm that gait-based user recognition using IMU-equipped earables is both feasible
and practical, offering secure, unobtrusive verification on resource-constrained devices.

Keywords: Earables, Gait Sensing, Behavioral Biometrics, Inertial Sensing, Deep Learning, Edge
Computing, Gait-based Recognition, Resource Optimization Techniques, Lightweight Models



Chapter 1

Introduction

Wireless earbuds have emerged as one of today’s most widely adopted smart wearable devices,
with the global Earphones and Headphones market projected to reach USD 193.23 billion by
2032 [1]. While they were initially designed for basic audio playback, modern earables now
incorporate advanced sensors - such as inertial measurement units (IMUs) and optical sensors
— that allow for an extensive range of functionalities, from real-time activity recognition [41] to
health monitoring [19] and gesture elicitation [60].

The increasing complexity of earables required for advanced sensing not only places them
at the forefront of ubiquitous computing, but also introduces heightened security and privacy
risks. Earables often rely on continuous Bluetooth connections to stream audio and exchange
data, creating potential entry points for eavesdropping and man-in-the-middle attacks (unau-
thorized real-time interception of a private communication) if communication channels are not
adequately encrypted [95]. Malicious actors can exploit poorly secured links to intercept au-
dio streams, sensor readings, or even device commands, posing a direct threat to user privacy
and security. Furthermore, because earables frequently integrate with smartphones and cloud
services, vulnerabilities in firmware or companion apps can be leveraged by malware to gain
unauthorized access, remotely manipulate settings, or tamper with sensor data. Lastly, their
portability also makes them susceptible to loss or theft.

Unlike other popular wearables such as smartphones or smartwatches that typically support
input-based protection mechanisms like PINs or pattern locks, or incorporate biometric scan-
ners, earables lack dedicated authentication interfaces, display screens, and direct user input
controls. This absence of built-in security features makes them inherently more vulnerable to
unauthorized access, device misuse, and data breaches. Paired with their compact size, limited
on-device memory, and low-power processing capabilities, this further necessitates alternative
authentication mechanisms that are robust, memory-efficient, and user-friendly.

To address some of these concerns, biometric authentication has gained traction as a secure
and convenient alternative to traditional knowledge-based methods [101]. Among the various
hard and soft biometric modalities, behavioral biometrics, particularly gait-based recognition,
stand out due to their unobtrusive nature and high resistance to imitation attacks [74, 59],
making it a method well-suited for continuous and implicit user verification.

Gait-based recognition can be captured through various sensing modalities, including vision-
based methods, which analyze movement patterns from video footage, and floor sensor-based
techniques, which detect footstep pressure and weight distribution [33]. While effective, these
approaches often require specialized infrastructure, making them less practical for portable au-
thentication. In contrast, the third type - the wearable sensor-based approach - leverages inertial
measurement unit (IMU) sensors inherently embedded in consumer devices like smartwatches
[6] and smartphones [40] for user recognition with promising accuracy and robustness [55, 128].
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Despite their stable placement [16] and minimal susceptibility to motion artifacts [30] that make
them equally compelling as a platform for motion sensing, earables remain comparatively under-
examined for gait-based security applications, and present a promising yet untapped opportunity
for IMU-based recognition.

To this end, this work aims to contribute to this field of research by investigating the
feasibility of IMU-equipped earables for gait-based user authentication and identi-
fication. A central challenge herein is the lack of publicly available datasets to conduct and
baseline such research, so to overcome this limitation, the authors collect a new dataset
using the OpenEarable platform [88] encompassing multiple locomotion activities—such as walk-
ing, running, and stair climbing—at varying intensities. By openly releasing this dataset, we seek
to establish a foundation for future research and foster collaboration in the field of earable-based
biometric authentication.

Moreover, this study recognizes the importance of resource efficiency for on-device deploy-
ment on low-power, memory-constrained hardware. To address this, a range of machine learning
(ML) and deep learning (DL) models are evaluated under a comprehensive framework that mea-
sures both authentication (via Equal Error Rate) and identification (via Weighted F1 Score)
performance, along with resource utilization and efficiency. Hardware-aware optimization tech-
niques such as quantization for deep architectures and feature selection for shallow ML algo-
rithms are applied to make the said models viable for edge deployment.

To summarize, the key contributions of this work are as follows.

• First, it introduces a publicly accessible dataset that captures multiple locomotion ac-
tivities (walking, running, stair climbing) across several intensities from 30 participants.
This dataset addresses the scarcity of open-source resources for earable-based gait-based
authentication, and lays a foundation for further research.

• The work proposes a comprehensive end-to-end pipeline for gait-based user recognition that
includes data collection, preprocessing, feature extraction, feature selection, classification,
and model optimization that leverages both shallow ML models (Random Forest, SVM,
kNN, MLP) and a hybrid DL architecture (CNN_fixLSTM). The pipeline supports both
activity-specific and across-activity gait-based identification and authentication tasks.

• The feasibility of earables as a platform for gait-based user recognition specific to an
activity, and in an across-activity manner, is evaluated. Specifically, the combined use
of accelerometer and gyroscope data is investigated along with the effectiveness of each
locomotion type for user verification.

• Lastly, to address the computational limitations of earables, quantization to selected deep
models, and feature selection techniques to shallow ML models, are applied, and their ef-
fictiveness is measured. Trade-offs between making the model lightweight and maintaining
high accuracy are analyzed.

The remainder of this document is organized as follows. Chapter 2 surveys gait as a biometric
trait, examines various sensing approaches for gait-based user recognition, explores earables as
emerging sensing platforms, and reviews the state-of-the-art in authentication and identification
with earables, identifying key gaps in the field. Chapter 3 outlines the methodology, including
experimental design, data collection protocol, data preprocessing, classification models, and
evaluation metrics. Chapte 4 presents a comprehensive analysis of the experimental results,
discussing recognition identification performance alongside resource usage. Finally, Chapter 5
concludes the thesis by summarizing the findings, reflecting on limitations, and outlining future
directions.
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Chapter 2

Related Work

This chapter explores the existing body of work that informs this research, providing a founda-
tion for understanding the advances and challenges in gait-based ear-worn recognition systems.
It begins by discussing gait as a unique biometric trait, highlighting its distinct advantages for
user identification and authentication. The main sensing approaches for gait-based user recog-
nition, namely vision-based, floor-based, and wearable sensor-based methods, are examined.
The role of machine learning in inertial gait-based authentication is explored, covering estab-
lished methodologies and their applicability to resource-constrained environments. Additionally,
publicly available datasets relevant to IMU-based gait-based recognition through earables are
reviewed, identifying gaps that motivate the need for a new dataset tailored to gait-based recog-
nition using earables, and comparing the proposed dataset to the existing ones. Finally, the
challenges of deploying shallow and deep learning models on low-power devices are discussed,
setting the foundation for the research contributions presented in later chapters.

By synthesizing previous research across these domains, this chapter contextualizes the work un-
dertaken in this thesis, and establishes the rationale for the proposed methodology and assumed
contributions.

2.1 Gait as a Unique Biometric Trait

User authentication is a critical component of personal computing systems that provides secure
user access to various devices. Traditional Knowledge-Based Authentication (KBA) is defined
as "a form of user authentication that requires verification of identity claimed by matching one
or more pieces of information presented by the user or claimant against the information sources
associated with the claimant" [12] (e.g., passwords and swipe patterns) and, while commonly
used, is shown to be increasingly vulnerable to various attacks such as automated dictionary
and brute-force attacks, and can be visually observed (shoulder surfing) or captured using key-
loggers (malware that records keystrokes) [3]. As a result, biometric authentication, defined as
"establishing identity based on the physical and behavioral characteristics of an individual such
as face, fingerprint, hand geometry, iris, keystroke, signature, voice, etc. [51]", has emerged as a
more reliable and essential solution to identity verification that aims to bridge the gap between
secure authentication and usability [81].

Biometric traits are classified as physical or behavioral (and can further be divided into hard
and soft ones), with the former relying on static physical attributes such as fingerprints and
iris, typically used for one-time verification, and the latter - behavioral biometrics - being based
on behavior patterns of an individual including gait, keystroke dynamics, and voice recognition
[51]. Behavioral biometrics are particularly suitable for continuous authentication (CA) wherein
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the system continuously verifies the user identity throughout a user session.
Among said biometrics, gait-based CA systems have been an attractive research field for years
as walking is inherently a repeated task that can be measured unobtrusively and continuously,
and is also hard to imitate [81].

Gait is formally defined as the periodic and dynamic motion of the human body during
locomotion, involving the displacement of the center of mass and the coordination of lower limbs
and the trunk to move from one position to the other [94]. Previous research has shown that
human gait, as it is influenced by individual biomechanics, physiological factors, and optimization
principles, is a uniquely identifiable and powerful biometric trait highly resistant to various forms
of impersonation [112, 72, 74, 76]. It is also a feature that can be applied in long-distance and
uncontrolled scenarios without explicit cooperation by subjects [127], making it suitable for
remote identification and authentication tasks.

For instance, a study was conducted in which attackers were trained to imitate the gait
of a preselected victim under controlled conditions. Despite significant efforts, the attackers
exhibited no meaningful improvement in their ability to mimic the victim’s gait, eventually
hitting a "plateau", or an inherent boundary that limited the attackers’ performance irrespec-
tive of training time. [74]. This underscores how gait involves complex motor patterns highly
dependent on the physiology and biomechanics of an individual. Similarly, another work inves-
tigated the security of gait-based authentication systems on smartphones under both zero-effort
and minimal-effort impersonation attacks. Using smartphone accelerometer data, the study re-
ported a 0% false match rate (FMR) under impersonation scenarios, even when attackers were
professional actors trained in mimicking body motions. Furthermore, attackers were shown to
lose regularity in their own gait in 29% of impersonation attempts [76]. This disruption in natu-
ral walking patterns highlights the difficulty of mimicking gait without degrading the biometric
signature.

Few works have demonstrated that the possibility for a spoofing attack does exist with
relatively high success rates (26%) [58] by adjusting gait characteristics such as speed, step
length, step width, and thigh lift yet such attacks have only been performed with the help of an
off-the-shelf treadmill and with assumed access to the target’s biometric samples which in itself
introduces additional steps to spoofing.

These findings establish a strong foundation for leveraging gait as a biometric for secure and
unobtrusive user recognition.

2.2 Sensing for Gait

Gait-based recognition is the process of identifying or authenticating individuals based on the
unique patterns they generate while e.g., walking or runnign. These patterns can include visual
features, dynamic weight and pressure distributions, and acceleration data captured by wearable
sensors. Gait-based recognition is thus conducted through three main approaches [33]: Machine
Vision (MV) based, Floor Sensor (FS) based, and Wearable Sensor (WS) based.

In the MV-based approach, gait is captured from a distance using a camera. As said
data can be collected without physical interaction with the system, the approach is considered
non-invasive. It does, however, often require high levels of preprocessing to extract the gait
information from the recorded data as varying illumination, occlusion, pose, view angle varia-
tions, appearance changes due to different clothing, occlusion due to multiple people walking
in a group, and objects carried by the subject, among others, can pose challenges to (direct)
successful recognition [97].

Similarly, in the FS-based approach, researchers rely on pressure and weight measurements
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from sensor-equipped floors to quantify physical user attributes. While the MV-based approach
is the most widely established, FS-based gait-based recognition—or footstep recognition—offers
several advantages. It is less affected by lighting changes, background movement, and viewing
angles, making it more robust in varied conditions. Additionally, FS-based methods can reduce
the user discomfort often associated with video collection [61]. Even so, as the approach requires
special equipment, and given the objective of this study to leverage widely accessible and portable
devices with minimal reliance on additional infrastructure, the focus will be directed toward the
third mentioned approach: WS-based approaches. Consequently, MV- and FS-based methods
will not be considered further in this research.

The WS-based method relies on devices equipped with motion sensors worn or attached to
various locations on the body to capture motion dynamics. Unlike the MV and FS approaches,
WS-based systems do not require any environmental setup, making them portable, compact, and
suitable for continuous and ubiquitous gait-based recognition. Furthermore, devices for everyday
use like earbuds, smartwatches, and phones typically come with a built-in accelerometer and
gyroscope so additional external hardware is often not required. Building on this advantage,
a range of wearable sensors, including accelerometers, gyroscopes, and magnetometers, and a
fusion of such [98, 91, 65], are shown to be able to capture distinctive gait patterns, with the
accelerometer being effectively one of the most suitable modalities to be used as a single metric
that achieves high recognition accuracy [34, 64, 69, 23, 85, 16].

Accelerometers measure how much an object moves or shifts from its static position, in three
directions: X, Y, Z. At any given moment, the accelerometer provides three values correspond-
ing to these directions. Among the most important features an accelerometer provides is its
linearity, meaning the readings are proportional to the actual physical acceleration, and the
bandwidth, or sampling rate, which refers to how often the sensor can detect changes, measured
in Hertz (Hz). For gait-based recognition, these two characteristics are the most relevant ones
[72]. In this context, the gait produces a pattern of accelerations over the three axes that are
best captured by sensors integral to the body parts. The produced pattern is characteristic of
each individual. In modern devices, accelerometers are often integrated into single-component
micro-electro-mechanical systems (MEMS) alongside a gyroscope, and, occasionally, a magne-
tometer. While magnetometers are not commonly employed in gait-based recognition, the effect
on performance when combining accelerometer and gyroscope readings has shown mixed results
[93, 72], with some works reporting only a marginal increase in performance after sensor fusion
[73], and others - a more substantial improvement [60].

The unobtrusiveness of wearable-based gait tracking and authentication makes it particularly
appealing as a method, as users are not required to perform explicit actions to verify their
identity. Instead, their gait patterns, captured as they move naturally while wearing the device,
serve as a reliable biometric for continuous authentication. Building upon the strengths of
wearable sensor-based approaches, the scope of this research narrows to a specific class
of wearable devices — earables — as they offer great advantages for gait-based
authentication by leveraging unique positioning and high-level accessibility.

The capabilities and applications of earables are explored in Section 2.3.

