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Abstract This research created a 
semi-automated image classification 
pipeline which significantly reduces the 
manual labor required for image 
classification, with a specific focus on 
supporting the Boeren, Burgers en 
Buitenbeesten (BB&B) project. To 
address this challenge, a systematic 
literature review was conducted to 
evaluate current state-of-the-art 
methods and identify best practices in 
automated camera trap image 
classification systems and models.  
These insights guided the design of a 
flexible workflow in a Jupyter Notebook 
setup and led to the selection and 
fine-tuning of four different candidate 
models. Among these, a customized 
ConvNeXt model from Schneider et al. 
[1], retrained on a limited dataset of 
mainly the BB&B own dataset, 
achieved the highest accuracy of 95.45 
percent across 22 classes, 
underscoring the effectiveness of the 
model. This outcome confirms the 
successful implementation of the 
model, which can be utilised inside of 
the semi-automated classification 
pipeline for reducing manual 
classification effort. 
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1 - INTRODUCTION 
 

The meadow birds in the Netherlands are 

endangered. Due to predator pressure 

and extensive use of farm land, the 

meadow bird population is declining. 

Several initiatives have seen the daylight 

in recent years, but have not yet been 

fruitful in stopping this decline. Currently, 

due to the small population of meadow 

birds, the focus is on predator pressure. 

The predator pressure depends on two 

main points. The amount of predators and 

potential prey in the breeding season, as 

well as the land use all year round of other 

species. 

This graduation project is a small 

link in the chain of this bigger overarching 

subsidized project Boeren, Burgers and 

Buitenbeesten [1]. This initiative is seeking 

to create an all year round monitoring 

system, regarding the behaviour of 

animals, the area quality and 

management thereof, which is 

non-existing right now. This graduation 

project focuses on one of the steps inside 

the animal monitoring system. Part of the 

Boeren, Burgers and Buitenbeesten aim is 

to provide a tool to municipalities and 
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organisations like Staatsbosbeheer with a 

heat map of the likelihood of a predator 

being in a certain area. For example, the 

stone marten’s territory is between 80 - 

700 hectares [2]. This heatmap will be 

based on camera traps standing in the 

area and identifying these species, so that 

this heatmap can predict the chance of an 

animal being in a certain area. And that is 

exactly where this graduation project 

comes in.  

Identifying species through image 

classification systems. The amount of 

images retrieved from the camera traps is 

tremendous and not feasible to determine 

by hand. It is a highly labour intensive 

task. Therefore this graduation project 

seeks to find a solution within the image 

classification area through machine 

learning models. Throughout the Boeren, 

Burgers and Buitenbeesten (BB&B) 

project, the camera traps have gathered 

over 500 GB of data, containing over a 

million images. The aim of this project is to 

use this dataset to create a 

semi-automated image classification 

system that is able to confidently identify 

species. 

 

 

 
 
 
 
 

2 - BACKGROUND RESEARCH 
 

2.1 Problem Statement 

The vision of this project is to create a 

custom wildlife machine learning 

classification pipeline that can be utilized 

by someone with low skills in machine 

learning. The requirements inhibit: A 

trained model on as many as possible 

species found in the datasets provided by 

the Boeren, Burgers and Buitenbeesten 

project. Depending on the state-of-the-art 

through a systematic literature review, the 

focus should be on creating a 

classification model that is contained in an 

pipeline. 

​ The challenge that needs to be 

solved is that there are currently no 

machine learning models out there that 

can identify the sought after species:  

 

Birds: buzzard, goshawk, hen 

harrier/marsh harrier, sparrowhawk  

Mammals: fox, beech marten, polecat, 

weasel, ermine, rat, house cat. 

 

The machine learning model has to fit into 

a wildlife classification workflow, which 

should be able to run by any person. 

 

2.3 Systematic Literature Review 

 

2.3.1 Introduction 

This Systematic Literature Review focuses 

on tackling the current state-of-the-art of 
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machine learning in the camera trap 

images environment of the past five years. 

The aim of this Systematic Literature 

Review is to get a better understanding of 

the current developments in wildlife trap 

camera image classification pipelines. 

Also, what kind of classification models 

and pre-processing mechanics are being 

used and are promising in the future.  

 

2.3.2 Findings 

This section analyses the methodologies, 

decisions and applications presented in 

recent literature on wildlife image 

classification systems. The analysis 

focuses on workflows and pipelines, data 

pre-processing techniques, the impact of 

transfer learning and the performance of 

various wildlife image classification 

systems. 

 

 

WORKFLOWS AND PIPELINES 
 

There are two workflows considered in 

wildlife classification tools. Generally, they 

fall under two umbrellas: a 

semi-automated workflow or a 

fully-automated workflow. As Vélez et al. 

