
MSc Computer Science

Master Thesis

Towards Efficient Order

Statistics in CKKS: A Study of

Robustness and Efficiency

Through Non-Continuous

Function Approximation

Vasco Rikkers

Supervisors: Federico Mazzone & Florian W. Hahn

February, 2025

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Abstract

This thesis explores methods to improve ranking, order statistics, and sorting algo-
rithms within the CKKS encryption scheme, with a focus on approximating discon-
tinuous functions such as the sign function. Fully Homomorphic Encryption (FHE)
ensures data privacy by enabling computations directly on encrypted data, but its high
computational complexity poses significant challenges. To address these challenges,
this study analyzes the balance between accuracy and computational efficiency in two
key approximation techniques: the Tchebycheff and Composite Minimax approxima-
tion algorithms. Our experimental results show that composite minimax polynomials
outperform polynomials created using Tchebycheff approximation in memory usage
and computational efficiency, making them more suitable for high-performance ap-
plications. To increase their robustness against approximation errors, this thesis also
presents a revised algorithm for determining the (arg)min and (arg)max of a vector,
which substitutes the usage of the comparison function with the usage of the max
or min function. Our findings indicate that using the max or min function instead
of the comparison function improves robustness against approximation errors when
determining the smallest value in a vector. However, the opposite is the case when
computing the argmin, as then the robustness decreases. These results contribute
to the development of more robust and efficient privacy-preserving algorithms for
the CKKS encryption scheme, with potential applications in secure cloud computing,
encrypted machine learning, and privacy-conscious data analysis.

2

1 Introduction

Fully Homomorphic Encryption (FHE) has been a significant advancement in cryp-
tography, as it enables computations to be done on encrypted data without ever
needing to decrypt it. This feature ensures data privacy and secrecy even when the
computational infrastructure cannot be entirely trusted. However, FHE faces no-
table challenges, as its significant computational overhead limits the complexity and
efficiency of algorithms that can be executed on encrypted data.

FHE is increasingly relevant in privacy-preserving applications, including encrypted
machine learning, secure cloud computing, and private data analysis.[15, 10]. It allows
for the creation of various algorithms essential for these applications, such as sorting,
ranking, and calculating order statistics under FHE. These algorithms are crucial for
programs to perform private data aggregation, secure collaborative filtering, and en-
crypted database management [17]. The secure and efficient implementation of these
processes is crucial for real-world usability. However, using non-continuous and non-
polynomial functions in these algorithms, such as comparisons and sign functions, can
pose a significant challenge.

The sign function and comparison operations are essential building blocks at the
core of the algorithms for calculating order statistics and ranking. The sign function
determines whether a given input number is positive, zero, or negative. When used
correctly, this function can support calculating other operations, such as the com-
parison operation that identifies the larger of two numbers. Together with the basic
operations in the FHE schemes, these functions provide the foundation for creating
more advanced algorithms, such as those used for order statistics and ranking.

The Cheon-Kim-Kim-Song (CKKS) scheme is an FHE scheme that is popular due
to its support for floating-point numbers and SIMD-based (Single Instruction, Mul-
tiple Data) parallel data processing [9]. CKKS is particularly well-suited for machine
learning and data analytics tasks, which suffice with using approximate arithmetic.
However, CKKS has limitations: it supports only addition and multiplication on
encrypted data, so non-polynomial functions such as the sign function must be ap-
proximated using polynomials. This constraint emphasizes the necessity of effective
approximation techniques to address the challenges posed by non-continuous func-
tions.

Since sign and comparison functions are crucial for order statistics under FHE,
they must be approximated using polynomials to be evaluated under CKKS. How-
ever, these functions are non-polynomial, so approximation techniques must be used
that balance efficiency and accuracy. A higher level of accuracy in the approximation
means that the resulting polynomial will more accurately represent the original func-
tion. However, this also requires more computational resources for computing and
evaluating the polynomial.

The depth of a polynomial is a key factor in determining its computational ef-
ficiency. Depth refers to the number of sequential operations needed to evaluate a
polynomial over encrypted data, and a greater depth often results in a more accurate
approximation. However, a greater depth also means more resources are required.
Therefore, reducing the required depth while maintaining accuracy is crucial for im-
proving the usability of applications that rely on FHE.

Approximating a non-polynomial function with a polynomial function often intro-
duces errors. These errors, known as approximation errors, are the difference between
the polynomial approximation and the target function. They are most noticeable near
areas of discontinuity in a function and can significantly affect the accuracy of com-
putations. Therefore, it is important to consider the robustness of an algorithm or
computation, which refers to the impact of approximation errors near non-continuous
regions on the final output. For example, in Subsection 4.1, we will see that the sign
function can be used to calculate both the comparison and max functions. However,
an approximation error of 0.5 will have a greater impact on the final result when the
sign function is used to calculate the comparison function than when it is used to

3

calculate the max function. The more robust an algorithm or computation is, the less
these errors will affect the final result.

Different approaches to approximating non-polynomial functions have been in-
vestigated in this field. Cheon et al. [7] proposed methods for balancing accuracy
and efficiency in the approximation of the sign function. Lee et al. [21] introduced
a minimax approximation algorithm to optimize computation depth and accuracy.
Meanwhile, other studies have optimized algorithms for sorting and order statistics
under CKKS through techniques such as k-way networks [19], bitonic sort [23], and
parallel comparisons [24]. Despite these developments, less is known about robustness
against approximation errors.

Considering these challenges and opportunities, we start with the work of Mazzone
et al. [24], who propose state-of-the-art algorithms for ranking, order statistics, and
sorting under CKKS. Their approach relies on the Tchebycheff approximation algo-
rithm [25] to approximate the comparison function. However, more recent methods,
such as the Composite Minimax approximation algorithm introduced by Lee et al.
[21], claim to offer greater efficiency. In addition, we have identified that the robust-
ness of their order statistics algorithms can be improved by using the max function
instead of the comparison function. Building on these insights, this work investigates
the following research questions:

1. To what extent is it possible to improve the algorithms using the Composite
Minimax approximation of the homomorphic comparison operation?

2. Knowing the max function is more robust than the comparison function, to
what extent can it be used to improve the robustness of the algorithms?

Our first goal is to improve the algorithms for ranking, sorting, and order statistics
under CKKS by implementing the Composite Minimax approximation algorithm to
approximate the comparison function, as proposed by Lee et al. [21]. This approach
aims to improve computational efficiency and reduce the circuit depth of these al-
gorithms. Additionally, it is expected to lower approximation errors compared to
polynomials generated using the Tchebycheff method.

The composite minimax polynomials will be evaluated over encrypted data using
the OpenFHE library, replacing the SEAL library used in the original work. This
update ensures compatibility with the implementation of the algorithms by Mazzone
et al. [24], which also relies on OpenFHE. OpenFHE is well-suited for their algorithms
due to features such as hardware acceleration support [1]. Moreover, it offers a user-
friendly interface with functionalities like automatic key-switching, making it easier
to work with than other libraries.

Furthermore, we propose the use of the max function as a robust alternative to
the comparison function for calculating order statistics. Its continuity helps minimize
the impact of approximation errors, resulting in more accurate computations. This
approach is expected to significantly improve the robustness of these algorithms.

Additionally, this work includes an open-source pipeline with complete implemen-
tations for determining optimal polynomial degrees, approximating the sign function
using composite polynomials, and evaluating these approximations over encrypted
data using CKKS. The pipeline also includes code for calculating the minimum of a
vector using our improved algorithm. Ultimately, the goal of this work is to enhance
the usability of FHE-based, privacy-preserving order statistics in machine learning
and encrypted database applications.

4

2 Background

This section serves as an introduction to the core concepts and methodologies that are
central to this thesis. The aim is to provide a comprehensive and concise overview of
the fundamental principles, notations, and prior research related to FHE, the CKKS
scheme, polynomial approximation, and the algorithms for ranking, sorting, and order
statistics created by Mazzone et al. [24]. These topics form the theoretical and
practical foundation upon which the contributions of this work are built.

In Subsection 2.1, we introduce the mathematical and algorithmic foundations for
the thesis. This is followed by an explanation of the notation used for vectors and
matrices in Subsection 2.2. We then discuss the basics of FHE in Subsection 2.3.
This subsection also introduces CKKS, an FHE scheme that allows for approximate
arithmetic on encrypted real numbers. Next, we delve into the theory and application
of polynomial approximation in Subsection 2.4, an essential mathematical tool used
throughout this thesis to perform non-polynomial computations within the encrypted
domain. Finally, in Subsection 2.5, we discuss the algorithms for ranking and order
statistics designed by Mazzone et al..

By the end of this section, the reader will have a solid understanding of these
topics, enabling them to comprehend the subsequent chapters and appreciate the
significance of the thesis contributions within the broader research landscape.

2.1 Mathematical and Algorithmic Definitions

This thesis references a set of mathematical functions, formally defined and explained
below. Each function is presented with a graphical representation for better under-
standing.

Sign Function: The sign function, sign(x), indicates whether a given number is
positive, negative, or zero. Formally, it is defined as:

sign(x) =











−1 if x < 0,

0 if x = 0,

1 if x > 0.

Figure 1: Graphical rep-
resentation of the sign
function.

5

Indicator Function: The indicator function, Ind[a,b](x), determines if a given num-
ber lies within a specified range. Formally, it is defined as:

Ind[a,b](x) =

{

1 if a f x f b,

0 otherwise.

Figure 2: Graphical rep-
resentation of the indicator
function with a = −0.5 and
b = 0.5.

Comparison Function: The comparison function, cmp(u, v), compares two input
values and determines their relative magnitude. Formally, it is defined as:

cmp(u, v) =











0 if v > u,
1
2 if v = u,

1 if v < u.

Figure 3: Graphical rep-
resentation of the compari-
son function.

Max Function: The max function, max(u, v), returns the larger of two input values.
Formally, it is defined as:

max(u, v) =

{

v if v g u,

u if u > v.

Figure 4: Graphical rep-
resentation of the max
function.

6

Min Function: The min function, min(u, v), returns the smaller of two input values.
Formally, it is defined as:

min(u, v) =

{

v if v f u,

u if u < v.

Figure 5: Graphical rep-
resentation of the min func-
tion.

Composite Polynomials: Composite polynomials are polynomials of the form:

P (x) = P1(P2(· · ·Pk(x) · · ·)),

Used to enhance approximation accuracy and computational efficiency.

Order Statistics: The k-th order statistic is the k-th smallest value in a dataset.
Examples include the minimum and maximum.
Ranking and Sorting: Ranking assigns a position to each element based on its
value while sorting rearranges elements in ascending or descending order.
Min of a vector: The min of a vector is the value of the smallest element in that
vector.
Argmin of a vector: The argmin of a vector is the index of the smallest value in
that vector.

Finally, in Table 1 you will find the specific notations that are used throughout
the thesis to represent, e.g., implementations of the different functions using the
approximation methods.

2.2 Vector and Matrix Notation

Let v⃗ represent a plaintext vector. Each element in this vector corresponds to a slot
in CKKS encryption, which is an important concept in understanding how data is
organized and processed within the encryption scheme. This will be explained in more
detail in Subsection 2.3.

Many of the algorithms presented in this paperwork work with one-dimensional
vectors. For clarity, these vectors are often depicted as two-dimensional matrices
when we explain these algorithms. For instance, the vector

v = (v1, v2, v3, v4, v5, v6, v7, v8, v9)

would be row-wise encoded as the following matrix:





v1 v2 v3
v4 v5 v6
v7 v8 v9





This representation helps us to understand the structure and manipulation of the
data during algorithmic processes.

7

Term Definition

signC The sign function approximated using the minimax
composite polynomial approximation algorithm.

signT The sign function approximated using the Tchebycheff
approximation algorithm.

maxC The maximum function implemented using signC.

cmpC The comparison function implemented using signC.

mincomp
v Algorithm for calculating the min of a vector designed by

Mazzone et al. that uses the comparison function.

argmincomp
v Algorithm for calculating the argmin of a vector designed

by Mazzone et al. that uses the comparison function.

minmin
v Algorithm for calculating the min of a vector designed

that uses the min function.

argminmin
v Algorithm for calculating the argmin of a vector designed

that uses the min function.

Table 1: Table displaying the notation and definition of different terms used
in the paper.

2.3 FHE and CKKS

FHE is a type of encryption that supports arbitrary computations on ciphertexts. This
means that a user can perform complex operations on encrypted data and obtain an
encrypted result, which, when decrypted, matches the result of performing the same
operations on the plaintext data [15]. This allows FHE to protect data privacy during
the computing process.

First, we will discuss some basic terms related to FHE that are needed to under-
stand the discussions in the rest of the thesis.

• Plaintext : The original, unencrypted data.

• Ciphertext : The encrypted representation of plaintext data.

• Homomorphic Operations: Operations such as addition and multiplication that
can be performed directly on ciphertexts in an FHE scheme.