2.3 Sensing with Earables

Earables are "devices that attach in, on, or in the immediate vicinity of the ear to offer function-
alities beyond basic audio in- and output" [87]. While originally intended for audio playback,
with the help of the rapid advancements in Artificial Intelligence and the Internet of Things
in recent years, these ear-worn devices have become a one-of-a-kind platform for ubiquitous
computing equipped with advanced sensing capabilities.
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Until recently, much of the research on wearable-based sensing focused on smartphones [40, 8]
and smartwatches [6, 121] as the current mass-market wearables. However, earables have by now
evolved into versatile smartphone-like devices that increasingly integrate more and more sensors
that expand their functions, with the global earphone and headphone market share estimated
to grow continuously, namely with a Compound Annual Growth Rate between 10-12%, or with
nearly USD 24 Billion between 2024 and 2028 [37, 104].

The predicted growth of the global ear-worn device market has prompted researchers to
explore the various sensing capabilities earables offer. These span several areas, including skeletal
movements such as (real-time) gait detection [79, 24], facial expressions detection [110, 67];
nervous system monitoring such as brain activity analysis through Electrocardiography (EEG)-
equipped earables to, among others, detect epileptic seizures [38], and identify attention states
[53]; cardiovascular metrics measuring blood pressure [15] and generic health monitoring abilities
[19]; respiratory patterns including breathing mode detection [43]; energy expenditure [9, 36];
reactions to music [63]; digestive activities like tracking snacking behaviors [14]; and various
authentication methods using e.g., the ear as an echo chamber to amplify internal body sounds
[35, 18], and in-ear Photoplethysmography (PPG) signals [20] as novel biometrics.

What makes earables suitable means to sense said things are, non-exclusively, the position
of the ears on the head that allows for various muscle activation tracking [10]; the ear being a
secure attachment point for capturing movements of the body and head [16] that is relatively
stable and thus less susceptible to motion artifacts and noise [31]; furthermore, ear-worn devices
stays consistently in the same location, are firmly attached to the user’s body, and are not
directly influenced by external disturbances during movement that e.g., smartwatches endure,
like carrying objects; their shape typically allows for them to be worn seamlessly and continuously
throughout the day.

This diversity in detection functions highlights the potential of earables to revolutionize
various fields, seamlessly integrating health monitoring, activity recognition, and biometric au-
thentication, among others, into everyday life. It also highlights the wide variety of sensors an
earable can be equipped with, including PPG, EEG, IMU, pressure sensor, thermistor, infrared
thermometry, microphone, electromyography (EMG), proximity sensor, hygrometer, piezoelec-
tric sensor, impedance sensor, and haptics. To group these applications systematically, in their
work [87], Roddiger et al. propose four main areas of phenomena that can be sensed with
earables: (i) physiological monitoring and health, (ii) movement and activity, (iii) interaction,
and (iv) authentication and identification. Out of the enlisted, this research focuses on the
authentication and identification category.

Section 2.4 will delve deeper into the types of authentication enabled through earables, pre-
senting the potential of gait biometrics as a secure and effective motion-based method for user
verification.

2.4 Authentication and Identification with Earables

Taking into account recent work to raise earables as stand-alone devices [84], and their widespread
integration with AI assistants like Siri and Alexa, this piece of technology continuously gets
granted access to sensitive multi-source information. This makes the need for an authentication
accelerator for earables evident. Traditional authentication methods such as fingerprint and face
recognition require installing additional hardware on these already densely packed with sensors
devices, lowering ease of use and increasing costs.

As earables advance in sensing capabilities, they offer an opportunity to explore biometric
authentication methods that rely on their existing hardware. Voice authentication is one such
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means of providing device and information access using the in-built microphone, yet it is vul-
nerable to various spoofing and replay attacks [126, 62], and is also more susceptible to noise.
Recent research has focused on other (novel) physiological and behavioral biometrics signals that
can be captured on earables, by either combining existing ones, repurposing them, or discovering
new ways of sensing them, as addressed below.

Multiple works utilize inherently available earbud sensors such as in-ear facing microphones.
Examples of such projects are EarGate [30] which performs gait-based identification from the
sounds induced by walking that get propagated through the musculoskeletal system in the body,
and EarSlide [117] that captures distinctive features of acoustic fingerprints when users slide
their fingers on the face. Hu et al. [45] leverage the difference between in-ear and out-ear
sounds, and estimate an individual-specific Occluded Ear Canal Transfer Function (OECTF) to
distinguish between users.

Additionally, authentication may be performed by analyzing the dynamic structural changes
of the ear canal while e.g., talking [113], or as a combination of ear canal deformations and tooth
print acoustics [116]. Such authentication schemes usually require users to perform chewing or
speaking actively, to emit a one-time sound, or require the joint of transceiver sensors (e.g.,
speaker and microphone). On the other hand, some works, while still making use of the in-
ear microphone, facilitate passive user authentication instead like BreathSign [39] that is based
on biometrics in bone-conducted breathing sounds, and HeartPrint [18] which exploits bone-
conducted heart sounds.

Despite the potential of audio-based solutions, they come with notable challenges. Firstly,
similar to voice authentication, they present privacy concerns as such systems often rely on
always-on microphones, raising questions about unauthorized data collection and misuse. Fur-
thermore, the high sampling rates required for accurate audio processing demand substantial
computational resources, leading to increased energy consumption and possible strain on device
performance. Moreover, these systems remain susceptible to (environmental) noise, with some
works reporting that e.g., the frequency of sound playing in earphones and the frequency of
breathing-induced body sounds overlap greatly [39]. Filtering for noise artifacts appears as an
additional preprocessing step to perform authentication. These limitations underscore the need
for alternative approaches that address the said shortcomings.

Examples of authentication based on more advanced sensors are EarPass [66] which uti-
lizes PPG sensors to capture in-ear PPG signals with high accuracy yet requires an additional
integration of PPG sensors onto commercial devices; and Jawthenticate [100] which utilizes a
custom-built earable prototype with two IMUs - one on the temporomandibular joints, and one
on the temporal bone, to allow for authentication through distinctive speech motions without
the need of a microphone. These and other methods of similar advancement either require ex-
tensive hardware modifications or rely on custom prototypes not readily available in consumer
devices. In contrast, standard IMU sensors are readily available in commercial earbuds (e.g., in
Apple Airpods Pro, Samsung Galaxy Buds Pro, Sony WF-1000XM4), and present a promising
alternative for user recognition due to their accessibility and ability to capture motion data with
minimal computational overhead. Several works utilize said type of sensor in varying ways; for
instance, BudsAuth [114] leverages IMU data from vibration signals induced by on-face touching
interactions with the earbuds. MandiPass [68] extracts a novel biometric from the vibration sig-
nal of the user’s mandible picked up by IMU sensors; the mentioned model is not tested further
due to limitations in obtaining raw IMU data from commercialized wireless earbuds that are
not open-source. Lastly, LR-Auth [44] utilizes the modulation of sound frequencies by the user’s
ear canal occlusion, generating user-specific templates through linear correlations between two
audio streams. Table 2.1 provides an overview of the existing earbud recognition systems in
related research, highlighting the novelty of our proposed system. Performance is only reported
for authentication as the majority of the enlisted works do not report on identification scenarios.
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Table 2.1: A comparison of existing earbuds authentication systems in terms of au-
thentication performance.

Paper Sensor Biometrics Backbone Performance

EarGate [30] Microphone Gait SVM 92.5% (BAC)
HeartPrint [18] Microphone Heartbeat pattern CNN 1.6% (FAR), 1.8% (FRR)
EarSlide [117] Microphone Fingerprint SiameseNN 96.86% (ACC)
TeethPass [120] Microphone Teeth structure SiameseNN 96.8% (ACC)
ToothSonic [116] Microphone Teeth structure DNN 92.9% (ACC)
BreathSign [39] Microphone Breathing pattern Triplet network 95.22% (ACC)
Hu et al. [45] Microphone Ear canal geometry Linear Regression 4.84% (BER)
EarEcho [35] Microphone Ear canal geometry SVM 94.52% (BAC)
LR-Auth [44] Microphone Ear canal geometry Cosine similarity 99.8% (BAC)
EarPrint [129] Microphone Behavioral & Physiological Acoustics DML 4.23% (EER)
EarPass [66] PPG Heartbeat pattern SVM 98.7% (ACC)
EarPPG [20] PPG Ear canal geometry ReGRU 94.2% (ACC)
BudsAuth [114] IMU Tissue composition DAL-CNN 5% (EER)
MandiPass [68] IMU Mandible structure CNN 1.28% (EER)
Jawthenticate [100] IMU Jaw structure SVM 92% (BAC)
This paper IMU Gait CNN+LSTM 1.96% (EER)

Despite the established uniqueness and robustness of gait as a biometric trait, as discussed
in Section 2.1, the demonstrated effectiveness of gait for IMU-based authentication in other
wearables [125, 102, 121], and the high accuracy achieved in gait detection and classification
using earables [54, 16, 25, 122], to the best of the authors’ knowledge, no research has yet
proposed a gait-based authentication system using IMU data from earables, nor has
the feasibility of such systems been systematically evaluated for real-world deploy-
ment. This, along with the lack of publicly available datasets collected for this purpose, creates
a significant gap in assessing earables’ viability for secure user authentication.

This research addresses this gap by evaluating the effectiveness of gait-based
authentication using IMU-equipped earables, considering both algorithmic perfor-
mance and practical deployment constraints. By investigating the trade-offs between
model complexity, resource efficiency, and authentication and identification performance, this
work contributes to the development of lightweight biometric solutions tailored for real-world
use on commercial ear-worn devices. Although similar works specific to earables do not currently
exist, this research draws on established methods for IMU-based gait-based recognition in other
wearable devices, adapting and optimizing these techniques to fit the unique constraints and
advantages of earables.

Building on this foundation, Section 2.5 explores established machine learning techniques for
inertial sensor-based gait-based recognition and evaluates their effectiveness in the context of
biometric authentication.

2.5 Gait-Based User Recognition and Machine Learning

There are two training components gait-based user recognition consists of:

An Identification Component that has the form of a multi-class classification problem wherein
the aim is to automatically identify a target subject given their gait information. Assuming M
target subjects, given an unknown gait segment, a gait-based identification system provides the
corresponding subject identity, ϕ, where ϕ ∈ {1, . . . ,M}. In a closed-set scenario, which is
common in controlled datasets, the system assumes that every test sample belongs to one of the
M known individuals, and the model must minimize misclassification errors between them.

An Authentication Component, or a two-class classification problem, aims to verify whether
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a given gait segment belongs to a target subject (genuine user) or not (impostor). In literature,
creating impostor feature vectors is commonly done by labeling the users in the dataset other
than the genuine user in the Test dataset as impostors [55, 59, 58]. For authentication, the
system evaluates each participant individually within each activity category, resulting in M
binary classification problems per activity. Given an unknown gait segment, the system outputs
either a positive classification, indicating the segment belongs to the genuine user, or a negative
classification, identifying the segment as originating from an impostor. To address the inherent
class imbalance in this setup, where the genuine user’s samples are significantly outnumbered
by those of the impostors (e.g. herein, 1:29), a data balancing approach is commonly adopted.
This ensures that both classes are represented equally in the training set, preventing the model
from being biased toward the majority class.

The effectiveness of gait-based recognition using IMU sensors heavily depends on the ability
to extract meaningful patterns from raw motion data. Given the complexity and variability of
human gait, machine learning is a crucial tool for analyzing IMU signals, enabling the identifica-
tion of distinctive movement signatures between individuals. These methods leverage statistical
patterns, temporal dependencies, and feature representations to differentiate users based on their
gait. The process consists of several key steps, namely data segmentation, feature extraction
and selection, and model training, as enlisted in Subsections 2.5.1, 2.5.2, 2.5.3, subsequently.

2.5.1 Data Segmentation

Before distinctive features can be extracted from IMU signals, the raw time-series data must be
segmented into smaller, structured units that capture relevant gait cycles. Segmentation is a
crucial preprocessing step, as gait is a continuous motion that varies in speed and rhythm across
individuals and, without proper segmentation, the extracted features may fail to capture the
periodicity and distinctive motion patterns inherent in gait. Signal segmentation is done either
by extracting gait cycles [123, 26, 76, 81] or fixed-length frames [92, 58, 4, 57].

Gait cycle-based segmentation involves identifying repetitive walking patterns, defined
as the time interval between consecutive heel strikes of the same foot that serve as markers
to segment data into individual gait cycles. Said gait cycles are extracted, and an average
cycle template is generated for classification. A point-wise comparison of train and test samples
is carried out using classical distance measures (Euclidean, Manhattan) and Dynamic Time
Warping (DTW) [123, 28, 77].

Frame-based gait segmentation divides inertial signals into multiple (overlapping or non-
overlapping) frames or windows of the same length and, for each window, a list of features is
computed. The fixed-length frame-based approach combined with machine learning is shown to
outperform cycle-based approaches in the context of authentication, as per multiple previously
conducted surveys [106, 7, 58], and is therefore the segmentation method of choice for
this paper.

Frame-based approaches, especially in the case of small and unbalanced datasets, are often
paired with a fixed-size sliding window (FSW) approach. In FSW, the raw data is segmented
into overlapping frames of fixed length wherein the length (in seconds) is chosen in a way that
each frame contains information for at least one gait cycle so that the complete features exist in
each period [99, 96]. Overlapping ensures that a portion of the data from one window is included
in the next one, allowing for smoother transitions between frames. In the case of time-series
data, using overlapping windows also helps capture transitions or events that might otherwise be
split across two adjacent non-overlapping windows, and, ultimately, provides more data samples
to feed into the chosen models. The common overlap used in literature is 50% [16, 13, 58],
while the window length varies per work, ranging between 1 and 12 seconds. According to best
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practices, the number of valid windows considered per subject per feature set should be at least
10 times [111] and ideally 20 times [32] more than the number of features that are inputted into
the model.