[3] point out, a fully-automated workflow is 

only feasible if the model displays an 

accuracy that complies with the user 

needs or for systems that require 

near-real-time detection. Guo et al. [4] 

argue for an automatic workflow. Their 

model called VCRPCN was able to 

achieve a mean average precision (mAP) 

of 78.6% on animal detection, on five 

animal categories and one empty 

category. A fully-automated workflow does 

have its benefits when low-cost, 

high-volume systems are requested where 

the accuracy and detection have less 

consequences. Despite this, the mAP 

score highlights that further improvements 

are necessary for models to achieve 

sufficient accuracy for autonomous 

operation. Generally, due to the 

occasional poor quality images captured 

by trap cameras, there is a good chance 

of encountering a few bad classifiable 

images that require human intervention. 

 

Semi-automated workflows present a 

more achievable solution towards wildlife 

image classification. A good example of a 

semi-automated workflow is proposed in 

Böhner et al. [5], their workflow processes 

raw images, and classifies them with the 

ability to quality check the image labels 

manually. Celis et al. [6] apply this as well. 

Miao et al. [7] build upon this further and 

give the user the power to check 

low-confidence predictions flagged for 

human annotation. Brook et al. [8] take a 

different approach to the semi-automated 

workflow. They have created a modular 

system for non-programmers to perform 

image-data preparation and AI-model 

training pipeline through a command line 
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interface. This system offers flexibility, 

enabling users to execute any part of the 

workflow individually, or execute more or 

all parts at once.  

 

 

DATA PRE-PROCESSING 
 

The first step in a classification pipeline is 

pre-processing the dataset. As Reynold 

Xin [9] and many others have said, “A 

machine learning model is only as good 

as the data it is fed”. Which showcases 

the importance of pre-processing. 

Pre-processing techniques aim to address 

common challenges such as class 

imbalance, image noise, variability in 

image conditions and artefacts, resulting 

in a more effective and accurate model. 

Islam and Valles [10] argue to start off with 

preprocessing the data with formatting, 

cleaning and sampling the dataset to 

enable the classification algorithm to 

retrieve information from the data. The 

formatting of the dataset is necessary to 

make the data suitable for the deep 

learning model. Cleaning data is done to 

eliminate bias and irrelevant information, 

but also entails splitting datasets in 

training and test sets as Sharma et al. [11] 

notes. Data sampling a smaller, random 

representative sample can be an option if 

the computational time and memory 

requirements are limited (Islam and Valles 

[10]). Building on these first steps of data 

pre-processing, data sampling can further 

influence the performance of image 

classifications models. 

 

CLASS IMBALANCE 

 

The most common method of tackling 

class imbalance is through data 

augmentation. Faizal and Sundaresan [12] 

and Sharma et al. [11] noticed a significant 

class imbalance between the classes 

which could lead to biases in the model. 

Both augmented the underrepresented 

classes, for instance Faizal and 

Sundaresan [12] apply data augmentation 

through rotating, flipping and zooming the 

samples to increase the number of class 

images. Similar techniques are also used 

by Simões et al. [13] and Islam and Valles  

[10]. However, Simões et al. [13] observe 

that regardless of the data augmentation 

they applied, the ‘human’ class is 

over-represented in comparison to the 

other classes. Indicating that data 

augmentation in their case was not 

sufficient to prevent heavy biases for the 

‘human’ class. The consequence is that 

the model will overfit and will cause the 

model to work ‘too well’ on the training 

data, but fails to generalise on validation 

data. Schneider et al. [14] demonstrate a 

different interpretation of data 

augmentation resampling. They made use 

of a so-called data generator that samples 

an equal number of images for each class 
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in each training epoch. This method 

ensures that species with a limited amount 

of data receive relatively higher sampling 

rates. Sajun and Zualkernan [15] attempt 

a different way of dealing with data 

augmentation. They try to over- and 

undersample based on the class weight 

assigned from the imbalance distribution. 

Consequently, this is only feasible if each 

class has a workable number of images to 

allow for meaningful sampling. In 

conclusion, while data augmentation 

serves as a valuable tool in mitigating 

class biases and enhancing the models 

generalisation abilities, a critical look is 

important to notify of signs of under- or 

overfitting of the model at hand. 

Fortunately, additional techniques such as 

image enhancement can further improve 

the effectiveness of image classification 

models. 

