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Abstract

As many earth observation satellites provide both high resolution panchro-
matic and low resolution multispectral images, pan-sharpening is an im-
portant technique in the field of remote sensing to produce a high reso-
lution multispectral image for a given low resolution multispectral image
and a higher resolution panchromatic image of the same area. To date,
several image pan-sharpening techniques like the IHS method, the PCA
method, the wavelet method, etc have been developed. However for the
recent high and very high resolution satellite images the developed algo-
rithms can hardly produce satisfactory results [44, 45]. There are signifi-
cant color distortions in the pan-sharpened image and the quality of these
pan-sharpened images is also seldom questioned.

This research concentrates on developing a new method for image pan-
sharpening in Bayesian image restoration framework using Markov Ran-
dom Field (MRF) and simulated annealing that provide maximum a pos-
teriori (MAP) estimate of the pan-sharpened image. The study models the
(unknown) pan-sharpened image with an MRF (prior probability) and mod-
els observation process for the panchromatic and the coarse resolution mul-
tispectral images (conditional probability). These probabilities are com-
bined to derive posterior probability for the pan-sharpened image. Optimal
solution is sought as the image that maximizes the posterior probability.
The simulated annealing algorithm is used to obtain the optimal solution.

In order to test the performance of the method, a reference image is cho-
sen and is assumed as the unknown pan-sharpened image. The reference
image is degraded to produce panchromatic and multispectral images. The
method is then applied to restore the pan-sharpened image from these de-
graded images and the accuracy assessment is performed by comparing
it with the reference image. The method shows a very high correlation be-
tween the restored pan-sharpened image and the reference image. The per-
formance of the proposed method is compared with other pan-sharpening
methods and is proved that it performs better than existing methods.

Keywords
super resolution, QuickBird, Bayesian image restoration, IKONOS, high
resolution, image fusion, Pan-sharpening, Simulated Annealing, Markov
Random Field (MRF)
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Chapter 1

Introduction

1.1 Background

Image data from Earth observation satellites contain huge amount of infor-
mation about the Earth surface. Some of these satellites, such as QuickBird,
IKONOS, Landsat 7, IRS, SPOT, offer both panchromatic images at a high spa-
tial resolution and multispectral images at a lower spatial resolution. Combi-
nation of such different data sources provides more information than the source
images separately. In order to make use of the benefits from such a combina-
tion, numerous image fusion techniques have been developed and used in many
applications.

Wald , L. [39] defined image fusion as “a formal framework which are expressed
means and tools for the alliance of data of the same scene originating from dif-
ferent sources. It aims at obtaining information of greater quality; the exact
definition of quality will depend upon the application.” It improves the quality
of information better than what can be obtained from only one type of data.
Fused images give a better interpretation means and results as data with dif-
ferent characteristics are merged. The main aim of image fusion is to integrate
different and matching data to enhance the information in the images and also
to increase the reliability of interpretation. It is very important in many ap-
plications of remote sensing. It can be used to sharpen images, improve geo-
metric corrections, provide stereo-viewing capabilities for stereophotogrametry,
enhance certain features, complement data sets for improved classification, de-
tect changes using multitemporal data, substitute missing information, replace
defective data etc.[31]. In addition to the field of earth science it is used in med-
ical sciences especially for diagnosis. It is used for modeling the human body or
treatment planning [12, 39] .

Due to the fact that it is impossible to obtain a higher resolution multispectral
image from a sensor, most image fusion methods focus on the use of information
from both panchromatic and multispectral images. In this research high or low
“resolution” refers to the spatial resolution of images unless it is mentioned.
Multispectral image data contain significantly more spectral information than
a panchromatic data, and a panchromatic image data of the same area has a
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1.1. Background

higher spatial resolution than the multispectral data.

Image fusion can be performed at three different levels: at pixel level, at fea-
ture level and at decision level [12, 37]. Fusion at pixel level is the lowest level
and uses raster data that is at least co-registered. The role of geocoding is very
important as it avoids mis-registration that causes artificial colors.

Image pan-sharpening is a pixel level fusion technique that describes a process
of changing a set of low (coarse) spatial resolution multispectral images to high
(fine) spatial resolution color images, by fusing a co-georegistered fine spatial
resolution black/white (panchromatic) image of the same area. The panchro-
matic image is usually obtained from the same platform and taken at the same
time or in a very short time duration with the multispectral image [42]. It is
a fusion technique that takes place at pixel level of the high resolution mainly
to increase the spatial resolution of the multispectral image via the higher res-
olution pan image. At the same time it aims at preserving the spectral infor-
mation in the multispectral data [12]. It is also refereed as resolution merge,
image integration, image fusion, and multispectral data fusion [37]. The term
pan-sharpening is preferred and used in this research as it is more clearly and
specifically defined.