2.5.2 Feature Extraction and Selection

Once the IMU data has been segmented, the next crucial step in gait-based recognition is
feature extraction, where meaningful characteristics are derived from each window. The choice
of features directly impacts the classification accuracy, computational load, and robustness of
the authentication system [90]. Feature extraction methods can be categorized into statistical
(e.g., mean, variance, standard deviation, skewness, and kurtosis), frequency domain (power
spectral density, entropy), and time-series features (peak-to-peak intervals, step regularity),
each capturing different aspects of the gait signal. A detailed summary of the most commonly
used accelerometer and gyroscope features can be found in [113], which also serves as the basis
for the feature extraction process of this work.
The exact features this work extracts are addressed in Subsection 3, and enlisted in Table 3.1.

2.5.3 Machine Learning Models

Machine learning models play a crucial role in gait-based recognition, with traditional machine
learning (ML) classifiers and deep learning (DL) models both demonstrating effectiveness in
different scenarios.

While no studies have yet explored training ML and DL models on earable IMU data col-
lected during gait for recognition purposes, extensive research has been conducted on gait-based
recognition using IMU data from other wearable devices. The most commonly used ML al-
gorithms for this purpose include Random Forest (RF) [59], Support Vector Machine (SVM)
[70, 118, 55, 81, 86, 111, 5, 124], k-Nearest Neighbours (kNN) [108, 107], Logistic Regression
[58], and Multi-layer Perceptron (MLP) [29, 4], with SVM being a common choice due to not
being computationally expensive, and to being able to work well with unstructured data and in
the presence of a small sample size [89]. SVM demonstrated an accuracy above 90%, with peaks
of 96%, in different experimental scenarios [72]. SVM, RF and kNN are generally indicated as
suitable for dealing with datasets of small scale [108], while MLP is known for having the lowest
model size, making it suitable for deployment on resource-constrained devices [4]. The enlisted
models are shown to consistently score high in the task of gait-based identification, often ex-
ceeding 85% [72, 22, 108]. Given their proven effectiveness in similar contexts, these
ML algorithms are selected as part of the evaluation for this work.

However, while conventional ML models provide strong performance, they depend on hand-
crafted features that often require domain expertise for optimal selection, which may limit their
adaptability to complex gait variations. Deep Learning (DL) methods offer the advantage of
automatically learning and extracting discriminative patterns from IMU signals, making them
effective for modeling the data [56]. Various architectures have been explored for both gait-based
authentication (verifying whether a gait sample belongs to a known user) and gait-based iden-
tification (classifying a gait sample among multiple users). The most widely used DL methods
in the literature include Convolutional Neural Networks (CNNs) [11, 46] followed by Recurrent
Neural Networks (RNNs), more specifically Long short-term Memory (LSTM) [82, 109]. Re-
search also suggests that combining CNN and LSTM outperforms competing deep non-recurrent
networks [42]. Said CNN-LSTM hybrid models have shown superior performance compared to
standalone CNN or LSTM models in both authentication and identification tasks, as confirmed
by [27, 48, 17], scoring as high as 96% recognition accuracy. This combination ensures that both
short-term variations and long-term gait patterns are effectively modeled, improving robustness
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against noise and individual gait fluctuations, making CNN-LSTM a compelling choice for
this work. Given their success across multiple wearable-based gait studies, their application
to earables remains an unexplored yet promising direction for effective user authentication and
identification. This work addresses this gap by investigating whether gait-based recog-
nition using ear-worn IMU sensors can achieve similar levels of reliability as other
wearable-based approaches, advancing the understanding of gait biometrics in the context
of earable devices. The specific model implementation this work follows can be found in [17],
with its adaption for this work detailed in Subsection 3.3.2.

To evaluate gait-based authentication methods on earable data, it is essential to consider existing
datasets that capture relevant motion patterns for the use case. Subsection 2.6 explores publicly
available datasets that contain IMU data from earables and assesses their suitability for this
research.

2.6 Publicly Available Datasets

This subsection reviews the three (to the best of the authors’ knowledge at the time of writing
this work) publicly available datasets relevant to the field of gait-based recognition using earables,
at least in terms of utilized sensors and recorded activities.

Comparing existing works in the literature is challenging due to the scarcity of publicly
available benchmarks for IMU data collected from the ear. While the potential of earables for
gait-based authentication is rather evident, the development and evaluation of such systems
relies heavily on the availability of suitable datasets. A major challenge not only for gait-based
authentication using earable-collected IMU signals but also for behavioral biometrics research
as a whole is the limited number and accessibility of real-world datasets [101]. Additionally, the
fairly recent emergence of earbuds with sensing capabilities further contributes to the lack of
well-curated, open-source datasets specific to this technology [21].

While no publicly available datasets have been designed for gait-based authentication through
ear-collected IMU, some existing datasets could be used for that purpose given they contain
accelerometer data from ear-mounted or in-ear devices (and optionally - gyroscope and mag-
netometer data) during gait-related movements such as walking, running, jogging, and stair
climbing. The said datasets, while not originally intended for authentication tasks, can still
be leveraged to derive gait patterns. Table 2.2 provides an overview of their key characteris-
tics, with emphasis on activities relevant to gait-based recognition. For comparison, the dataset
collected for this research is included in the discussion.

The WEEE dataset is part of the work "A Multi-Device and Multi-Modal Dataset for
Wearable Human Energy Expenditure Estimation" [36] and is designed for energy expenditure
estimation across multiple devices and body locations, including the ear, wrist, chest, and head.
It collects a wide variety of data, with these being oxygen consumption, heart rate, gyroscope,
accelerometer, PPG, ECG, EDA, EEG skin temperature. This is done through the use of 7
different devices placed across the human body. The following continuous physical activities
are recorded: sitting, standing, cycling, and running. This is accompanied with questionnaires,
participant demographics, and participant body composition information. The device used to
collect the IMU data is a Nokia Bell Labs earbud. The dataset itself is hosted on Zenodo [49] and
involves recordings of 17 participants. The provided repository comes with a study information
file that contains a column per participant for errors that occurred during their recordings, such
as “Stopped the treadmill at 11:30 - Earbud fell off at 11:39” (P16), “Interruption at 18:41” (P4),
and similar. These have not been properly documented and require individual inspection of each
recording in order to manually determine when precisely the interruption or error occurred, and
when and if it was fixed again as no timestamps have been provided for the end of the issue,
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Dataset Year Earable
Type

Device
Position

Sensor(s) Sampling
Rate

Relevant
Activities

Participants Recording
Length per
Activity

Setting Additional
Notes

WEEE [36] 2022 Nokia Bell
Labs eSense

Earbuds

Right Ear Accelerometer,
Gyroscope,

PPG

100 Hz Running
(Speed 1,
Speed 2)

17 (12M, 5F) 10 minutes On treadmill;
self-

determined
pace

Recording issues
reported but not
time-stamped

Auritus [90] 2022 Nokia Bell
Labs eSense

Earbuds

Both Ears Accelerometer,
Gyroscope

100 Hz Walking,
Jogging

45 (29M, 16F) 23-25
seconds

On ground;
self-

determined
pace

Built-in
Butterworth filter
with 5 Hz cutoff

applied

EarSet [75] 2023 Custom
Earbuds

Both Ears Accelerometer,
Gyroscope,

PPG

100 Hz Walking,
Running

30 (18M, 12F) 2 minutes On treadmill;
preset speed

-

Our dataset 2024 OpenErable
Earbuds

Right Ear Accelerometer,
Gyroscope,
Magnetome-

ter

50 Hz Walking,
Running,

Stair
Climbing
(Speed 1,
Speed 2)

30 (21M, 11F) 4 minutes On treadmill,
on stair

master; self-
determined

pace

-

Table 2.2: Summary of Freely Available Datasets Collected Through Earables

only the start of it. As there is no supporting text that addresses this in the research paper, it
is not clear how to interpret the reported errors. Some participants also lack earbud recordings
from left ear, and/or include an additional file named “PX_EARBUDS_Final.csv” while neither
the paper nor the GitHub repository indicate any information about said inconsistencies. No
data preprocessing is applied, recommendations are given to convert the raw accelerometer and
gyroscope data to a more usable format (i.e., milli-g and milli-dps), and to remove the direct
current offset from the gyroscope data by applying a Butterworth band-pass filter; The lack
of clear documentation regarding said interruptions, and the presence of unaddressed files add
further challenges to the dataset’s reliability.
This dataset is not pursued further in this work due to the researcher not being able to ver-
ify whether said issues have properly been handled, and relying only on manual (i.e. visual)
inspections; and due to the lack of variability in locomotion activities (no walking is included).

The Auritus dataset is part of the work "Auritus: An Open-Source Optimization Toolkit
for Training and Development of Human Movement Models and Filters Using Earables" [90],
and one of its goals is to provide a comprehensive dataset designed for earable-based activity
recognition and head-pose estimation. It leverages the Nokia Bell Labs earbuds. The dataset
addresses the scarcity of open-source earable data by offering nine distinct activities of daily
living (ADL), including walking, jogging, jumping, sitting, and lying. The work collects data
from 45 participants, and includes calibration processes for the IMU sensors to mitigate sensor
biases and improve accuracy. A custom graphical data-labeling tool is developed to facilitate
the segmentation and labeling of the data. Albeit the wide range of activities, each activity is
relatively short, with namely 23-25 seconds IMU trace per participant.
The dataset is indicated to be hosted on GitHub [103], yet said repository contains further
links redirecting to a Google Drive location, which, at the date of writing this work, point to
non-existent files. This renders the dataset inaccessible and ultimately unusable, as there is no
alternate way provided to access the data.

The EarSet dataset is part of the work "EarSet: A Multi-Modal Dataset for Studying the
Impact of Head and Facial Movements on In-Ear PPG Signals" [75] and is tailored for exploring
how subtle head and face motions affect in-ear IMU and PPG signals. Data collection is per-
formed using custom earbuds equipped with a 3-channel PPG sensor and a co-located 6-axis IMU
(accelerometer, gyroscope). These devices were placed in both ears to simultaneously record 18
data streams at a sampling rate of 100 Hz. The study includes data from 30 participants, with
a diverse representation of skin tones. The participants perform 16 activities, including head
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motions (nodding, shaking, tilting), facial motions (brow raiser, lip puller, mouth stretch, etc.),
and full-body activities (walking at 5 km/h and running at 8 km/h on a treadmill). The raw
data is hosted on Zenodo [2]. The dataset includes a total of around 17 hours of recordings, with
each activity session lasting 2 minutes. During these sessions, the PPG sensor configurations are
varied every 30 seconds to explore the trade-off between power consumption and signal quality.
Ground-truth physiological measurements, including heart rate, heart rate variability, and respi-
ration rate, are collected for validation purpose, and also included on Zenodo. Additionally, the
dataset contains an additional file, Demographics.csv, with demographics and skin tone of each
participant in an anonymous format. No preprocessing is implemented; the conversion recom-
mendations are the same as in WEEE. As the relevant to this work activities are performed at
set pace, the dataset does not capture intra- and inter-subject variability in gait (e.g., self-paced
walking, varying speeds per activity, etc.) which limits its applicability for user authentication.

The lack of publicly available datasets for gait-based user authentication using earables is
a significant barrier to research in this field. Existing datasets, namely WEEE, Auritus, and
EarSet, are not suitable due to various constraints, e.g. incomplete or inaccessible data and
limited locomotion variability. To address the identified gap, this work introduces a new
dataset designed for gait-based recognition with earables. Said dataset is intended to be
made publicly accessible in order to stimulate further research, and to enable the development
and evaluation of novel methodologies in the field. Summarized details of the dataset are found
in Table 2.2, while the data collection process is described in Chapter 3.

2.7 Deployment on Resource-Constrained Devices

The deployment of ML and DL models on resource-constrained devices, herein on Arduino
Nano 33 BLE Sense, is challenging due to their limited computational power, memory, and
energy efficiency. To ensure the feasibility of deploying participant recognition models on the
OpenEarable earbud used in this work, several model optimization techniques commonly used
in research have been explored in this work.

In DL, models are commonly trained and deployed using 32-bit floating-point (FP32) arith-
metic. However, this can be inefficient for deployment on memory-constrained devices. To tackle
this, quantization is adopted to reduce numeric precision (e.g., to 8-bit integers) making the
model size smaller, and speeding up inference.
Two primary forms of quantization are explored, namely Post-Training Quantization (PTQ) and
Quantization Aware Training (QAT). Post-Training Quantization (PTQ) is a technique applied
after a model has been fully trained in floating-point. It converts the model’s weights from 32-bit
floats to a lower bit precision, herein 8-bit integers. The idea is to reduce model size and enable
faster inference without having to retrain the model from scratch. Quantization Aware Training
(QAT), on the other hand, involves simulating the quantization effects during the training phase
itself. While the model still stores weights in floating point during training, the forward pass
injects fake quantization operations so the network learns to be robust to 8-bit precision. This
helps preserve accuracy after quantization at the cost of additional training time and complexity.
Prior work has demonstrated that PTQ and QAT are effective in reducing the computational
footprint of models for TinyML applications [78], particularly in human activity recognition on
low-power devices. However, these techniques remain underexplored for participant recognition,
an area this work aims to contribute to.

For ML models, feature selection and hyperparameter tuning are explored. When working
with a large set of features, there is a higher chance of overfitting as the ML classifier risks
learning from the specific dataset rather than uncovering broader patterns, and loses on gener-
alization capabilities [108]. Meanwhile, computation overhead is also increased. To counter this,
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classification algorithms such as Random Forest [108], Sequential Backward Selection (SBS),
Recursive Feature Elimination (RFE) [107], Principal Component Analysis (PCA) [112], and
Mutual Information [58] can be applied to reduce the large set of initial features to relevant gait
variables, and to lower inference time. This is often paired with correlation filtering to avoid
multicollinearity [108]. To improve the generalization performance of ML models, grid search
is employed to find the optimal set of hyperparameters. By systematically evaluating different
combinations, this process ensures that the final models achieve high accuracy with minimal
resource usage. Details on how this is implemented in this work can be found in Chapter 3.
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Chapter 3

Methodology

Given the scarcity of publicly available datasets that meet the requirements for gait-based user
authentication using earables, this study designs and collects its own dataset. The dataset aims
to address the shortcomings identified in Section 2.6 by ensuring comprehensive locomotion
diversity, high data quality, and a structured experimental protocol. This section outlines the
methodology used to collect, preprocess, and analyze the data, and the feature extraction and
selection process. Then, the experimental protocol is described, along with the pipelines for ML
and DL-based user authenication and identification. Finally, to ensure feasibility for real-world
deployment on edge devices, the most suitable models are further optimized to reduce their
computational complexity and memory footprint while maintaining classification accuracy.
This methodology ensures a structured and reproducible approach to gait-based user recognition
using earables.

