
Modeling and analysis of the board game Mythic Battles: Pantheon
through Markov Decision Processes
BRAM OTTE, University of Twente, The Netherlands Supervisor: Milan Lopuhaä-Zwakenberg

Markov Decision Processes (MDP) have various use cases, but there is a
limited amount of clear examples to test the tools used to model them
on. We will be modeling and analysing the board game Mythic Battles:
Pantheon. Board games Fit these models particularly well and Mythic Battles
is particularly interesting due to its complexity. We model a small part of
the game namely the normal attack using the probabilistic model checker
PRISM.

In turn, we use PRISM to generate optimal strategies, that optimize for
different objectives. Additionally, we will consider some naive strategies.
Then we analyse those strategies by comparing their general performance
and compare a few example cases where they differ.

Through the modeling we find that it’s feasible to model a part of mythic
battles and there is still room to expand the model before it becomes too big
to handle. Although we do hit some limits in the tools and find workarounds
to them. In the analysis we find the strategy for maximal expected damage
is often equivalent to a naive strategy of re-throwing every dice.

Additional Key Words and Phrases: PRISM, PRISM-games, board games,
Markov Decision Process, Mythic Battles: Pantheon

1 INTRODUCTION
MDPs are probabilisticmodels which alsomodel the different choices
that can be made. These models can be represented as a nondeter-
ministic finite state machine where each state can have different
actions associated with it each having transition with probabilities
of going to a next state. In figure 1 we can see the states represented
by S0 through S2 and the actions reprented by a0 and a1. MDPs
are interesting because they can be used to model many things and
have been used in a variety of fields from robotics to biology [4].

There has been limited research on modeling board games using
MDP, further more there is a limited number of examples to test
the tools for working with these models on. Board games fit these
models nicely because they are turn-based and have very clear rules
and probabilities which makes it easier to check whether the models
are accurate.
To get useful insights out of MDPs we use so-called properties

which define an objective and a metric to prompt the model.
As these models become more complex they very quickly become

infeasible to manually determine optimal strategies for, thus we use
computer programs to evaluate the properties, one of such programs
is PRISM [5]. PRISM also defines its own language for describing
these models and properties. MDPs primarily grow based on the
possible states of the model, since incorporating more aspects into a
model tends to have a multiplicative impact on the number of states,
these models tend to increase exponentially in size. For example if
your model includes the location of a board piece, and you also add
a health total to it these two things can change independently of

TScIT 42, January 31, 2025, Enschede, The Netherlands
© 2024 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

each other thus resulting in the number of states being the number
of positions times the number of possible health values. So the
challenge in analysing these models is to have to analyse as little
states as possible, for example by having fewer states in the first
place or by combining states.
The game Mythic Battles: Pantheon is particularly interesting

because of how many choices the player gets to make. Mythic bat-
tles is a complex game with many moving pieces, but some of its
mechanics are similar to RISK, but its dice mechanic involves more
choices as you can discard and or rethrow some dice. As Mythic Bat-
tles is such a complicated game we will focus on this dice mechanic
when performing a normal attack.

To guide our research we have the following high level research
goals:

(1) What can we learn about the game by modeling it?
• What types of strategies are encouraged by the game de-
sign?

(2) How can we effectively model a part of Mythic Battles: Pan-
theon using PRISM?

(3) What can we learn about MDPs and the tools used to model
them?

Fig. 1. Markov Decision Processes - By waldoalvarez - Own work, CC BY-SA
4.0, https://commons.wikimedia.org/w/index.php?curid=59364518

2 RELATED WORK
A variety of board games have already been modeled using simi-
lar methods, some early examples are Monopoly [1], RISK [8] and
blackjack [13]. Some more recent examples are Snakes and ladders
[10], Hobbit Adventure and Incan Gold [7]. Notably Hobbit Adven-
ture and RISK have some similarities with Mythic Battles: Pantheon.
In these games you roll a set of dice repeatedly in order to defeat