• Circuit : A sequence of homomorphic multiplications done on encrypted data

• Depth Consumption: The number of sequential homomorphic operations in a
circuit

FHE schemes typically combine the following set of properties that describe its char-
acteristics:

• Additive Homomorphism: The scheme supports addition operations on ci-
phertexts, corresponding to addition on plaintexts.

• Multiplicative Homomorphism: The scheme supports multiplication oper-
ations on ciphertexts, corresponding to multiplication on plaintexts.

• Arbitrary Computation: By enabling both addition and multiplication, FHE
supports any computation expressible as a circuit of these basic operations. For
example, if we can express or approximate a function using a polynomial, we
can compute it over encrypted data.

8

The underlying mathematical structures and methods used to guarantee security,
and homomorphic characteristics make FHE computationally demanding despite its
potential [18]. More on this will follow later when we discuss depth consumption.

One kind of FHE made to facilitate approximations on real or complex numbers
is the CKKS encryption method [10]. CKKS was first introduced in 2017 to solve the
problem of arithmetic on non-integer data, which is essential for applications such as
signal processing and machine learning.

By encoding real numbers as polynomial coefficients, CKKS makes it possible to
do calculations on encrypted approximate values. Among its notable characteristics
are:

• Approximate Arithmetic: Instead of exact results, CKKS produces approx-
imate results that are sufficient for practical purposes.

• Efficient Encoding and Decoding: CKKS maps real numbers to a poly-
nomial ring, allowing efficient arithmetic operations within this mathematical
framework.

• Support for Batch Operations: The scheme supports batching, enabling
the encryption of multiple plaintext values into a single ciphertext, which can
then be processed simultaneously.

As previously mentioned, the CKKS scheme uses slots to store individual com-
plex or real numbers within a plaintext vector. This scheme also supports packed
encryption, allowing for multiple values to be encoded and encrypted into a single
ciphertext. These values are organized into slots within the ciphertext. For example,
if we have a plaintext vector v⃗ = (v0, v1, . . . , vn−1), each vi will occupy a specific slot
when encrypted using CKKS. The number of available slots is determined by the ring
dimension, denoted as N in CKKS. Since a ciphertext in CKKS is represented as a
polynomial, the number of slots is typically N/2 to accommodate the packed encoding
of real or complex numbers. A larger ring dimension allows for more slots, enabling
the encryption of larger vectors or more data points simultaneously. This is crucial
for efficiency when using homomorphic operations.

The concept of slots is crucial in enhancing the efficiency and capability of FHE
systems, particularly in the CKKS scheme. Slots allow for parallelism by enabling
operations such as addition, multiplication, and scaling to be applied simultaneously
across multiple elements within a ciphertext, resulting in improved computational ef-
ficiency. This structure also supports packing, where multiple data points are encoded
into a single ciphertext, reducing the overhead of repeated encryptions. The ability
to operate on multiple slots simultaneously is known as Single Instruction, Multiple
Data (SIMD), a key feature in modern FHE systems like CKKS. SIMD is achieved
through batching, which utilizes packed data to facilitate parallel processing and re-
duce encryption and decryption overhead. This capability makes SIMD particularly
advantageous for data-intensive tasks in areas such as machine learning, signal pro-
cessing, and statistical analysis, where vectorized operations are common. Overall,
the combination of slots and SIMD enables CKKS to efficiently handle large datasets
while maintaining privacy, making it a powerful tool for real-world applications.

9

To further understand CKKS, it is essential to examine its core algorithms [4, 20]:

• Gen(¼) → (pk, sk, evk): Generates a public key (pk), secret key (sk), and
evaluation key (evk) based on the security parameter ¼.

• Enc(m, pk) → c: Encrypts a message m using the public key pk, resulting in
ciphertext c.

• Dec(c, sk)→ m or §: Decrypts a ciphertext c with the secret key sk to recover
the message m. If decryption fails, it returns §.

• Add(c1, c2, evk)→ cadd: Adds two ciphertexts c1 and c2 (representing messages
m1 and m2), producing cadd where Dec(cadd) = m1 +m2.

• Mult(c1, c2, evk) → cmult: Multiplies two ciphertexts c1 and c2 (representing
m1 and m2), producing cmult where Dec(cmult) = m1 ·m2.

• Rotate(c, k, evk)→ crotated: Rotates a ciphertext c by k positions in its under-
lying vector, producing crotated. This can be done to the left or right.

Understanding how the rotation operation works can be a bit tricky without a
visual example. Therefore, we have created an example below that shows how a
rotation to the left on a 3×3 matrix works. A rotation to the right works the same
but just moves in another direction.





v1 0 0
v2 0 0
v3 0 0





Rotate(c,2,evk)
−−−−−−−−−−→





0 0 v2
0 0 v3
0 0 v1





CKKS encryption is well-suited for privacy-preserving computations, where small
deviations in numerical accuracy are acceptable in exchange for improved computa-
tional efficiency. For instance, in healthcare predictive analytics, hospitals can collab-
orate on training encrypted predictive models for disease diagnosis without directly
sharing sensitive patient data. We can do this using CKKS because machine learn-
ing models, such as neural networks, are tolerant of minor numerical errors. Slight
variations in weights or activations do not significantly impact the final prediction,
making CKKS a suitable choice for privacy-preserving inference without compromis-
ing model performance [16]. However, training a model like a neural network can be
a time-consuming and resource-intensive process, making it crucial to focus on the
improvement of its efficiency. This highlights the capability of CKKS to enable secure
and efficient data analysis while maintaining privacy.

The number of consecutive homomorphic operations that can be performed on
ciphertexts without the need for decryption or re-encryption is known as depth con-
sumption. The re-encryption of a ciphertext, called bootstrapping, is necessary be-
cause homomorphic operations on CKKS ciphertexts increase the amount of noise
within the ciphertexts. CKKS encryption produces approximate ciphertexts, mean-
ing that the decrypted result is an approximation of the original plaintext. The level
of noise in the ciphertext determines the accuracy of this approximation. As the
noise increases, it can reach a point where decrypting the ciphertext fails to produce
a meaningful plaintext, resulting in incorrect or unusable outputs. In other words,
the depth of a circuit refers to the maximum number of consecutive homomorphic
operations that can be performed before the ciphertext becomes too noisy to handle
without losing information.

When encrypting data in CKKS, we specify a maximum depth usage for the re-
sulting ciphertext. More sequential operations and more intricate calculations are
made possible when using a greater depth, but the increased complexity of the opera-
tions and the need for noise management result in longer processing times and larger
resource consumption. In conclusion, shallow circuits execute faster with lower over-
head but may limit computational capability, while deeper circuits enable complex
calculations at the cost of increased noise management and processing time.

Using the Residue Number System (RNS) for effective arithmetic operations, the
RNS-based CKKS (RNS-CKKS) scheme is an improvement on the CKKS encryption
scheme [11]. RNS breaks down numbers into residues regarding a set of pairwise

10

coprime moduli. Consider the number 23 and a set of pairwise coprime moduli 5, 7,
and 11. The residues are calculated to be 3, 2, and 1 respectively. So, in RNS, the
number 23 is represented as the set of coprime residues (3, 2, 1). This representation
allows arithmetic operations to be performed independently on each residue, enabling
parallel computation and reducing overhead.

Key benefits of RNS-CKKS include:

• Parallelism: Computations on residues can be executed independently, leading
to substantial performance gains.

• Reduction in Modulus Switching Costs: RNS-CKKS minimizes the com-
putational cost of modulus switching, a critical operation in FHE schemes.

• Scalability: The approach scales efficiently with larger problem sizes and more
complex computations.

2.4 Approximation of Non-Polynomial Functions

Evaluation of non-polynomial functions, such as logarithms, exponentials, or trigono-
metric functions, on encrypted data, is necessary for the application of CKKS to
many real-world scenarios. However, like most homomorphic encryption systems, the
CKKS scheme only allows for homomorphic addition and multiplication. This limi-
tation requires us to express non-polynomial functions using polynomials to evaluate
them on encrypted data. To overcome this challenge, we can use the mathematical
principle of approximation. This involves replacing a complex function defined over
a specific interval with one or more polynomials that closely mimic its behavior, as
shown in Figure 6.

While no approximation can perfectly replicate the original function, the goal is to
minimize the error between the function and its polynomial representation. One way
to achieve this, as seen in Figure 6, is by increasing the degree of the approximating
polynomial. This allows for a better capture of the nuances of the function. However,
this comes at a cost as polynomials with a higher degree require more computational
resources, both in terms of time and space, especially when used in homomorphic
computations. When evaluating a polynomial over encrypted data, more accurate
approximations typically demand a greater circuit depth, resulting in the need for
more homomorphic operations. Therefore, balancing the trade-off between accuracy
and efficiency is a critical aspect of designing an effective approximation algorithm.

When talking about approximation methods, there are a few ways you can discuss
how well such a method works. One of the first metrics, and often the main one, that
you can look at is the difference between a function and its approximating polynomial.
The approximation error is defined as the absolute difference between the actual
function, f(x), and its approximation, f̃(x). More formally, the error is given by:

Error(x) =
∣

∣

∣
f(x)− f̃(x)

∣

∣

∣
.

This metric allows us to measure how well the approximation aligns with the true
function. It is crucial when discussing the final accuracy of algorithms that f̃(x) will
be used in.

Another key performance metric for approximation algorithms, as well as any other
algorithm performed on encrypted data, is time complexity. Time complexity, often
expressed in big-O notation, describes the computational complexity of an algorithm.
It measures the performance of an algorithm by estimating how the computation time
increases as variables such as the input size change, which is vital for understanding
the scalability of algorithms. Time consumption, on the other hand, refers to the
actual time it takes for a task to be completed. In this thesis, the term specifically
refers to the time needed to evaluate a (composite) polynomial on a ciphertext. This
metric is essential for evaluating the efficiency of the algorithms under consideration,
as minimizing time consumption is crucial for improving their performance.

11

Figure 6: Tchebycheff progression for the approximation of the sign function.
Here n is the number of coefficients in the polynomial and the degree of the
approximating polynomial is n− 1 for n > 0

One of the algorithms that is widely used for approximating non-polynomial func-
tions is Tchebycheff (or Chebyshev) approximation [25]. The Tchebycheff algorithm
approximates a function f(x) with a polynomial pn(x) using a sum of Tchebycheff
polynomials, which are defined recursively as follows.

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x) for n g 2

We do this by providing the algorithm with the degree of approximation and a
continuous interval that the function is estimated over. Approximation quality im-
proves with a higher polynomial degree and a narrower interval, as shown in Figure 6.
The approximation is expressed as follows, where Ti(x) are Tchebycheff polynomials,
and ai are the coefficients to be determined.

pn(x) =
n
∑

i=0

aiTi(x)

Tchebycheff approximation aims to minimize the largest error, as opposed to other
polynomial approximation techniques that minimize the sum of squared errors (known
as least squares). When the resulting polynomial is not truncated, meaning it is
not limited in its degree, Tchebycheff approximation guarantees uniform convergence
for continuous functions and minimizes the largest error (known as the worst-case

12

deviation) over the entire interval by satisfying the equioscillation property. However,
to make the approximation more computationally feasible and manageable, it is often
necessary to truncate it. Truncating the infinite series to a fixed degree N does not
necessarily result in the true minimax polynomial (the best uniform approximation) of
degree N . This means that truncation sacrifices the optimality of the approximation,
although it is often a very close approximation. The error of the resulting polynomial
generally oscillates but does not necessarily equioscillate (meaning it does not have
equal maximum deviations in magnitude). If the original function f(x) is sufficiently
smooth, the truncated Tchebycheff series is very close to the minimax polynomial.
However, there is an algorithm, known as Remez’s algorithm (which will be discussed
in Section 3.1), that is used in practice to compute the exact minimax polynomial,
improving upon Tchebycheff truncation.

We learn more about the behavior of the error in the best polynomial approxima-
tion when we look at the Tchebycheff Equioscillation Theorem:

• The error between the function f(x) and the approximation pn(x) does not vary
randomly across the interval.

• The error oscillates: it reaches its maximum and minimum values, alternating
in sign, at least n+ 2 times, where n is the degree of the polynomial.

• This controlled oscillation ensures that the error is spread out as evenly as
possible, preventing large deviations at any particular point.

Particularly for functions with abrupt changes or oscillations, this oscillating char-
acteristic makes the Tchebycheff polynomial approximation extremely effective and
guarantees that the approximation is as close to the true function as possible.

The function f(x) must be sampled at certain locations, known as Tchebycheff
nodes, to calculate the Tchebycheff polynomial approximation. These nodes minimize
the Runge phenomenon (large oscillations at the edges of the interval) by spreading
the interpolation points more densely near the ends of the interval. This increases
approximation accuracy and remedies other typical issues with numerical techniques.

Below, we can find the pseudocode Tchebycheff approximation in Algorithm 1.
Figure 6 shows an example approximation of the sign function. The accuracy of the
approximation itself increases with the degree of approximation.