 

 

IMAGE ENHANCEMENT 

 

There are a lot of image enhancement 

techniques. Most of these techniques 

focus on noise removal. Islam and Valles 

[10] point out that frequent noise problems 

such as Gaussian, salt-and-pepper and 

speckle can evoke performance 

degradation which can be caused by 

unfavourable temperatures, poor 

illumination or noisy transmission causing 

sensor noise. The standard method of 

image-denoising is to clear the image by 

boosting its edges and outlines and 

suppressing the details, which will result in 

noise suppression. Chen et al. [16] and 

Zurita et al. [17] demonstrate image 

removal techniques through similar 

methods as gaussian blurring, brightness 

adjustment and colour enhancement 

methods. Most papers have used one or 

multiple colour enhancement techniques 

of the likes described here [18], [17], [19]. 

The frequency of these used methods still 

show their practicality and effects on data 

enhancement. 

 

 

ADVANCED TECHNIQUES 

 

In addition to these standard noise 

removal and colour enhancement 

techniques, advanced methods keep on 

emerging from the literature. For instance, 

[19] and [17] make use of the Cutout 

technique. It uses fixed-size rectangular 

squares to randomly fill a region, masking 

irrelevant information which contributes to 

the generalisation ability of the model. 

Moreover, Yang et al. [19] take this a step 

further. They also use CutMix, which is 

similar to the Cutout technique, but the 

squares proportion may vary and the real 

frame image, labelled with the cropped 

data set images, is utilised for filling. 

These sections were designed to avoid 

the main information of the picture, using 
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the Intersection over Union ratio. The data 

augmentation pre-process of Yang et al. 

[19] showed an overall increase of 

accuracy, recall and mean average 

precision between 3 and 6 percent. 

Furthermore, Bhargavi et al. [20] 

describes an image enhancement 

technique called Lanczos interpolation 

that can scale images precisely and 

improve the image quality of the image 

overall. This is a promising technique that 

can help prevent aliasing and sharpness 

problems in images.  

Another ingenious procedure is the 

dual-input channel method. Applied by 

Curran et al. [21], It is noted that both 

papers use a dataset of camera trap 

images where the camera, when 

motion-activated, takes three pictures. 

They describe the method effectively, the 

method is split in two streams, the first 

stream applies the structural similarity 

algorithm to produce artefacts. The 

second stream selects all sequences that 

meet the requirements from the first 

stream. The first stream produces these 

artefacts based on the differences 

between these images. Since three 

pictures are shot at once and the position 

of the camera is fixed, an animal that 

moves through the sequence would then 

be highlighted through this structural 

similarity algorithm. To avoid pixel shifting, 

both papers choose to only use the first 

two images of a sequence. This can be a 

fantastic method to highlight moving 

objects in camera trap images. Curran et 

al.  [21] reported a significant improvement 

on this dual-input channel CNN model 

compared to a regular ResNet-50 model, 

demonstrating how data pre-processing 

can improve wildlife image classification 

models tremendously. 

 

 

BACKGROUND SUBTRACTION 

 

A good strategy to improve generalisation 

of a model is the use of Background 

Subtraction (BS). For BS, Chappidi and 

Sundaram [22] and Sá [23] use a similar 

approach, Celis et al. [6], Schneider et al. 

[14] and Brook et al. [8] as well, Faizal and 

Sundaresan [12] used a different method. 

For instance, Chappidi and Sundaram [22] 

use segmentation via the 

Superpixel-Based Fast Fuzzy C-Means 

(FCM) method to detect wildlife animals, 

and thus remove the background. Sá [23] 

shows that substantial improvements were 

observed across all YOLO versions. 

However, Sá warns against the blind 

integration of BS in any model, as their 

Faster R-CNN model proved. Faizal and 

Sundaresan [12] propose a segmentation 

via OpenCV, called K-Means. They found 

that with a value of K = 3 the background 

removal was sufficient enough. Finally,  

Brook et al. [8] uses an effective approach 

where they make use of the MegaDetector 
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v5a, a deep-learning object detection 

model that locates images in four 

categories: animal, blank, vehicle and 

humans. MegaDetector can have different 

use cases for instance animal presence 

detection, here it is used to retrieve the 

bounding-box coordinates of the animals 

in the images. After this has been done, 

‘Snip’ is used to isolate the animal and 

resize the new image. All three show an 

effective method to remove the 

background from the animals in order to 

improve generalisation of the model. 

Where Chappidi and Sundaram [22] and 

Faizal and Sundaresan [12] use 

segmentation methods, Brook et al. [8] 

uses a deep learning approach 

(MegaDetector) to do this, which may 

become even more effective in the future 

due to its widely usage.  

 

 

TRANSFER LEARNING 
 

Transfer learning creates a positive effect 

on image classification systems. 

Thangaraj et al. [24] explain this method 

accurately, describing transfer learning as 

essentially fine-tuning pre-trained models. 

Two techniques are used extensively: 

deep feature extraction and fine-tuning. 