3.1 Device and Experimental Setup

For this purpose of collecting the target dataset, a controlled experiment is designed wherein
participants are asked to perform a set of predefined tasks in the form of continuous gait-based
movements in a gym setting. The choice for a controlled experiment allows for running a detailed
analysis of the data and data collection process and supports a higher level of replicability of
the experiment. The experiment is conducted following the ethical regulations of the University
of Twente, more specifically those of the Faculty of Electrical Engineering, Mathematics, and
Computer Science (EEMCS), and the Computer And Information Sciences (CIS) committee
has granted approval to this study’s design and methodology. All participants have signed an
informed consent form and have agreed to have their anonymized data used for research purposes.

The dataset is planned to be made publicly available. This section provides an overview of the
technologies relevant to this report and outlines how said dataset is collected.

3.1.1 Device

The device used for conducting the experiment is the earpiece from OpenEarable [105] - an
open-source web-based dashboard connected to the earbud via Bluetooth Low Energy (BLE) -
that visualizes the data being collected in real-time, and allows for configuring sensor settings
and starting and ending the recordings remotely [88]. It also includes a mobile smartphone app.
As OpenEarable is a fully open-source platform with firmware and hardware developed using
free tools, its use aligns with the goals of this research by providing a customizable solution for
sensor configuration and data collection, enabling reproducibility and collaboration within the
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field. The said device is furthermore chosen because it functions as regular binaural Bluetooth
in-ear earphones, making it closer in similarity to everyday use devices, while still providing the
sensing capabilities necessary for this experiment [88]. Its design and sensor performance have
been validated in various studies comparing its accuracy and reliability relative to established
benchmark measurements [105]. The device has previously also been paired with mobile ap-
plications for posture tracking, jump height testing, jump rope counter, microsleep monitoring,
and a tightness meter, among others, as showcased on the official website [105].

In terms of technology, the earbud itself is a multi-sensory device equipped with a 9-axis iner-
tial measurement unit (IMU) consisting of an accelerometer, a gyroscope, and a magnetometer;
an ear canal pressure sensor, a temperature sensor, an inward-facing ultrasound microphone as
well as a speaker, a push button, and a controllable RGB color LED. The highest sampling rate
available for IMU data is 50 Hz, which is also the frequency used for this work.
The device has Arduino Nano 33 BLE Sense as its microcontroller - a board suitable for
wearable applications that make use of Bluetooth connectivity, integrate multiple sensors, and
are required to have low power consumption [80]. The memory capacity of the Arduino Nano
33 BLE Sense is as follows:

• 1 MB of flash memory for storing the program code.

• 256 KB of SRAM for running the application and temporary data storage.

So far, no datasets collected with the said device have been made available to the public
to the knowledge of the authors at the time of writing this work. This work addresses this by
providing the first publicly accessible dataset collected on an OpenEarable earbud, in an attempt
to stimulate further research with said device. The data collection procedure is described in
Subsection 3.1.2.

3.1.2 Experimental Setup

A total of 30 subjects took part in the experiment (11F, 19M, aged between 18 and 30). They
were instructed to wear comfortable attire. No compensation for participating was offered. The
tests took place in several fitness centers in Enschede, Rotterdam, and Utrecht, the Netherlands.
As a preparation for each experiment, the device was fully charged. The device was mounted
behind the right ear of the participant. It was ensured that there were no distractions during
activity data collection, and the process was restarted when the earable device became loose or
whenever any unforeseen circumstances arose.

Participants were asked to walk, run, and climb stairs at their normal pace (average and
paced), using a treadmill and a stair master. The exercises were demonstrated to the participants
beforehand to ensure familiarity with each exercise. Each exercise lasted a total of 4 minutes,
wherein the participant performed each movement for 2 minutes at low intensity, and 2 minutes
at high intensity. The total duration of the experiment consisted of 12 minutes of active work,
yet in-between exercises participants were able to decide how to rest and for how long, with the
sensor staying mounted to the ear but not collecting data. For this reason, the total duration of
the experiment varied per person. The exercise session length was chosen to be long enough to
yield good quality signal recordings while not being harmful to the participant. The intensities
at which each exercise was performed were selected by the participants so that they could remain
representative of their habits. The transition from walking to jogging was achieved by the subject
increasing the speed 0.5 km/h at a time until they felt more comfortable running than walking,
done similarly to [16]. The protocol was run from low to high intensity per exercise to avoid the
impact of high-intensity activities on low-intensity ones. For consistency, the treadmill incline
was kept the same across all participants. Figure 3.1 summarizes the data collection protocol.
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Figure 3.1: Data Collection Protocol.

3.1.3 Data Management

To record the data, the sensor needs to be connected via Bluetooth to the desktop dashboard.
Starting and ending recordings is also controlled through the dashboard, and the raw data is
ready for download from the internal server. No personally identifiable information such as name
and age was collected from the participants. Each recording session was initially anonymized
with a combination of an alphanumeric format of P#, herein Participant Identifier P1-P30, the
name of the exercise, and the intensity (e.g. P1-stairs-slow.csv). Later on, recordings were
grouped per activity folder. In each folder, each participant’s raw data obtained from the earbud
during data collection is kept. Each .csv file contains the following columns and content:

• time: Timestamp in UNIX format, measured in milliseconds

• sensor_accX[g]: X-axis of the accelerometer sensor in g-force units

• sensor_accY[g]: Y-axis of the accelerometer sensor in g-force units

• sensor_accZ[g]: Z-axis of the accelerometer sensor in g-force units

• sensor_gyroX[◦/s]: X-axis of the gyroscope sensor in degrees per second

• sensor_gyroY[◦/s]: Y-axis of the gyroscope sensor in degrees per second

• sensor_gyroZ[◦/s]: Z-axis of the gyroscope sensor in degrees per second

• sensor_magX[µT], sensor_magY[µT], sensor_magZ[µT]: X-axis, Y-axis, Z-axis
magnetometer sensor data in microteslas, which will not be used in this study but will be
made publicly available along with the rest of the data.

Figure 3.2 displays an example accelerometer and gyroscope raw sensor segment recorded
during a test run at high intensity of the same participant. To avoid ambiguity and difficulties
in identifying the start and end frame of each exercise, the recordings were started only once
the participant had begun performing the exercise and had confirmed that they had found their
comfortable speed per intensity.

3.2 Data Preprocessing

Since the data obtained by the OpenEarable device is in raw signal form, it is necessary to
perform several types of preprocessing to improve its quality. These include frame-based gait
segmentation, feature extraction, feature selection, data normalization, and (optionally) data
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Figure 3.2: Acc and Gyro data segment from a high-intensity run of a test user.

Figure 3.3: Architecture of the proposed recognition system

balancing. This section details the methodology applied to preprocess and segment the raw
IMU data, extract meaningful features, and select the most relevant ones for ML-based classifi-
cation. For DL-based classification, no manual feature selection is executed. Each step is critical
in transforming the raw sensor signals into a feature representation suitable for accurate and
efficient identification and authentication. Figure 3.3 depicts the high-level process.

3.2.1 Data Segmentation and Outlier Removal

An authentication system should achieve high accuracy while minimizing recognition latency
and having low computational complexity. To achieve this, in this work, sensor readings are
segmented into fixed-length frames. The authors believe that, as gait cycle-based approaches
are sensitive to gait cycle starting point detection precision, choosing a frame-based classification
ensures robustness to variations in cycle start positions, and reduces bias.

This work utilizes frames of fixed length of 2 seconds, with the size chosen in a way
that ensures that each frame segment contains at least one gait cycle so that the complete set
of features exist in each period. Furthermore, a fixed-size sliding window (FSW) approach is
adopted, wherein a 50% overlap is applied consistently across all windows. At 50Hz frequency,
each window contains 100 time steps, or 2 seconds worth of recording, and the dataset has a
mean of 83.94 windows per participant.

Upon post-recording inspection, it was discovered that some participants have consistently
fewer data points than the mean number of data points across all six exercises and speed combi-
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nations. This is seen in Figure 3.4a, namely in P11, P15, P19, P1, P2, P4, P6. The observed
discrepancy in the number of data points between participants appears to possibly stem from the
recordings of said individuals been captured at a sampling rate lower than 50 Hz sampling rate to
hardware or software limitations not evident at the time of recording that fall outside the scope
of this work. Despite this, upon visual inspection, it seemed the essential gait patterns remain
well-preserved, allowing for meaningful feature extraction. The reduced data points primarily
affect the dataset’s size rather than its quality.

Another observation in Figure 3.4a is the presence of evident outliers, where some partici-
pants’ recordings are significantly longer than the mean number of data points for that exercise
(e.g., P13 walk_fast recording, P3 stairs_fast recording). Although recording was initiated
only after the participant began with performing the exercise, and continued for a fixed duration
of two minutes per exercise, some recordings managed to capture additional data points both
before the exercise started and after it ended. To address this, thresholds based on low vari-
ability in data points (indicating inactivity) were applied to identify and remove these sections
at the start and end of the recordings. As a result, Figure 3.4b shows a dataset that is slightly
more balanced across activities. No further adjustments are performed on the raw data.

(a) Dataset (Imbalanced) without Out-
lier Removal

(b) Dataset (Imbalanced) with Outlier
Removal

Figure 3.4: Impact of Outlier Removal on the Dataset.

3.2.2 Feature Extraction

The next step consisted of extracting features from each frame that describe the gait cycle
in a way that allows comparison between two windows. Each sensor used for data collection
(accelerometer, gyroscope) provided three components: x, y, and z (i.e., three time-series signals).
Next to that, a fourth signal, i.e., the magnitude, was computed. The magnitude vector vi for
each instant of time i is defined in 3.1, namely:

vi =
√
x2i + y2i + z2i (3.1)

where xi, yi, and zi are the acceleration values along the three axes at time i. It is a representation
of the 3-axes and its main advantage is its invariance with respect to the sensor orientation [72].
In this work, it is considered the fourth component.

There are a variety of feature vectors that can be extracted from time and frequency do-
mains. In this work, features are selected according to best practices in frame-based feature
representation methods for gait-based recognition, namely by extracting the most widely used
accelerometer and gyroscope feature categories for this purpose, inspired by previous works
[16, 58, 72], and thoroughly summarized in [112], Table 6. The specific features include arith-
metic mean, standard deviation, range, energy, spectral entropy, bandpower, median frequency,
Inter Quartile Range (IQR), 16-bin histogram; mutual information, correlation (Pearson corre-
lation between the axes). Pair-wise Dynamic Time Warping (DTW) distance was also among
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the most commonly derived features according to previous work yet it can be expensive if done
for every window, and as the purpose of this algorithm is also efficiency, it was skipped. The
selected features encompass a wide range of statistical, spectral, and relational properties of
both the accelerometer and gyroscope signals, and have been chosen for their low computational
cost and high discriminatory power [52].

The complete list of features along with their definitions is included in Table 3.1.

Table 3.1: Accelerometer and Gyroscope Features

No. Feature Feature Description
1 Mean The arithmetic mean of the x, y, and z components, as well as the

magnitude, over a given time window.
2 Standard deviation The standard deviation within x, y, z-axis, and m within a time

window.
3 Range The absolute difference between the maximum and minimum

recorded values within a time window for each axis and the mag-
nitude.

4 Energy The total energy of the signal computed for each of the x, y, and z
axes, as well as the magnitude. It captures the intensity of motion.

5 Spectral entropy Represents the complexity of the signal by analyzing the power
distribution across the frequency spectrum. It is based on Shan-
non’s entropy and power spectral density.

6 Bandpower Computes the average power within a specific frequency range
(from 0 to Fs/2), giving insight into the signal’s energy distribu-
tion. It depends on the signal’s sampling rate.

7 Median frequency The frequency that divides the power spectrum into two equal
halves, indicating the balance point of energy distribution. It
depends on the signal’s sampling rate.

8 Inter Quartile Range (IQR) The statistical spread of the signal, calculated as the difference
between the third quartile (Q3) and the first quartile (Q1).

9 Histogram (16 bins) Divides the signal values into 16 discrete bins and records the
number of occurrences within each, capturing the signal’s distri-
bution.

10 Mutual information Quantifies the dependency between pairs of signals, reflecting how
much information one variable shares with another.

11 Correlation Computes the Pearson correlation coefficient between pairs of sig-
nals to measure their linear relationship.

The feature selection process resulted in extracting a total of 210 features per window of
data, combining features from both the accelerometer and gyroscope signals in the X, Y, and Z
axes, plus their magnitudes.

After extracting the features and before any preprocessing steps, the dataset was partitioned
into training and testing subsets using an 80:20 split. The 80% training set was used for fur-
ther ML-related preprocessing and model training, while the 20% test set was kept completely
separate to provide an unbiased evaluation of the final model. Importantly, all subsequent pre-
processing steps, such as normalization, feature selection, and feature reduction, were performed
exclusively on the training data to avoid data leakage and to ensure the test set remained a true
representation of unseen data.

3.2.3 Feature Selection

It is important to note that the following feature selection process is only relevant to the machine
learning (ML) models described in this study.

The deep learning (DL) models, particularly the CNN-LSTM architecture used in this work
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and adopted from [17] (called CNN_fixLSTM for the remainder of this work), learn feature
representations automatically from raw sensor data and do not rely on manually selected feature
sets. Therefore, feature selection is applied exclusively to the feature vectors used in the ML-
based pipelines, ensuring dimensionality reduction and improved computational efficiency for
these models. Data segmentation in overlapping windows is applied to both.

