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ABSTRACT
Stress has a significant impact on the health of humans, thus re-
liable detection methods are required so we can prevent the ever
increasing stressors in life from harming us. One of the current
stress detection methods is looking at the biomarker Heart Rate
Variability (HRV) measured by wearables. HRV is the difference
between time intervals of separate heart beats, which decreases
when stress is introduced to the body hence making it viable as a
biomarker in stress prediction. Therefore this systematic review
aims to investigate machine learning models that have been used
in stress prediction with through HRV. The databases selected for
this systematic review are Scopus, PubMed and IEE Xplore. Ap-
plying the criteria of articles that use HRV and machine learning
in stress prediction resulted in 19 articles being included in the
analysis. Analysis shows that the most commonly used machine
learning algorithms are random forest, k-nearest neighbor and sup-
port vector machines. The challenges most models faced are with
the personal differences in HRV changes people experience, as this
makes it hard to make a general model. The most accurate models
were Convolutional Neural Networks (CNN) and thus are my rec-
ommendation for an algorithm in stress prediction through HRV.
Further research into CNN seems promising for people to monitor,
and possibly regulate, their stress levels.

KEYWORDS
Heart Rate Variability, Stress detection algorithms, wearable tech-
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1 INTRODUCTION
Stress is the human body’s reaction to a challenging condition,
or stressors, marked by great anxiety or duress [8]. The stress re-
sponse is influenced by the intensity and chronicity of stressors.
Prolonged exposure to stress can cause various negative health con-
ditions such as hypertension, diabetes, and cognitive dysfunction
[17]. This harmful effect of stress on the human body can be ex-
plained through the response to stressors, which is mediated by an
interplay between the brain and the cardiovascular system, among
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others [22]. The brain determines what is stressful and is there-
fore an important player in this stress response [21]. The response
also establishes objective physiological changes in the cardiovascu-
lar system such as altered heart rate variability (HRV) [13]. HRV
describes the variations in the time intervals between sequential
heartbeats and is used as a tool to assess psychological states, such
as stress, depression, and anxiety [13][11]. In the case of stress, it is
often observed that the heart rate rises drastically. This causes an
increase in blood pressure, which is associated with reduced HRV.
Therefore, HRV is widely used as a measurable indicator to investi-
gate the stress response [13][11][25]. Currently, the use of machine
learning in stress prediction is on the rise. Machine learning can
be used to identify patterns in complex datasets, therefore being
useful in building predictive models for specific health conditions
such as stress [28]. Several studies are investigating the effects of
training ML models on biomarker data, like HRV, to eventually pre-
dict stress [33]. Research that investigates stress detection through
ML using HRV seems to yield promising results and may broaden
the overall knowledge. Therefore eventually helping individuals
to manage stress by changing their lifestyle or behaviors to keep
them from serious health conditions [21]. Hence, this review aims
to gain insight into machine learning and statistical algorithms that
have been described to predict stress through HRV, together with
their performance.

2 PROBLEM STATEMENT
Research that has been done into stress prediction with the use of
biomarkers always needs to process the data and compare them to
some baseline [15]. This is currently almost exclusively done with
the use of machine learning or statistical algorithms. These algo-
rithms can vary widely and thus it is useful to create an overview
of which algorithms have been used and what their advantages
and disadvantages are pertaining to stress prediction with HRV. To
break this overview down into smaller parts the following research
questions where chosen:

• RQ1: What machine learning or statistical algorithms have
been used to predict stress using HRV data?

• RQ2:What are the challenges or limitations of these algo-
rithms in predicting stress from HRV data?

• RQ3: Which algorithmic approaches (e.g., deep learning,
support vector machines, signal processing methods) are
most suitable for predicting stress using HRV data based on
the available literature?
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3 METHODOLOGY
A literature review will be done on the machine learning and statis-
tical algorithms that are employed in predicting stress through HRV.
To ensure that this literature review is systematic is to ensure that
it is repeatable, transparent and transferable [5]. To accomplish this
the PSALSAR method for literature review will be used [23]. This
method builds on the framework of Search, Appraisal, Synthesis,
and Analysis (SALSA), which is a methodology to determine the
search protocols that the systematic literature review should follow
[10] . The PSALSAR adds Protocol and Report to this framework
where in the protocol the scope of the study is defined and in the
report section the writing of the report is categorized. An overview
of the PSALSAR can be seen in Table 1

Firstly, a research protocol for a systematic literature review
helps minimize bias by doing exhaustive literature searches [23].
The most important part of the protocol is defining the research
scope which is worked out in Section 2.