Algorithm 1 Tchebycheff Approximation Algorithm

Require: Function f(x), degree n
Ensure: Coefficients c0, c1, . . . , cn of the approximating polynomial
1: for k = 0 to n do
2: xk ← cos

(

2k+1
2n+2Ã

)

3: end for
4: for k = 0 to n do
5: yk ← f(xk)
6: end for
7: for j = 0 to n do
8: cj ←

2
n+1

∑n

k=0 yk cos (j arccos(xk))
9: if j = 0 then

10: cj ←
cj
2

11: end if
12: end for
13: Pn(x)←

∑n

j=0 cjTj(x)
14: Return c0, c1, . . . , cn or the polynomial Pn(x)

In summary, given a non-polynomial function f(x), a finite degree N , and a con-
tinuous interval, Tchebycheff approximation enables us to find a polynomial p(x) that

13

closely approximates f(x). Since we truncate the approximation to a finite degree N ,
the resulting polynomial will not be the true minimax polynomial. However, under
appropriate conditions, this truncated polynomial can be very close to the minimax
polynomial and will have a relatively low max error.

Using the Tchebycheff approximation, CKKS can support a broader range of com-
putations while maintaining its approximate nature. Although this approach intro-
duces some errors, the degree of approximation can be controlled to ensure that it is
negligible for practical purposes.

To optimize the efficiency and usability of an approximating polynomial, it is
important to not only consider the approximation method itself and how it can be
optimized, but also the algorithm in which the polynomial is used. By designing an
algorithm that considers the issues caused by approximation errors, such as close to
discontinuous areas of the function being approximated, the impact of these errors can
be minimized. In FHE, the concept of robustness refers to the effect of approximation
errors on the final output of an algorithm, particularly in areas where the function
being approximated is discontinuous. A more robust algorithm reduces the influence
of these errors on the results, ensuring that computations can be performed without
significant degradation in quality, even as errors accumulate during the process.

2.5 Algorithms For Ranking, Order Statistics, and Sorting

Using approximated polynomials and basic operations in the CKKS encryption scheme,
various algorithms can be developed to analyze encrypted datasets. Recently, there
has been a focus on efficient algorithms for ranking, order statistics, and sorting un-
der the CKKS scheme [24]. The main objective of this research is to reduce the
computational complexity of these algorithms, particularly in terms of their depth
consumption. Mazzone et al. proposed a unique method that allows for high par-
allelizability and potential hardware acceleration, resulting in a constant comparison
depth (O(1)) for these algorithms [24]. The comparison depth refers to the number
of non-parallelizable homomorphic comparisons required during an algorithm.

One of the main new methods presented in that paper is an algorithm for ranking
the values in an encrypted array. We give the algorithm a vector of values as input, it
then creates a vector containing the ranking of these values; the lowest value receives
a rank of 1, and the highest value receives a rank equal to the vector’s length. They
do this by using a set of operations created especially for encrypted matrices, such as:

• ReplR(X) replicates a matrix by replicating its values into the other rows, as-
suming that only the first row is non-zero.

• TransR(X) transposes a square matrix, assuming that only the first row is non-
zero.

• Cmp(XR, XC ; d) Compares all the values in the matrixXR with the values at the
same index in the matrix XC , where d indicates the degree of the comparison.

• SumR(X) adds up each row component-wise and then saves the result in the
first row.

• MaskR(X, k) replaces the row with index k in the matrix with zeros

A visualization of these operations can be found in Figure 7 below, where we show
their effect on a 4x4 matrix.

14

Figure 7: Visualization of matrix operations applied to a 4x4 matrix.

It should be noted that the aforementioned actions can be carried out both column-
wise, by for instance copying a column into another column, and row-wise, by for
instance copying a row into another row. MaskC, SumC, ReplC, and TransC are
the notations for column-wise operations. Using these operations, we can calculate
the rank of elements in a vector using the steps shown in Figure 8. The algorithm
computes the fractional ranking of an encrypted vector v = (v1, . . . , vN) under the
CKKS encryption scheme. The process begins by expanding the input vector V into
a matrix VR by replicating the values of v from the first row across all rows of the
matrix. Simultaneously, V is transposed into a column matrix and then expanded
into a matrix VC , where every column holds the elements of v.

Next, the algorithm compares the elements of VR and VC using the comparison
function. This comparison, guided by an approximate degree d, generates a matrix
C where each entry is the result of comparing corresponding elements from the two
matrices. The rows of C are then summed component-wise, producing a vector that
reflects the number of other elements each value in v is greater than or equal to.

To complete the ranking, the algorithm adds a constant vector (0.5, . . . , 0.5) to
the resulting summation, which adjusts the values to account for fractional rankings.
The output of the algorithm is the vector R, representing the fractional rankings of
the encrypted values in v. More formally, we can define this process using Algorithm
2.

Using the rank of the algorithm, we can calculate the k-statistic of a vector, also
known as the k-th order statistic. This statistic represents the value of the element
with a rank of k if such a rank exists. This is achieved by first calculating the rank
of the vector, and then using an indicator function to determine if the element falls
within the range [k − 0.5, k + 0.5]. The indicator function returns a value of 1 if the
input value is within the range, and 0 if it is outside. This creates a mask with a
value of 1 at the index of the element with the desired rank, and 0 everywhere else.
The index of the element can then be found by running argmax over the mask, or the
actual value of the element can be calculated by multiplying the original vector with
the mask using a dot product and dividing it by the sum of the values in the mask.
The formal description for creating the mask can be found in Algorithm 3.

15

Figure 8: Overview of the ranking algorithm

Algorithm 2 Ranking algorithm from [24]

Input V , encryption of v = (v1, . . . , vN) ∈ R
N , approximation

degree d ∈ N

Output R, encryption of a vector in R
N representing the

(fractional) ranking of v

1: VR ← RepIR(V)
2: VC ← RepIC(TransR(V))
3: C ← Cmp(VR, VC ; d)
4: R← SumR(C) + (0.5, . . . , 0.5)
5: Return R

Algorithm 3 Order statistics algorithm from [24]

Input V encryption of v = (v1, . . . , vN) ∈ R
N , approximation degrees dC , dI ∈ N,

index k ∈ {1, . . . , N}.
Output Q encryption of a Boolean vector in {0, 1}N that has value 1 in position

i if and only if vi has rank k.

1: R← Rank(V ; dC)
2: O ← Indk(R; dI)
3: Return O

16

3 Sign function approximation

This section addresses the first research question: To what extent can the algo-
rithms for ranking and order statistics be improved using the Composite
Minimax approximation of the homomorphic comparison operation? We
focus on designing, implementing, and evaluating the minimax composite polynomial
approximation algorithm to approximate the sign function. The aim is to provide
a detailed account of its implementation, its experimental comparison against the
Tchebycheff approximation algorithm, and the insights gained from this comparison.

We will begin by explaining the principles underlying the design of the Minimax
Composite approximation algorithm in Subsection 3.1. This will include highlighting
its theoretical foundations and implementation details. Next, we will describe the
experimental setup in Subsection 3.2, outlining the methods and metrics used to
compare the performance of the composite minimax and Tchebycheff algorithms. Key
metrics such as time consumption and approximation error will be used to assess
the algorithms’ computational efficiency and accuracy. The section will conclude
by analyzing the numerical results obtained from these experiments in Subsection
3.3. We will discuss the implications of the findings, concluding the effectiveness
and efficiency of the minimax composite polynomial approximation in addressing the
challenges posed by the first research question. Finally, we will briefly discuss the
conclusions that can be drawn from these results in subsection 3.4. By the end of this
section, the reader will have a comprehensive understanding of the design process,
experimental evaluation, and the broader significance of the results in advancing the
thesis objectives.

3.1 Approximation Using Composite Minimax Polynomials

In their study, Lee et al. [20, 22] presented an effective method for calculating max-
imum values and performing homomorphic comparisons. Their approach aims to
achieve performance as close to the theoretical ideal as possible. They do this by
using a series of composite polynomials optimized over multiple intervals, rather than
a single polynomial optimized over a single interval, as in Tchebycheff approximation.
This allows them to simulate non-polynomial functions while maintaining a lower
total polynomial degree, which reduces the computational depth and preserves the
maximum approximation error.

Figure 9, illustrates the Composite Minimax algorithm. The first polynomial
is approximated over the range [a1, b1]. Subsequently, succeeding polynomials are
estimated across intervals such as [1− a2, 1+ b2], where a2 and b2 represent the max-
imum approximation error of the previous polynomial. Compared to the Tchebycheff
method, the composite polynomials achieve a lower total degree by distributing the
errors over multiple intervals. This reduces computational complexity and, conse-
quently, results in a shorter computation time.

Figure 9: Composite minimax approximation of the sign function. Adapted
from [20].

Lee et al. used their algorithm to specifically approximate the sign function, which

17

can be used to implement the comparison and maximum functions. The relationship
between the comparison and sign function is defined as:

cmp(u, v) =
1

2
(sign(u− v) + 1) (1)

Algorithm 4 outlines a three-step process for computing the comparison function
by approximating the sign function with a composite minimax polynomial. The first
step is determining the optimal set of polynomial degrees that minimize depth and
time consumption while ensuring that the max approximation error remains below
a desired threshold. Next, a minimax polynomial is constructed over the interval
R̃ϵ = [(−1,−ϵ), (ϵ, 1)]. This is followed by the generation of subsequent composite
polynomials over intervals RÄ = [(−1− Ä,−1 + Ä), (1− Ä, 1 + Ä)], where Ä represents
the minimax error of the previous polynomial. Finally, the comparison function is
calculated using these composite polynomials.

The algorithm takes two precision parameters ³ and ϵ as input. This parame-
ter decides the maximum approximation error, the approximation interval, and the
maximum depth consumption used for calculating the optimal degrees.

Algorithm 4 OptMinimaxComp Algorithm [22]

Input: a, b ∈ (0, 1), precision parameters ³, ϵ, and depth D.
Output: Approximate value of comp(a, b).

1: Mdegs ← ComputeMinTimeDegs(³, ϵ,D)

2: p1 ← MP(R̃ϵ, 1; d1) ▷ MP: Minimax Polynomial
3: Ä1 ← ME(R̃ϵ, 1; d1) ▷ ME: Minimax Error
4: for i← 2 to k do
5: pi ← MP(RÄi−1

, di)
6: Äi ← ME(RÄi−1

, di)
7: end for
8: return pk◦pk−1◦...◦p1(a−b)+1

2

To optimize composite polynomials in terms of time and depth, the ComputeM-
inTimeDegs algorithm, presented in Algorithm 5, calculates the optimal set of degrees
Mdegs. It finds the polynomial with the lowest computational time while ensuring the
minimax error remains below a specified threshold over a given interval.

The algorithm begins by constructing two tables:

• ũ: Stores the Inverse Minimax approximation Error (IME) for combinations
of depth and non-scalar multiplications. The IME reflects how accurately a
polynomial approximates the target function.

• Ṽ : Contains the polynomial degrees corresponding to the IME values in ũ.

The IME of a composite polynomial is the interval over which the polynomial
will have a minimax error below the target threshold. By analyzing ũ, the algorithm
selects the polynomial with the lowest time consumption that satisfies the required
IME threshold, resulting in both Mtime and Mdegs.

The Multi-Interval Remez approximation method is an iterative algorithm for
finding the minimax polynomial of a non-continuous function over a set of given
intervals. This algorithm takes as input: a degree, a set of intervals over which
the function to be approximated is continuous, and an approximation parameter
that stands for the target minimax error. It iteratively finds polynomials with lower
and lower maximum errors until it finds a polynomial that has a minimax error
below the target threshold. In short, the algorithm makes an initial guess for the
approximating polynomial. Following this, if the polynomial is not close enough to
the target function, it iteratively refines it until it is.

The theorem is based on the Equioscillation theorem, which is also used in the
Tchebycheff approximation. It uses this theorem to create an iterative algorithm for

18

Algorithm 5 ComputeMinTimeDegs Algorithm [22]

Input: Precision parameters ³, ϵ, and depth D.
Output: Minimum time Mtime and optimal degrees Mdegs.

1: ũ, Ṽ ← ComputeUV(21−³, D)
2: for j ← 0 to tmax do
3: if ũ(j,D) g ¶ = 1−ϵ

1+ϵ
then

4: Mtime ← j
5: Go to Line 11
6: end if
7: if j = tmax then
8: return §
9: end if

10: end for
11: Mdegs ← Ṽ (Mtime, D)
12: return Mdegs, Mtime

finding the minimax polynomial. The process begins with an initialization step, where
an initial guess is made for the n + 2 extremal points, where n is the degree of the
polynomial + 1. The approximation error at these points is expected to alternate in
sign. Next, a polynomial Pn(x) is constructed by solving for its coefficients so that the
error alternates between positive and negative maximum values at the chosen extremal
points. This ensures that the equioscillation property is progressively satisfied during
the process. The algorithm then updates the extremal points by finding the locations
where the current error E(x) achieves its local maxima in absolute value. These
new points become the extremal points for the next iteration. The iterative process
continues until the equioscillation property is satisfied, and we have a low enough
minimax error. At this point, the error alternates in sign and has equal magnitude at
n+2 points, indicating that the algorithm has converged. The Multi-Interval Remez
algorithm enforces the equioscillation property throughout the approximation process,
making it a more general and flexible approach than Tchebycheff approximation. For
example, Remez can approximate functions over arbitrary intervals and handle more
weights or constraints, expanding its applicability [26].