Before applying any feature selection, a MinMaxScaler is used as a normalization technique
to scale all features in the training set to a range of [−1, 1], similarly to [119]. The said range is
preferred for datasets where the original features are both positive and negative and transforms
the values to be centered around zero, which can help some ML models converge faster and
perform better. The already-fitted scaler is later applied to the test set. This step is crucial before
applying a correlation filter because scaling ensures that all features contribute equally to the
correlation computation, preventing features with larger numeric ranges from disproportionately
influencing the results.

The initial reduction on the 210-feature set was based on excluding highly intercorrelated
variables by applying a correlation threshold filter. This was done activity-wise instead of
dataset-wise, as this ensures that the retained features are tailored to the unique characteristics of
each movement and prevents important features from being overlooked due to their low relevance
in other activities (e.g., fast-paced running may rely more on high-frequency accelerations and
consistent rhythmic patterns, while stair climbing may highlight variability in step timing). A
correlation filter with a threshold of |r| > 0.9 was applied to remove highly collinear features,
ensuring that the retained features are not near-linearly dependent on each other. Unlike more
aggressive collinearity removal approaches like |r| > 0.5 in [108], this threshold aims to strike
a balance between feature reduction and information preservation in the absence of medical
expertise or extensive domain knowledge.

Once the features have been filtered for correlation, Mutual Information (MI) [58] was used
as the final step in the feature selection process to retain the most informative features for
classification. Mutual Information-based selection quantifies the dependency between each fea-
ture and the class labels, ensuring that only features with the highest discriminative power are
retained. Unlike tree-based methods, MI-based selection does not assume linearity or feature
independence, making it well-suited for diverse feature distributions.

By selecting the top 20 features within-activity, the method achieves a balance between re-
taining discriminative information and reducing computational complexity. Mutual Information
is inherently robust to feature redundancy and provides an interpretable ranking of features
based on their relevance to the classification task. This ensures that the retained feature set
captures the most distinguishing characteristics of gait patterns without introducing unnecessary
complexity.

Several features, such as standard deviation and mean of the accelerometer axes, are con-
sistently identified as important across all activities. These features suggest that variations and
averages in accelerometer data (primarily in the X and Z axes) play a significant role in distin-
guishing between activities and participants. Gyroscope histogram features, particularly those
associated with the Z-axis (e.g., Histogram Bin 7, Histogram Bin 15), frequently appear among
the top features. Lastly, the prominence of Mean (Acc Y) in stairs-related activities indicates
the importance of vertical motion in differentiating this task from walking and running where
the frequent selection of Mean (Acc X) shows forward motion is a dominant factor.

The reduced training dataset, now consisting of the top 20 features, is used to train multiple
machine learning classifiers wherein each model is evaluated on the unseen test set using the
same scaling and feature subset. The implementation details are found in Subsection 3.3.1.
Additionally, the models are trained with the full set of features to measure and compare possible
effects on size, computation time, and performance.
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3.3 Classifiers, Validation Methods, Performance Metrics

This section details the Machine Learning and Deep Learning models employed for gait-based
recognition, and the metrics used to measure their performance.

For the Identification Component, the labels are the ID numbers of the users, and a model
is ran within activity category, resulting in six models per configuration, and across-activity,
resulting in one model per configuration.
For validation, each model undergoes a single 80:20 train-test split, ensuring that participant
data is distributed consistently across training and testing subsets. This split is applied once
per activity for within-activity identification and once for the across-activity scenario. The two
main identification scenarios explored in this work are as follows:

1. Within-activity identification: Training and evaluate each model separately on indi-
vidual activities (e.g., walk_slow, stairs_slow) to test how well users can be recognized
when performing the same type of activity during training and inference.

2. Across-activity identification: Combine data from multiple activities into one dataset,
so the model learns a more general representation of a user’s gait across different movement
types.

For the Authentication Component, the labels are the ID numbers of the users, and a model
is ran 30 times within activity category as each of the 30 users is treated as the genuine user in
turn, while the remaining 29 participants serve as impostors. This process is repeated for each
of the six activity categories, meaning that 30 authentication models are trained per activity.
This results in a total of 180 models per configuration. For across-activity authentication, each
of the 30 users is evaluated separately, resulting in an additional 30 authentication models.
Because the dataset is naturally imbalanced, with only one genuine user versus 29 impostors
per training iteration, the Synthetic Minority Over-sampling Technique (SMOTE) is applied
to generate additional artificial genuine-user (train) samples. displayed in tab creates these
synthetic samples by selecting existing data points from the minority genuine user class and
generating new points along the line segments joining them with their k-nearest neighbors. This
is done to mitigate bias towards the impostor classifications.

The two main authentication scenarios explored in this work are as follows:

1. Within-activity authentication: Train and evaluate the model separately on individual
activities (e.g., walk_slow or stairs_slow). This scenario tests how reliably the model can
authenticate a user when the enrollment (training) and verification (inference) processes
involve the same type of activity.

2. Across-activity authentication: Combine data from multiple activities into a single
dataset, allowing the model to learn a more generalized representation of a user’s gait that
is robust to different movement types. In this scenario, the model is trained on a mixture
of activities, and authentication attempts can involve any activity from that set, testing
how well the system handles cross-activity variability.

The same set of models are employed for both components; however, their evaluation metrics
are tailored to align with the specific objectives of each task. The subsequent Subsections 3.3.1
and 3.3.2 describe the training pipeline and evaluation metrics for each component and model
type combination.
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3.3.1 Machine Learning Models

Two main pipelines are implemented to address the tasks of gait-based identification and gait-
based authentication. Both pipelines rely on a shared set of supervised machine learning (ML)
models—Random Forest (RF), Support Vector Machine (SVM), k-Nearest Neighbors (kNN),
and Multi-Layer Perceptron (MLP)—together with systematic hyperparameter tuning.

After handcrafted features are extracted from raw sensor data, highly correlated features (Pearson
correlation > 0.9) are removed to reduce redundancy. A Min-Max scaler then normalizes re-
maining features within a [−1, 1] range. Mutual information is used to select the top 20 most
informative features to the target classification (i.e., user identity or genuine-impostor). Each
of the four classifiers (RF, SVM, kNN, MLP) undergoes a Grid Search over a pre-defined
hyperparameter range (in Table 3.2). Three-fold cross-validation (CV=3) is employed to prevent
overfitting and to identify optimal parameter configurations. Once the best hyperparameters are
found, the final model is retrained on the full available training data. A time limit (100 ms) is
enforced to maintain practical performance for real-time resource-constrained settings. Perfor-
mance metrics are computed on a held-out test set to measure each model’s effectiveness. The
top-performing models are serialized (pickle format) for potential deployment.

Table 3.2: Hyperparameter grid search ranges for each classifier

Classifier Hyperparameters

Random Forest (RF)

Number of trees (n_estimators): {10, 50, 100}
Maximum tree depth (max_depth): {5, 10, None}
Minimum samples to split (min_samples_split): {2, 5}
Minimum samples per leaf (min_samples_leaf): {1, 2}

Support Vector Machine (SVM)
Regularization parameter (C): {0.1, 1, 10}
Kernel type: {linear, rbf}
Kernel coefficient (gamma): {scale, auto}

k-Nearest Neighbors (kNN)
Number of neighbors (n_neighbors): {3, 5, 7, 9}
Weight function: {uniform, distance}
Distance metric: {euclidean, manhattan}

Multi-Layer Perceptron (MLP)

Hidden layer sizes (hidden_layer_sizes): {(10,), (20,), (50,)}
Activation function: {relu, tanh}
Regularization term (alpha): {1e-4, 1e-3, 1e-2}
Solver for weight optimization: {adam, sgd}

For gait-based user identification, the system must recognize each participant as one of
the known classes (multi-class classification). Two settings, as mentioned previously, are eval-
uted: within-activity identification and across-activity identificaiton. In each case, the dataset
is split using an 80:20 train-test ratio, ensuring class-stratified sampling. Feature preprocessing
and selection follow the common pipeline mentioned. RF, SVM, kNN, and MLP classifiers are
then trained using Grid Search CV. Final evaluation is based on accuracy, weighted F1 score,
and confusion matrices, and training time and model size are recorded.

In gait-based user authentication, the goal is to verify a claimed user identity (genuine
vs. impostor). Each participant is treated as the genuine class, while all others form the impostor
class. Two settings are examined: within-activity authentication and across-activity authentica-
tion. Following the same feature processing, displayed in tab is applied to balance the genuine
vs. impostor classes where necessary. Model hyperparameters are optimized via the same Grid
Search CV strategy. The Equal Error Rate (EER) is reported to measure authentication perfor-
mance, along with training time and model size for each classifier–activity combination. Final
models are similarly stored in pickle format.

This approach enables direct comparisons of model performance across the different activities,
tasks, and classification algorithms.
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3.3.2 Deep Learning Models

This section describes the deep learning-based pipelines used to perform both gait-based iden-
tification and gait-based authentication. Two primary architectures, LSTMOnly and
CNN_fixLSTM, are evaluated under both within-activity and across-activity scenarios.

The architecture of the LSTM and CNN_fixLSTM models is adapted from the work of
Cao et al. [17], who introduced a hybrid deep learning approach combining CNN and LSTM
for gait-based user authentication using smartphone-collected IMU signals. LSTM is used as a
feature extractor for temporal gait patterns. A distinguishing feature of this implementation is
the freezing of the LSTM parameters during training. This design choice is made to leverage
the pre-trained sequential feature extraction capability of the LSTM while allowing the CNN
branch to adapt to domain-specific characteristics in the dataset. Freezing LSTM also means
fewer parameters are updated, leading to faster training and lower memory usage, which aligns
with the goals of this work. Further details about the design choices surrounding the said models
can be found in the referred paper.

In this work’s implementation, the key architectural components are retained while several
modifications are made in terms of CNN depth to align the model with the size of the collected
dataset and computational constraints, and the model is adapted to identification tasks as
well. Notably, while the original paper makes use of a random grid hyperparameter selection
followed by a hand-tuning method to determine the final hyperparameters for the LSTM part,
no hyperparameter tuning is performed in this work due to resource constraints and lack of
domain knowledge. This limitation can be addressed in future work.

For each activity category (e.g., walk_slow, stairs_slow, . . . ), training and testing data
are split (80:20), with each participant’s data distributed appropriately (identification) or split
according to genuine vs. impostor (authentication).
In the identification case, a separate model is trained per activity (6 total activities).
In the authentication case, the model is trained 30 times for each activity, once per user,
treating that user’s data as “genuine” and all others’ as “impostor.” Due to the resulting class
imbalance (1 genuine vs. 29 impostors), SMOTE oversampling is applied to the genuine class in
the training set.

The same across-activity and within-activity settings apply as in Subsection 3.3.1. The
two architectures, summarized in Table 3.3 (LSTMOnly) and Table 3.4 (CNN_fixLSTM),
are used for both identification and authentication tasks. These architectures follow a hybrid
deep learning approach for gait-based user identification and authentication, inspired by the one
utilized in [17], and adapted to the specific needs of this dataset.

Layer Details Output Shape
Input – (B, 100, 6)

LSTM
hidden_size=64
num_layers=2
batch_first=True

(B, 100, 64)

Select last timestep – (B, 64)
Linear 64 → num_classes (B, num_classes)

Table 3.3: Architecture of the LSTMOnly model. The input shape assumes a batch size
B, a temporal dimension of 100 timesteps, and 6 sensor channels (3D accelerometer +
3D gyroscope).

The LSTMOnly model (Table 3.3) processes each window ∈ R100×6 via a two-layer LSTM
(hidden_size = 64). The hidden state from the final time step (t = 100) is passed to a linear
layer that outputs either identification or authentication results. After training, the best LSTM
checkpoint is saved for further use.
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Layer Details Output Shape
LSTM Branch (Frozen)

Input (LSTM branch) – (B, 100, 6)

LSTM

hidden_size=64
num_layers=2
batch_first=True
(frozen)

(B, 100, 64)

Select last timestep – (B, 64)
CNN Branch

Input (CNN branch) – (B, 6, 100)
Conv1d + ReLU 6 → 32, kernel_size=8 (B, 32, 93)
MaxPool1d kernel_size=2 (B, 32, 46)
Conv1d + ReLU 32 → 64, kernel_size=5 (B, 64, 42)
MaxPool1d kernel_size=2 (B, 64, 21)
Conv1d + ReLU 64 → 64, kernel_size=3 (B, 64, 19)
AdaptiveAvgPool1d – (B, 64, 1)
Squeeze – (B, 64)

Fusion and Classifier

Concat
concatenate
(CNN branch, LSTM branch) (B, 128)

Linear 128 → num_classes (B, num_classes)

Table 3.4: Architecture of the CNN_fixLSTM model. The LSTM is identical to LSTMOnly
but is frozen (no gradient updates). The last hidden state is extracted from the LSTM
and gets concatenated with the final CNN features for classification.

The CNN_fixLSTM model (Table 3.4) enhances the LSTM by adding a parallel CNN branch:

1. A frozen LSTM branch (identical to LSTMOnly) extracts temporal dynamics. Its pre-
trained weights (from the best LSTM checkpoint) are fixed (no gradient updates).

2. A CNN branch processes the same window in a (channels, timesteps) format (B, 6, 100).
A sequence of 1D convolutions, ReLU, and pooling layers yields a 64-dimensional latent
feature via global average pooling.

3. The CNN feature vector is concatenated with the 64-dimensional LSTM hidden state,
forming a 128-dimensional fused representation. Another linear layer then outputs the
final logits (multi-class or binary).

During training, the CNN parameters and fusion layer are optimized, while the LSTM remains
frozen. The training procedures are as follows:

1. LSTM Pretraining. The LSTMOnly network is first trained end-to-end for 10 epochs
(cross-entropy loss, Adam optimizer, initial lr = 10−3). For within-activity experiments,
a separate LSTM is trained per activity (identification) or per user-activity pair (authenti-
cation), whereas in across-activity experiments, a single LSTM is trained on the combined
dataset for each user or for all users (identification). The best checkpoint is chosen based
on F1 (identification) or EER (authentication).