With deep feature extraction, the low-level 

features of the pre-trained model serve as 

a foundation of knowledge without training 

from scratch. Generally these layers are 

frozen during fine-tuning. Allowing the final 

layer(s) to be retrained using a new 

dataset, with a new output layer based on 

this new dataset. Of the 29 papers 

analysed, 14 papers incorporated transfer 

learning [4], [8], [11], [12], [13], [14], [16], 

[18], [20], [23], [24], [25], [26], [27]. All 

have claimed an improvement on one or 

several levels. 

 

With the basic framework of transfer 

learning clarified, its utility plays a 

significant role in enhancing the 

performance and efficiency of wildlife 

image classification models. Guo et al. [4] 

and Gurule [26] demonstrate that a 

significant advantage of transfer learning 

is the substantial reduction in training time. 

Seljebotn and Lawal [25] identify that this 

has to do with a significant reduction of 

trainable parameters. Furthermore, Gurule 

[26] also observes a great improvement of 

approximately 9 percent increase in Mean 

Average Precision (mAP). These findings 

are supported by other studies [11], [12], 

[13], [27]. This indicates that the backbone 

model’s ability of complex pattern 

recognition contributes to the model's 

accuracy. In conclusion, using transfer 

learning within wildlife image classification 

systems leads to an improvement in 

performance, efficiency and time 

management. 
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MODELS 
 

Comparing wildlife classification models is 

challenging due to the diverse datasets, 

pre-processing techniques, and pipelines 

used across different studies. However, 

comparisons within papers are a bit more 

robust and can give us a roadmap to 

which models perform well. For instance, 

Schneider et al. [14] note that the 

ConvNeXt models achieved a mAP of 

97.91% on a validation set, and perform 

slightly better compared to other used 

models, the Swin Transformer and 

EfficientNetV2. The Resnet models 

perform worse, but still achieve acceptable 

results. Interestingly,  Brook et al. [8] 

achieved similar results when various 

EfficientNet versions were compared to 

ConvNeXt-Base and ViT-Base. The 

ConvNext-Base performed slightly better, 

however this was only seen after the 

decimal point.  

​ Curran et al. [21] demonstrate that 

their own convolutional neural network 

(CNN) using a custom dual-input channel 

performed well over alternatives like 

DenseNet-121 and ResNet-50. 

Highlighting the potential of specialised 

architectures in certain contexts, since the 

setup of the camera allowed for a different 

method. Faizal and Sundaresan [12] and 

Thangaraj et al. [24] both observed the 

InceptionResNetV2 model outperformed 

other models. Faizal and Sundaresan [18] 

compared the model with models like 

VGG19, VGG16, MobileNetV2 and V3, 

while Thangaraj et al. [12] compared 

InceptionResNetV2 against 

DenseNet-169, ResNetV2-50 and 

Xception. All models are pre-trained on 

the ImageNet dataset, but are fine-tuned 

on different sets. This showcases the 

power of InceptionResNetV2. Ansari et al. 

[27] compared several pre-trained models, 

such as VGG16, ResNet-50, InceptionV3 

and EfficientNetB0. Where EfficientNetB0 

achieves the best performance with an 

F-score of 0.9. Similarly, Sharma et al. [11] 

affirms this in a different study, where 

VGG16 is compared to EfficientNetB0 with 

a top-5 accuracy of over 90 percent. To 

conclude, it is hard to make actual 

comparisons between models, since each 

model has its strengths and weaknesses. 

However, some of the found models like 

EfficientNetB0, ConvNeXt and 

InceptionResNetV2 show potential. 

 

2.3.3 Conclusion, Discussion & Future 

recommendations 

The goal of this systematic literature 

review was to get an overview of the 

current developments and practices on 

wildlife machine learning system pipelines, 

regarding pre-processing techniques and 

model types. From the research, it is 

found that there are indeed a few best 

practices such as data augmentation 

types as Background Subtraction, Cutout 
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and CutMix methods and data 

enhancement techniques, which can 

make a difference for a model's 

effectiveness. Subsequently, transfer 

learning and specialised architectures 

show that there is not always a ‘one size 

fits all’ image classification system. 

However, the variability of pre-processing 

techniques and model architectures 

across the found studies make it hard to 

compare them and make definitive 

conclusions about these methods. 

​ A limitation of the research is that 

the research approach is applied to other 

papers that have created wildlife image 

classification systems, without looking for 

specific papers that do regard a best 

practices method for a specific problem. 

For instance, having a paper regarding 

data augmentation applied to the field of 

wildlife image systems would give a 

deeper understanding of techniques and 

methods that could be used in this field. 