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


TScIT 42, January 31, 2025, Enschede, The Netherlands Bram Otte

enemy units. In Tan’s analysis of RISK [12] he answers for different
initial army sizes what the probability is of capturing a territory and
also what the expected losses are. In Mocanu’s analysis of Hobbit
Adventure [7] he answers given optimal strategy what the maximal
probability is to inflict different minimum damage values, Addi-
tionally he determines the maximum expected value and based on
the optimal strategy what dice the player is encouraged to re-roll.
His analysis of Incan Gold is interestingm because when he tries
to add more players to the model it became infeasible for him to
analyse. This is because the number of states explodes when adding
too many things into the model. In order to evaluate bigger models
we either need exponentially better hardware, have less resource
intensive tools or discard, combine or approximate large portions
of the state of the model since these models mostly grow with the
number of states.
There are several tools for working with these models such as

PRISM [5] and Storm [2]. Both of these tools are very capable and are
in active development, there are also more tools but these generally
performworse or don’t support the same features. Storm is generally
a lot faster than PRISM but its relatively new tool and does not
directly support SMG’s which PRISM does support via PRISM-games
[6].

These probabilistic model checking tools have a wide range of ap-
plications such as in energy grid management [3], security protocols,
robotics and even biology [4]. Another interesting example is the
use of these models to generate Digital circuits from specification
like Kwiatkowska et al.’s use of PRISM to generate transistor logic
[11]. This is in no way a complete list, in general applications where
uncertainty and decision-making needs to be formally modelled
these tools can be very helpful.

3 PRISM
PRISM is a probabilistic model checking tool, which allows us to
create models such as MDPs in the PRISM modeling language and
analyse this model by prompting prism with queries also called
properties. Additionally, PRISM also allows us to generate strategies
that optimize for maximizing or minimizing these queries.
The PRISM modeling language allows us to define the behavior

of the model over many states using conditional guards instead
of having to enumerate all states, actions and transitions of the
MDP. This becomes very important as models quickly gain a lot of
states when more things are added and it also makes it easier to
understand the model.

A model represented in the PRISM modeling language consists of
a set of modules, variables, constants and rewards. Each module can
contain its own variables and commands. Figure 2 shows a small
example of the different parts that make a module. These commands
represent the behavior of the model while the variables represent
the state. Each command consists of a guard, which is a condition
determining when the action should be executed, followed by a set
of actions with their associated probability, each action consists of
updates to the variables these updates can be arbitrary expressions.
Modules by default represent the possibility of updates happen-

ing in arbitrary orders, by adding action labels. Commands with
the same label are synced up and will update simultaneously. For

the purpose of our research we will always label the guards since
the steps of the game need to happen in the same order every time.
Modules can be used to model sepperate espects of a model sepper-
ately instead of having to make sure that each guard handles all
the espects. Additionally, a module can be used as a template for
another model allowing to easily repeat logic over multiple entities.

If there are multiple actions that can be taken from a state this is
simply represented by having overlapping guards within the same
module, the presence of such choices is also called nondeterminism.
Guards are overlapping if they are true for the same state for example
the guards 𝑥 > 10 and 𝑥 > 11 overlap when 𝑥 > 11.

A strategy is a specific resolution of the nondeterminism, in case
of prism this results in picking one of the actions when the quards
overlap. A strategy can be created based on different metrics or
queries, these can be defined via PRISM properties.

Fig. 2. PRISM command

1 module Example
2
3 variable: [min_value .. max_value] = initial_value;
4
5 [action] guard -> prob_1 : update_1
6 + ...
7 + prob_n : update_n;
8 endmodule

An extension to MDPs are Turn-base Stochastic Multiplayer
Games (SMG) which allow for multiple players to be modeled that
might have opposing goals.

4 MYTHIC BATTLES: PANTHEON
First we will introduce the game rules with an example of a normal
attack then we will formulate research questions followed by a brief
overview of our approach and explanation of the model, finally we
will analyse the model and answer the research questions.