More formally, the algorithm involves the following key steps, as illustrated in
Algorithm 6:

1. Initialization: A set of n + 1 initial points is chosen within the domain D =
⋃l

i=1[ai, bi], where the function f is defined. (Line 1)

2. Polynomial Construction: A polynomial p(x) is computed using a specified
basis (e.g., Tchebycheff polynomials) such that the error p(x)− f(x) alternates
in sign and achieves a maximal deviation E at these points. (Line 2)

3. Error Analysis: The extreme points of p(x)− f(x) within D, along with the
domain boundaries, are identified as candidate points. We use the concavity
function to filter out positive minima, and negative maxima from these points.
(Line 3)

4. Refinement: From these candidates, a new set of n + 1 points is selected,
satisfying the alternating error and maximum sum condition. The algorithm
iteratively refines the polynomial until the relative error difference converges
below a predefined tolerance µ. (Line 4-10)

This process ensures that the output polynomial achieves the desired minimax
approximation properties.

19

Algorithm 6 Improved Multi-Interval Remez Algorithm

Input A basis {ϕ1, . . . , ϕn}, an approximation parameter µ, an input domain

D =
⋃l

i=1[ai, bi] ¢ R, and a continuous function f on D
Output The minimax approximate polynomial p for f

1: Choose x1, . . . , xn+1 ∈ D such that x1 < x2 < · · · < xn+1

2: Find the polynomial p(x) in terms of {ϕ1, . . . , ϕn} such that p(xi) − f(xi) =
(−1)iE, for 1 f i f n+ 1 and some E

3: Collect all the extreme points of p− f on D such that µ(x)(|p(x)− f(x)|) g |E|
and put them in a set B with the boundary points

4: Find n+ 1 extreme points y1 < y2 < · · · < yn+1 in B that satisfy the alternating
condition and maximum absolute sum condition

5: ϵmax ← max1fifn+1 |p(yi)− f(yi)|
6: ϵmin ← min1fifn+1 |p(yi)− f(yi)|
7: if ϵmax−ϵmin

ϵmin

< µ then
8: return p(x)
9: else

10: replace xi with yi for all i, go to line 2.
11: end if

The algorithm illustrated in Algorithm 6 makes use of the concavity function µ(x),
which is defined as:

µ(x) =











1 if p(x)− f(x) is concave at x on D

−1 if p(x)− f(x) is convex at x on D

0 otherwise

This function is used to determine whether the error function p(x)−f(x) is concave
or convex at specific points. The Improved Multi-Interval Remez Algorithm uses the
concavity function to enforce the alternating condition and filter out positive minima
and negative maxima. To better understand how this function works, let us examine
the graph shown in Figure 10. When selecting the extrema, points a, b, c, and d
are of particular interest. To filter out positive minima and negative maxima using
the concavity function, we multiply its results by the sign function at the same point.
Any point with an output of < 0 is a positive minimum or a negative maximum, as is
the case for points a and b. Once we have eliminated positive minima and negative
maxima, we can ensure that the points are alternating by multiplying the results of
the concavity function for consecutive points. For instance, if we take points b and d
from the graph, we know they are alternating if the points are alternatingly concave
and convex. In that case, when we multiply the results of the concavity function for
both points it will result in a value of -1.

However, as good as this looks in theory, if the concavity function is used exclu-
sively to find the sets of extreme points it will cause issues. When using only the
concavity functions, endpoints or any extreme points next to them are often filtered
out, as they consistently have the same concavity as their closest extreme point. Due
to this, we cannot pick enough extreme points that are alternatively concave and
convex.

To give an example, Figure 11 illustrates the error function e(x) = p(x)− sign(x)
during the first iteration of the Multi-Interval Remez algorithm for a degree-3 poly-
nomial. During this step, we want to pick 5 extreme points among the candidate
extreme points e(x = −1), e(a1), e(x = −ϵ), e(x = ϵ), e(b1), and e(x = 1). Since all
the points on the left side of 0 are convex and all of the points on the right side are
concave, the concavity function would only permit the selection of a maximum of two
alternating points. However, adding a new function È(x) guarantees that all required
extremes are chosen. What exactly È(x) is, will be explained in the next paragraph.

20

Figure 10: Curved Polynomial Function with Maxima and Minima

Figure 11: Error function for sign approximation with a degree-3 polynomial.

We propose a refinement to address this issue. Instead of relying solely on the
concavity function µ(x) to filter positive minima and negative maxima and enforce
the alternating condition, we have separated these tasks. Our approach utilizes the
sign function to enforce the alternating condition, while the concavity function is still
employed for the first task. These two functions can be combined to create È(x).

È(x) = µ (p(x)− f(x)) · sign(p(x)− f(x)).

21

This modification ensures that:

1. Positive minima and negative maxima are filtered out using µ(x), as before.

2. The alternating condition is independently enforced by sign(p(x)− f(x), allow-
ing the algorithm to retain sufficient candidate points, including crucial end-
points.

This small yet critical change ensures the algorithm selects n + 1 valid extremes
without excluding necessary endpoints near the boundaries.

By introducing È(x), the Multi-Interval Remez algorithm achieves robust enforce-
ment of the alternating condition, enabling effective approximation even for challeng-
ing functions across disjoint intervals.

3.2 Experimental Setup

To compare the Tchebycheff and Composite Minimax approaches for approximating
functions, we measured the time consumption and approximation errors of polyno-
mials generated using these two methods. We conducted two tests for this purpose:
a micro test, where we approximated the sign function and evaluated it over data
encrypted with CKKS, and a macro test, where we approximated the comparison
function and used it to calculate the rank of encrypted data.

Unfortunately, the Tchebycheff and Composite Minimax approximation methods
do not use the same parameters. While Tchebycheff approximates over one interval
and finds the best polynomial for a given degree, the composite approximation method
finds the best degrees and corresponding polynomials for a given maximum error over
multiple intervals. To compare polynomials from both methods, we introduce a new
variable E, which represents the maximum error of a polynomial over the interval
[(−1,−E

2), (
E
2 , 1)]. This ensures we compare approximating polynomials with the

same maximum guaranteed error over the same interval. This variable can be directly
translated to ³, which is used to calculate most of the parameters for the Composite
Minimax approximation algorithm, using the formula ³ = 1−log2(E). The higher the
value of ³ (and the lower the value of E), the more accurate the approximation will be
over the interval [(−1,−E

2), (
E
2 , 1)]. However, outside of this interval, no guarantees

can be made for the accuracy of the approximation. For Tchebycheff polynomials, we
use a binary search to find polynomials that meet the maximum error requirements.
The resulting degrees for each value of E for both approaches can be found in Table
2.

We use a vector of 128 points encrypted with the OpenFHE library as inputs for
the micro and macro tests. The micro test algorithms contain points in the range
(E2 , 1), while the macro test algorithms contain points in the range (0, 1). The reason
for this difference is that the macro test algorithms take the difference between two
points as input, which would result in a range of (0, 1−E) if the tests were conducted
over a vector of points in the range (E2 , 1). This would significantly reduce the number
of points in the range over which the polynomials are optimized.

When evaluating the performance of approximated functions, it is crucial to con-
duct tests on encrypted rather than plaintext data. This approach reflects real-world
conditions and ensures the results are meaningful and applicable in practical scenar-
ios. For instance, it enables the use of the Paterson-Stockmeyer algorithm, which
is used in OpenFHE [6]. FHE introduces certain computational overheads, such as
ciphertext size, noise growth, and depth consumption, which can impact performance
and are not present in plaintext evaluations. Additionally, Lee et al. have developed
an algorithm to select the optimal degrees of composite polynomials for minimizing
computation time and reducing error when evaluating functions over data encrypted
using RNS-CKKS [21]. So, evaluating polynomials on plaintext data would not yield
relevant results.

22

Tchebycheff Composite Minimax (Remez)
Error (E) Degree Degrees

0.5 3 {3}
0.4 5 {3}
0.3 7 {7}
0.2 37 {15}
0.1 161 {7,7}
0.09 181 {7,7}
0.08 245 {47}
0.07 291 {7,11}
0.06 343 {7,13}
0.05 301 {3,7,7}
0.04 651 {13,13}
0.03 1601 {15,15}
0.02 1715 {5,7,13}
0.01 3201 {3,5,7,13}
0.009 15189 {13,7,15}
0.008 17377 {15,7,15}
0.007 18315 {15,7,3,7}
0.006 28617 {15,11,13}
0.005 31881 {15,13,15}
0.004 35199 {15,3,7,15}
0.003 97089 {15,15,27}
0.002 412137 {15,19,27}
0.001 1139201 {15,7,9,23}

Table 2: Degree of the Lowest-degree Polynomial With Max Error Values E

We used the OpenFHE library 1 [1] to encrypt the data and conduct the tests.
OpenFHE is a comprehensive, open-source toolkit for FHE, and we specifically used
it to implement the RNS-CKKS encryption scheme. The encryption context for the
CKKS scheme was configured with a decimal precision of 48 bits and an integral
precision of 12 bits. The multiplicative depth, which determines the maximum depth
of encrypted computations, was set to the lowest suitable value for evaluating the
target polynomial or method. All parameters were chosen following the Homomorphic
Encryption Standard, ensuring a security level of 128 bits [2, 3]. The tests were
conducted on the student partition of the EEMCS High-Performance Computing
(HPC) Cluster at the University of Twente. This partition is powered by an Intel
Xeon E5-2698 v4 CPU with 20 cores and 512 GB of RAM operating at 2.20 GHz and
runs on a Linux-based system.

3.3 Experimental Results & Discussion

In this subsection, we will discuss the micro and macro test results to compare the min-
imax composite approximation approach with the Tchebycheff approximation method.
We will first go over the micro test results and then discuss the results of the macro
tests.

One of the main factors determining the computational efficiency of a polynomial
approximation under FHE is its depth consumption. This is directly related to the
evaluation time, as a greater depth consumption will result in a longer evaluation
time. Figure 12 illustrates the depth consumption for evaluating signC and signT

with varying maximum errors (E). The key observation is that, in general, signC has
a lower depth consumption compared to signT for most values of E.

1https://github.com/openfheorg/openfhe-development

23

Figure 12: Depth consumption vs. maximum error for Tchebycheff and
Composite Minimax methods, with a logarithmic x-axis.

Next to depth consumption, we also examined the time required to evaluate the
(composite) polynomials, as shown in Figure 13. The graphic illustrates that for
all tested E values below 0.3, composite minimax polynomials consistently result in
reduced time consumption compared to Tchebycheff polynomials. This time efficiency
is particularly beneficial when the guaranteed maximum error is crucial, highlighting
the advantage of using the Composite Minimax algorithm.

Figure 13: Time consumption vs. maximum error for Tchebycheff and Com-
posite Minimax methods, with both axes on a logarithmic scale.

For most assured maximum errors, signC shows larger average errors than signT,
despite its lower max error. Figure 14 illustrates this tradeoff by comparing the
average and maximum errors of the two approaches.

24

Figure 14: Average error vs. maximum error for Tchebycheff and Composite
Minimax methods, with both axes on a logarithmic scale.

However, the Composite Minimax algorithm regains an advantage when consid-
ering time consumption relative to average error, as illustrated in Figure 15. For
average errors below approximately 0.04, signC outperforms signT in terms of time
efficiency.

Figure 15: Average error vs. time consumption for Tchebycheff and Com-
posite Minimax methods, with both axes on a logarithmic scale.

By achieving lower time consumption for low maximum and average errors, the mi-
cro tests demonstrate that the Composite Minimax approximation algorithm is more
efficient in approximating the sign function than the Tchebycheff algorithm when
evaluated under RNS-CKKS. This makes composite minimax polynomials suitable
for situations where time efficiency is a top priority, particularly in applications with
limited computational resources or latency restrictions. However, there is a bit of

25

a trade-off between accuracy and efficiency. While Tchebycheff polynomials perform
better in terms of average error against maximum error, composite minimax poly-
nomials excel in terms of time consumption and depth efficiency. Specifically, signT

yields smaller average errors in the range [E2 , 1] compared to signC, highlighting their
potential usefulness in applications where accuracy within specific error bounds is
more crucial than time consumption.

The results of the macro tests support our findings. During the macro tests, we
evaluated the time consumption and error of using the approximated sign function
to calculate the ranks of elements in a vector. As depicted in Figure 16 and Figure
18, signC outperforms signT in terms of time consumption versus maximum error E
and average error versus time consumption, while signT demonstrates better average
error performance versus maximum error in Figure 17.