2. CNN_fixLSTM Training. Next, the pre-trained LSTM parameters are loaded and
frozen; the CNN and final fusion layer are randomly initialized. Training proceeds with
the same optimizer/hyperparameters. Since the LSTM is not updated, the CNN learns
features complementary to the already extracted temporal embeddings. Best checkpoints
are again selected using F1 or EER.
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Each final model is saved in pickle format or via torch.save for potential deployment. Model
size and training time are tracked to ensure compatibility with resource-constrained devices.

3.3.3 Performance Evaluation Metrics

For user identifcation, the performance metric used for performance evaluation is the F1 score.
Precision measures the proportion of true positive predictions among all positive predictions
made by the model. Recall measures the model’s ability to identify all true positive samples
correctly. The F1 score combines both of them into a single metric, representing their harmonic
mean. The weighted F1 score is chosen as the primary metric as, since this work deals with a
multi-class classifcation problem with the number of classes equal to the number of participants,
for the classifer performance observing only a single F1-score suffices instead of having one for
each participant class. The weighted F1 score is evaluated per activity, and across-activities.
In addition to these performance metrics, training time is recorded to evaluate computational
efficiency, and model size is measured to assess deployment feasibility for resource-constrained
environments.

For user authentication, the performance metrics used for performance evaluation are the
standard evaluation metrics in an authentication system [83, 115, 129], namely False Acceptance
Rate (FAR), False Rejection Rate (FRR), and Equal Error Rate (EER). In literature, the naming
conventions of FAR and FRR are interchangeable with FPR and FNR, respectively. Herein, FAR
is the likelihood that an impostor is identified, or wrongly accepted, as the legitimate user. This
reflects the system’s security. On the other hand, FRR is the likelihood that the authentication
system incorrectly rejects the legitimate user, marking them as an impostor. FAR and FRR are
computed as follows:

FAR =
FP

FP + TN
, FRR =

FN

FN + TP
(3.2)

where TP , FP , TN , and FN represent true positives, false positives, true negatives, and false
negatives, respectively.

Finally, EER represents the point at which FAR and FRR are equal, and, similar to F1 for
identification, is the primary metric used to compare the authentication models in this work.
A smaller EER indicates higher overall authentication accuracy and a better balance between
security and usability. In the described experiments, EER is reported while performing k-fold
cross-validation as the test set contains observations from both negative and positive classes.
Lastly, training time and model size are also measured.

It is noteworthy that authentication can also be viewed as impostor testing. As such, the
environment is referred to as the Zero-effort attack environment, meaning the impostors do not
intentionally try to mimic the Genuine user; and participants’ regular gait patterns are used as
impostor samples [58]. Testing for Imitators who make a deliberate attempt to copy the Genuine
user falls outside of the scope of this work.

The outlined evaluation metrics provide a comprehensive framework to assess the identifica-
tion and authentication systems’ performance, and the models’ efficiency and size.

3.3.4 Model Optimization

As the memory and computing capabilities of edge devices such as the one utilized in this
work, namely the Arduino Nano 33 BLE Sense, are significantly limited compared to those
of cloud and mobile devices, optimization techniques for making ML and DL models suitable
for deployment on smaller devices are explored in this work. The 33BLE has limited RAM
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(256KB) and flash storage (1MB). Throughout optimization, it is crucial to measure model size
and ensure it fits within these constraints. Optimizations should also decrease inference time
and power draw; yet, as the scope of this work does not entail real-time deployment on the
actual device, said metrics cannot be tracked while running the models. The techniques this
work utilizes are Feature Set Minimization (which is inherently embedded in the ML recognition
pipelines used in this work) and two forms of quantization—Post-Training Quantization
(PTQ) [50] and Quantization-Aware Training (QAT) [78]—for the DL models, as described
in Subsection 2.7.

Quantized models are particularly beneficial on the BLE33, as its Cortex-M-based microcon-
troller supports efficient fixed-point operations and reduced-precision arithmetic [71], aligning
well with int8 or int16 quantized networks. Each optimization step (feature set minimization,
quantization) is followed by validation to ensure that classification accuracy remains within ac-
ceptable bounds. Slight accuracy loss herein is considered acceptable in exchange for significant
gains in efficiency.

As already implemented, reducing the feature set the ML models utilize to the top 20 most
discriminative features decreases computation and memory requirements as fewer input dimen-
sions lead to smaller model sizes and faster inference. No further model optimization techniques
beyond that and the afore-described grid search (3.2) are applied to the ML frameworks. The
remaining techniques, namely the two types of quantization, are applied only to the DL within-
activity and across-activity identification models, as noted in Subsection 4.3.
A single authentication model needs only to distinguish between one genuine user (the presumed
device owner) and impostors. Therefore, it is inherently smaller in size than the models intended
for identification, and, as it falls within reasonable size, will not be optimized in this work.

The optimization process for the CNN_fixLSTM model implements the following two tech-
niques:

1) Post-Training Quantization (PTQ). Dynamic quantization is employed by converting
weights in the LSTM layers (targeting nn.Linear, nn.Conv1d, and nn.LSTM) from 32-bit float-
ing point to 8-bit integers (qint8). This reduces the model’s memory footprint and accelerates
inference on CPUs. CNN layers, however, mainly use convolutional operations, which dynamic
quantization does not support well.

2) Quantization-Aware Training (QAT). Since CNN layers are not well-supported by dy-
namic PTQ, QAT is applied to the CNN portion of the CNN_fixLSTM model. During QAT,
the LSTM branch remains frozen (keeping its pre-trained float32 weights), while the CNN layers
are trained with simulated quantization effects to adapt them to lower precision operations. This
ensures that CNN feature extraction remains effective despite reduced numerical precision.

Finally, the optimized models are exported to ONNX format to ensure compatibility with the
environment Edge Impulse for future deployment [47].

Optimizing the CNN_fixLSTM architecture, despite its complexity compared to simpler
shallow models, is justified by its capacity to capture both spatial patterns through convolu-
tional layers and temporal dynamics via LSTM components inherent in sequential gait data,
without requiring manual feature selection—providing a more adaptable product for deploy-
ment. Although the training time of shallow ML models is mostly relatively shorter than that
of the DL architecture, the time to extract, prepare, and filter all necessary features to feed into
said ML architectures should be accounted for (displayed in Table 4.1), leading to a comparable
or even slower deployment timeline. This efficiency, combined with CNN_fixLSTM’s superior
ability to autonomously learn hierarchical representations, further validates the practicality of
the framework despite its computational overhead.
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Chapter 4

Results

This chapter presents the results of the user authentication and identification experiments con-
ducted using both shallow machine learning (ML) algorithms and deep learning (DL) models,
across-activities and within-activity. Results are presented separately for authentication and
identification tasks to highlight the distinct challenges and performance nuances associated with
each of them. In the presented tables, the DL model CNN_fixLSTM will be abbreviated as
fixLSTM. The performance of the LSTM-only model will not be included in the evaluation
process as it is considered only as part of the final DL model. The ML models’ feature set will
be indicated as allFT (all features) or topK (top 20 features).

For the sake of comparison between the selected models in terms of authentication perfor-
mance, only the averaged weighted EER and model sizes are presented per activity and model
combination. This allows for a concise evaluation of model performance without delving into
participant-specific details. However, any such participant-specific abnormalities or notable
performance patterns are pointed out separately, and the full tables are also included in the
Appendix A.

Lastly, model optimization results of the CNN_fixLSTM model are discussed.

Each subsection delves into specific aspects of the results, providing detailed metrics, compara-
tive analyses, and insights into model performance across different configurations.

Table 4.1 presents the time required (in seconds) for two critical preprocessing steps essential
for both Deep Learning (DL) and Machine Learning (ML) models. The Segmentation Time
column details the duration needed to segment raw sensor data into 2-second windows with
50% overlap, a preprocessing step required for both model types. The Feature Extraction Time
column shows the time taken to compute the full feature set for all 30 users, a necessary step
specifically for ML models. The third column indicates the average time it takes to segment
the data of a single participant recording and extract the full set of features from it, yielding an
average of around 1.5 minutes overhead for across-activity segmentation + feature extraction
time per person. This factor is important to consider when evaluating the efficiency of ML-based
approaches, as it directly impacts computational cost and real-time feasibility.

The feature set derived in this study is based on established best practices in the field.
However, for future implementations, domain experts could refine the feature selection process
to identify a minimal yet highly discriminative subset of features. This optimization would
significantly reduce extraction time while maintaining high recognition accuracy.
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Activity Segmentation Time (s) Feature Extraction Time (s) Total Avg. per Person

run_fast 0.386 218.289 23.622
run_slow 0.517 232.990 11.156
stairs_fast 0.509 214.497 11.813
stairs_slow 0.358 219.924 11.876
walk_fast 0.467 229.205 22.326
walk_slow 0.373 226.284 25.228

Total 2.610 1341.189

Table 4.1: Segmentation and Feature Extraction Time per Activity

4.1 Authentication Results

This section details the performance of both ML and DL models in the authentication task,
evaluated under within-activity and across-activity scenarios. The evaluation focuses on Equal
Error Rate (EER) as the primary metric for authentication effectiveness and model size (MB)
as a key factor for deployment feasibility on resource-constrained devices. The results highlight
how different architectures perform across activities and users, and how feature selection impacts
authentication accuracy.

4.1.1 Within-Activity Authentication.

This subsection analyzes the performance of various machine learning (ML) and deep learning
(DL) models in user authentication on a within-activity basis.

Herein, within-activity authentication performance is evaluated using averaged results per
activity per model + feature combination rather than presenting results on a per-user basis as
these results would constitute a table of 180 rows. Reporting per-user results would thus sig-
nificantly increase the complexity of result presentation, making it difficult to extract high-level
trends. By focusing on per-activity averages, it is more intuitive to interpret model performance
trends and compare different algorithms without overwhelming the analysis with excessive detail.
Reporting per-user results may furthermore introduce unnecessary variability due to individual
differences in biometric patterns, sensor noise, or session variability. Averaging results per ac-
tivity ensures that conclusions drawn are representative of the authentication model’s behavior
rather than specific to individual participants. However, the said thorough results are available
upon request.

Table 4.2 presents the averaged authentication results per activity for all ML and DL models.
The values are aggregated across all participants performing each activity. The table includes
the Equal Error Rate (EER) (%), which reflects the authentication accuracy, and the model size
(MB). The top three models’results in terms of smallest size, and in terms of lowest EER, have
been presented in bold.

One important observation is that, as topK features were derived per-activity basis, and not
per-user basis, there is a significant increase in EER when comparing the performance of ML
models from allFT to topK. This suggests that the feature selection process may have
removed important discriminatory features for individual authentication. While this
was done in this work to reduce computation costs, in a real-life scenario the features derived
would be tailored to the one true user that the device belongs to.

Furthermore, to counter the increase in EER in the case where only one user would be consid-
ered the genuine one, more computationally heavy methods for feature selection like Recursive
Feature Elimination (RFE) could be applied. As this work required the training of 180 models
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Model + Set of Features + EER (in %)
Activity fixLSTM MLP_AllFT MLP_TopK RF_AllFT RF_TopK SVM_AllFT SVM_TopK kNN_AllFT kNN_TopK
Run_fast 0.09% 0.73% 5.25% 0.25% 2.68% 0.06% 2.91% 0.13% 2.96%
Run_slow 0.13% 1.09% 7.16% 0.13% 4.50% 0.05% 4.59% 0.13% 4.89%
Stairs_fast 2.45% 3.44% 15.92% 0.87% 12.68% 1.39% 14.89% 1.17% 14.39%
Stairs_slow 4.22% 4.57% 17.84% 1.58% 14.82% 2.12% 17.73% 2.27% 16.46%
Walk_fast 1.31% 1.51% 7.47% 0.24% 4.52% 0.27% 5.44% 0.38% 5.69%
Walk_slow 3.55% 3.32% 12.91% 0.94% 9.95% 1.30% 12.43% 1.23% 11.74%
Average 1.96% 2.44% 11.09% 0.67% 8.19% 0.87% 9.66% 0.89% 9.36%

Model + Set of Features + Model Size (in MB)
Activity fixLSTM MLP_AllFT MLP_TopK RF_AllFT RF_topK SVM_AllFT SVM_TopK kNN_AllFT kNN_TopK
Run_fast 0.05 0.21 0.03 0.49 0.85 0.17 0.03 6.69 0.78
Run_slow 0.05 0.21 0.03 0.54 1.03 0.19 0.03 6.7 0.79
Stairs_fast 0.05 0.22 0.03 0.67 1.84 0.27 0.05 6.55 0.74
Stairs_slow 0.05 0.22 0.03 0.78 2.01 0.3 0.06 6.57 0.74
Walk_fast 0.05 0.22 0.03 0.53 0.98 0.2 0.03 6.68 0.77
Walk_slow 0.05 0.22 0.03 0.69 1.72 0.26 0.05 6.82 0.78
Average 0.05 0.22 0.03 0.62 1.41 0.23 0.04 6.67 0.77

Table 4.2: Equal Error Rates (EER) (in %) and Model Sizes (in MB) for All ML and
DL Models in User Authentication Within Activities (Averaged).

Figure 4.1: Detailed Grouped Bar Charts Across Activities and Feature Sets

for each configuration, it was not within the resource availability of the device used to run such
techniques at this scale.

RF and SVM experience the largest increase in size when comparng their topK to allFT sizes.
To visualize the difference between feature sets, Figure 4.1 is provided as support.

As a general observation, it seems that running-based activities (Run_fast, Run_slow)
show the lowest EERs, indicating that these activities provide more consistent bio-
metric patterns for authentication that allow for distinguishing participants clearly
from one another, followed by walk_fast. On the other hand, stairs_slow seems to be the
activity hardest to authenticate participants on.

To visualize the worst (4.2a) and best (4.2b) activity for within-activity user authentication,
the following confusion matrices generated by CNN_fixLSTM are provided in Figure 4.2. It
seems that albeit the significant difference in performance, participant P1 seems to have highly
distinguishable gait patterns.