However, due to the scope becoming too 

wide this was disregarded. Furthermore, in 

the found papers there was generally not 

a lot of attention to comparisons, a lot of 

the research focused more on one specific 

technique or issue. This makes it hard to 

derive conclusions. Finally, having a scope 

of 5 years in this field (from 2019 onwards) 

may have contributed to finding 29 

papers. Initially there were 40 papers 

assumed to pass the criteria, but after 

further examination setting up the 

Literature Matrix this was discovered. 

Time constraints made it impossible to do 

another critical look at the search string. 

Before this final attempt another Literature 

Matrix was already created, which also 

took time. 

An interesting future research 

direction is a search through 

pre-processing techniques that are not yet 

used in image classification systems, that 

may have the power to make a difference 

on classification’s accuracy. The image 

processing branch is quite old and may 

have fruitful solutions and practices for 

newly specialised wildlife image 

classification systems. 

 

 

3 - METHODS AND TECHNIQUES 
 
3.1 CRISP-DM 

For this project, an adapted version of the 

CRISP-DM methodology was used. From 

the initial systematic literature review, two 

papers integrated the workflow inside of 

their project already [15] [23]. CRISP-DM 

is widely used throughout data science 

projects, as it offers a clear, structured 

framework for project execution [28].  

 

3.2 Research Tools 

Several tools have been equipped 

throughout this thesis. For the literature 

review, the platform ResearchRabbit [29] 

was utilized to efficiently discover both 
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cited and referencing works. The model 

training was done on the University of 

Twente’s Jupyter notebook environment, 

which provides remote access to several 

GPU cores, such as the NVIDIA A10 and 

A16 tensor core GPUs. Perfect for 

machine learning training. 

 

During the preparation of this work the 

author used ChatGPT in order to improve 

sentences and investigate and solve bugs 

in the code. After using this tool/service, 

the author reviewed and edited the 

content as needed and takes full 

responsibility for the content of the work. 

 

3.3 Evaluation & Metrics 

The model's abilities to classify animals 
will be measured using the following 
metrics. 
 
 
 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁
(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)  (1)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
(𝑇𝑃 + 𝐹𝑃)                  (2)

 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁                           (3)

 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙   (4)

where 

TP = True Positive  
FP = False Positive 
FN = False Negative 
TN = True Negative 
 

4 - DATA UNDERSTANDING 
 

4.1 Data collection 

Three datasets have been used for the 

creation of the final training dataset. The 

primary dataset is the Boeren, Burgers 

and Buitenbeesten (BB&B) dataset [1], 

which consists of over one million raw 

images (more than 500GB of data) 

gathered by camera traps in the wild. In 

addition, an open dataset of European 

fauna collected by Schneider et al. [14] 

was included, and further cat and weasel 

images were drawn from various projects 

within eMammal [30].  

 

Because the BB&B dataset is extensive 

and unprocessed, it is important to 

understand how camera traps operate. 

Camera traps are equipped with motion 

sensors that capture a burst of images 

whenever movement is detected. This 

triggers both daytime as well as nighttime 

captures, with an inbuilt infrared sensor for 

the night. Figure [4.1.1] illustrates an 

example of a night image of the BB&B 

dataset.  

 

 

[4.1.1] Random night image of the BB&B 

dataset. 
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Alongside the captured image, each photo 

contains information regarding 

temperature, date, time and the specific 

camera ID (location). 

 

Similar to night images,daytime images 

are captured in a similar manner, as is 

demonstrated in Figure [4.1.2]. 

 

[4.1.2] Random day image of the BB&B 

dataset. 

 

However, not all images contain animals. 

False triggers can be caused by 

movement in the vegetation, or other 

environmental factors. 

 

 

[4.1.3] Random occluded image of the 

BB&B dataset. 

 

Moreover, bad weather conditions such as 

fog or extreme cold can significantly affect 

the image’s quality, as seen in Figure 

[4.1.3]. 

 

Given the sheer size of the BB&B dataset, 

filtering and preprocessing are necessary 

steps to create a high quality dataset 

usable for machine learning. The following 

sections will describe the steps taken to 

filter, process and finally create a cohesive 

training dataset. 

 

 

5 - DATA PREPROCESSING 
 
This phase outlines the step by step 

process of transforming the BB&B dataset 

into an annotated dataset suitable for 

model training. 

 

5.1 Object Detection 

As shown in Figure 4.1.2, not all images 

contain animals, and those that do may 

vary in quality. This variability can affect 

model performance. 

