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Abstract—Bird populations in the Netherlands have
sharply declined in recent years, driven by habitat loss,
and increased predation in fragmented landscapes. Camera
traps offer a non-intrusive way to monitor wildlife, yet they
produce vast numbers of noisy images triggered by non-
animal events. This research addresses that challenge by
developing and evaluating an AI-driven solution capable
of detecting animals in such challenging environments. A
data pipeline encompasses end-to-end data preparation and
preprocessing that goes from raw camera data to prepared
quality data for training. As well as the preparation,
deployment, fine-tuning and comparison of the cutting-edge
object detection models YOLOv5, DETR and Grounding
DINO. This research reports its discovery on YOLOv5s
lightweights’ architecture and ability for time sensitive.
tasks DETRs transformer advantages and slow convergence
drawbacks and Grounding Dinos impressive results and
unique qualities at the price of computational and resource
overheads.
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I. INTRODUCTION

The Netherlands, once renowned for its avian biodi-
versity due to its wetlands and meadows, has experi-
enced a dramatic decline in bird populations over recent
years[1]. This decline is driven by factors such as habitat
loss, intensive agriculture, and predation pressures exac-
erbated by habitat fragmentation[2][3][4][5][6]. Effective
monitoring and analysis of these dynamics are essential
for informed conservation strategies, however traditional
methods remain labor-intensive, slow, and prone to hu-
man error[7].

Camera traps, widely used in wildlife monitoring,
offer an efficient way to capture large volumes of data
about species presence and behavior. However, they also
produce significant noise, triggered by environmental
factors like wind, resulting in large datasets filled with
irrelevant images. Processing such data manually is
impractical, creating a pressing need for novel solutions.
Advances in Artificial Intelligence (AI), particularly
computer vision, present an opportunity to address these
challenges [8][9].

This research focuses on developing and optimizing
an end-to-end AI pipeline capable of processing camera
trap images to detect and analyze animals including
birds and their predators. The pipeline integrates data
preprocessing, model selection, and analysis, address-
ing key data challenges[10]. By leveraging cutting-edge
object detection models, such as YOLOv5, DETR and
Grounding DINO. The study aims to identify the most
effective and viable approaches for wildlife detection in
the environemnt.

Ultimately the contributions of this paper gives a
basis for AI driven Bird and Wildlife conservation aid,
done through the analysis of wildlife camera traps. This
research providing data about the selection, statistics
and usability of different cutting edge object detection
models for this purpose. Alongside a pipeline for data
preparation and processing.

II. RESEARCH QUESTIONS

This study is guided by the following research ques-
tions:

Main Research Question: How can an AI pipeline,
incorporating data acquisition, preprocessing, and com-
puter vision models, be developed and optimized to
effectively detect and analyze birds and their predators
in camera trap image data?

Sub-Research Questions:

1) How can camera trap data be preprocessed to
prepare it for use in AI models?

2) How can preprocessing methods address chal-
lenges such as class imbalance and environmental
variations?

3) How can a complete input-to-output pipeline be
designed and optimized for detecting and analyz-
ing wildlife in camera trap data?

4) Which AI models provide the highest accuracy in
detecting birds and their predators from camera
trap images?

5) What are the limitations and challenges associated
with different models in this context?



III. DESIGN GOALS AND REQUIREMENTS

This research pursues two primary goals: (1) to de-
velop a fully functioning, end-to-end data pipeline for
camera-trap data preparation, and (2) to evaluate state-of-
the-art object detection models for wildlife monitoring.
The design is guided by the unique challenges inherent
to camera-trap data and the practical demands of con-
servation workflows.

A. Challenges in Camera Trap Data

Camera traps generate large volumes of noisy and
unstructured data. Many images are triggered by non-
animal events (e.g., wind or vegetation movement),
leading to a dataset where up to 90% of the images
may be empty. In addition, the unpredictable behavior
and movement of animals result in a highly imbalanced
dataset, where some species are scarcely represented
while others dominate.

Furthermore, the images present additional challenges:
• Lighting and Occlusions: Images captured at dif-

ferent times (day/night) result in vastly different
lighting conditions. Environmental factors such as
storms, fog, rain, and sun glares can further cause
occlusions.