4.1 Game Rules
Mythic battles: Pantheon is a miniatures war-game, themed after
Greek mythology. In this game each player chooses a divinity and
units for its army, the goal is to defeat all enemy armies (there is
a second win condition, but we will not cover this). The game is
played with 1 to 4 players. At the start of the game, players have

2



Modeling and analysis of the board game Mythic Battles: Pantheon through Markov Decision Processes TScIT 42, January 31, 2025, Enschede, The Netherlands

to choose a board and the units for their army. A player’s army
comprises one divinity and any number of other units depending on
how they spend their recruitment points. These units have different
stats (offense, defense, range, speed and available powers) which can
change depending on their vitality. For example most units’ stats
will generally decrease, and a berserker unit might gain offense
when damaged. The stats of a unit are tracked on their dashboard
which has a slider showing the current stats.

Each round the player can preform a limited number of actions
such as moving around their piece or attacking. Initially we will be
modeling the normal attack, which has the following 4 faces:

(1) Effective value calculation:
The effective offense of the attacker and defense of the de-
fender are determined.

(2) First assault:
The attacker throws a number of dice equal to their effective
offense, each die is a 6 sided die with value 0 through 5 and
each die that lands on a 0 is immediately discarded.
The attacker can choose to discard more dice, for each die
they discard they can increase the value of another (not yet
discarded) die by one, we will also refer to this process as
boosting a die. Each die that matches or exceeds the defense
of the defender is placed on the attacker’s dashboard and will
inflict a wound.

(3) Second assault:
For each die that has a value of 5, the attacker can choose to
re-roll it. If the re-rolled die lands on a value of 0 it, including
its previous value, is discarded. Otherwise, the value the die
landed on will be added on-top of its previous value.
Again the attacker can choose to discard more dice, for each
die they discard they can increase the value of another (not yet
discarded) die. Each die that matches or exceeds the defense
of the defender is placed on the attacker’s dashboard and will
inflict a wound.

(4) Wounds:
For each wound inflicted the defender will lose 1 vitality
point, this will generally decrease their stats and when a
unit’s vitality reaches 0 the unit is destroyed.

If the attack was not ranged, the attack was not a retaliation, the
defender survived, has not yet retaliated in this turn and discards
one activation card, they can retaliate. When a unit retaliates they
can preform a normal attack on their attacker as a response.

4.1.1 Example. For example: Hoplites attacks Leonidas, Hoplites’
has an effective offense of 4 and Leonidas an effective defense of 7
and a vitality of 6.
In their first assault the attacker throws 4 dice: a 5, 4, 2 and 0.

5 4 3 0

The 0 die is discarded leaving them with a 3, 4 and 5.
5 4 3

They choose to discard the 3 to bring the 4 up to a 5.

5 4+1=5 3

For their second assault they choose to re-roll 2 dice, both land on 1
resulting in a value of 6.
5+1=6 5+1=6

In order to inflict a wound they need dice with a value of at least 7,
so they choose to discard one of the sixes to make a seven which is
then put on the attacker’s dashboard and will inflict a wound.
6+1=7 6

One wound is inflicted on Leonidas decreasing their vitality from 6
to 5.

4.2 ResearchQuestions
Before we go into modeling the game we devise the following set
of research questions:

(1) What strategies maximize the expected damage?
(2) For different offense and defense values what is that expected

damage?
(3) What is the strategy that maximizes the probability of reach-

ing a minimum amount of damage?
(4) For different offense, defense and minimum damage what

is the probability of achieving at least a minimum amount
damage?

(5) What can we take away from these strategies while playing
the game?

(a) When is the player encouraged to discard a die?
(b) When is the player encouraged to take a die into second

assault?

4.3 Model
1 The model consists of 2 modules, a Time module responsible for
ensuring the different steps of the model are executed in the right
order and a Dice module responsible for preforming the steps and
calculating the results of the dice. The model will preform the attack
in different steps corresponding to the labels: first assault, first count,
first boost, first discard, second assault, second count and second
boost.

1For full source code refer to our GitHub [9].