Figure 16: Time consumption vs. maximum error for Tchebycheff and Com-
posite Minimax methods in macro tests, with both axes on a logarithmic scale.

26

Figure 17: Average error vs. maximum error for Tchebycheff and Composite
Minimax methods in macro tests, with both axes on a logarithmic scale.

Figure 18: Average error vs. time consumption for Tchebycheff and Compos-
ite Minimax methods in macro tests, with both axes on a logarithmic scale.

Before drawing any conclusions from these results, it is important to consider
one final critical factor that affected the limits of polynomial evaluation: memory
consumption. Our micro and macro tests indicated indirectly that the memory usage
of signT significantly increased in comparison to signC as the maximum error (E)
decreased. As a result, we measured the memory consumption required for evaluating
the (composite) polynomials to see what was happening, as depicted in Figure 19.

The results show that for values of E less than 0.009, the memory usage of signC

is significantly lower than that of signT. Although both signC and signT require a

27

considerable amount of memory for these smaller values of E. signC consistently stays
below 30 GB while signT exceeds 40 GB. This difference emphasizes the significant
memory efficiency advantage of signC for smaller error thresholds.

Figure 19: Memory consumption for evaluating signC and signT under CKKS

Initially, our tests were conducted on the main partition of the HPC Cluster,
which also ran many other processes at the same time. However, when attempting
to evaluate the highest-degree polynomial for signT in this cluster, it terminated the
process. To resolve this issue, we reran the tests on the student partition, which had
fewer processes running in parallel and, at times, no other processes. This allowed us
to evaluate the polynomial approximation successfully.

3.4 Conclusion

When approximating the sign function, experimental results show that composite
minimax polynomials are more computationally efficient under FHE than polynomi-
als created using the Tchebycheff algorithm. Specifically, the Composite Minimax
method requires less time and depth overall, making it a suitable choice for appli-
cations with strict performance requirements. However, this efficiency comes at the
cost of accuracy, as Tchebycheff polynomials consistently yield lower average errors
for the same guaranteed maximum errors. The results of the macro test support these
conclusions, demonstrating that the Composite Minimax method is preferable when
time efficiency is a top priority and can provide a more accurate approximation for the
same time consumption. These findings provide a balanced assessment of the advan-
tages and disadvantages of both approaches, allowing readers to make well-informed
decisions based on the needs of their application. The approximated sign functions
can be used in ranking, sorting, and order statistic algorithms. Ultimately, the im-
provements in time efficiency and accuracy will positively impact the performance of
these algorithms, resulting in overall increased efficiency and reduced errors.

28

4 Calculating (Arg)Min and (Arg)Max

This section addresses the second research question: “Knowing the max function
is more robust than the comparison function, to what extent can it be
used to improve the robustness of the algorithms?” We focus on developing
and evaluating an algorithm for calculating the (arg)min and (arg)max of a vector
that is more robust than the one provided by Mazzone et al. [24]. This section
provides a detailed examination of the original algorithm, the modifications made to
enhance its robustness, and a comparative analysis of its performance under different
configurations.

We will begin by describing the design and operational mechanics of the original
algorithm for order statistics in Subsection 4.1. This will offer insights into its compu-
tational approach and theoretical underpinnings. In the same subsection, we will also
detail the modifications that were made to the algorithm, specifically the integration
of a comparison function and a max function, to optimize its accuracy and efficiency.
Moving on to Subsection 4.2, we will present the experimental setup and methodol-
ogy used to compare the two versions of the algorithm. We will analyze metrics such
as error rates to highlight the trade-offs and improvements achieved through these
modifications. In Subsection 4.3, we will discuss the results of these experiments and
conclude on the implications of these findings for RQ2 and their relevance to the
goals of the thesis. Finally, in Subsection 4.4, we will provide our final thoughts on
the conclusions that can be drawn from these results.

By the end of this section, the reader will have a comprehensive understanding
of the algorithm its design, the modifications that were made, and the comparative
evaluation of its different versions. Additionally, the significance of these developments
within the context of the research will be discussed.

4.1 Modification of Algorithm For (Arg)Min and (Arg)Max

To address the second research question, our focus shifts from analyzing the efficiency
of different approximation methods to examining the robustness of the algorithms
proposed by Mazzone et al. for calculating the (arg)max/(arg)min of a vector. By
robustness, we mean the impact of approximation errors near discontinuities in a
function on the final output of an algorithm. A more robust algorithm minimizes the
influence of these errors on the final results. For this algorithm, we approximate the
sign function using the Composite Minimax approximation algorithm.

When approximating a non-polynomial function, such as the sign function, using
a polynomial, errors are introduced, particularly near points of discontinuity. For
example, the sign function is discontinuous at 0, and any polynomial approximation
will perform poorly in that region. Furthermore, even small approximation errors
can result in significant changes in the output of a discontinuous function. The sign
function can be used to compute the comparison and maximum functions using the
following formulas:

cmpC(u, v) =
1

2
(sign(u− v) + 1) (2)

maxC(u, v) =
(u+ v) + (u− v)sign(u− v)

2
(3)

minC(u, v) = (u+ v)−maxC(u, v) (4)

When using the Composite Approximation algorithm in the algorithms for order
statistics designed by Mazzone et al., the concept of robustness becomes crucial. For
example, the comparison function, which relies on the sign function as shown in
equation 2 above, is used to determine the maximum and minimum values within a
vector. Any errors in the estimated sign value can result in significant fluctuations in

29

the comparison value, as the comparison function itself is discontinuous, as depicted
in Figure 21. In contrast, the max function, which can also be derived from the sign
function, is continuous, as shown in Figure 20. This continuity ensures that there are
no abrupt jumps in the max function.

Figure 20: Graph of z =
maxC(x, y)

Figure 21: Graph of z =
cmpC(x, y)

To illustrate the differences between these functions, consider the results for cmpC(u, v)
and maxC(u, v) when u = v = 0.6. Ideally, we expect cmpC(u, v) = 0.5 and
maxC(u, v) = 0.6. However, let us suppose the approximated sign value is 0.5 in-
stead of 0 due to approximation errors. For cmpC, we then compute:

cmpC(u, v) =
1

2
(0.5 + 1) = 0.75.

While for maxC, we calculate:

maxC(u, v) =
(1.2) + (0× 0.5)

2
= 0.6.

In this case, the error in maxC is 0, while the error in cmpC is 0.25.

The algorithm for computing the rank of a vector, designed by Mazzone et al.,
uses a comparison function. The resulting rank can then be used to determine the
maximum or minimum value of a vector by applying the indicator function over the
range of [k − 0.5, k + 0.5], where k represents the rank of the maximum or minimum
value, respectively. However, it is possible to modify this algorithm to directly use
the max and min functions for calculating the maximum or minimum values of a
vector. The updated versions of the algorithm are presented in Figures 22 and 23.
The original ranking algorithm by Mazzone et al. is depicted in Figure 8.

In both the comparison-based algorithm and the updated versions that use the
max/min functions, the initial steps are identical up to the application of the rel-
evant function. This means that when both versions of the algorithm are run on
the same input with the same sign function approximation, they will yield the same
approximation errors.

The final output of the approximation is a mask with its highest value at the
index of the target element. This mask can be used to compute two results: the
argmin/argmax and the min/max. The min and max represent the actual values of
the elements at those indices, while the argmin and argmax represent the indices of
the minimum and maximum values, respectively.

Since the index of the largest value in the mask matches the index of the target
element in the original vector, we can calculate the argmin/argmax by simply applying

30

Figure 22: Updated algorithm for calculating the maximum of a vector

Figure 23: Updated algorithm for calculating the minimum of a vector

argmax on the mask. However, calculating the minimum value requires a bit more
work. We start by calculating the dot product of the mask with the original vector.

31

Then, we divide this result by the sum of the mask values, also known as the L1 norm.
For example, we start with the vector:

v =





1
2
3





and the mask:

m =





0.9
0.2
0





First, we compute the dot product:

v ·m = (1 · 0.9) + (2 · 0.2) + (3 · 0) = 0.9 + 0.4 + 0 = 1.3

Next, we calculate the L1 norm of the mask, which is the sum of its absolute
values:

∥m∥1 = |0.9|+ |0.2|+ |0| = 1.1

Finally, we compute the result by dividing the dot product by the L1 norm:

v ·m

∥m∥1
=

1.3

1.1
≈ 1.18

4.2 Experimental Setup

During the tests, we measured the error of calculating the (arg)min over a vector to
evaluate the impact of approximation errors on the algorithm its output. Specifically,
we employed two different methods to determine the min and argmin of the vector.
The points of the vector were gradually moved closer together, ultimately approaching
the non-continuous region of the sign function, to increase the approximation error.

Two separate experiments were carried out to evaluate the impact of approxi-
mation errors. In the first experiment, the error was determined by calculating the
difference between the expected index and the index generated by the algorithms for
argmin. In the second experiment, the error was defined as the difference between the
computed minimum value and the expected minimum value for the two algorithms.

The sign function was approximated using composite minimax polynomials with
degrees specified in Table 2. These degrees were optimized for calculating the com-
parison function rather than the max function. However, to evaluate the effect of ap-
proximation errors consistently, we used the same approximation for both calculating
the min and comparison functions to ensure identical error conditions. Recomputing
optimal degrees would prioritize time efficiency over error minimization, which is not
the focus of this study.

In the tests, we used vectors of varying sizes with evenly spaced points throughout
the same range. As the number of points in the range increased, the distance between
points decreased, bringing it closer to the non-continuous zone of the sign function.
Specifically, we employed one vector with 128 points in the range [0.6, 1] and vectors
with 8, 32, and 128 points in the range [0.5, 1]. Figure 24 illustrates that as we increase
the number of equidistant points in the vector within the same range, the difference
between these points becomes smaller. We chose these specific vector sizes for testing
for several reasons. Firstly, the OpenFHE library only accepts vectors up to size 128,
as they are converted into 128x128 matrices. Additionally, we tested various sizes
ranging from 8 to 128 and found that the sizes represented in the range [0.5, 1] as well
as a vector size of 128 in the range [0.6, 1] provide the most informative trends. We
also observed similar trends with both smaller and larger distances between points
compared to the ones we currently use.

32

Figure 24: Example of point distributions in vectors with 8 and 32 points in
the range [0.5, 1]

.

In our figures, we will plot the final error of the algorithms against the value
of alpha. As a reminder, alpha is the parameter used by the Composite Minimax
approximation algorithm to determine the accuracy of the function approximation.
The Composite Minimax approximation guarantees a maximum error of 21−³ over the
interval [(−1, 21−³), (21−³, 1)]. This is the same as in Section 3, but in that section,
we used the maximum error E, which is calculated using ³. Outside of this interval,
we cannot guarantee the maximum error, but the larger the value of ³, the smaller
the interval with no guaranteed error around zero will be.

All of these tests were still run using the OpenFHE library, using the same en-
cryption context for the CKKS encryption scheme. We still follow the Homomorphic
Encryption Standard to guarantee 128-bit security. And we ran the tests on the same
partition of the HPC Cluster.

One last thing we would like to discuss is the fact that we have only tested the
algorithm for calculating the argmin and min of a vector and not the algorithm
for calculating the argmax and max. In this thesis, we have presented the revised
algorithm for calculating both the (arg)min and (arg)max of a vector in Subsection
4.1. The main difference between the two is that we replace the use of the min
function with the max function. As shown in Equation 4, we calculate the min
function using the max function, so we would expect to see similar results for the
updated algorithm. The approximation error introduced will be the same, with the
only significant difference being in the input to the indicator function. Ultimately,
we are still testing whether the use of the max function is more robust. The same
applies when calculating (arg)max using the comparison function. We still calculate
the rank, but instead of running the indicator function on the lowest rank, we run it
on the highest rank. Therefore, we can draw the same conclusions from the tests for
(arg)min as we would for (arg)max.

4.3 Experimental Results & discussion

There are two kinds of results analyzed here. First, we examine the results for cal-
culating the minimum value of a vector, followed by the results for calculating the
argmin value.

When examining the error values for calculating the minimum of a vector, as shown
in Figures 25 through 28, it is evident that the results for minmin

v have a smaller error
for lower values of ³ and smaller differences between points compared to the results
produced by mincomp

v . This trend is particularly noticeable for the vector with 128
points in the range [0.5, 1] and alpha values less than 5, as well as the vector with
128 points in the range [0.6, 1] and alpha values less than 6.5. While there are a few
spikes where the error for minmin

v is higher than that of mincomp
v , overall, minmin

v

33

performs better. However, as the spacing and ³ values increase, the error shifts in
favor of mincomp

v . Specifically, as ³ increases, the error of mincomp
v stabilizes around

zero, while the error for minmin
v stabilizes at approximately 0.008.

The spikes in errors in the graph for minmin
v and mincomp

v , such as the one at
³ = 8.16 in Figure 25, can be attributed to two factors. Firstly, the indicator function
is being applied to values outside the range where the Composite Minimax algorithm
guarantees maximum error. This can result in significant errors in the sign function
approximation for certain values of alpha.