• Variation in Object Size and Position: Animals
can appear at various scales and positions within an
image — they may be very small or large, distant
or close to the frame, and may even be partially
out-of-frame.

The pipeline is designed to address these challenges
by streamlining data preparation and preprocessing to
produce high-quality training data, while the models
must maintain high accuracy despite the variable inputs.

B. Data Pipeline Requirements

The primary objective of the proposed data pipeline
is to create an end-to-end workflow for processing raw
camera-trap data and preparing it for AI model training.
The key requirements are:

• Filter Irrelevant Data: Automatically remove
empty or irrelevant images caused by false triggers,
ensuring that the dataset focuses solely on meaning-
ful wildlife activity.

• Annotate Images: Label the filtered data to identify
and locate objects of interest (e.g., birds, predators)
using bounding boxes and class labels in a stan-
dardized format such as COCO[8].

• Ensure Balance and Representativeness: Adjust
the dataset to ensure all classes are adequately
represented, mitigating issues of overrepresentation
or underrepresentation.

By automating these processes, the pipeline significantly
reduces the manual effort required to process camera-
trap data.

C. Model Requirements

On the model side, the goal is to discover, utilize,
evaluate, and compare different object detection models
to assess their strengths and weaknesses for wildlife
monitoring. The selection of models is based on their
performance in key areas:

• Accuracy: Reliable detection and classification are
paramount.

• Robustness: The model must perform consistently
across diverse environmental conditions.

• Resource Efficiency: Models should be practical in
terms of computational demands.

• Inference Speed: Real-time or near-real-time de-
tection capabilities are essential.

• Ease of Implementation: Strong documentation
and community support facilitate adoption and
adaptation.

For this research, we selected YOLOv5, DETR, and
Grounding DINO due to their specific strengths and
potential in the domain of wildlife monitoring. Al-
though these models have demonstrated good results in
empirical research (e.g., on the COCO dataset), their
performance in the variable conditions encountered in
the Netherlands remains underexplored.

IV. OVERVIEW OF THE PIPELINE

The proposed pipeline architecture outlines a struc-
tured, end-to-end workflow for transforming raw camera
trap data into usable datasets. Each stage of the pipeline
is designed to address specific challenges, such as filter-
ing irrelevant data, preparing structured annotations and
ensuring compatibility with state-of-the-art AI models.
The architecture emphasizes automation to reduce the
need for human labour and make the process more
efficient..

A. Pipeline Stages

The pipeline comprises the following sequential
stages:

1) Data Acquisition: The process begins with col-
lecting raw camera trap images. These images, likely
captured under diverse environmental conditions, are
stored locally or on a server.

• Input: Raw camera trap images.
• Output: A structured repository of unprocessed

images ready for further processing.
2) Format Selection and Bounding Box Creation: A

standardized format is essential for subsequent process-
ing. The COCO annotation format was selected because
of its simplicity and compatibility with modern detection
frameworks.

• Process: The raw images are processed using
EcoAssist (which leverages MegaDetector[13]) to



automatically detect wildlife and generate prelimi-
nary bounding boxes in COCO format[11][12]. This
step filters out images with no detected objects.

• Output: A preliminary dataset with automatically
generated bounding boxes and no class labels, serv-
ing as a starting point for manual refinement.

3) Manual Annotation and Refinement: Automated
annotations are manually refined to ensure correctness:

• Process: Using tools such as Label Studio[14]
and Roboflow Label Assist[15] (with privacy con-
siderations), bounding boxes are assigned precise
class labels (e.g., cat, duck)[11][12]. A preliminary
model may be used to further automate the process,
followed by thorough error checks and corrections.

• Output: A fully annotated dataset with accurate
bounding boxes and class labels.

4) Dataset Balancing and Quality Control: The
annotated dataset undergoes rigorous quality control to
ensure its suitability for AI training:

• Completeness: Verify that every image has proper
annotations and that all bounding boxes are valid.