Pan-sharpening has become very important in many applications of remote
sensing like for land use classification, for detecting changes, for updating maps,
for monitoring hazards and for many other applications. Pan-sharpened images
can also be used for visualization purposes. But for quantitative spectral mea-
surements different quality level is required. An other interesting application
of pan-sharpening is in the enhancement of multispectral images for color tele-
visions. Conventional color imaging science is based on the paradigm that three
variables are sufficient to characterize a color. Color television uses three color
(multispectral) channels. Mainly the multispectral signals have a defined spec-
tral band and a lower resolution than panchromatic signals. This is because
multispectral signals contain fewer photons and they need larger detectors for
similar exposure periods. Due to this fact three color channels are often in-
sufficient for high quality imaging like for museum applications. Recently re-
searches on pan-sharpening has been done to introduce imaging technologies
with more than three channels [19, 30]. The methods utilize the panchromatic
signal to increase the resolution of the multi-spectral signals to provide an in-
creased resolution color output.

Image pan sharpening can be considered in the context of image restoration
framework [24]. High spatial resolution multispectral image is assumed to ex-
ist, but it is unknown and observed through “degraded” images. The degraded
observed images are a panchromatic image degraded spectrally and a multi-
spectral image degraded spatially. The task is then to restore the assumed
“true” image. This is a type of an ill-posed problem (in Hadamar sense) where
there exists no unique solution and/or small variations in the observed images
may result in large variations in the resulting image. Therefore it has to be

2



Chapter 1. Introduction

regularized, which can be done by incorporating the prior information using
the Markov Random Field (MRF) approach.

The Markov Random Field (MRF) is a useful tool for analyzing and integrat-
ing contextual information and considers this contextual information as a prior
information in image analysis. It is a probabilistic model defined by local condi-
tional probabilities. Contextual models are one way to model prior information
and MRF theory can be applied to model a prior probability of contextual de-
pendent patterns, such as textures and object features [24]. Spatial context is
simply meant for the correlations between spatially adjacent pixels in a spa-
tially neighboring pixels [35]. Spatial context of a multispectral image provides
a way to improve the separation between ground cover classes as compared to
a single image analysis. In an image a pixel classified as a “water body” is most
likely surrounded by pixels of the same class and is unlikely to be surrounded
by neighbors from other classes. That means using the concept of context, pixels
can not be treated in isolation, rather they are considered to have a relation-
ship and being statistically dependent with their neighbors. So then by fusing
a data with a priori image model (which is in fact used to describe the expected
association or relation ships between the neighboring pixels), spatial informa-
tion can be included [12].

In statistical modeling Bayesian theory is a way to incorporate prior informa-
tion. Its key elements are the prior and the conditional probability density
function. By combining these functions a value can be expressed in terms of
a maximum a posteriori (MAP) criteria. MAP probability is one of the most
popular criteria for optimality [36]. There are many MAP-MRF optimization
algorithms. Two iterative algorithms, namely simulated annealing (SA) and
maximizer of posterior marginals (MPM) are well known in literature [24, 26].

Various factors should be considered before image pan-sharpening is done. The
application of the pan-sharpened image to be used, co-registration, the viewing
angle of imagery, the resampling methods are the major ones to be thought
first. Since many satellite images are available and can be used for image
pan-sharpening, knowledge of the main application of the pan-sharpened im-
age helps in selecting the kind of data to be used. Co-registration is one of the
most important preprocessing steps that should be done before pan-sharpening
to avoid artifacts of the final pan-sharpened image. In order to get a desired
result the viewing angle of imagery should also be carefully set especially if
the multispectral and the panchromatic images are taken at different times.
A suitable resampling technique should also be used during geometric projec-
tion, geometric correction and co-registration. The need for the technique of
pan-sharpening arises mainly because of the fact that the designing of a sensor
to give both high spatial and spectral resolution is restricted by the tradeoff
between spectral resolution, spatial resolution and signal-to-noise ratio of the
sensor [37]. The multispectral image with high spatial resolution is preferable
in many applications.

3



1.1. Background

1.1.1 Image resolution

Remote sensing image data are beyond a picture, they are measurements of
electromagnetic energy. The characteristics of sensor platform system deter-
mine the quality of image data. The four characteristics that determine the
quality of an image data are the spectral characteristics, the spatial character-
istics, the radiometric characteristics and the temporal characteristics. These
four characteristics can also be further specified by their coverage and their
resolution (defined as the smallest units that can be distinguished) [8].

Based on the resolution characteristics space born systems can be grouped into
low resolution systems (with spatial resolution of 1 km to 5 km) like Meteosat-8
and NOAA-17, medium resolution systems (with spatial resolution of 10 m to
100 m) like Landsat-7 and Terra, and high resolution systems (with a spatial
resolution better than 10 m) like SPOT-5, Resourcesat-1, IKONOS and Quick-
Bird [8, 42]. IKONOS and QuickBird are the latest high resolution satellites
that collect simultaneously multispactral images (MS) at a lower spatial reso-
lution (4m and 2.8m respectively) and panchromatic (Pan) images at a higher
spatial resolution (1m and 0.7m resolution). In these satellites most urban ob-
jects can be recognized because of the color differences in the multispectral im-
ages, but one can not exactly demarcate and do further analysis because of lack
of spatial resolution. However the shapes of objects can be clearly identified
from the panchromatic images but due to lack of spectral information further
image analysis can not be done precisely.