 

Previous studies have demonstrated that 

background subtraction can substantially 

improve classification accuracy [6], [8], 

[12], [14], [22], [23], [26]. Accordingly, 

bounding boxes around detected objects 

are utilised as the first step in the 

classification pipeline. 
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From the literature, an object detection 

model named MegaDetector [31] was 

identified as a suitable tool [6], [8], [13], 

[14]. MegaDetector classifies regions 

within images into three categories - 

Human, Vehicle, and Animal - and assigns 

confidence scores for each classification 

within an automatically generated JSON 

file, linked to the images. For this project,  

MegaDetector v5b was employed. 

 

After running MegaDetector on the raw 

images, a confidence threshold of 0.5 for 

the “Animal” class was chosen to filter out 

false positives, and to maintain quality of 

the classification. According to the model’s 

creators, a threshold of 0.5 is generally 

effective at drawing bounding boxes that 

do contain an animal. 

 

 

5.2 Annotating images 

After the object detection step, bounding 

boxes for each image were annotated 

using Label Studio [32], an open-source 

data labeling platform. Label Studio allows 

for usage of .JSON files, thereby 

facilitating the import and annotation of 

bounding box data. 

Several students at Saxion contributed to 

the annotation process, the annotations 

division can be seen down below. 

 

[Figure 5.2.1] Annotation distribution of 

BB&B dataset. 

 

Similar processes in various states have 

been used for eMammal and Schneiders 

datasets, resulting in a total of 15.021 

annotated images, see Figure 5.2.2.  

 

 

[5.2.2] Images per dataset. 

 

5.3 Training dataset 

After annotation, a subset of 71 classes 

remained, including  an ‘empty’ class 

derived from pieces of backgrounds of the 

BB&B dataset, see Figure 5.3.1.  

However, species absent from the BB&B 

dataset, or which are not considered key 

predators for this study were excluded for 

the final selection.  
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[Figure 5.3.1] Annotations per class. 

 

 A study by Shahinfar et al. [33] suggests 

that 150 to 500 images per class can 

achieve a practical level of accuracy for 

camera trap models. In this dataset, 

certain focal species (e.g. buzzard and 

polecat) had between 100 and 150 

images. Given their relevance to the 

project’s objectives, these classes were 

still included. Consequently, 22 classes 

were retained, see Figure 5.3.2. 

 

To prepare for classification, background 

subtraction was applied to the bounding 

boxes, producing images in a uniform 

shape of 224x224x3, which matches the 

expected input dimensions for the 

classification models discussed in the next 

chapter. 

 

 

 

 

[Figure 5.3.2] All blue classes are taken 

into account for the final dataset. 

 

After filtering, 9.859 images remained 

across 22 classes. The hare class had the 

highest representation of 1.455 images, 

whereas the buzzard class had only 100 

images. This class imbalance has to be 

accounted for, to ensure robust model 

performance. 

 

5.4 Processing of the final dataset 

Prior to model training, the dataset was 

normalized to help the model generalize 

better and to enhance performance. 

Because of the pronounced class 

imbalance, as can be seen in Figure 5.3.2, 

three measures identified in the literature 

were implemented. 

 

Oversampling: The first measure is to 

oversample rare classes. All classes have 

been oversampled to 500 images, 

provided they did not already meet this 

count. While oversampling can balance 

class frequencies, it may also lead to 

overfitting if applied excessively.  
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Class Weights: Secondly, during training 

normalized class weights were applied to 

penalize misclassifications of rarer classes 

more heavily. This approach helps the 

model avoid bias toward classes with 

larger sample sizes. 

 

Data Augmentation: Additional 

transformations were performed “on the 

fly” during training using the 

ImageDataGenerator  of TensorFlow. After 

experimentation, the following parameters, 

as seen below, have shown to be working. 

 

train_datagen = 

ImageDataGenerator(​
rotation_range=20,​
width_shift_range=0.2,​
height_shift_range=0.2,​
shear_range=0.2,​
zoom_range=0.2,​
horizontal_flip=True,​
fill_mode='nearest'​
) 

[Figure 5.4.1] Data Augmentation during 

training. 

 

Finally, the dataset was split into 72% 

training data, 18% validation data and 

10% test data. The slightly larger 

validation set was chosen to ensure 

sufficient representation of the smaller 

classes. This strategy helps mitigate 

potential overfitting and provides a clearer 

understanding of model performance on 

underrepresented species. 

6 -  MODELING 
 
From the systematic literature review 

covering state-of-the-art methods in the 

past five years, several machine learning 

models were identified as potentially 

useful for this project.  

 

 

Given the relatively small size of the 

dataset, transfer learning emerged as the 

most suitable approach. Models trained 

through transfer learning leverage weights 

pretrained on very large datasets, which 

can substantially improve performance 

when fine-tuned on a smaller dataset.  