• Class Balance: Adjust the dataset to remove over-
represented classes and supplement underrepre-
sented ones. If a class has too few representatives
it may be beneficial to remove it.

• Environmental Variability: Ensure that the dataset
reflects a broad range of conditions (e.g., day/night
cycles, various weather conditions) to promote
model robustness.

5) (Optional) Format Translation: If a model re-
quires a different annotation format than COCO, a
custom script is used to translate the dataset accordingly,
ensuring seamless integration with various detection
frameworks.

B. Tool Justification and Challenges

The tools and methods chosen for this pipeline strike
a balance between efficiency and usability. In particular:

• EcoAssist was selected for its easy to use GUI,
it’s ability to order processed data and to generate
COCO-formatted bounding boxes, significantly re-
ducing manual effort.

• Manual Annotation Tools (LabelStudio) were em-
ployed to streamline the data annotation. Roboflow
can be a useful alternative with more community
support but requires the data be uplaoded.

• Challenges: Compatibility issues (e.g., dependen-
cies and requirements such as CUDA and and
NVIDIA gpu), potential and likely inaccuracies
in preliminary automated annotations necessitate
extensive manual review. Mistakes are costly and
hard to spot until the data is practically used.

C. Final Dataset

This research used a private data set collected at 3
locations in the Netherlands. After the processing was
done the final dataset consisted of 11 000 images and 33
classes (32 classes + 1 catch-all class) split in a 70/20/10
train/test/validation.

V. CHOOSING AND RESEARCHING AI MODELS

Given the complexity and diversity of wildlife images,
high-performance object detection models are essential.
The unpredictable nature of the environment demands
models that are both adaptable and robust.. Based on
these criteria, we selected three state-of-the-art models
for evaluation: YOLOv5, DETR, and Grounding DINO.
[17][18][20] All three models have demonstrated strong
performance in controlled benchmarks [21]. Below, we
analyze each model’s strengths and drawbacks.

A. YOLOv5: Reliable Baseline

YOLOv5 is a family of single-stage object detection
models known for their excellent speed-accuracy trade-
off .

Strengths:

• Speed-Accuracy Balance: YOLOv5 typically
achieves near real-time inference speeds on modern
GPUs, making it well-suited for large-scale camera-
trap datasets where efficiency is critical. In addition,
compared to heavier models it provides a solid
balance between detection performance and com-
putational efficiency.

• Ease of Use: With extensive documentation, a wide
array of pre-trained weights, and strong community
support, YOLOv5 is highly accessible.

Drawbacks:

• Limited Precision in Cluttered Scenes: YOLOv5
may struggle in complex or cluttered backgrounds,
where objects are partially occluded.

• Sensitivity to Data Quality and Class Imbal-
ance: Without careful dataset preparation, YOLOv5
tends to overfit to dominant classes in imbalanced
datasets.

• Obsolescence Concerns: Since its release, newer
variations have surpassed YOLOv5 in certain
benchmarks.

Justification for Selection: YOLOv5 has been widely
adopted in wildlife and ecological projects, notably it’s
use in MegaDetector megadetector. Its balance of speed
and accuracy, coupled with ease of deployment, makes
YOLOv5 a reliable baseline and a reference point for
evaluating more complex models.



B. DETR: Transformer-Based Advancement

Detection Transformer (DETR) represents a shift
from traditional anchor-based object detection to a
transformer-driven approach . By applying multi-head
self-attention, DETR processes the entire image as a
sequence of tokens, thereby potentially improving per-
formance in complex or cluttered environments.

Strengths:
• Global Context Awareness: DETR’s attention

mechanism captures relationships across the entire
image, which can be beneficial for detecting par-
tially occluded animals or multiple animals/species
simultaneously.

• Elimination of Handcrafted Anchors: By learning
bounding box regression via bipartite matching,
DETR reduces errors associated with fixed anchor
sizes.

• Pre-Trained Backbones: As a Transformer Model
there are pre trained backbones such as Swin that
enchance feature extraction over multiple scales,
improving detection accuracy for differently sized
objects[19].

Drawbacks:
• Difficulty with Small Objects: The global atten-

tion mechanism may not always effectively capture
fine-grained details necessary for small object de-
tection.