3



TScIT 42, January 31, 2025, Enschede, The Netherlands Bram Otte

Fig. 3. Used module structure

1 mdp
2
3 const int max_attack = 10;
4 const int attack;
5 const int defense;
6
7 module Dice
8 // Buckets of dice with the same value 1 through 10
9 d1: [0.. max_attack] init 0;
10 ...
11 d10: [0.. max_attack] init 0;
12 ...
13 endmodule
14
15 module Time
16 // The current step of the process
17 r: [0..8] init 0;
18 // How many times to repeat an operation dice for a step
19 // For example how many dice to throw
20 i: [0.. max_attack] init attack;
21 ...
22 endmodule

One of the more important things to keep in mind when modeling
is how you represent its state. There are multiple ways to represent
equivalent states, like we represent the values of the dice as buckets
but you could also model each die as its own module making their
state multiply, while with the buckets the order the dice are thrown
in is discarded from the state. The buckets result in having

(5+𝑁
5
)

states while having each die modeled individually results in 6𝑁
states for N dice. For 8 dice this is 1287 states for the buckets and
1 679 616 states which is significantly more, and the difference will
only become larger as more dice are modelled. However, certain
things will not affect the number of states as PRISMwill only process
states that are reachable from the specified initial state. For example
immediately handling wounds in the assaults or first putting them
in a dice bucket does not increase the number of states eventhough
it adds an extra variable to the state these states are corrilated such
that no remaining state is left over. It is however important to be
careful not to have too much state that does not contribute to the
model.

Fig. 4. Multiple Dice modules

1 module Dice
2 d1: [0..6] init 0;
3 ...
4 endmodule
5
6 module Dice2 = Dice1 [d1 = d2] endmodule
7 ...

In the first assault 5 a number of dice with the value 0 through 5
are rolled and are put into buckets corresponding to their value. We
group the dice together in buckets in order to more easily get the
lowest die or highest die. By doing this we do not only make the
following steps easier, but we also greatly reduce the state space by
not taking into account the order that the dice are in.

Fig. 5. First assault

1 module Dice
2 ...
3 [first_assault] r=0 & d1+d2+d3+d4+d5+wounds < max_attack
4 -> 1/6: true
5 + 1/6: (d1' = d1 + 1)
6 + ...
7 + 1/6: (d5' = d5 + 1);
8 ...
9 endmodule
10
11 module Time
12 r: [0..8] init 0;
13 i: [0.. max_attack] init attack;
14
15 [first_assault] r=0 & i > 1 -> (i'=i-1);
16 [first_assault] r=0 & i <= 1 -> (i'=attack) & (r'=1);
17 ...
18 endmodule

Then in first count the number of non-zero dice are counted in
order to know in the next step how many dice we can discard to
boost into the second assault. Then in first boost the player gets
to choose how many dice to take into the second assault put these
aside into their own bucket and count the number of dice that need
to be discarded ensuring we never discard more die than we have
left. Here we assume we always want to take the dice with the
highest value into the second assault.

Fig. 6. First boost

1 [first_count] r=1
2 -> (points ' = min(max_attack , d1+d2+d3+d4+d5));
3
4 // Choose to take highest die into second assault
5 [first_boost] r=2 & defense > 5 & points >= 5+1-5
6 & d5 > 0
7 -> (d5 '=d5-1)
8 & (points ' = points - (5+1-5))
9 & (reroll '=min(max_attack , reroll+1));
10 ...
11
12 // Choose to not take die into second assault
13 [first_boost] r=2 -> true;

Then in first discard the appropriate number of dice are discarded
to make this possible Here we assume we always want to discard
the dice with the lowest values first.

Fig. 7. Discard

1 [first_discard] r=3 & discard >0
2 & d1>0
3 -> (d1 '=d1-1) & (discard '=discard -1);
4 ...
5
6 [first_discard] r=3 & discard <=0 -> true;

Then in second assault the dice selected during first boost are
rerolled and put into their corresponding value bucket.