Secondly, the search strategy has to be defined. This systematic
review is based on searches from PubMed, Scopus, and IEEE Xplore
covering literature from 2022-2024 using the search string ‘’heart
rate variability” AND stress AND ‘’Machine learning”. Furthermore,
articles must have a title that links stress prediction and heart
measurement research to be included. The syntax used for the
search was TITLE-ABS-KEY. Figure 1 shows that the initial results
included 232 articles, of which 176 came from Scopus, 35 from
PubMed and 21 from IEEE Xplore. On the PubMed and IEEE Xplore
search the parameter of full text available was selected to limit the
records not being able to be retrieved later on. These 232 records
became 198 records at the moment of screening due to 34 duplicates
being present in the search as can be seen in Figure 1.

Thirdly, the selected papers had to be appraised and filtered to
fit into the scope of this review.This appraisal was done on title
of the article and as the scope of the review is limited when the
title induced doubt the record was not sought for retrieval. This
left 52 papers which were deemed eligible based on their title. As
shown in Figure 1 20 of these 52 records were not available and
were therefore not considered in this review.

Fourthly, the synthesis of the selected records consisted of re-
trieving the models that were used to predict stress with HRV. This
was done by finding the methods used to create the models in the
records and putting into Google Sheets which record built which
model. Next to the model it’s accuracy, precision, recall and F1
score were also sought and put next to the model, as well as the
challenges or shortcomings of the model.

Fifthly, the models, their performance and challenges were ana-
lyzed in order to determine the answer to the research questions. To
be able to do this Table 3 was created. Next to that, the challenges
of the models were written out in Section 4.

Lastly, the report phase consisted of putting together this review
containing the methodology and the results.

4 RESULTS
After analyzing the articles selected in section 3, the algorithms that
were described in the articles were summarized in Table 3 together
with the accuracy, precision, recall and F1 score of the models. All

Figure 1: Flow diagram for the database search, adapted from
Page et al. [26]

these scores are in a range from 0 to 1, if an article did not con-
tain these performance metrics for their models the values were
left blank. First, Mortensen et al. [24] developed a Convolutional
Neural Network (CNN) that had to distinguish stress between no
stress, interruption stress and time pressure stress. Notably, the
performance of this model is outstanding, however a drawback of
their CNN is that the version that uses all the features requires high
computational power. The higher accuracy coming with a more
complex model is also noticed in Hijry et al. [12] article where Ex-
treme Gradient Boosting (XGBoost) achieved a higher performance
over the more traditional models. Similarly to Mortensen et al. [24]
Shikha et al. [30] used 3 classes whereas Hijry et al. [12] used a
binary classification for stress. A lower performance in Cao et al.
[6] compared to the previous models can be contributed to 4 out
of 33 participants did not display difference in HRV and cortisol
when stressed, thus making it harder for the models to accurately
predict the level of stress present in the participants. Besides test-
ing on the same dataset that the model was trained on Bahameish
et al. [2] also decided to test their model on the Wearable Stress
and Affect Detection (WESAD) [29] and SWELL-KW [19] datasets.
Velmovitsky et al. [31] had low performance metrics, but this lower
performance is due to the use of Apple Watches as the measure-
ment devices, a shorter than standard Electro Cardiogram (ECG)
measurement and a real life setting. Naegelin et al. [25] decided
to approach the stress prediction from a smart office perspective
where they also used data from the mouse and keyboard to aid
the model. Interestingly, the model scored lower when HRV data
was also used. Iovino et al. [14] investigated the difference between
Linear Discriminant Analysis (LDA), Random Forest (RF), Support
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Table 1: The framework PSALSAR used for systematic literature review

Steps Outcomes Methods

Protocol Defined study scope Only stress prediction with ML and HRV

Search Define the search strategy
Search studies

Searching strings
Search databases

Appraisal Selecting studies
Quality assessment of studies

Defining inclusion and exclusion criteria
Quality criteria

Synthesis Extract data
Categorize the data

Extraction template
Categorize the data on the iterative definition
and ready it for further analysis work

Analysis Data analysis
Result and discussion

Quantitative categories, description, and narra-
tive analysis of the organized data
Based on the analysis,show the state of the art
and it’s challenges