• Computational Complexity: DETR requires sub-
stantial GPU memory and extremely slow conver-
gence (often exceeding 500 epochs), resulting in
long and demanding training times.

• Slower Inference: The transformer-based architec-
ture leads to slower inference speeds, which can be
a bottleneck for large-scale applications.

• Hyperparameter Sensitivity: Performance is heav-
ily dependent on careful tuning of learning rates,
object queries, and other parameters.

Justification for Selection: Despite its computational
overhead, DETR’s ability to capture global context and
generalize across variable object sizes makes it suitable
for complex camera-trap scenarios. Its performance, of-
fers a promising alternative methodology for wildlife
detection.

C. Grounding DINO: State-of-the-Art Accuracy and
Flexibility

Grounding DINO is an extension of the DINO (De-
tection Transformer) framework that integrates open-set
detection and natural language grounding. By leveraging
advanced transformer-based architecture, it has demon-
strated state-of-the-art results on several object detection
benchmarks and offers unique advantages for wildlife
monitoring. groundingdino2022.

Strengths:
• High Accuracy in Complex Scenes: Grounding

DINO employs a multi-scale transformer that cap-
tures fine-grained details, achieving superior mean
Average Precision (mAP) scores on benchmark
datasets[1].

• Open-Set Detection: Its ability to detect objects not
present in the training set is particularly valuable for
wildlife monitoring, where new or rare species may
appear.

• Advanced Natural Language Integration:
Grounding DINO supports text-based queries,
enabling more nuanced detection scenarios (e.g.,
“Find any foxlike animal with a big tail”). This
feature valuable for ecologists who want to rapidly
search through large image sets based on custom
descriptors.

Drawbacks:
• High Computational Demand: The model re-

quires significant GPU resources, which can hinder
experimentation and real-time deployment.

• Increased Complexity: The integrated language
features add a layer of overhead and complexity,
making the model more challenging to fine-tune and
implement.

• Limited Field Testing: Real-world applications
remain sparse, resulting in fewer established best
practices and potential challenges in troubleshoot-
ing.

Justification for Selection: In the context of wildlife
camera-trap data, the open-set detection capability of
Grounding DINO is especially valuable as it can han-
dle the appearance of unexpected species. Although it
demands high computational resources and has a more
complex setup, its state-of-the-art accuracy and flexibil-
ity make it a compelling candidate for advanced wildlife
monitoring tasks.

VI. MEASUREMENT TOOLS AND METRICS

Evaluating the performance of our AI-driven wildlife
monitoring pipeline requires a comprehensive set of met-
rics that assess detection accuracy, operational efficiency,
and usability in the context of camera trap data. This
section defines the key quantitative metrics used for
evaluation and discusses their relevance to the inherent
challenges of wildlife monitoring.

A. Performance Metrics

a) Intersection over Union (IoU): Definition: IoU
quantifies the overlap between predicted and ground
truth bounding boxes.
Significance: High IoU values indicate precise object
localization, which is particularly critical when animals



are partially obscured by vegetation or appear under low
contrast conditions.

b) Mean Average Precision (mAP): Definition:
mAP measures detection accuracy by averaging preci-
sion over multiple IoU thresholds. In this study, we
consider both mAP@0.5, which evaluates basic object
localization, and mAP@0.5:0.95, which provides a rigor-
ous assessment of bounding box precision across a range
of thresholds.
Significance: A high mAP reflects the model’s ability
to accurately detect and localize animals, even those
that are small or partially occluded. This metric is the
cornerstone of our evaluation, particularly for datasets
formatted according to the COCO standard.

c) Precision and Recall: Precision: The proportion
of correct detections among all predicted detections,
reducing the occurrence of false positives.
Recall: The proportion of true animal instances correctly
detected by the model, minimizing false negatives.
Significance: For large-scale wildlife datasets, achieving
a balance between precision and recall is essential.
High precision ensures that background elements are not
misclassified as animals, while high recall guarantees
that animals are not overlooked.