4



Modeling and analysis of the board game Mythic Battles: Pantheon through Markov Decision Processes TScIT 42, January 31, 2025, Enschede, The Netherlands

Fig. 8. Second assault

1 [second_assault] r=4 & reroll > 0
2 ->1/6: (reroll ' = reroll -1)
3 + ...
4 + 1/6: (reroll ' = reroll -1) & (d10 ' = d10+1);
5
6 [second_count] r=5 -> (points ' = min(max_attack ,
7 d1+d2+d3+d4+d5+d6+d7+d8+d9+d10));
8
9 [second_boost] r=6 & wounds < max_attack
10 & d9 > 0
11 & points >= 1+max(0, defense -9)
12 -> (d9 ' = d9 -1)
13 & (points '=points -(1+max(0, defense -9)))
14 & (wounds '=wounds+1);

Finally, in the second boost the number of inflicted wounds is
calculated. Here we assume we always want to boost dice with the
highest value first and discard dice with the lowest value.

Additionally, we define two rewards one that counts the number
of wounds (at the end end when r=7) one that count the number
of dice we take into the second assault (after boosting r=3). We
then make the following properties in order to answer our research
questions:

Fig. 9. Rewards

1 rewards "wounds"
2 r = 7: wounds;
3 endrewards
4
5 rewards "reroll"
6 r=3 & die_i=1: reroll;
7 endrewards

Fig. 10. Properties

1 R{"reroll"}max=? [F r=8];
2 R{"reroll"}min=? [F r=8];
3 R{"wounds"}max=? [F r=8];
4 R{"wounds"}min=? [F r=8];
5 Pmax=? [F r=8 & wounds >=1];
6 ...
7 Pmax=? [F r=8 & wounds >=10];

4.4 Results
For our first two research questions: "What strategies maximize the
expected damage?" and "For different offense and defense values
what is that expected damage?", we generate strategies based on the
max wounds property 10. This results in a very large file containing
the action the strategy will take for each state. Their sheer size
makes it difficult to analyse. To address this instead of looking at
all the actions of the strategy we look at how it preforms compared
to some naive strategies. In figure 11 we plot the optimal strategy
(rmax wounds) along with a strategy that takes all possible dice
into the second assault (rmax reroll) and one which takes none
(rmin reroll). Additionally, we also plot the worst possible strategy.

From this we can see that on average taking all possible dice into
the second assault preforms very similarly to the optimal strategy.
Similarly, not taking any dice into the second assault is close to the
worst strategy.

However, the strategies do differ in some key ways, specially
there are situations where re-throwing every die is not optimal
and where not re-throwing anything is not the worst. This also
goes some ways into answering our fifth research question of what
actions are encouraged by the game and will thus be used by an
optimimal strategy. In order to generate examples of this we created
a program which goes through every state after the first assault and
compares the different strategies and how many dice are rethrown.
One example that covers both cases is when the defender has 6
defense and 10 dice are thrown: 5 ones and 5 fives

The optimal number of dice to rethrow is 5 (expected damage (ED)
5.17) whereas the maximum is 6 (ED 5) and the worst is 4 (ED 4.33).
Not rethrowing results in an expected damage of 5 since we can get
a guarantied hit on all the fives by simply boosting them with one
of the twos. Each dice we rethrow initially trades one guarantied
wound and for a 5/6 chance of a wound and a left over 2. If we
rethrow 5 dice we are left with enough twos to get a guarantied
wound, so this will give us an extra wound compensating for the 5/6
chance and gives the highest expected damange. If we rethrow an
extra dice we trade a guarantied wound for a 5/6 chance of a wound
making rethrowing all dice not the optimimal strategy. Rethrowing
fewer dice is more encouraged when a minimum amount of damage
has to be reached as apposed to a maximal average damage. When
the defender only has a limited number of vitality left this is most
relivant.