Report Conclusion
Report writing

Deriving conclusion and recommendation
PRISMA methodology

Source: Modified from Mengist et al.[23]

Vector Machine (SVM) and k-Nearest Neighbor (KNN) models us-
ing automatic feature selection or physiologically based feature
selection. The models all score similarly when using the automatic
feature selection as shown in Table 3, but when the models were
evaluated with the physiologically based features the SVM and KNN
performed similarly to the automatic feature selection, whereas
the RF and LDA decreased in performance. Although Liu et al. [20]
developed an Adaptive Boosting (AdaBoost), RF, SVM and KNN
with the performance stated in Table 3, the main focus was to look
at ultra short term HRV features. With the results from standard
HRV features the SVM emerged as the best performing and when
they applied the ultra short term features with the SVM the perfor-
mance only dropped 3 percentage points. Similarly to Bahameish
et al. [2] Benchekroun et al. [4] focused on making there models
generalizable by training them on another dataset then the testing
dataset, because of this focus the performance is lower. Jeong et
al. [16] focused their attention to patients that suffered from lung
cancer, as this participant focus is different from the other articles
the results are hard to compare with the rest of the results. With the
aim of having the usually complex Graph Convolutional Network
(GCN) model require less computational power Adarsh et al. [1]
used pruning and quantization. The result is a high accuracy and
a model that is 60-70 percent less complex. Unlike Adarsh et al.
[1] Dobrokhvalov et al. [7] made the CNN models personal aiming
for the highest accuracy. While PrabuShankar et al. [27] achieved
really good results with traditional machine learning approaches,
the dataset and if the classification is binary are not is not provided.
Junqueira et al. ran two models where one was with HRV, skin
temperature and blood pressure and the second model used only
HRV and skin temperature. The second model performed better
and is the one shown in Table 3. In contrast with all the previously
mentioned models, Zawad et al. [34] did not only test the models
separately, but rather combined where traditional machine learn-
ing methods were combined with an Artificial Neural Network

(ANN). The combined algorithms all scored better in the perfor-
mance category and the ANN in combination with Naive Bayes
(NB) performed the best being able to provide a high accuracy
within 0.80s. Gerasimova-Meigal et al. [9] encountered an issue
regarding the collection of the perceived stress as 70 percent of
their findings fell in 2-3 out of a range from 1 to 10. Banerjee et al.
[3] encountered large differences in the effectivity of their models
where their RF and DT outperformed the others significantly. Lastly,
Vivisha et al. [32] did state one of their goals to be comparing the
accuracy of multiple machine learning classification models, but
focus more on integrating the Internet of Things (IoT) side. The
part focus explains the lower achieved accuracies then some of the
other models present in Table 3.
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Table 2: Algortihm Abbreviations

Abbreviation Meaning

CNN Convolutional Neural Network
XGBoost Extreme Gradient Boosting

LR Logistic Regression
DT Decision Trees
RF Random Forest
KNN K-Nearest Neighbor
SVM Support Vector Machine
GB Gradient Boosting

AdaBoost Adaptive Boosting
NB Naïve Bayes

LGBM Light Gradient Boosting Machine
LDA Linear Discriminant Analysis
LSTM Long Short Term Memory
GCN Graph Convolutional Network
MLP MultiLayer Perceptron
NN Neural Network
ANN Artificial Neural Network
SVR Support Vector Regression
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Table 3: Algorithms used with their performance

Articles Algorithms Performance

Mortensen et al. [24] CNN acc = 0.99, prec = 1, recall = 1, F1 = 1

Hijry et al. [12] XGBoost
LR
DT
RF
KNN
SVM

acc = 0.997, prec = 0.997, recall = 0.997 , F1 = 0.997
acc = 0.642, prec = 0.64, recall = 0.67 , F1 = 0.56
acc = 0.708, prec = 0.70, recall = 0.70 , F1 = 0.64
acc =0.784 , prec = 0.78, recall = 0.71, F1 = 0.63
acc = 0.922, prec = 0.92, recall = 0.92, F1 = 0.92
acc = 0.734, prec = 0.73, recall = 0.71, F1 = 0.65