To generalize, movements that are high-paced and involve more head movement
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(a) CNN_fixLSTM run_fast results (b) CNN_fixLSTM stairs_slow results

Figure 4.2: Comparison of Best and Worst Wihin-Activity User Authentication Con-
fusion Matrices

seem to be the most distinctive. Furthermore, it is to derive that CNN_fixLSTM,
RF_allFT, and SVM_allFT are the three models with highest performance averaged across
the six activities. When comparing on Model Size, kNN_AllFT is the largest model, averaging
6.67 MB, indicating high memory requirements despite its competitive EER, while fixLSTM,
MLP_topK, and SVM_topK are the smallest. Figure 4.3 represents the trade-off between EER
and Model Size visually, and allows for examining where each model stands in terms of the
trade-off between a lower error rate and smaller model size. It is clear that the clustered four
models in the left-most lower corner constitute the best ratio.

The CNN_fixLSTM model achieves the best trade-off between Equal Error Rate (EER) and
model size, maintaining a relatively low EER of 1.96% while being relatively compact compared
to other models. Similarly, RF_allFT also demonstrates strong performance; however, it relies
on a feature extraction pipeline that introduces additional computational overhead. As shown
in Table 4.1, deriving the full set of 210 features per participant and activity notably increases
preprocessing time—a constraint that CNN_fixLSTM bypasses by learning features directly
from raw data. Given the priority of efficiency on resource-constrained devices, CNN_fixLSTM
presents a more streamlined execution with fewer preprocessing steps, making it a more suitable
candidate for deployment.

4.1.2 Across-Activity Authentication.

This subsection analyzes the performance of various machine learning (ML) and deep learning
(DL) models in user authentication across different individuals.

A thorough per-participant reporting of results can be found in Table A.1 in the Appendix A.

Below, Table 4.4 provides a results overview in the form of a heatmap as a concise way to see
where each model + feature combination excels or struggles for each participant. The shades
of green indicate low EER (high authentication performance), while the red shades display poor
authentication abilities.

It is evident that, as in Subsection 4.1.1, the worst performing authentication models are
those that make use of the reduced set of features, for similar reasons as described in the previous
section, namely suggesting that some critical features necessary for participant authentication
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Figure 4.3: Trade-Off Plot: Average EER vs Average Model Size (Within-Activity
Authentication)

were removed, leading to worse classification performance. Again, more thorough person-specific
feature selection is necessary in order to counteract the low performance.

Furthermore, CNN_fixLSTM seems to outperform all other considered models, with an
average EER of 1.76%. The low EER values indicate that it generalizes better across different
users, meaning it is able to effectively separate individuals based on unique movement signatures
it extracts from raw sensor data.

To look at CNN_fixLSTM’s performance in detail, a comparison of EER-based heatmaps
is made between its worst and best authenticated participants, namely P18 (best) and P4 (worst),
presented in Figure 4.5a, and Figure 4.5b, subsequently.

When talking about user authentication to grand device access, a critical part to security to
focus on is the number of False Positives, indicating the case of granting access to an impostor,
so minimizing FP should be the main focus in that context. On both parts of the figure, albeit
the difference in EER performance, it can be seen that the number of FP are still the lowest
the your confusion matrix (only 8 and 21 cases). This means that the system is highly secure in
terms of preventing unauthorized access. The number of False Negatives (FN), or the number
of cases where the legitimate user has been denied access, negatively influence usability levels of
the system, yet seem to herein also remain relatively low. Security is prioritized over usability,
which is often desirable for high-stakes authentication systems (e.g., banking, or secure devices).

Figure 4.6 represents the trade-off between EER and Model Size visually, and allows for
examining where each model stands in terms of the trade-off between a lower error rate and
smaller model size. It is clear that the clustered four models in the left-most lower corner
constitute the best ratio, among which the best-performing model remains CNN_fixLSTM.
With an average size of 0.05MB (from Appendix A.1), it is also the smallest model of the batch,
making it immediately deployable on resource-constrained devices. kNN models seem to require
significantly higher storage (≈ 38MB for kNN_AllFT), deeming them unsuitable for edge
device deployment at least within this use case.
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Figure 4.4: Heatmap of EER (%) Across Participants and Model Configurations
(Across-Activity Authentication)

(a) CNN_fixLSTM P18 (best) results (b) CNN_fixLSTM P4 (worst) results

Figure 4.5: Comparison of Best and Worst Across-Activity User Authentication Con-
fusion Matrices
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Figure 4.6: Trade-Off Plot: Average EER vs. Average Model Size (Across-Activities
Authentication)

4.2 Identification Results

This subsection outlines the performance of ML and DL models in the identification task, as-
sessed under within-activity and across-activity scenarios. The evaluation focuses on weighted
F1 score (WFS) as the primary metric for identification effectiveness and model size (MB) and
computation time (s) as a key factor for deployment feasibility on resource-constrained devices.
The results highlight how different architectures perform on each individual activity, and across
activities (activity-neutral); which activities seem to be the most discriminative when it comes to
uniquely identifying participants; and how feature selection impacts identification performance.

4.2.1 Within-Activity Identification

This subsection analyzes the performance of various machine learning (ML) and deep learning
(DL) models in user identification on a within-activity basis.

Figure 4.7 paired with Table 4.3 provide a visualization that allows for comparing the dif-
ferent combinations of classifiers and feature sets, and how they perform for each activity. The
best overall classifiers in terms of F1 seem to be SVM (0.973 for all features, 0.959 for top20)
and RandomForest (0.960 for all, 0.947 for top20). run_fast, run_slow, and walk_fast, like
previously noted in 4.1.1, show the highest F1 scores for all classifiers, while the most challenging
movement remains stairs_slow, suggesting higher inter-user similarity. CNN_fixLSTM per-
forms the worst overall. P1 remains a highly distinguishable participant among all activity-based
classifications.

Activity RandomForest SVM kNN MLP fixLSTM
all top20 all top20 all top20 all top20

run_fast 0.992 0.978 0.998 0.990 0.972 0.979 0.952 0.909 0.956
run_slow 0.994 0.980 0.988 0.994 0.988 0.986 0.955 0.955 0.954
stairs_fast 0.939 0.919 0.963 0.937 0.915 0.940 0.896 0.870 0.837
stairs_slow 0.896 0.873 0.929 0.887 0.814 0.869 0.775 0.810 0.635
walk_fast 0.992 0.980 0.994 0.986 0.973 0.982 0.955 0.910 0.844
walk_slow 0.950 0.949 0.966 0.960 0.910 0.945 0.860 0.773 0.733
Average 0.960 0.947 0.973 0.959 0.929 0.950 0.899 0.871 0.826

Table 4.3: Weighted F1 (all vs. top20) for Within-Activity Identification.
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Figure 4.7: Heatmap of Weighted F1 Scores Across Activities and Classifiers

Activity RandomForest SVM kNN MLP CNNfix
all top20 all top20 all top20 all top20

run_fast 11.557 11.499 3.061 0.546 3.462 0.405 0.248 0.033 0.312
run_slow 12.836 13.004 3.156 0.623 3.423 0.405 0.246 0.068 0.312
stairs_fast 15.053 13.997 3.444 0.651 3.511 0.395 0.257 0.067 0.312
stairs_slow 19.469 22.325 3.778 0.827 3.659 0.410 0.257 0.068 0.312
walk_fast 7.893 12.053 3.213 0.580 3.417 0.395 0.251 0.066 0.312
walk_slow 17.412 16.525 3.593 0.723 3.749 0.429 0.253 0.066 0.312
Average 14.037 14.567 3.374 0.658 3.537 0.407 0.252 0.061 0.312

Table 4.4: Model sizes (MB) (all vs. top20) for Within-Activity Identification.

The effect on performance when switching from training the ML algorithms with all fea-
tures to using the reduced set of features is negligible (with kNN slightly improving (+2.15%)
and MLP experiencing the highest drop (-2.77%), while the reduction in model size is substan-
tial (Table 4.4), namely approximately 60%. These findings indicate that, for activity-based
user identification, the reduced feature set is sufficient to distinguish between users with high
confidence.

The CNN_fixLSTM model performs worse than the ML classifiers for within-activity partic-
ipant identification, achieving the lowest Weighted F1 Score (0.826) on average (Table 4.3). DL
models require larger datasets to generalize well. Since within-activity identification restricts
training to only one type of movement, the available training samples per user are relatively
limited, making it harder for CNN_fixLSTM to learn user-specific gait patterns effectively. The
ML models examined rely on handcrafted features that explicitly capture discriminative motion
characteristics, making them evidently more robust to small dataset sizes. The CNN_fixLSTM
model is also the largest in size at 0.312 MB, making it a worse choice for device deployment.

When considering Training Time (Table 4.5), kNN is the fastest to train, while CNN_fixLSTM
is extremely slow. Reducing features significantly speeds up training for SVM and RandomFor-
est. However, it should be noted that, as similarly shown in Table 4.1, the amount of time (in
seconds) required to extract the full set of features is not accounted for herein. This amount of

35



time should be considered when evaluating ML model efficiency. It averages to an additional
nearly 4 minutes overhead per activity; the total training time per ML model then becomes
longer than that of the DL model. The automatic feature extraction part of the DL model as
an advantage justifies the cost of training time.

Activity RandomForest SVM kNN MLP CNNfix
all top20 all top20 all top20 all top20

run_fast 9.042 4.947 5.150 6.162 0.678 0.410 8.658 13.199 51.669
run_slow 20.385 4.616 18.251 2.104 0.619 0.211 9.117 6.665 189.650
stairs_fast 20.006 4.146 10.063 2.012 0.456 0.135 11.953 4.678 183.339
stairs_slow 8.491 5.551 13.979 3.684 0.486 0.210 10.030 5.696 181.795
walk_fast 10.763 10.011 8.221 5.958 0.528 0.382 11.105 14.189 196.300
walk_slow 10.265 13.398 17.226 8.271 1.304 0.412 24.274 11.847 189.797
Average 13.825 7.778 12.815 4.698 0.679 0.293 12.523 9.712 165.758

Table 4.5: Model Training Time (s) for Within-Activity Identification.

4.2.2 Across-Activity Identification

This subsection analyzes the performance of various machine learning (ML) and deep learning
(DL) models in user identification across different individuals.

In terms of identification performance, as displayed in Table 4.6, SVM_allFT achieves the
highest Weighted F1 score of 0.928, indicating superior classification performance among all
models. RF_allFT and RF_topK also demonstrate strong performance with F1 scores of 0.918
and 0.901, respectively. CNN_fixLSTM performs on the lower side, with a score of 0.87.
MLP is the worst performing model. A trend similar to that in the Within-Activity Identification
results (Subsection 4.2.1) is also observed here, namely a relatively negligible drop in performance
when working with reduced features compared to a halved model size.

Model WeightedF1 ComputationTime_s ModelSize_MB
CNN_fixLSTM 0.870 149.631 0.312
RF_AlLFt 0.918 60.624 143.268
RF_topK 0.901 52.975 118.257
SVM_allFT 0.928 282.619 17.627
SVM_topK 0.893 117.573 4.209
MLP_allFT 0.832 212.748 0.244
MLP_topK 0.731 153.874 0.067
kNN_allFT 0.895 8.044 19.941
kNN_topK 0.899 2.371 2.380

Table 4.6: Weighted F1, Computation TIme (s), and Model Size (MB) for Across-
Activity Identification.

When considering size, CNN_fixLSTM and MLP are the smallest models, with sizes below
1 MB, making them suitable for direct on-device deployment. They do, however, exhibit higher
computation times ranging from 149.631s to 212.748s. To better visualize the mentioned trade-
off between computation time, size, and performance, Figure 4.8 below has been provided, with
Figure 4.8a representing the Performance vs. Model Size trade-off, and Figure 4.8b displaying the
Performance vs. Computation Time ratio. From the figures, it seems evident that kNN_topK
and SVM_topK provide the best balance between performance and model size,
wherein kNN is a better choice for devices where both storage and processing power are limited,
while SVM is a more viable option for moderately resource-constrained devices.
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(a) Performance vs. Model Size

(b) Performance vs. Computation Time

Figure 4.8: Trade-Off Plot: Performance vs. Computation Time vs. Model Size
(Across-Activities Identification)
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4.3 Deep Learning Model Optimization Results

This section compares the optimization processes and outcomes for the DL model, namely the
participant identification CNN_fixLSTM, highlighting the efficiency, convergence behavior,
and performance improvements achieved through the chosen optimization techniques.

4.3.1 Post-Training Quantization (PTQ) Results.

Table 4.7 provides a summary of the effects of Post-Training Quantization (PTQ) on within-
activities classification, and across-activities classification (last row). The table compares initial
(non-quantized) model results with quantized metrics, including validation accuracy, weighted
F1 score, training time, file size, inference time, and model size.

For within-activity identification, most activities experience slight reductions in validation
accuracy and weighted F1 score post-quantization. For instance, run_fast sees a decrease
in WFS from 0.950 to 0.948, indicating negligible impact. Activities like stairs_fast and
stairs_slow exhibit more substantial declines in WFS (from 0.849 to 0.834 and 0.678 to 0.650,
respectively). As opposed to the minor performance effect, quantization consistently halves the
model file size from 0.318 MB to 0.159 MB across all activities.

For across-activity identification, validation accuracy experiences a minimal drop from 0.883
to 0.881, while weighted F1 score remains stable at 0.881 post-quantization. However, the model
size is almost halved (from 0.318 MB to 0.159 MB), and inference time significantly decreases
too. This affirms PTQ as a highly effective method for DL model optimization. For
future references, as PTQ can only be applied to the LSTM component of the model, other
optimization techniques can be applied to the CNN part, and their collective effect on size,
inference time, and performance can be evaluated.