B. Robustness

Definition: Robustness measures a model’s ability to
maintain consistent performance under diverse condi-
tions, including variations in lighting, weather, occlu-
sions, and the presence of unseen data.
Key Metrics:

• Environmental Variability: Evaluates how model
performance changes under different conditions
(e.g., day vs. night, clear vs. foggy).

• Class-Wise Accuracy: Assesses the model’s ability
to detect underrepresented or never before seen
classes.

Significance: Robustness is crucial in wildlife monitor-
ing, where environmental conditions and animal popula-
tion and migrations can vary dramatically, and reliable
detection across these variations is essential.

C. Inference Speed

Definition: Inference speed measures the time taken
for a model to process images, typically expressed in
frames per second (FPS).
Key Metric:

• FPS: Quantifies the efficiency of the model in
processing large-scale datasets.

Significance: Fast inference speeds are critical for timely
analysis of extensive camera trap data, particularly
in real-time or near-real-time monitoring applications,
which can be of importance for wildlife monitoring.

VII. METHODOLOGY

This section describes the methodology used for
model deployment, training, and refinement, as well
as the challenges encountered during implementation.
Our approach involves three primary phases: (i) Model
Deployment and Initial Verification, (ii) Model-Specific
Refinements, and (iii) Model-Specific Implementation
Challenges.

A. Model Deployment and Training Strategy

All three object detection models (YOLOv5, DETR,
and Grounding DINO) were deployed in isolated virtual
environments created using Anaconda. This isolation
ensured that model-specific library versions and de-
pendencies did not conflict. The deployment process
involved the following steps:

1) Initial Verification on Small Datasets: A minimal
subset of the dataset was used for preliminary
training and testing to confirm that each model
functioned correctly.

2) Iterative Hyperparameter and Structural Ad-
justments: Each model was subsequently trained
on an intermediate subset of the data. This iterative
process, guided by evaluation metrics such as mAP
and precision-recall curves, allowed us to optimize
hyperparameters (e.g., learning rate, batch size)
and structural configurations (e.g., freezing layers)
before scaling up.

3) Scaling Up to the Complete Dataset: Finally,
after fine-tuning on partial data, the models were
trained on the full dataset to achieve convergence.
This staged approach was necessary due to the
extensive training time and complexity associated
with large datasets.

B. Model-Specific Refinements

1) YOLOv5 Implementation and Refinements:
YOLOv5 served as the baseline model due to its well-
established speed-accuracy trade-off.

a) Hyperparameter Optimization:: Key parameters
such as learning rate, batch size, momentum, weight
decay, and IoU threshold were systematically varied.
Although these experiments revealed trade-offs (e.g.,
precision vs. recall), the default YOLOv5 hyperparame-
ters ultimately provided a balanced result for our dataset.

b) Custom Anchor Boxes:: To improve the detec-
tion of small or distant animals, the default anchor boxes
were re-evaluated and rescaled.

• Effect: Detection of small subjects improved by
approximately 5%.

• Drawback: Tighter anchors increased false posi-
tives on background elements, leading to a 15%
reduction in mAP@0.5.



c) Architectural Modifications:: Attempts to in-
crease the depth of the YOLOv5 backbone resulted in
an overcomplicated model, ultimately reducing detection
quality. Therefore, YOLOv5 was finalized in its standard
configuration, maintaining its role as a reliable baseline.

2) DETR: Transformer-Based Refinements: DETR
was refined to harness the advantages of transformer-
based architectures.

a) Transfer Learning with Pretrained Weights::
We fine-tuned DETR using COCO-pretrained weights by
partially freezing early transformer layers, which yielded
the most significant performance boost.

b) Hyperparameter Tuning and Preprocessing::
Iterative experiments focused on adjusting learning rates
(with a slower rate for the backbone), applying warmup
phases, and employing learning rate schedulers. Addi-
tionally, gradient accumulation and clipping were used to
manage memory constraints and stabilize training, while
fixed-size inputs were ensured through padding and
resizing. These changes increased performace metrics by
more than 50%.

c) Small-Object Detection Enhancements:: Mea-
sures such as multi-scale feature maps, random cropping,
zoom-in augmentation, and adjusted loss functions were
tested. Although these strategies had potential, the in-
creased complexity ultimately led to a net decrease in
performance due to additional false positives and tuning
challenges.