Shikha et al. [30] XGBoost
GB
DT
RF
KNN
SVM

acc = 0.922, prec = NA, recall = NA, F1 = 0.916
acc = 0.957, prec = NA, recall = NA, F1 = 0.957
acc =0.905 , prec = NA, recall = NA, F1 = 0.909
acc =0.934 , prec = NA, recall = NA, F1 = 0.924
acc =0.846 , prec =NA , recall = NA, F1 = 0.856
acc = 0.845, prec = NA, recall = NA, F1 = 0.832

Cao et al. [6] XGBoost
AdaBoost
RF
KNN
SVM

acc = 0.722, prec = , recall = , F1 =
acc = 0.731 , prec = , recall = , F1 =
acc = 0.721, prec = , recall = , F1 =
acc = 0.695, prec = , recall = , F1 =
acc = 0.731, prec = , recall = , F1 =

Bahameish et al. [2] LR
DT
KNN
NB
RF
SVM

acc = 0.852, prec = 0.897, recall = 0.901, F1 = 0.872
acc = 0.859, prec = 0.905, recall = 0.895, F1 = 0.871
acc = 0.816, prec = 0.852, recall = 0.875, F1 = 0.840
acc = 0.793, prec = 0.802, recall = 0.941, F1 = 0.844
acc = 0.855, prec = 0.848, recall = 0.967, F1 =0.892
acc = 0.806, prec = 0.835, recall = 0.895, F1 = 0.806

Velmovitsky et al. [31] RF
SVM

acc = 0.55, prec =0.55 , recall = 0.55, F1 = 0.55
acc = 0.54, prec = 0.54, recall = 0.54, F1 = 0.54

Naegelin et al. [25] SVM
RF
LightGBM

acc = , prec = 0.528, recall = 0.545, F1 = 0.534
acc = , prec = 0.595, recall = 0.594, F1 = 0.589
acc = , prec = 0.608, recall = 0.624, F1 = 0.612

Iovino et al.[14] LDA
SVM
RF
KNN

acc = 0.790, prec =0.691 , recall = 0.685, F1 = 0.685
acc = 0.794, prec = 0.695, recall = 0.690, F1 = 0.692
acc = 0.799, prec = 0.699, recall = 0.685, F1 = 0.699
acc = 0.788, prec = 0.686, recall = 0.682, F1 = 0.788

Liu et al. [20] SVM
RF
KNN
Adaboost

acc = 0.875, prec = , recall = 0.860, F1 = 0.897
acc = 0.810, prec = , recall = 0.830, F1 = 0.842
acc = 0.850, prec = , recall = 0.893, F1 = 0.877
acc = 0.827, prec = , recall = 0.862, F1 = 0.827

Benchekroun et al. [4] LR
RF

acc = , prec = 0.61, recall = 0.59, F1 = 0.57
acc = , prec = 0.63, recall = 0.62, F1 = 0.63

Jeong et al. [16] LSTM
DT
RF
SVM
transformer

acc = 0.669, prec = 0.487, recall = 0.665, F1 = 0.539
acc = 0.638, prec = 0.683, recall = 0.683, F1 = 0.639
acc = 0.646, prec = 0.645, recall = 0.654, F1 = 0.625
acc = 0.599, prec = 0.671, recall = 0.593, F1 = 0.606
acc = 0.628, prec = 0.390, recall = 0.528, F1 = 0.412

Adarsh et al. [1] GCN WESAD
GCN SWELL

acc = 0.978, prec = 0.944, recall = 0.962, F1 = 0.977
acc = 0.945, prec = 0.935, recall = 0.922, F1 = 0.944

Dobrokhvalov et al. [7] CNN acc = 0.989, prec = , recall = , F1 =
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Continuation of Table 3
Articles Algorithms Performance

PrabuShankar et al. [27] LR
KNN
RF
DT

acc = 0.910, prec = 0.903, recall = 0.891, F1 = 0.897
acc = 0.997, prec = 0.997, recall = 0.998, F1 = 0.997
acc = 0.959, prec = 0.946, recall = 0.956, F1 = 0.951
acc = 0.972, prec = 0.962, recall = 0.974, F1 = 0.968