In figure 12 we can see the expected wounds for every combina-
tion of offense and defense values.
For third and fourth research questions we want to know what

the optimal strategy for achieving a minimum amount of damage
and what the resulting probabilities are for achieving said minimum
damage. We plot the probability of achieving a minimum number
of wounds given optimal strategy for a fixed defense value and
different attack values in figure 13. From this we can see that the
probability first slowly decreases and then quickly decreases before
leveling off again as it approaches zero. The higher the attack the
more wounds can be inflicted before this probability drops off.
For the fifth research question we want to know when a player

is encouraged to discard dice and when they are encouraged to
boost a die. Which dice to discard and boost first can simply be
answered with reasoning, as the player will always want to discard
the lowest dice first to boost the highest dice since boosting a lower
die doesn’t give any additional benefit as any die that is lower
than the defense won’t inflict a wound. For this reason we also
have the model assume this. If we led this up to player choice the
results should be the same if we look at the optimal strategy, but
this assumption does affect the other strategies as they now won’t

5



TScIT 42, January 31, 2025, Enschede, The Netherlands Bram Otte

Fig. 11. Strategy comparison naive and optimimal

2 4 6 8 10

0

1

2

3

attack

ex
pe
ct
ed

w
ou

nd
s

Defense=6

rmax wounds
rmax reroll
rmin reroll

rmin wounds

Fig. 12. Maximized Expected wounds for offense and defense 0 through 10

def→ 1 2 3 4 5 6 7 8 9 10
off ↓

1 0.8 0.7 0.5 0.3 0.2 0.1 0.1 0.1 0.1 0.0
2 1.7 1.4 1.1 0.8 0.5 0.5 0.4 0.3 0.2 0.1
3 2.5 2.1 1.7 1.3 1.0 0.9 0.7 0.6 0.4 0.3
4 3.3 2.8 2.3 1.9 1.4 1.3 1.1 0.9 0.7 0.5
5 4.2 3.5 3.0 2.4 1.8 1.7 1.4 1.2 1.0 0.7
6 5.0 4.3 3.6 3.0 2.3 2.0 1.8 1.5 1.2 0.9
7 5.8 5.0 4.3 3.5 2.7 2.4 2.1 1.8 1.5 1.2
8 6.7 5.8 5.0 4.1 3.2 2.8 2.5 2.1 1.7 1.4
9 7.5 6.5 5.6 4.6 3.6 3.2 2.8 2.4 2.0 1.6
10 8.3 7.3 6.3 5.2 4.0 3.5 3.1 2.7 2.3 1.8

be able to do this part suboptimally. This means that the decision
the player makes comes down only to how many dice to rethrow.
As discussed in the beginning of the results section, assuming the
player want to deal the most possible damage on average the player
is almost always encouraged to throw a lot of their dice but in cases
can hold back some dice to get a guarantied wound in and achieve a
higher expected damage. We will not cover all cases, but they only
result in a slight advantage on average but the biggest advantage
for defense 6 is 5

6 of a wound, there are also some extreme cases
with higher defense where you can gain 0.74 wounds over just 2.97
wounds when defense is 9. How common these cases, where the
optimimal strategy is better than the naive one, differs quite a bit
for each defense level, from 10% of the states for defense 7 to 73% of
states for defense 10, assuming attack 10.

4.5 Modeling Experience
One problem we encountered due to size of the model, is that mod-
eling using PRISM is quite error-prone. Namely, by default PRISM

Fig. 13. Probability mininum wounds

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

min wounds

pr
ob
ab
ili
ty

Defense=6

attack=10
attack=9
attack=8
attack=7

does not tell if guards cover all relevant states but instead assumes
the state does not change and inserts transitions accordingly. This
might result in steps being skipped or in the model getting stuck at
intermediate state. This can be addressed passing PRISM the -nofxdl
flag which prevents it from inserting these transitions and will will
give an error with the states which are not covered by the model
allowing us to add the necessary guards.