3) Grounding DINO: Advanced Transformer-Based
Model: Grounding DINO integrates open-set detection
and natural language processing, offering state-of-the-art
performance but at a high computational cost.

a) Fine-Tuning Strategies:: Due to its large archi-
tecture, fine-tuning with pretrained weights was essen-
tial. We experimented with both tiny and large Swin
backbones, noting that while the larger variant increased
resource usage significantly, it offered only marginal
performance gains.

b) Hyperparameter Adjustments:: Key modifica-
tions included lowering the learning rate to prevent
overshooting, applying random cropping and resizing
to enhance robustness, and extending the learning rate
scheduling. Despite yielding up to a 20% improvement
in small-object detection, the overall training overhead
remained high.

C. Model-Specific Implementation Challenges

1) YOLOv5:

• Annotation Format: Relies on a proprietary YOLO
format, necessitating conversion from COCO.

• Dependency Issues: Requires older versions of
libraries (e.g., PyTorch, CUDA), which necessitates
a dedicated environment.

2) DETR:
• Library and OS Compatibility: Tools such as
pycocotools may have limited support on Win-
dows or macOS, often requiring manual compila-
tion or a switch to Linux.

• High Memory Consumption: DETR’s transformer
architecture demands substantial GPU memory, of-
ten necessitating GPUs with at least 16 GB of
VRAM.

• Pretrained Weights and Convergence: Fine-
tuning on COCO-pretrained weights is essential and
using the model without them is often unviable
and ineffective for experimenting. Changing model
configurations (e.g., altering hidden dimensions)
may prevent partial weight loading and undermine
the entire experimentation.

3) Grounding DINO:
• Inherited Challenges: Shares many challenges

with DETR, including dependency on transformer
architectures and high memory usage.

• Unique Complexity: Requires initialization of text
prompts for open-set detection even when used
solely for object detection.

• Resource Constraints: The model’s large size
results in slower training and high computational
costs, limiting its accessibility on standard hard-
ware.

• Data Quirks: The model may have an issue with
the class labels. Due to it’s integrated catch-all
class with internal id of 0, it may cause issues and
mismatches with data whose classes start from 0
and not 1.

In summary, the deployment and refinement of
YOLOv5, DETR, and Grounding DINO reveal distinct
trade-offs between model performance, computational
resource requirements, and ease of implementation.
These insights inform the subsequent evaluation and
selection of models for our AI-driven wildlife monitoring
pipeline.

VIII. EVALUATION AND RESULTS

In this section, we evaluate the performance of the ob-
ject detection models (YOLOv5, DETR, and Grounding
DINO) using quantitative metrics (mAP, precision, re-
call, inference speed) and qualitative criteria (robustness,
ease of implementation). This evaluation is critical for
understanding the trade-offs between accuracy, computa-
tional efficiency, and practical deployment in the context
of wildlife monitoring.

A. Dataset and Training Setup

Experiments were conducted on the dataset from
Section 3.



Training Hardware:
• YOLOv5: NVIDIA GeForce RTX 4070 (Laptop

GPU, 8 GB VRAM).
• DETR & DINO: NVIDIA A10 (23 GB VRAM).
Training Duration: All models were trained for

approximately 15 hours.
Fine-tuning and training: These are the results of

end-state, best performing model across all of their
respectable iterations

B. Quantitative Performance
Table I summarizes the key quantitative metrics,

rounded to two decimal places.

Model mAP@0.5 mAP@0.5:0.95 Precision Recall FPS
YOLOv5 0.90 0.56 0.83 0.83 25–55
DETR 0.85 0.52 0.67 0.70 10–15
DINO 0.91 0.72 0.75 0.81 5–10

TABLE I
QUANTITATIVE PERFORMANCE METRICS FOR YOLOV5, DETR,

AND GROUNDING DINO.

C. Quantitative Performance Metrics
In this study, we evaluated the object detection models

(YOLOv5, DETR, and Grounding DINO) using several
key quantitative metrics: mean Average Precision (mAP),
precision, recall, and inference speed. These metrics are
critical for understanding how well each model detects
and localizes animals in camera trap images under di-
verse conditions.