Activity ValAcc Quant_ValAcc WF1 Quant_WF1 Size(MB) Quant_Size(MB) Inference_Time(s)
run_fast 0.948 0.950 0.948 0.950 0.318 0.159 0.960
run_slow 0.951 0.949 0.951 0.949 0.318 0.159 1.040
stairs_fast 0.853 0.847 0.849 0.834 0.318 0.159 0.660
stairs_slow 0.690 0.676 0.678 0.650 0.318 0.159 0.850
walk_fast 0.849 0.845 0.852 0.848 0.318 0.159 0.850
walk_slow 0.750 0.755 0.746 0.753 0.318 0.159 0.950
Across-Activities 0.882 0.881 0.883 0.881 0.312 0.163 4.050

Table 4.7: Effects of Post-Training Quantization on Within-Activity and Across-
Activities Identification of the CNN_fixLSTM Model

4.3.2 Quantization-Aware Training (QAT) Results.

Results of the performed QAT on the CNN part of CNN_fixLSTM, and its implications on
performance are discussed below, supported by Table 4.8.

It can be seen that QAT reduces the model size per activity from 0.318 MB to 0.131 MB (and
from 0.328 MB to 0.122 MB in the across-activities scenario). This approximately 60% reduction
is consistent with int8 quantization replacing float32 parameters in the CNN portion. In some
activities, e.g., run_fast, validation accuracy and Weighted F1 are slightly higher with QAT.
In others, like stairs_slow, they slightly decrease (from 0.690 to 0.624 in ValAcc; from 0.678 to
0.609 in Weighted F1). Overall, QAT leads to modest accuracy changes (within ±5–10%).
The largest drops appear in the more challenging activities (stairs_fast, stairs_slow), which
already had lower baseline performance to begin with.

For across-activities evaluation, the validation accuracy and Weighted F1 both drop slightly
(from 0.883 to 0.869 and 0.881 to 0.868, respectively). The model size plummets from 4.050 MB
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to 0.131 MB, which greatly benefits edge-device deployment. Inference time, however, soars to
19449.58 s, reflecting the significant overhead of QAT on a large multi-activity dataset. This
deems QAT less suitable than PTQ for this specific use case.

Activity Initial ValAcc QAT ValAcc Initial WF1 QAT WF1 QAT Inference Time (s) Initial Size (MB) QAT Size (MB)
run_fast 0.948 0.954 0.948 0.955 3871.45 0.318 0.131
run_slow 0.951 0.937 0.951 0.938 3986.64 0.318 0.131
stairs_fast 0.853 0.773 0.849 0.750 3769.81 0.318 0.131
stairs_slow 0.690 0.624 0.678 0.609 3863.28 0.318 0.131
walk_fast 0.849 0.851 0.852 0.848 3781.74 0.318 0.131
walk_slow 0.750 0.710 0.746 0.700 1144.91 0.318 0.131
Across-Activities 0.882 0.869 0.883 0.868 19449.58 0.312 0.122

Table 4.8: Effects of Quantization Aware Training (QAT) on Within-Activity and
Across-Activities Identification of the CNN_fixLSTM Model

4.4 Summary of Findings

This subsection synthesizes the key insights derived from the authentication and identification
experiments, comparing the strengths and limitations of ML and DL approaches across different
scenarios. It highlights trends in model performance, discusses the trade-offs between accuracy
and computational efficiency.

The experiments presented in this work comprehensively evaluate both shallow machine
learning (ML) and deep learning (DL) models in two primary tasks: user identification and user
authentication. The dataset is segmented into “within-activity” and “across-activity” scenarios,
allowing for a nuanced view of performance under different types of motion.

With regards to authentication, the Equal Error Rate (EER) is the principal metric.
Within-activity analysis confirms that the CNN_fixLSTM model, as well as Random Forest
and SVM with the full feature set (allFT), achieve consistently low EER values. In partic-
ular, running-based activities (fast or slow), and fast-paced walking, enable these models to
drop below one percent EER, evidencing a clear advantage for movements that exhibit promi-
nent and repetitive acceleration patterns. By contrast, activities such as stairs_slow produce
higher EER, indicating that mild or less dynamic gait patterns introduce more overlap among
participants and are thus more challenging for the classifiers to distinguish. When all fea-
tures (allFT) are extracted, model sizes, especially for ensembles like Random Forest or for
non-parametric methods like kNN, can become large; however, these same models demonstrate
high accuracy. The CNN_fixLSTM architecture, although more computationally intensive
to train, remains highly compact because it automatically learns features directly from the raw
sensor data. Across-activity authentication confirms these observations by showcasing low EER
values for CNN_fixLSTM in a range of dynamic movements, while again highlighting diffi-
culties in activities with subtle gait patterns. Overall, the CNN_fixLSTM approach is shown
to strike the most favorable balance between low EER, small model footprint, and relatively
straightforward deployment.

In the case of identification, the Weighted F1 Score (WFS) is the primary measure of
classification performance. On a within–activity basis, SVM and Random Forest with the full
feature set achieve some of the highest Weighted F1 Scores, occasionally nearing perfect classi-
fication (F1 > 0.95) for activities like run_fast and walk_fast. However, these configurations
also demand greater storage and, in the case of RF, risk becoming prohibitively large. The
CNN_fixLSTM model continues to be competitive, though it does not always surpass the
best-performing shallow methods in smaller per-activity training sets. When moving to across-
activity identification, the deep model’s capability to integrate spatiotemporal information across
varied movements becomes more apparent while SVM_allFT can still produce the highest nu-
merical F1, the CNN_fixLSTM model offers advantages in a more uniform performance across
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user populations. The cost, however, is greater training time relative to some of the shallow
algorithms - an overhead that becomes more balanced once the substantial time spent on feature
extraction for ML pipelines is factored in.

In terms of resource optimization, the model optimization applied to the ML architec-
tures, namely feature reduction from allFT to a top20 feature set (topK), consistently lowers
model sizes and speeds up training. This simplification sometimes causes only marginal drops
in performance, as seen in certain configurations of SVM and kNN for identification. Yet in
authentication tasks, the absence of user-specific feature selection reveals performance degra-
dations when applying topK, presumably due to the omission of discriminative attributes that
help distinguish one individual’s gait from another.
For DL, Post-Training Quantization (PTQ) further demonstrates that the CNN_fixLSTM model
size can be halved while preserving a high level of identification accuracy, and Quantization-
Aware Training (QAT) pushes the size reduction even further but, in many configurations,
demands considerable training overhead.

To summarize, running-based motions are inherently more separable than slower
or more subtle gait patterns (notably stair climbing). Shallow ML methods exhibit
the strengths of clear interpretability, fast training on topK, and high accuracy when utiliz-
ing comprehensive features—whereas the deep CNN_fixLSTM model advances the field by
significantly cutting down on storage space, removing the need for manual feature extraction
and selection, and by performing robustly when data from multiple activities must be combined
(across-activity recognition).

4.4.1 Discussion

These results consistently present logical patterns tied to both the data and the model archi-
tectures. The marked improvement of high-motion activities—like running—over more subtle
or variable movements—like slow stair climbing—makes sense because distinctive signals in ac-
celeration and rotation are more pronounced in brisk tasks. When motion changes are
vigorous and periodic, small differences among individuals become more evident,
thus driving down the EER in authentication and boosting the Weighted F1 Score
in identification.

Likewise, the strong performance of Random Forest and SVM on the full feature reflects the
fact that large, well-selected feature collections can powerfully represent human gait and that
robust, mature ML algorithms can capitalize on such representations. Yet said models tend
to also grow in size or in training cost, which explains why they can become less appealing
in resource-constrained scenarios like on-device inference. The deep learning alternative,
CNN_fixLSTM, shows a capacity for feature learning from raw signals, circumvent-
ing elaborate pre-processing.

The observation that performance sometimes dips for CNN_fixLSTM in single-activity sce-
narios, particularly on limited participant-specific data, affirms that deep networks require bigger
training datasets, and confining training to a smaller dataset can negatively impact performance.
Nonetheless, when the model is given richer data, as in across-activity identification, it narrows
the gap in performance with, or surpasses, competing methods.

From the results, PTQ suffices for many tasks with minimal accuracy loss, while
QAT offers deeper yet more computationally expensive compression, which aligns
with standard trade-offs in neural network deployment on microcontrollers [4]. Overall, the
observed results align with expectations and known properties of ML and DL models, while
highlighting gait-specific findings, namely that high-energy movements simplify discrimination,
and that hand-picked features can be effective if well-curated to the movement in question.
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Chapter 5

Conclusion

This work presented a new approach to gait-based recognition systems on earables by introducing
a lightweight and effective learning approach. It made several notable contributions in the
domain of gait-based recognition using ear-worn inertial sensors, contributing to bridging gaps
in prior work on biometric authentication and identification in low-power, resource-constrained
settings.

A novel dataset was created specifically for gait-based recognition via an IMU-equipped
earable, addressing the scarcity of open-source data collected from in-ear accelerometers and
gyroscopes. The dataset captures diverse locomotion types—running, walking, and stair climb-
ing—at both slow and fast intensities, collected from 30 participants, and enables evaluation of
user recognition tasks and further research efforts. The dataset is intended to be submitted to
the public.

Unlike existing works that predominantly study smartphones, smartwatches, or specialized
body-worn sensors, this research concentrates on in-ear IMUs with the presumption that the
majority of commercial devices come already equipped with said sensors, so a way for secur-
ing device access based on the said sensors was needed. The chosen device (OpenEarable)
and experimental design reflect typical earbud usage, confirming that it can accurately capture
uniquely identifiable biometric gait patterns despite sensor placement challenges and potential
signal noise near the head.

By applying both shallow ML (Random Forest, SVM, kNN, MLP) and deep learning models
(LSTMOnly, CNN_fixLSTM), this work offers direct performance comparisons across tasks
(identification vs. authentication) and scenarios (within-activity vs. across-activity). This dual
perspective reveals how classifiers perform under different constraints—informing future design
choices.

A key objective of this work was to ensure that solutions could fit on low-power micro-
controllers. Several complementary optimization strategies were proposed and tested, namely
Feature Set Minimization (ML models) through top-K feature selection, reducing model size and
processing overhead; and Quantization (DL models) via Post-Training Quantization (PTQ) and
Quantization-Aware Training (QAT). Applying said methods, and evaluating the results, the-
oretically confirmed the feasibility of deploying neural networks on the OpenEarable device as
this reduced the model size to fit within the device’s memory capacity. Furthermore, the detailed
experiments—encompassing model accuracy (EER, Weighted F1), training/inference times, and
memory usage—offer a comprehensive view of real-world trade-offs. Observations about which
gait-based activities are most distinguishable and how each classifier scales in size/time highlight
best practices for future earable-based biometric deployments.
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5.1 Limitations and Future Implications

Although this work demonstrates the practicality and advantages of gait-based recognition sys-
tems using IMU-equipped earables, several limitations have been discovered in the process. By
recognizing these constraints, future research can better conduct subsequent investigations and
real-world implementations.

1. Real-World Generalization and Activity Breadth The dataset collected is relatively
constrained in activity scope (running, walking, stair climbing) and is captured under partially
controlled conditions. While these activities provide clear gait patterns, everyday movements can
be more varied and sporadic. In practice, earables may be worn in highly dynamic environments
and across many more actions including the need for an ability to capture action transitions that
the current algorithm does not account for. For future work, a larger, more diverse datasets
in naturalistic settings (e.g., outdoor spaces) should be collected to capture full-spectrum user
motion along with terrain-specific and close-dependent changes. For this purpose, the data
of a single participant should be captured on several occasions over a longer period of time.
Expanding the range of activities to everyday and unstructured movements, tracking how gait-
based recognition adapts to short transitions, context shifts, and multi-person interactions would
enhance the targeted recognition capabilities of the device.

2. Limited Participant Pool and Demographic Representation The current dataset
involves a limited number of participants that were healthy at the time of conducting the ex-
periement. Gait greatly varies with health conditions. Consequently, including elderly popula-
tions, pediatric cohorts, and individuals with mobility impairments, would ensure more robust
generalization capabilities, and could increase confidence in clinical or consumer applications.

3. Earbud Placement and Orientation Variance Earable sensors can shift or rotate
within the ear, producing noisy or inconsistent signals. While our experiments used relatively
stable placements, in practice earbuds may loosen, be reinserted, or be swapped between ears.
In this regard, the algorithms could be designed to be orientation-invariant, or could incorporate
a wider set of the sensors the earbud is equipped with, e.g., magnetometer, to enable continuous
orientation tracking through magnetometer-based corrections. This work did not conduct any
prior calibration, adaptive recalibration could be applied next.

4. Timestamp Misalignments and Sensor Fusion Challenges This work assumed syn-
chronous accelerometer and gyroscope data. Android-based or custom earable solutions may face
random delays, dropped packets, and cross-channel resynchronization as established with the
current OpenEarable device as well, specifically random switch to recording at lower frequency,
and missing data points. If extending approaches to multiple sensors (e.g., magnetometer, mi-
crophone), a more careful data fusion and labeling strategy will be necessary.

5. Model Size and Computation Constraints Although hardware-aware optimization
(e.g., quantization, feature reduction) proved effective, certain deep learning architectures still
require considerable training time or memory before quantization. Additionally, the selected
topK features for ML were not tailored to individual users, occasionally removing user-specific
gait cues. As a future implication, a wider variety of optimization techniques, along with inher-
ently lightweight frameworks (EdgeML) should be explored.

Despite the above constraints, the findings of this work confirm the broader potential of
earable-based gait-based recognition in the scenarios of, among others, device access security, as
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gait-based biometrics remain a soft metric yet, fused with other hard biometrics, can enhance
device security. This study establishes a solid baseline for earable-based gait-based recognition,
demonstrating both its feasibility and need for careful handling of real-world complexities. By
extending data collection, refining model robustness, and tackling synchronization issues, future
research can deliver on-device gait biometrics collected through the ear for daily consumer use.

Although the field of earables is relatively new and remains underexplored, the outcomes of
this work show promising results for broader adoption of earable-based recognition as a subtle
and non-intrusive measure for securing device access, at least as a complementary metric to
existing methods.
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Appendix A

Additional Data

This appendix contains additional data referred in this work.
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