Secondly PRISM by default does not tell where nondeterminism
occurs. Having unintended nondeterminism might result in strate-
gies differing on steps that should be deterministic, for example
when discarding dice the number of dice is determined in the previ-
ous step, if there exist unintended nondeterminism a strategy might
not discard all the dice it is supposed to. This issue can be resolved
by turning the model into an SMG as this allows us to specify which
guards belong to which player and will give an error when nondeter-
minism occurs on a guard that is not assigned to a player. However,
a disadvantage of using an SMG is that PRISM evaluates properties
on it significantly slower, an order of magnitude slower in some
cases.
Lastly we created an alternative implementation of the model

in the form of a simulation and check if they roughly match. The
simulation takes many samples of the first assault and then for each
of these samples takes many samples for the different amounts of
dice to take into the second assault and pick the highest average
wounds and finally averages out all these samples. When creating
such a simulation one has to be careful to not introduce sampling
bias. For example if when picking the action we have a small sample
count we will skew the results to a higher average wounds, this can
be easily demonstrated if we have a single sample for each action
its like trying the second assault multiple times and picking the best
result. In the end the simulation and the model mostly matched but
for larger number of dice they start to diverge more and more. This
might be due to one of the implementations being incorrect, the

6



Modeling and analysis of the board game Mythic Battles: Pantheon through Markov Decision Processes TScIT 42, January 31, 2025, Enschede, The Netherlands

simulation having a sampling bias or the state space becoming too
large. Looking at examples the simulations seems to have some odd
behaviors while the PRISM model always seemed to give results we
expected, and thus we will assume the PRISM model is the correct
implementation.

5 CONCLUSION
In this paper we sought out to model and analyse a part of Mythic
Battles: Pantheon via MDPs using PRISM. We did so in order to
satisfy our research goals of: learning about the strategies of the
game, how to effectively model MDPs using PRISM and what the
limitations are of PRISM. For this we first looked at what other
boardgames have been modeled and what kind of questions are
interesting to ask. Then we took a part of Mythic Battles namely the
normal attack and modeled it using the Prism modeling language.
We then used PRISM to generate strategies optimizing for different
goals. And then we analysed these strategies through PRISM which
allowed us to analyse the performance of these strategies but slowed
down significantly as we tried larger models and was difficult to
say much in particular about how the strategies operated. Through
our own program we were able to more quickly iterate on our
queries and also investigate the operation of the strategies by finding
examples of where the ste strategies differ. Finally, we reflected on
our modeling experience.
In the end we were able to determine optimal strategies and

that the strategy for maximising damage is very similar to a naive
strategy of rerolling every possible dice but is superior in a select
percentage of cases which might make a difference in some games.
Along the way we learned about PRISM and the multiplicative
nature of the state space of the models we can create with it, as
well as things to look out for to minimize the state space. Such as
representing the dice as buckets, so the order of the dice do not
contribute to the state space.

Future work could explore adding multiple players to the model.
Our preliminary research explored two units attacking each other
back and forth, this did find that it results in a manageable model and
that whether the second player can retaliate has a large influence
on their chances of winning, but we did not have time to analyse
this model further.
This model could be further analysed by comparing different

strategies in this more complex model. The model could also be
expanded further to include more of the game, for example include
more units or player or include more mechanics, like the movement
of pieces around the board. This would make the model larger and
come closer to reaching the limits of PRISM especially when adding
more players. This more complex model would be more interesting
to optimize and experiment with. Another way of pushing PRISM
would be to simply make the existing model bigger by including
more dice.

In order to manage these bigger models we can look into different
tools such as Storm, being a more recent effort written in cpp, it also
supports the PRISM modeling language, but it is typically several
times faster as Christian Hensel et al. [2], show in their paper with
the QComp benchmarks. Additionally, we could look into improv-
ing the PRISM itself for example: when PRISM is used to generate

strategies it will output every single state thus is not able to make
use of more efficient solving techniques, having some more efficient
way of generating and representing strategies could allow prism to
generate and analyse strategies for bigger models.

ACKNOWLEDGMENTS
Special thanks to my supervisor Milan Lopuhaä-Zwakenberg, track
chair Peter Lammich, Molly Waite and the people at the UT Writing
Center, my study-advisor Rianne de Jonge and finally thanks to my
family.

REFERENCES
[1] Robert B. Ash and Richard L. Bishop. 1972. Monopoly as a Markov Process.