1) Mean Average Precision (mAP): mAP@0.5:
Grounding DINO achieves the highest mAP@0.5 (0.91),
followed closely by YOLOv5 (0.90), while DETR
records a slightly lower score (0.85). This metric indi-
cates that, at a basic IoU threshold of 0.5, all models
demonstrate competent object localization, with DINO
showing a modest advantage.

mAP@0.5:0.95: When evaluated across a range of IoU
thresholds (0.5 to 0.95), Grounding DINO substantially
outperforms the others, obtaining a score of 0.72. In
contrast, YOLOv5 and DETR achieve 0.56 and 0.52,
respectively. This suggests that DINO’s transformer-
based architecture is particularly effective at precise
localization under strict evaluation criteria.

2) Precision and Recall: Precision: Precision mea-
sures the proportion of correct detections among all
predictions. YOLOv5 leads with a precision of 0.83,
indicating a lower rate of false positives. DETR, with a
precision of 0.67, trails behind, while Grounding DINO
records a precision of 0.75.

Recall: Recall assesses the proportion of true positives
detected. Both YOLOv5 and Grounding DINO perform
similarly in recall (0.83 and 0.81, respectively), ensuring
that most animal instances are detected. DETR, however,
has a lower recall of 0.70, which suggests a higher rate
of missed detections.

3) Inference Speed: Inference speed is measured in
frames per second (FPS) and reflects the model’s com-
putational efficiency. YOLOv5 achieves between 25–55
FPS, making it well-suited for real-time applications.
DETR operates at 10–15 FPS, and Grounding DINO,
due to its complexity, is the slowest at 5–10 FPS.
This inverse relationship between model complexity and
speed is critical for deployment decisions.

D. Analysis of the Quantitative Results
These results suggest that DINO’s transformer-based

architecture excels at producing more precise bounding
boxes across varied IoU thresholds. YOLOv5 has a very
close results at more lenient thresholds implying it’s
strengths and basic detection despite being an older
model. Meanwhile, DETR is underperforming compared
to YOLO, losing out in both regards.

a) Explanation:: These results lead to several con-
clusions:

YOLOv5s design and lightweight architecture gives it
a boost with limited resources and training.

DETRs suboptimal performence likely occurs due to
insufficient training time for convergence.

Grounding DINO has also likely not converged, yet
still manages to present impressive results. However it’s
unique qualities might be working against it, Images
often can contain notable background objects of no
actual interest (humans, vehicles, species of no interest
a.e farm aniamls), which may lead to the models zero
shot detection making mistakes and decreasing recall and
precision.

E. Qualitative Metrics
In addition to quantitative metrics, we evaluated mod-

els based on robustness.
Robustness: The robustness is assessed by the model’s

unique features (such as zero shot detection) and its
performance throughout the training and testing period
on mixed data.

Model Robustness Analysis:
YOLOv5: Reliable but Limited Adaptability. While
YOLOv5 lacks specialized architectural features for
robustness, its algorithmic simplicity enables consis-
tent performance under moderate environmental varia-
tions. The model achieves high recall (0.83) and pre-
cision (0.83) across diverse lighting conditions (e.g.,
dawn/dusk transitions) and partial occlusions. However,
its anchor-based design limits bounding box precision
(mAP@0.5:0.95 = 0.56), particularly for small or novel
objects (e.g., juvenile Ardea cinerea in atypical poses).
This deficiency becomes pronounced in unfamiliar habi-
tats, where localization errors increase by 18–22% com-
pared to controlled benchmarks [1].

DETR: Contextual Awareness at Computational
Cost. DETR’s transformer architecture leverages global



self-attention to contextualize occluded objects, achiev-
ing robust detection in cluttered scenes (mAP@0.5 =
0.85). Empirical studies demonstrate a 12% improve-
ment over region-proposal networks in partially occluded
wildlife scenarios [2]. However, this capability hinges
on extensive training convergence (¿500 epochs), which
is rarely feasible in ecological studies with limited an-
notated data. Suboptimal training leads to fragmented
attention maps, reducing reliability in complex environ-
ments.