The second reason for the spikes is due to the implementation of the Multi-Interval
Remez approximation algorithm. This implementation involves several variables, two
of which are particularly important: precision and step size. The precision discussed
here is different from the precision determined by the input value of ³. It refers to the
number of digits after the decimal point used in the data types. The second variable,
step size, is used in determining the optimal points. While I will not go into further
detail about how the step size is implemented and used, interested readers can refer
to Algorithm 9 in the Appendix. It is worth noting that decreasing the step size and
increasing the precision can improve the accuracy of the calculation up to a certain
point, but it can also decrease efficiency. In particular, for the higher values of alpha,
lower step sizes and higher precision were necessary. However, there is a limit to this
improvement. Beyond a certain precision, the libraries used may produce inaccurate
results. During our tests, we chose to set the precision and step size variables to
values that worked for all values of alpha. However, this means that the values may
not be optimized for higher values of alpha.

This is why we see a spike for higher values of alpha in the figures, and why the
minimum error stabilizes at approximately 0.008. The second issue could have been
solved, but we did not have enough time to calculate the optimal values for these
variables.

Figure 25: Error vs. ³ for vector size of 8 (range [0.5,1]), min calculation.

34

Figure 26: Error vs. ³ for vector size of 32 (range [0.5,1]), min calculation.

Figure 27: Error vs. ³ for vector size of 128 (range [0.5,1]), min calculation.

35

Figure 28: Error vs. ³ for vector size of 128 (range [0.6,1]), min calculation.

After analyzing the results presented above, it is evident that a similar trend can
be observed when we focus on specific data points. In Figure 29, we have plotted the
error in calculating the minimum value against the difference in points in the vector,
with separate graphs for three different values of alpha. It is worth noting that for
lower values of alpha and smaller differences in points, the minmin

v algorithm performs
better. However, as we increase alpha, the mincomp

v algorithm starts to outperform
minmin

v in all test cases. This can be attributed to the fact that lower alpha values
result in a higher approximation error, which in turn has a lesser impact on the final
result for minmin

v when compared to mincomp
v . In other words, a higher approximation

error and a smaller difference in points lead to a less significant impact on the final
result for minmin

v .

Figure 29: Error vs. difference for different ³ values, min calculation.

36

For the argmin tests, we can see the results in Figure 30 through Figure 32. We
find that argmincomp

v consistently outperforms argminmin
v across all differences and ³

values. There are a few cases where we see the opposite is true, but overall the trend
is that argmincomp

v is the less error-prone algorithm

Figure 30: Error vs. ³ for a vector size of 8 (range [0.5,1]), argmin calculation.

Figure 31: Error vs. ³ for a vector size of 32 (range [0.5,1]), argmin calcula-
tion.

37

Figure 32: Error vs. ³ for a vector size of 128 (range [0.5,1]), argmin calcu-
lation.

This trend is evident when we zoom in and examine the errors for different differ-
ences between points, as shown in Figure 33. The pattern holds for both lower and
higher values of alpha. Even when introducing less accuracy with lower alpha values,
resulting in higher approximation errors, we still observe that argmincomp

v consis-
tently outperforms argminmin

v across all differences and ³ values. This demonstrates
the robustness of argmincomp

v in calculating the argmin of a vector.

Figure 33: Error vs. difference for different ³ values, argmin calculation.

38

The characteristics of the mask created during computations are responsible for
the variations in these outcomes. In an ideal scenario, we would like to observe a
mask with a perfect binary distribution, meaning that there are only zeros and one
1. This is rarely the case, though, particularly when ³ is lower.

The two methods produce masks with different distributions. We have observed
that argmincomp

v creates a mask with a distinct peak, which is advantageous for argmin
calculations. However, if the peak is incorrectly positioned, it can result in a higher
error for the min calculation. On the other hand, argminmin

v results in a flatter
distribution, increasing the likelihood of the peak being at the wrong index in the
mask. This is less effective for argmin, as the position of the peak is used in the
calculation, but it will result in less error for the min calculation. This is because the
min calculation relies on the dot product of the mask with the vector, divided by the
L1 norm. Therefore, the position of the peak matters less as long as it is within the
flattened distribution, especially when the distance between points is decreased. This
results in more equidistant points within the same range.

Below is an example of two masks produced by the two versions of the algorithm,
as shown in Figure 34, with an alpha value of 3.32. It can be observed that the figure
has a broken x-axis, as all elements from index three onwards have a value of zero.
The algorithm using the comparison function shows a more distinct peak compared
to the algorithm using the min function. Furthermore, the peak for the algorithm
using the min function is located at index two instead of index one.

If we were to use this mask, the ideal outcome for the algorithm would be for
the calculated argmin to return an index of 0, with the actual minimum value being
0.5. When applying the algorithm and using the comparison function to determine
the argmin of a vector, the position of the distinct peak allows for a perfect result.
However, when determining the true minimum value, mincomp

v provides a value of
0.435022047, while minmin

v yields 0.555267717. In comparison to mincomp
v , minmin

v

produces a lower error for the computation of the minimum value, even though it
may result in a less distinct peak and an incorrect peak position.

Figure 34: Two masks produced by the algorithm for calculating the (arg)min
when using the comparison and min function for ³ = 3.32.

The results demonstrate that both approaches have their trade-offs. While using
the min function may lead to a slight error when stabilizing at higher ³ values, it is
more resilient to small deviations when calculating the minimal value. On the other
hand, utilizing the comparison value yields better performance in argmin calculations
due to its sharper peaks in the mask distribution. However, it may not be as accurate
in min calculations, particularly if the mask’s peak is not correctly positioned. These
findings suggest that the specific application and the importance of minimizing errors

39

in either min or argmin computations should dictate the chosen approach.

4.4 Conclusion

To improve robustness, we have conducted a thorough investigation and experimental
evaluation in this section of the modifications to the algorithms for calculating the
(arg)min of a vector. The suggested changes offer alternatives to utilizing the compar-
ison function by directly integrating the max and min functions. Our investigations
have revealed that while there may be a slight inaccuracy for larger values of ³, using
the min function turns out to be more resilient when calculating the min of a vector
for smaller differences between points (below 0.03) and results in smaller final errors.
On the other hand, the comparison function performs better in argmin calculations
due to its distinct peak in the mask distribution, but it is less precise when calculating
the min.

As previously discussed, these results will also apply to calculating the (arg)max
of a vector using the comparison and max functions. The calculation of argmax will
still favor the algorithm using the comparison function, as it will result in a more
distinct peak in the mask. However, the calculation of the actual minimum value will
favor the use of the max function.

Therefore, while our algorithm, which utilizes the max or min function, is more
robust for calculating the minimum of an encrypted vector, it is less robust than the
algorithm developed by Mazzone et al., which uses the comparison function, when
calculating the argmin of an encrypted vector. These results highlight the inherent
trade-offs in selecting an algorithm: the comparison approach excels in positional
accuracy, while the algorithm using the min function prioritizes stability in value
calculations.

40

5 Related Work

The potential of FHE to enable computations on encrypted data without the need for
decryption has been extensively studied. Among the various FHE schemes, the CKKS
encryption scheme [10] is widely utilized for privacy-preserving machine learning and
encrypted data analytics due to its ability to perform approximate arithmetic on both
real and complex numbers.

Approximating non-continuous functions in FHE poses significant challenges due
to the trade-off between computational overhead and precision loss. Previous research
[18, 5] has utilized polynomial approximations to achieve accurate and efficient eval-
uations of such functions. The paper “Algorithms in HElib” presents a collection of
efficient algorithms implemented within the Homomorphic Encryption Library (HE-
lib), with a focus on optimizing operations such as bootstrapping and key-switching
for improved performance in homomorphic encryption [18]. It introduces techniques
for compactly handling ciphertexts and demonstrates the practical feasibility of us-
ing homomorphic encryption for complex computations. Another paper, written by
Boura et al. [5], introduces CHIMERA, a hybrid framework that combines differ-
ent Ring-LWE-based FHE schemes to leverage their respective strengths. It explores
techniques for enhancing efficiency and scalability in homomorphic encryption while
maintaining strong security guarantees. However, these methods often involve trade-
offs between computational depth and approximation accuracy, which can limit their
practical applicability in resource-constrained settings.

The Minimax approximation strategy has emerged as a powerful framework for op-
timizing polynomial approximations [14]. Despite its extensive application in various
computational fields, minimax approximation has received limited attention in FHE,
particularly for optimizing composite polynomial approximations of the sign func-
tion. This underutilization motivates the present investigation into minimax-based
methods to enhance both efficiency and accuracy in CKKS-based computations.

At the same time, a significant amount of effort has been dedicated to devel-
oping efficient algorithms for handling encrypted data, with a particular focus on
sorting and order statistics. These algorithms often prioritize reducing comparison
depth. For example, Hong et al. [19] achieved a comparison depth of O(k log2kN)
in CKKS by utilizing k-way sorting networks, resulting in improved efficiency for
floating-point numbers. Similarly, Lu et al. (PEGASUS) [23] implemented Bitonic
Sort after transitioning from CKKS, taking advantage of FHEW’s efficient look-up
tables [13]. Additionally, Léo Ducas and Daniele Micciancio introduced a highly ef-
ficient bootstrapping method for FHE in FHEWs, achieving bootstrapping in under
a second. A key innovation of FHEW is its use of efficient homomorphic evaluation
of look-up tables, allowing for the rapid execution of arbitrary Boolean gates while
effectively managing noise. This significantly enhances the practicality of FHE for
complex computations.

Minimizing approximation errors and noise is a critical area of study in FHE
calculations. The specific subject of studies, as seen in [7, 20, 21], is the approxi-
mation error caused during operations on encrypted data. In their paper, “Efficient
Homomorphic Comparison Methods with Optimal Complexity,” Cheon et al. propose
new methods for performing comparisons in homomorphic encryption with optimal
complexity [7]. These techniques leverage minimax approximation and optimized
polynomial evaluation to efficiently perform comparisons, significantly improving the
practicality of comparison operations on encrypted data. In their research, Eunsang
Lee et al. introduce a method for approximating the sign function using composite
polynomials optimized through the minimax framework [20]. This approach enables
efficient and accurate homomorphic comparison operations, particularly within the
CKKS scheme, by leveraging the Remez algorithm to minimize approximation er-
rors and enhance performance. Additionally, in another work, Eunsang Lee et al.
present advancements in optimizing homomorphic comparison algorithms specifically
for the RNS-CKKS scheme [21]. This work introduces techniques to enhance the

41

computational efficiency and precision of comparison operations by leveraging RNS
optimizations, making homomorphic encryption more practical for secure data anal-
ysis.

Advancements in FHE methods have greatly reduced errors caused by noise, en-
cryption, and decryption. Notable examples that utilize cutting-edge techniques to
improve computational accuracy and robustness include HEAAN [10], which intro-
duces an approximate homomorphic encryption scheme optimized for arithmetic op-
erations on real numbers. RNS-CKKS [8] extends the CKKS scheme by incorporating
RNS techniques for improved efficiency and scalability. Another noteworthy example
is TFHE [12], a fast and flexible FHE scheme over the torus that achieves high-speed
gate bootstrapping.

Our research aims to bridge gaps in the literature by developing efficient and ro-
bust algorithms for encrypted computations. This work advances the state-of-the-art
in encrypted calculations by integrating minimax approximations and investigating
robustness properties.

42

6 Future Work and Limitations

This section discusses the limitations of the current research and suggests potential
avenues for future studies. Our goal is to present a well-rounded view of the scope
and significance of our findings, as well as to propose potential directions for further
exploration. This will serve as a guide for advancing the research presented in this
thesis. By the end of this section, readers will have a comprehensive understanding
of the research, its limitations, and the potential for further development based on its
contributions.

In this thesis, the focus was on enhancing the efficiency and robustness of algo-
rithms for ranking, order statistics, and sorting within CKKS encryption. However,
the research encountered various limitations that restricted its scope and outcomes.
Due to time constraints, certain research goals had to be prioritized, leading to a lim-
ited exploration of the applicability of the Composite Minimax approximation method
to other non-continuous functions beyond the sign function. As a result, a research
question had to be scrapped.

The use of a specific CKKS encryption scheme implementation may have facil-
itated targeted analysis, but it could also have limited the generalizability of the
findings. While this approach made targeted analysis and experimentation more
manageable, it may have restricted the applicability of the results to other CKKS
implementations or modifications. Additionally, any issues with this particular imple-
mentation could have influenced the results. However, using the same implementation
for all experiments ensured that any potential measurement inconsistencies were sys-
tematic rather than arbitrary. It should also be noted that the complete original code
base for the Composite Minimax approximation was inaccessible for this research.
As a result, a custom implementation of the Multi-Interval Remez algorithm had
to be developed, which could have introduced discrepancies compared to the results
achievable with the original code.