Junqueira et al. [18] NN acc = 0.83, prec = 0.89, recall = 0.85, F1 = 0.900

Zawad et al. [34] LR
NB
SVM
DT
RF
XGB
ANN + LR
ANN + NB
ANN + SVM
ANN + DT
ANN + RF
ANN + XGB

acc = 0.637, prec = 0.632, recall = 0.637, F1 = 0.613
acc = 0.510, prec = 0.647, recall = 0.510, F1 = 0.454
acc = 0.778, prec = 0.853, recall = 0.778, F1 = 0.752
acc = 0.884, prec = 0.888, recall = 0.884, F1 = 0.888
acc = 0.809, prec = 0.842, recall = 0.809, F1 = 0.797
acc = 0.896, prec = 0.899, recall = 0.896, F1 = 0.895
acc = 0.955, prec = 0.955, recall = 0.955, F1 = 0.955
acc = 0.958, prec = 0.958, recall = 0.958, F1 = 0.958
acc = 0.957, prec = 0.957, recall = 0.957, F1 = 0.957
acc = 0.952, prec = 0.952, recall = 0.952, F1 = 0.952
acc = 0.957, prec = 0.957, recall = 0.957, F1 = 0.957
acc = 0.957, prec = 0.957, recall = 0.957, F1 = 0.957

Gerasimova-Meigal et
al. [9]

RF
CatBoost
XGB
LGBSM
SVR

acc = 0.863
acc = 0.853
acc = 0.801
acc = 0.829
acc = 0.641

Banerjee et al. [3] KNN
RF
SVM
DT

acc = 0.400 , prec = 0.405, recall = 0.400, F1 = 0.399
acc = 1 , prec = 1, recall = 1, F1 = 1
acc = 0.427 , prec = 0.461, recall = 0.427, F1 = 0.417
acc = 0.985 , prec = 0.985, recall = 0.985, F1 = 0.985

Vividha et al. [32] RF
SVM
KNN

acc = 0.735
acc = 0.622
acc = 0.730
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5 DISCUSSION
This review has looked into the use of machine learning algorithms
that have been used to predict stress with HRV features. Overall
this amounted to 19 articles that were analyzed for the machine
learning models and their performance. Among these 19 articles
the RF, SVM and KNN were the most commonly used models with
the RF being used 15 times, the SVM 12 times and lastly the KNN
was used 10 times. Within machine learning there are 2 ways to
provide data for the model. Firstly, there are supervised machine
learning algorithms which need labeled data as input to be able
to be trained. To obtain labeled data one should either collect and
label their own dataset or use existing public datasets as input. Two
very common public datasets that were used are the WESAD and
SWELL-KW datasets[19, 29].Besides supervised algorithms there
are also unsupervised algorithms, however these are used sparsely
for stress prediction through HRV in the articles considered in this
review.

An issue that all thesemodels experiencewithHRV as a biomarker
to predict stress is that differences in HRV are not equal between
different people that are experiencing the same amount of stress
or are having the same stressors applied to them [6]. Next to that,
the dataset has to be labeled for the amount of stress the partici-
pants experienced at the time of the measurements. Currently this
is performed through questionnaires answered by the participants,
which allows the possibility for bias and differences between the
stress people perceive to have and the stress that is visible in their
body. Additionally, the change in HRV between being stressed and
neutral is smaller than the HRV changes of being stress vs relaxed,
which makes it harder for machine learning models to differentiate
stressed and neutral versus stressed and relaxed [2, 30]. Besides,
these issues with HRV as a feature there is also an issue with cor-
rectly measuring HRV. Velmovitsky et al. [31] found that using an
Apple Watch instead of sensors directly on the skin near the heart
caused lower performance of their model compared to other models.
There is an inverse correlation between the intrusiveness of the
measurement method and the accuracy of the measurement, which
can become a challenge for wide scale development as people are
less likely to adopt a more intrusive system.

Based on the challenges that these models face together with
their performance, an argument can be made for CNN or GCN
through the lens of absolute performance. When looking at a more
deployable algorithm in edge devices the hybrid approach of Zawad
et al. [34] seems to fit better as the time their most optimal model
takes it just 0.8s.

Future research into stress prediction with machine learning
and HRV features should focus on obtaining larger data samples
to increase generalizability. Furthermore, the direction of person-
alizing the model holds promising results for accuracy. However,
to be able to personalize the models there should be a reduction in
the computational complexity, so this is also an area of interest for
future research.

With more research into CNN or GCN the accurate prediction
of stress can become more deployable and therefore widespread.
The goal is that in the future it would be possible for end users to
determine which activities stress them out and if possible adapt

their lifestyle to reduce the amount of stress they endure. So further
research in this area can lead to better personal regulation of stress.
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