Grounding DINO: Open-Set Capability with Pre-
cision Trade-offs. Grounding DINO’s multi-scale trans-
former architecture delivers strong performance across
variable backgrounds (mAP@0.5:0.95 = 0.72), aided by
its open-set detection mechanism. This feature enables
identification of novel species, a critical advantage in dy-
namic ecosystems. However, the model’s class-agnostic
design increases false positives by up to 15–20% in clut-
tered scenes (e.g., misclassifying agricultural machinery
as Cervus elaphus), necessitating post-processing filters
for practical deployment [3].

IX. MODEL DISCUSSION

Each of the three evaluated models—Grounding
DINO, YOLOv5, and DETR—demonstrates a distinct
balance of accuracy, speed, and computational demands,
reflecting unique strengths, weaknesses, and potential
use cases. Their performance indicates that each model
occupies a specific niche in wildlife monitoring applica-
tions.

A. YOLOv5

YOLOv5 is particularly well-suited for rapid ex-
perimentation and real-time detection in resource-
constrained environments. Its relatively lightweight ar-
chitecture allows for high inference speeds, making it
ideal for time-sensitive tasks. Moreover, YOLOv5 ben-
efits from extensive documentation, pre-trained weights,
and strong community support, which facilitate its de-
ployment and integration in operational settings.

B. Grounding DINO

Grounding DINO exhibits extremely high accuracy
and robustness, which are uniquely valuable for offline
camera trap analyses and detailed statistical reviews.
Its open-set detection capability and support for text-
based queries enable more nuanced analytics from vast
image datasets. Although its computational demands are
high—resulting in slower inference speeds—this trade-
off is acceptable in scenarios where real-time processing
is not critical.

C. DETR

DETR, despite its current challenges with slow con-
vergence and lower precision and recall metrics, offers a
promising middle ground. Its transformer-based architec-
ture provides advanced contextual understanding, which
can be particularly beneficial in cluttered or complex
scenes. While DETR currently underperforms compared
to YOLOv5 due to training difficulties, it has the poten-
tial to outperform simpler models when fully optimized,
with less computational overhead than Grounding DINO.
This makes DETR a viable option for offline detection
and analysis applications where extended training times
can be accommodated.

D. Comparative Summary

In summary, the model selection should be driven by
the specific operational requirements:

• For real-time monitoring and rapid prototyp-
ing in computationally constrained environments,
YOLOv5 is the preferred choice.

• For high-precision offline analysis and detailed sta-
tistical reviews, Grounding DINO offers state-of-
the-art accuracy and robustness.

• DETR serves as a promising alternative that, with
further training and optimization, could provide a
balanced solution with enhanced contextual under-
standing.

These trade-offs underscore the importance of aligning
model choice with the operational context and resource
availability in wildlife monitoring applications.

X. CONCLUSION

This work demonstrates that an end-to-end AI pipeline
can be effectively developed for wildlife monitoring
by integrating robust data preprocessing with advanced
object detection models. Our pipeline successfully trans-
forms raw, noisy camera trap data into a balanced and
annotated dataset, addressing challenges such as class
imbalance and environmental variability.

Thus, our findings answer the research questions as
follows:

• Preprocessing: A multi-stage pipeline can effec-
tively convert raw camera trap images into high-
quality data for AI training.

• Data Challenges: Careful annotation and balancing
strategies mitigate issues of noise and environmen-
tal variability.

• Pipeline Design: An automated, end-to-end work-
flow is feasible and scalable for wildlife monitoring.

• Model Selection: YOLOv5 is best for real-time
scenarios; Grounding DINO excels in accuracy for
offline analysis; and DETR, while promising, re-
quires further optimization.



• Limitations: Each model presents trade-offs in ac-
curacy, speed, and resource demands, guiding their
optimal use in specific operational contexts.

Future work will focus on refining model deployment
and convergence as well as exploring other variations
and requirements for the environment, such as different
types of data (drones), embedded devices and practical
usability.
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