 

In particular, models pre-trained on 

ImageNet-1000 [34] are frequently 

mentioned in the literature, for instance by 

[12], [20], [25], [27]. ImageNet comprises 

over 1.2 million images across 1000 

classes, providing machine learning 

models with pre-knowledge regarding low 

and high level image features.  

 

Table 6.1.1 lists the well performing 

models identified by the systematic 

literature review. These architectures 

trained on ImageNet-1000 will serve as 

backbone models for training new 

classification models applied to wildlife 

camera trap images.​
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Model Parameters In paper 

InceptionResNetV2  56M  [12], [24] 

EfficientNetB0  4M  [11], [20], 

[27] 

ConvNeXt model  87M [8], [14] 

Schneider 

(ConvNeXt) model 

87M  [8], [14] 

[Table 6.1.1] Selected machine learning 

models and their respective parameters 

count, and references. 

 

The fourth model in this table is a 

ConvNeXt variant provided by Schneider 

et al. [14] who have released its weights 

publicly. This is particularly relevant 

because the model was trained on images 

of European wildlife, which closely aligns 

with the species present in our camera 

trap dataset. This already adapted model 

may improve the performance on the 

targeted classes. 

 

 

7 - EVALUATION 
 
7.1 Model performance 

Using the evaluation metrics defined in 

Chapter 3, the models introduced in 

Chapter 6 were trained and tested on the 

refined dataset. 

 

 

[Figure 7.1.1] Performance of 

EfficientNetB0 model. 

 

 

[Figure 7.1.2] Performance of Schneider’s 

et al. ConvNeXt model. 

 

[Figure 7.1.3] Performance of 

InceptionResNetV2 model. 
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[Figure 7.1.4] Performance of 

InceptionResNetV2 model. 

 

From these figures, it is evident that the 

two ConvNeXt models show a significant 

performance gap to the EfficientNetB0 

model, as well as the InceptionResNetV2 

model. The Schneider et al. model 

consistently shows the highest results, 

achieving 95.45% accuracy, 95.58% on 

precision and 94.59 on (micro) recall, as 

seen in Table 1.1. One possible 

explanation is that Schneider’s model 

used the ConvNext model trained on 

ImageNet-1000 as a backbone, and then 

refined it on more specific wildlife species 

closer related to those in this thesis, thus 

leading to better transfer learning 

outcomes. 

 

By contrast, EfficientNetB0 shows the 

lowest overall performance. With 

approximately 4 million parameters, this 

architecture may not have sufficient depth 

to understand the data through transfer 

learning. Presumably, the depth combined 

with the small training dataset combined 

with suboptimal use of hyperparameters 

may have caused this drop in 

performance. 

 

The InceptionResNetV2 model generally 

performs well but does not match the 

accuracy of the ConvNeXt architectures. 

Moreover, InceptionResNetV2, 

EfficientNetB0, and to a lesser extent the 

ConvNeXt models, struggle with certain 

classes. For instance, small birds like the 

magpie and starling are often 

misclassified. This issue could be 

attributed to the bounding boxes 

generated during data preprocessing, 

which may not account for the smaller size 

of certain animals, leading to low 

resolution crops. Additionally, animals that 

appear similar from afar and lack 

distinctive coloration, such as the magpie 

and starling, which are both very dark, 

may have further reduced the model’s 

ability to accurately identify them. 

 

It is necessary to interpret these results 

with caution, because the test set 

originates from the same overall dataset 

used for training and validation. Which are 

from the same sources. Consequently, 

there is possibility of nearly duplicate 

images across subsets, due to the very 

nature of wildlife camera dataset images. 

However, preliminary testing on small 

never before seen images of one of the 

camera traps indicate that the models can 
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classify animals and thus show its 

capability to generalize. 

 

8 -  DEPLOYMENT 
 
8.1 Deployment 

To facilitate the actual semi-automated 

pipeline, a dedicated GitHub repository 

was established. This repository hosts a 

series of Jupyter notebooks that 

collectively form an image classification 

workflow. Users can input their own raw 

dataset into adjacent folders, which these 

notebooks process and eventually 

generate annotated JSON files containing 

classification results. The modular design 

of these notebooks provides users with 

great control over each stage of data 

processing, and annotation. Figure 8.1.1 

shows a good overview of the workflow in 

Jupyter Notebook.  

 

 

[Figure 8.1.1] Overview pipeline Jupyter 

Notebooks. 

 

[Figure 8.1.2] Oversight of the jupyter 

notebook workflow. 
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To install and run the workflow, users 

should set up the environment, using 

Python 3.10 or 3.11. The dependencies in 

windows can be installed through pip or 

conda, specified in requirements.txt. Label 

Studio has to be installed to enable local 

data annotation. These steps are 

explained within the GitHub repo. 