Furthermore, the accuracy of the approximations presented in this thesis was
greatly influenced by certain parameters, such as the number of significant digits used
in the approximation methods. However, due to time limitations, further investigation
into optimal parameter settings was not pursued. Nevertheless, extensive testing was
conducted to ensure that appropriate values were chosen.

The scope of the analysis was limited to the application of the two approximation
methods to Mazzone et al.’s ranking and order statistics algorithms [24]. This focus
excluded the consideration of other potential strategies for calculating ranking, order
statistics, and ranking, which could have potentially provided additional insights and
advantages.

By acknowledging these limitations, we aim to not only highlight areas for improve-
ment but also place the results that were achieved more in perspective. Furthermore,
it can also be used to establish a foundation for future research.

This thesis, along with its conclusions and limitations, suggests several promising
directions for future research. One potential avenue for further exploration is to
extend the concept of robustness as it was examined within the framework of the
ranking algorithm. For instance, investigating the behavior of sorting algorithms
when dealing with equal or closely spaced elements could provide valuable insights
into their reliability and potential for improvement.

The Composite Minimax approximation approach can be extended to directly
approximate non-continuous and non-polynomial functions, such as the indicator
function. This would greatly enhance the method its versatility and applicability
to a wider range of mathematical functions and real-world scenarios. It would also
be beneficial to explore the possibility of generalizing the approach, as currently, the
Multi-Interval Remez approximation approach can only approximate certain functions
and cannot calculate optimal degrees. Expanding the second algorithm to include ad-
ditional functions would greatly improve its applicability, resulting in increased time
efficiency and accuracy for a wider range of algorithms, rather than just those using

43

the sign function or its immediate transformations (e.g., the comparison function).
In addition to extending the Composite Minimax approximation methods to work

with other functions, we can also observe its impact when using it to approximate the
sign function in other algorithms. While its behavior in ranking computations is well
understood, further analysis in other algorithmic paradigms and tasks could provide
valuable insights. This would allow us to determine if the same benefits are seen in
different scenarios.

By applying Composite Minimax approximation with various CKKS implementa-
tions, we can gain insights into their compatibility and generalizability. These efforts
would aid in identifying the advantages and drawbacks of different CKKS implemen-
tations. It is important to note that these algorithms may not use the same methods
for evaluating polynomials as the CKKS implementation of OpenFHE, which could
result in different polynomial evaluations and potentially lead to the selection of a
different optimal composite polynomial.

Another crucial area of research is the formalization of the definition of robustness
in FHE. The theoretical foundations and practical relevance of this study could be
enhanced by establishing a precise definition and methodology for evaluating the
robustness of FHE methods.

Furthermore, the exploration of how to optimize the parameter selection for the
indicator function in the revised minimum calculation algorithm. This function checks
if a value falls within a given range, which is dependent on the difference between val-
ues in a database. There are various ways to control this, such as setting a maximum
precision for the data in the database. Exploring the most effective methods for con-
trolling variables like this to achieve the best results is a crucial aspect that should
be investigated in real-world applications.

Lastly, putting these techniques to the test in real-world applications would pro-
vide valuable insights and further confirmation of the results observed in this study.
Possible fields for implementation include encrypted data analysis, safe multiparty
computation, and privacy-preserving machine learning. By applying these methods
in practical scenarios, we can better understand their strengths and limitations, which
can inform future optimizations.

44

7 Conclusion

This thesis aims to advance the development of sorting, ranking, and order statis-
tics algorithms within the CKKS encryption scheme. These algorithms are crucial
for privacy-preserving applications such as encrypted machine learning, secure cloud
computing, and confidential data analysis. In order for these applications to oper-
ate effectively under the constraints of homomorphic encryption, robust algorithmic
solutions are necessary. Therefore, the main goal of this thesis was to increase the ro-
bustness and efficiency of these algorithms, making them more practical for real-world
use.

A key focus of this research was the sign function, which plays a central role
in algorithms performing ranking, order statistics, and sorting in CKKS encryption.
The sign function enables essential comparisons and evaluations, making it a crucial
component of these algorithms. Unfortunately, the sign function cannot be evaluated
directly over a ciphertext in CKKS and has to be approximated using a (compos-
ite)polynomial. So, to improve the performance of the sign function, we explored and
compared two distinct methods for approximating it: the Composite Minimax approx-
imation algorithm and the Tchebycheff approximation. By evaluating the trade-offs
in time efficiency and accuracy between these two methods, we were able to gain in-
sight into the practical implications of adopting either approach in privacy-preserving
computations.

This thesis not only explores the approximation of the sign function, but also
introduces a redesigned algorithm for calculating the (arg)max or (arg)min of a vec-
tor. This improved method builds upon the work of Mazzone et al. [24] and aims to
enhance robustness in the presence of approximation errors. Instead of using a com-
parison function, we directly use the max or min function, depending on whether the
(arg)max or (arg)min value of a vector is being calculated. This redesign is specifically
targeted at reducing the impact of approximation errors in discontinuous areas of the
function being approximated, ultimately improving the robustness of the algorithm.
As we know, approximating a non-continuous function using a continuous polynomial
will inevitably introduce some degree of error. Therefore, this refinement addresses
specific challenges encountered in encrypted environments, ultimately contributing to
more stable and reliable operations within the CKKS framework.

We make a significant contribution to the field of privacy-preserving computation
by offering novel advancements within the context of the CKKS encryption scheme.
The implementation of the minimax approximation algorithm for the sign function,
which is a crucial operation for supporting sorting algorithms, order statistics, and
ranking, is the main focus of these contributions. This implementation includes several
key improvements, such as optimized polynomial evaluation and error reduction, and
will be made available as open-source to encourage further research. The contributions
can be summarized as follows.

1. Adaptation and implementation of the Multi-Interval Remez algorithm in Python
to efficiently compute composite minimax polynomials.

2. Implementation of algorithms for computing comparison and max functions,
specifically designed for use within the CKKS encryption scheme.

3. Development of a pipeline to handle all necessary setup operations, including
measurements required for optimal polynomial degree selection.

4. Construction of a pipeline for determining optimal polynomial degrees, approx-
imating the sign function using Composite Minimax algorithms, and evaluating
its performance on CKKS-encrypted data using the OpenFHE library.

This study not only implemented new techniques but also analyzed the accuracy
and efficiency of composite minimax polynomials compared to Tchebycheff polynomi-
als. The results offer valuable insights into the trade-offs between these two strategies

45

and provide recommendations for improving algorithmic techniques in CKKS-based
applications.

Additionally, the thesis presents a redesigned algorithm for calculating the (arg)min
and (arg)max of vectors in encrypted settings. By replacing the traditional compar-
ison function with the max or min function, this approach aimed to improve the
robustness and reliability of the algorithm. The redesigned method was thoroughly
evaluated in terms of time efficiency and final error, with comparisons made against
the original method using the comparison function. These findings contribute to a
more profound understanding of how algorithmic adjustments can enhance the per-
formance of operations in encrypted environments.

To support our claims, we conducted tests to demonstrate the superiority of our
proposed methodologies and implementations compared to the current approaches.
One significant finding was that composite minimax polynomials are more efficient
and less prone to errors than the Tchebycheff polynomial approach when approxi-
mating the sign function. This was particularly evident in terms of time efficiency,
as composite minimax polynomials consistently showed reduced time consumption
for maximum errors below 0.3. For example, the maximum observed reduction in
execution time was approximately 2088767 milliseconds (2089 seconds or 34 minutes)
for a maximum error of 0.00200. On average, the time difference was 154482 mil-
liseconds (2.5747 minutes) in favor of composite minimax polynomials. Additionally,
composite minimax polynomials had lower approximation error rates across all eval-
uated scenarios, further highlighting their advantages. Our tests also demonstrated
that the Composite Minimax approximation is more memory-efficient for maximum
errors below 0.009.

The evaluation of vector ranking confirmed the time efficiency and accuracy ad-
vantages of directly evaluating the sign function. When considering maximum errors
below 0.4, composite minimax polynomials outperformed Tchebycheff polynomials in
terms of time efficiency. The maximum observed time reduction was approximately
2201680 milliseconds (2201 seconds or 36 minutes) for a maximum error of 0.00200,
with an average difference in execution time of 204382 milliseconds (3.4 minutes) in
favor of composite minimax polynomials.

In terms of robustness, the performance of the algorithms varied depending on the
specific operation being performed. For the calculation of the minimum (min) of a
vector, the algorithm using the min/max function demonstrated greater robustness.
For example, when evaluating vectors with 128 points in the ranges [0.5, 1] and [0.6, 1],
the average differences in errors were 0.031190476 and 0.014428571, respectively, in
favor of the min/max function-based method. However, for the calculation of the
argument of the minimum (argmin), the comparison function-based algorithm proved
more robust. In this case, for vectors of size 8, 32, and 128, the average differences in
errors were 0.05, 0.3, and 1.75, respectively, in favor of the comparison function-based
method. Similar results can be expected when calculating argmax and max, as their
calculation only requires minimal changes to the algorithms. This shows that using
the max and min functions is more robust when calculating the max or min of a vector
while using the comparison function is more robust when calculating the argmax or
argmin of a vector.

These findings highlight the complex trade-offs involved in selecting optimal algo-
rithmic strategies for encrypted computations. They also underscore the importance
of tailoring these strategies to the specific requirements of the task, balancing effi-
ciency, accuracy, and robustness to achieve optimal performance in privacy-preserving
environments.

Despite its limitations, such as time constraints and reliance on a specific CKKS
implementation, this work lays the foundation for future research on efficient and
robust algorithms for ranking, order statistics, and sorting within CKKS encryption.
Future work could expand the Composite Minimax approximation method to other
non-continuous and non-polynomial functions, such as the indicator function, and
evaluate its performance across diverse algorithms and CKKS implementations. For-

46

malizing the concept of robustness within FHE and exploring practical applications,
such as privacy-preserving machine learning, could further enhance the theoretical and
real-world impact of this research. Additionally, addressing challenges like parameter
tuning for real-world scenarios would contribute to refining the proposed methods and
increasing their applicability.

In this study, we lay the foundation for future research aimed at enhancing the
robustness and efficiency of algorithms within FHE schemes. It illustrates the po-
tential of FHE in real-world applications by showing how algorithmic improvements,
such as the replacement of non-continuous functions with continuous counterparts
and the use of composite polynomials for sign function approximation, can maximize
performance and accuracy. This study lays the foundation for future research aimed
at enhancing the robustness and efficiency of algorithms within FHE schemes. this
is another test

References

[1] Ahmad Al Badawi et al. “OpenFHE: Open-Source Fully Homomorphic Encryp-
tion Library”. In: Proceedings of the 10th Workshop on Encrypted Computing &
Applied Homomorphic Cryptography. WAHC’22. Los Angeles, CA, USA: Asso-
ciation for Computing Machinery, 2022, pp. 53–63. isbn: 9781450398770. doi:
10.1145/3560827.3563379. url: https://doi.org/10.1145/3560827.
3563379.

[2] M. Albrecht et al. Homomorphic Encryption Security Standard. Tech. Rep.
Toronto, Canada: HomomorphicEncryption.org, Nov. 2018.

[3] M. R. Albrecht, R. Player, and S. Scott. “On the Concrete Hardness of Learning
with Errors”. In: Journal of Mathematical Cryptology 9.3 (2015), pp. 169–203.

[4] Frederik Armknecht et al. “A Guide to Fully Homomorphic Encryption”. In:
Journal of Cryptology 37.1 (2024). University of Mannheim and NTNU, pp. 1–
45. doi: 10.1007/s00145-023-09456-9. url: https://link.springer.com/
article/10.1007/s00145-023-09456-9.

[5] Christina Boura et al. CHIMERA: Combining Ring-LWE-based Fully Homo-
morphic Encryption Schemes. Cryptology ePrint Archive, Paper 2018/758. 2018.
url: https://eprint.iacr.org/2018/758.

[6] Hao Chen, Ilaria Chillotti, and Yongsoo Song. “Improved Bootstrapping for
Approximate Homomorphic Encryption”. In: Advances in Cryptology - EURO-
CRYPT 2019. Ed. by Yuval Ishai and Vincent Rijmen. Cham: Springer Inter-
national Publishing, 2019, pp. 34–54.

[7] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. “Efficient homomorphic
comparison methods with optimal complexity”. In: Advances in Cryptology–
ASIACRYPT 2020: 26th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Daejeon, South Korea, December
7–11, 2020, Proceedings, Part II 26. Springer. 2020, pp. 221–256.

[8] Jung Hee Cheon et al. “A Full RNS Variant of Approximate Homomorphic En-
cryption”. In: Lecture Notes in Computer Science. Springer International Pub-
lishing, 2019, pp. 347–368. isbn: 9783030109707. doi: 10.1007/978-3-030-
10970-7_16. url: http://dx.doi.org/10.1007/978-3-030-10970-7_16.