Mathematics Magazine (1972). https://doi.org/10.1080/0025570x.1972.11976187
[2] Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann, and

Matthias Volk. 2020. The Probabilistic Model Checker Storm. arXiv: Software
Engineering (2020). https://doi.org/10.1007/s10009-021-00633-z

[3] Hanno Hildmann and Fabrice Saffre. 2011. Influence of variable supply and load
flexibility on Demand-Side Management. 2011 8th International Conference on the
European Energy Market (EEM) (2011), 63–68. https://api.semanticscholar.org/
CorpusID:24068628

[4] Joost-Pieter Katoen. 2016. The Probabilistic Model Checking Landscape. Logic in
Computer Science (2016). https://doi.org/10.1145/2933575.2934574

[5] Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: verifi-
cation of probabilistic real-time systems. International Conference on Computer
Aided Verification (2011). https://doi.org/10.1007/978-3-642-22110-1_47

[6] Marta Kwiatkowska, David Parker, and Clemens Wiltsche. 2018. PRISM-games:
verification and strategy synthesis for stochastic multi-player games with multiple
objectives. International Journal on Software Tools for Technology Transfer 20 (2018).
Issue 2. https://doi.org/10.1007/s10009-017-0476-z

[7] Daniel Mocanu. 2023. Modeling and Analyzing Board Games through
Markov Decision Processes. https://drive.google.com/file/d/1XA_
yJpUKsgMtFZWI0SdqG5m5z2AANec7/view

[8] Jason A. Osborne. 2003. Markov Chains for the RISK Board Game Revisited.
Mathematics Magazine (2003). https://doi.org/10.1080/0025570x.2003.11953165

[9] Bram Otte. 2025. Modeling Mythic Battles Pantheon, source code. https://github.
com/bramotte/prism-battles

[10] Vishva Sundarapandian Raani. 2021. Modeling and Analysis of Board Games.
https://drive.google.com/file/d/1skXLTmwyCuteMh1fHWsjHP5HQpfppWCK

[11] Michael Raitza, Steffen Märcker, Jens Trommer, Andre Heinzig, Sascha Klüp-
pelholz, Christel Baier, and Akash Kumar. 2020. Quantitative Characterization
of Reconfigurable Transistor Logic Gates. IEEE Access 8 (2020), 112598–112614.
https://api.semanticscholar.org/CorpusID:219719427

[12] Barış Tan. 1997. Markov chains and the RISK board game. Mathematics Magazine
70 (12 1997). https://doi.org/10.2307/2691171

[13] Michael B. Wakin and Christopher J. Rozell. 2004. A Markov Chain Analysis of
Blackjack Strategy. https://api.semanticscholar.org/CorpusID:14857861

7

https://doi.org/10.1080/0025570x.1972.11976187
https://doi.org/10.1007/s10009-021-00633-z
https://api.semanticscholar.org/CorpusID:24068628
https://api.semanticscholar.org/CorpusID:24068628
https://doi.org/10.1145/2933575.2934574
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/s10009-017-0476-z
https://drive.google.com/file/d/1XA_yJpUKsgMtFZWI0SdqG5m5z2AANec7/view
https://drive.google.com/file/d/1XA_yJpUKsgMtFZWI0SdqG5m5z2AANec7/view
https://doi.org/10.1080/0025570x.2003.11953165
https://github.com/bramotte/prism-battles
https://github.com/bramotte/prism-battles
https://drive.google.com/file/d/1skXLTmwyCuteMh1fHWsjHP5HQpfppWCK
https://api.semanticscholar.org/CorpusID:219719427
https://doi.org/10.2307/2691171
https://api.semanticscholar.org/CorpusID:14857861

	Abstract
	1 Introduction
	2 Related Work
	3 PRISM
	4 Mythic Battles: Pantheon
	4.1 Game Rules
	4.2 Research Questions
	4.3 Model
	4.4 Results
	4.5 Modeling Experience

	5 Conclusion
	Acknowledgments
	References