After executing these notebooks, 

two notebooks within the folder ‘graphs’ 

can be utilized to retain metadata of the 

original dataset and can be mapped back 

on the cropped images. Now, graphs 

combining annotations, confidence levels, 

location, date, and time can be created. 

Resulting in a quick overview on the 

output. 

 

 

9 - CONCLUSION, DISCUSSION AND 
FUTURE WORK 
 
9.2 - Conclusion 

This thesis has presented a 

semi-automated image classification 

pipeline for wildlife trap camera images, 

integrating transfer learning and a Jupyter 

notebook workflow. By leveraging the 

ConvNeXt backbone model from 

Schneider et al., an accuracy of 95.45% 

was achieved, trained on a relatively small 

dataset of 9.859 images across 22 classes 

of which four are primary predators of 

meadow birds.  

 

A key feature of the proposed pipeline is 

its ability to map the metadata (e.g., 

timestamps, date and location) back to the 

final cropped images. This design 

facilitates efficient validation of 

classifications and quick creations of 

custom graphs, combining the 

classifications, confidence scores 

metadata in a quick overview. In addition, 

each model used in the pipeline has a 

dedicated notebook, allowing users to 

configure their own workflows. The 

resulting system offers a substantial 

reduction in manual annotation time, as 

the bulk of image classification tasks can 

be performed automatically. 

 

9.3 Discussion & Future work 

Although the pipeline demonstrates its 

robust performance, several limitations 

must be addressed.  As discussed in 

Section 7.1, the training and test subsets 

both originate from the BB&B dataset, 

potentially leading to biased performance 

estimates. Furthermore, the bounding 

boxes generated by the object detection 

model were not filtered by their size, 

increasing the likelihood of poor quality 

cropped images, particularly problematic 

for smaller species such as the magpie 

and starling. Or any animal in the 

distance.  

 

Moving forwards, several improvements 

can be made in future refinements. As just 
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has been mentioned, incorporating 

bounding box size thresholds could help 

exclude very small crops, which tend to 

degrade the models performance. The 

models utilised in this thesis have an input 

size of images of around 224x224x3, 

resulting in significant reduction of quality 

images, when the bounding boxes are 

quite small. 

Although this thesis demonstrates 

that small datasets can generate strong 

results on classification basis, many 

species remain underrepresented in the 

current data. Sourcing additional images, 

potentially of Youtube videos, can help 

increase the total pool of images. 

Searching for certain species, combined 

with ‘camera trap’ result in various lengthy 

videos with good footage. It might be very 

beneficial to get into contact with these 

channels, to use their videos and sample 

frames into images. Countless hours of 

footage can be found regarding fauna in 

this project’s scope. 

Additionally, while simple data 

augmentation methods have improved 

performance, employing more advanced 

image generation tools (e.g., generative 

ai) which could slightly alter images in a 

way, for instance backgrounds, lighting 

and  morphology altercations, further 

enhancing model robustness. 

Finally, not all species are 

represented among these 22 target 

classes. Including an additional “unknown” 

class, trained on all animals found in the 

dataset, but not passing the 100 images 

threshold can be gathered in this one big 

class, to oppose misclassifications. 

 

By addressing these improvements, the 

system can evolve into a more accurate, 

and helpful solution for wildlife monitoring 

and research in the Netherlands. The 

findings underscore the value of carefully 

processing data methods and transfer 

learning techniques, offering a promising 

framework for future deployment in 

ecological research settings. 
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APPENDIX 
 

model InceptionResNet

V2  

EfficientNetB0  ConvNeXt model  Schneider 

(ConvNeXt) 

model 

batch size top 
layer 
 

16 
 

32 16 
 

16 

epochs top layer 7 8 4 4 

learning rate 0.0001 0.00005 0.0001 0.0001 

optimizer Adam Adam Adam Adam 

learning rate 
finetuning (full 
model) 

0.0001 0.000001 0.001 0.0001 
 
 

epochs finetuning 1 10 1 1 

batch size 
finetuning 

16 32 16 16 

optimizer 
finetuning 

Adam Adam Adam Adam 

Accuracy 0.5051124744376279 0.8068181818181818 0.9442148760330579 0.9545454545454546 

Precision 0.5719204398668878 0.84452032957989 0.949892366227274 0.9558172649946199 

(Macro) Recall 0,5581901323 0.7918231346265777 0.9442073345441728 0.9458527010060878 

F1-Score 0.509977864872993 0.8111006900866636 0.9452870638200039 
5​  

0.9547922796075989 

mAP 0.2923799832930706
3 

0.6555939533000489 0.8685463579435987 0.8951787089747382 

[Table 1.1] The parameters and performance of the best fine-tuned models. 
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