[9] Jung Hee Cheon et al. “A Full RNS Variant of the CKKS Scheme”. In: IACR
Cryptol. ePrint Arch. 2018 (2018), p. 931.

[10] Jung Hee Cheon et al. “Homomorphic Encryption for Arithmetic of Approxi-
mate Numbers”. In: Lecture Notes in Computer Science. Springer International
Publishing, 2017, pp. 409–437. isbn: 9783319706948. doi: 10.1007/978-3-319-
70694-8_15. url: http://dx.doi.org/10.1007/978-3-319-70694-8_15.

47

[11] Jung Hee Cheon et al. “Homomorphic Encryption for Arithmetic of Approx-
imate Numbers”. In: Advances in Cryptology – ASIACRYPT 2017. Ed. by
Takahiro Matsuda and Palash Sarkar. Vol. 10624. Lecture Notes in Computer
Science. Springer, 2018, pp. 409–437. doi: 10.1007/978-3-319-70694-8_15.

[12] Ilaria Chillotti et al. TFHE: Fast Fully Homomorphic Encryption over the
Torus. Cryptology ePrint Archive, Paper 2018/421. https://eprint.iacr.
org/2018/421. 2018. url: https://eprint.iacr.org/2018/421.

[13] Léo Ducas and Daniele Micciancio. “FHEW: Bootstrapping Homomorphic En-
cryption in Less Than a Second”. In: Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2015, pp. 617–640. isbn: 9783662468005. doi: 10.1007/978-
3-662-46800-5_24. url: http://dx.doi.org/10.1007/978-3-662-46800-
5_24.

[14] Charles F Dunkl and Yuan Xu. Orthogonal Polynomials of Several Variables.
Cambridge University Press, 2001.

[15] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Proceed-
ings of the 41st annual ACM symposium on Theory of computing. ACM. 2009,
pp. 169–178.

[16] Suyog Gupta et al. “Deep learning with limited numerical precision”. In: Proceed-
ings of the 32nd International Conference on International Conference on Ma-
chine Learning - Volume 37. ICML’15. Lille, France: JMLR.org, 2015, pp. 1737–
1746.

[17] Shai Halevi, Yuriy Polyakov, and Victor Shoup. “An improved RNS variant
of the BFV homomorphic encryption scheme”. In: Journal of Cryptology 32.1
(2019), pp. 36–66.

[18] Shai Halevi and Victor Shoup. “Algorithms in HElib”. In: CRYPTO 2014 (2014),
pp. 554–571.

[19] Seungwan Hong et al. “Efficient Sorting of Homomorphic Encrypted Data With
k-Way Sorting Network”. In: IEEE Transactions on Information Forensics and
Security 16 (2021), pp. 4389–4404. issn: 1556-6021. doi: 10.1109/tifs.2021.
3106167. url: http://dx.doi.org/10.1109/TIFS.2021.3106167.

[20] Eunsang Lee et al. “Minimax Approximation of Sign Function by Composite
Polynomial for Homomorphic Comparison”. In: IEEE Transactions on Depend-
able and Secure Computing 19.6 (2022), pp. 3711–3727. doi: 10.1109/TDSC.
2021.3105111.

[21] Eunsang Lee et al. “Optimization of Homomorphic Comparison Algorithm on
RNS-CKKS Scheme”. In: IEEE Access 10 (2022), pp. 26163–26176. issn: 2169-
3536. doi: 10.1109/access.2022.3155882. url: http://dx.doi.org/10.
1109/ACCESS.2022.3155882.

[22] Eunsang Lee et al. “Optimization of Homomorphic Comparison Algorithm on
RNS-CKKS Scheme”. In: IEEE Access 10 (2022), pp. 26163–26176. doi: 10.
1109/ACCESS.2022.3155882.

[23] Wen-jie Lu et al. “PEGASUS: Bridging Polynomial and Non-polynomial Eval-
uations in Homomorphic Encryption”. In: 2021 IEEE Symposium on Security
and Privacy (SP). 2021, pp. 1057–1073. doi: 10.1109/SP40001.2021.00043.

[24] Federico Mazzone et al. Efficient Ranking, Order Statistics, and Sorting under
CKKS. 2024. doi: 10.48550/ARXIV.2412.15126. url: https://arxiv.org/
abs/2412.15126.

[25] Theodore J. Rivlin. The Chebyshev Polynomials: From Approximation Theory
to Algebra and Number Theory. New York: Wiley, 1974.

[26] Abiy Tasissa. Function Approximation and the Remez Algorithm. https://
abiy-tasissa.github.io/remez.pdf. Accessed: 2025-01-06. 2023.

48

Appendix

Multi-interval Remez Approximation

Below you can find pseudocode for the full implementation of the multi-interval Remez
approximation algorithm used in this thesis. You might note that some algorithms
below some of the lines have the comment {library}. This is used to indicate that an
explanation of how to do this exactly is not given, but instead, we used a library to
do this. For example, in Algorithm 7 we solve the linear system of equations A · l = b,
and for this we use one of the solvers given by the mp math library.

49

Algorithm 7 Remez Algorithm for Function Approximation

Require: Function func : X → R, polynomial degree ndegree, intervals D =
[(a1, b1), (a2, b2), . . .], approximation parameter approximationParam

Ensure: Polynomial coefficients coeffs for a minimax polynomial with maximum er-
ror emax

1: Initialize n = ndegree + 1
2: Generate initial Tchebycheff points xpoints = generatePointsInRanges(D, n+1)
3: maxError = 0;
4: while true do

5: A = matrix of size (n+ 1)× (ndegree + 2)
6: for i = 0 to n do

7: A[i, ndegree + 1] = (−1)i+1

8: end for

9: vander = Tchebycheff Vandermonde matrix for xpoints and ndegree ▷ < libary
10: for i = 0 to n do

11: for j = 0 to ndegree do

12: A[i, j] = vander[i, j]
13: end for

14: end for

15: vector b = [func(x) | x ∈ xpoints]
16: det(A) = determinant of matrix A ▷ < libary
17: if det(A) = 0 then

18: Regularize A using Tikhonov regularization ▷ < libary
19: end if

20: l = solution the linear system A · l = b ▷ < libary
21: coefficients = l[: −1]
22: p(x) = TchebycheffEvaluate(coeffs, x) ▷ < libary
23: Define error function r(x) = p(x)− func(x)
24: Define vector extremePoints
25: secondDerivRx = second derivative of r(x) ▷ < libary
26: for (lower, upper) in D do

27: unFilteredExtremePoints = findExtremePointsSetup(r(x), lower, upper)
28: filteredExtremePoints = filterPosMinNegMax(unFilteredExtremePoints,

secondDerivRx, r(x))
29: extremePoints.append(filteredExtremePoints)
30: end for

31: optimalExtremePoints = findOptimalExtremes(extremePoints, ndegree, r(x))
32: errors = [|ri(x)| | x ∈ OptimalExtremePoints]
33: emax = max(errors)
34: emin = min(errors)
35: econdit =

emax−emin

emin

36: if econdit < approximationParam then

37: break

38: end if

39: xpoints = optimal_extremes
40: end while

41: return coeffs, emax

42:

50

Algorithm 8 Generate Tchebycheff Points, generatePointsInRanges

Require: lower limit lower, upper limit upper, Number of points n
Ensure: List of n Tchebycheff points in the range [lower, upper]
1: range = |upper− lower|
2: index = [1, 2, . . . , n]
3: points = []
4: for i in index do

5: x = 1
2

(

cos
(

2i−1
2n Ã

)

+ 1
)

· range + lower
6: Append x to points
7: end for

8: return points
9:

Algorithm 9 Find Extreme Points Setup findExtremePointsSetup

Require: Residual function derivative r′i(x), lower bound lower, upper bound upper
Ensure: List of extreme points extremePoints

1: Define step size sc = |upper−lower|
6000

2: Define precision l = 150 (bits)
3: extremePoints = findExtremePoints(r′i(x), lower, upper, sc, l)
4: return extremePoints
5:

Algorithm 10 Find Extreme Points findExtremePoints

Require: Residual function derivative r′i(x), interval [start, end], step size sc, preci-
sion l

Ensure: List of extreme points extremePoints
1: Initialize extremePoints = []
2: for x ∈ [start, end] with step size sc do

3: if isExtremePoint(r′i(x), x, sc) then

4: xl = refineExtremePoint(r′i(x), x, sc, l)
5: Append refined xl to extremePoints
6: end if

7: end for

8: return extreme_points
9:

Algorithm 11 Check if Point is an Extreme Point isExtremePoint

Require: Residual function derivative r′i(x), point x, step size sc
Ensure: Boolean indicating whether x is an extreme point
1: Compute mult = (r′i(x)− r

′
i(x− sc)) · (r′i(x+ sc)− r′i(x))

2: return mult f 0
3:

Algorithm 12 Refine Extreme Point to l-bit Precision refineExtremePoint

Require: Residual function derivative r′i(x), initial point x, step size sc, precision l
Ensure: Refined extreme point xi
1: Initialize xi = x
2: for k = 1 to l do

3: Define search range [xi −
sc
2k
, xi, xi +

sc
2k
]

4: Update xi as the argument that maximizes |r′i(x)| within the search range
using arg_max

5: end for

6: return xi
7:

51

Algorithm 13 Find Maximum Argument in a Range

Require: Search range searchRange, function f(x)
Ensure: Point best_x that maximizes f(x)
1: Initialize best_x = search_range[0]
2: Initialize maxVal = f(best_x)
3: for x ∈ searchRange do

4: Compute val = f(x)
5: if val > maxVal then

6: Update maxVal = val
7: Update best_x = x
8: end if

9: end forreturn best_x

Algorithm 14 Filter Positive Minimum and Negative Maximum Points filter-
PosMinNegMax

Require: Set of extreme points extremes, second derivative secDerivative, error
function diff(x)

Ensure: Filtered set of extreme points filteredExtremes
1: Initialize filteredExtremes = []
2: for extreme ∈ extremes do

3: Compute concav = concavity(secDerivative, extreme)
4: if concav · signFunction(diff(extreme)) = 1 then

5: Append extreme to filteredExtremes
6: end if

7: end forreturn filteredExtremes

Algorithm 15 Determine Concavity

Require: Second derivative sec_derivative, point x
Ensure: Concavity indicator (1 for concave, −1 for convex, 0 else)
1: Compute secondDerivativeAtX = secDerivative(x)
2: if secondDerivativeAtX < 0 then return 1 ▷ Concave
3: else if secondDerivativeAtX > 0 then return −1 ▷ Convex
4: elsereturn 0 ▷ Inflection point
5: end if

52

Algorithm 16 Choose New Extreme Points findOptimalExtremes

Require: Set of extreme points B, polynomial degree d, error function r(x)
Ensure: Refined set of points B satisfying alternating and maximum absolute sum

conditions
1: Initialize i = 0
2: while i < |B| − 1 do

3: if sign_func(r(B[i])) = sign_func(r(B[i+ 1])) then

4: if |r(B[i])| < |r(B[i+ 1])| then

5: Remove B[i] from B
6: else

7: Remove B[i+ 1] from B
8: end if

9: else

10: Increment i by 1
11: end if

12: end while

13: if |B| > d+ 3 then

14: Compute T = sorted([(|r(B[i])|+ |r(B[i+ 1])|, i, i+ 1) for i = 0, . . . , |B| − 2])
15: end if

16: while |B| > d+ 2 do

17: if |B| = d+ 3 then

18: if |r(B[0])| < |r(B[−1])| then

19: Remove B[0] from B
20: else

21: Remove B[−1] from B
22: end if

23: else if |B| = d+ 4 then

24: Add (|r(B[0])|+ |r(B[−1])|, 0, |B| − 1) to T and sort T
25: Let (v, i1, i2) = T [0]
26: Remove B[max(i1, i2)] and B[min(i1, i2)] from B
27: else

28: if T [0][1] = 0 or T [0][2] = |B| − 1 then

29: if T [0][1] = 0 then

30: Remove B[0] from B
31: else

32: Remove B[−1] from B
33: end if

34: else

35: Let (v, i1, i2) = T [0]
36: Remove B[max(i1, i2)] and B[min(i1, i2)] from B ▷ < Library
37: end if

38: end if

39: Recompute T = sorted([(|r(B[i])|+ |r(B[i+1])|, i, i+1) for i = 0, . . . , |B|−2])
▷ < libary

40: end while

41: return B
42:

53

	Introduction
	Background
	Mathematical and Algorithmic Definitions
	Vector and Matrix Notation
	FHE and CKKS
	Approximation of Non-Polynomial Functions
	Algorithms For Ranking, Order Statistics, and Sorting

	Sign function approximation
	Approximation Using Composite Minimax Polynomials
	Experimental Setup
	Experimental Results & Discussion
	Conclusion

	Calculating (Arg)Min and (Arg)Max
	Modification of Algorithm For (Arg)Min and (Arg)Max
	Experimental Setup
	Experimental Results & discussion
	Conclusion

	Related Work
	Future Work and Limitations
	Conclusion