Spectral resolution

The width within the electromagnetic spectrum that can be sensed by a band
in a sensor is called the spectral resolution. It is the width of the spectral wave-
length bands that the sensor is sensitive to [8, 37]. The spectral resolution
becomes better as the spectral band width becomes narrower. With a higher
spectral resolution image it is possible to define finer wave length intervals and
hence it is possible to compare and identify specific classes, features or objects
easily. If the sensor has a few spectral bands, they are called multispectral; and
hyperspectral if the number of spectral bands is in hundreds.

Both color and Black & white films record wavelengths including over much
or all of the visible part of the electromagnetic spectrum. Since most of the
wavelengths of the visible spectrum are not individually separated and overall
reflectance in the entire visible portion is recorded in black and white film, its
spectral resolution is low. Whereas since color film is individually sensitive to
the reflected energy at the blue, green, and red wavelengths of the spectrum
it has a higher spectral resolution. That means it can represent features of
different colors based on their reflectance [1]. Table 1.1 shows the spectral
information for IKONOS and QuickBird satellites.
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Table 1.1: Spectral band information of IKONOS and QuickBird Satellites

IKONOS QuickBird

Band Spectral Band) Band Spectral Band
Name (nm) Name (nm)

Pan 525.8 - 928.5 Pan 450 - 900

MS-1 (Blue) 444.7 -516.0 MS-1 (Blue) 450 - 520

MS-2 (Green) 506.4- 595.0 MS-2 (Green) 520 - 600

MS-3 (Red) 631.9 - 697.7 MS-3 (Red) 630 - 690

MS-4 (VNIR) 757.3- 852.7 MS-4 (VNIR) 760 - 900

Spatial resolution

The spatial resolution of an imaging system is not an easy concept to define.
It can be measured in a number of different ways depending on the user’s pur-
pose. The criteria that use to define this concept are the geometrical properties
of the imaging system, the ability to distinguish between point targets, the abil-
ity to measure the periodicity of repetitive targets, and the ability to measure
the spectral properties of small targets [27]. The most commonly used measure
based on the geometrical properties of the imaging system is its instantaneous
field of view (IFOV). The IFOV determines the ground area which is recorded by
a sensor at a given instant of time. A cross-section of the recorded or imaged in-
tensity distribution of a single point source corresponds to a Gaussian-type dis-
tribution. This distribution function is called the point spread function (PSF).
The point spread function describes the response of an imaging system to a
point source or point object. The PSF is also determined by atmospheric effects.
In this definition spatial resolution refers to the smallest unit-area measured.
It indicates the minimum detail of objects of an image that one can detect. So
as the spectral resolution is dependent on the width of the spectral band, the
spatial resolution is dependent on the IFOV. As the IFOV becomes finer, the
higher is the spatial resolution [8, 12, 37]. Spatial resolution of an image is
also understood as the clarity of the high frequency detail information that is
available in an image [37]. The detail of an image becomes better and clearer if
the spatial resolution is higher.

Relationship between signal to noise ratio, and spectral resolution &
spatial resolution

Signal to noise ratio abbreviated as SNR is defined as the ratio of a given trans-
mitted signal (that is the meaningful information) to the background noise in-
volved in the measurement process. This ratio is common in most imaging sen-
sors based on their design and the sensors recognize the energy that is reflected
only if the background noise ratio is greater than the designed value [37]. So
the minimum signal sensitivity of the sensors is determined by the SNR value.
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It is mentioned in the above sections that narrow bandwidths are common in
multispectral and hyperspectral images. That means in order to gather enough
signal to overcome the minimum signal sensitivity of the sensor, such images
need a coarser IFOV or a low spatial resolution. A similar argument also holds
true for panchromatic images. That is to gather enough signal strength the
spectral band width should be larger. That is why only spectral resolution and
spatial resolution are usually discussed in literature. The other one (i.e. the
SNR) is fixed based on the design constraint [15, 37]. Such a constraint can
be controlled using image pan-sharpening techniques that can produce images
with both high spatial and high spectral resolution.

1.2 Problem statement

Due to high interest for pan-sharpened images, numerous pan-sharpening al-
gorithms have been developed by researchers, and some of them have been
integrated in commercial remote sensing software packages like ERDAS Imag-
ine and ENVI. Many researchers find fusion and sharpening in particular just
non-scientific and not well-grounded procedures, e.g. [44]. Recently Vijayaraj
[37] has done a quantitative analysis of pan- sharpened images of the most well
known methods on different types of data. The most well known image pan-
sharpening methods, especially that are efficient for Landsat TM and SPOT im-
ages, are the intensity-hue-saturation (IHS) transformation method, the prin-
cipal component analysis method, the Brovey transform method and the latest
wavelet transform method [12]. The latest wavelet transform method for im-
age pan-sharpening has been discussed on different literature sources mainly
because of its being more advantageous than the other methods [20, 37, 43].
At the moment most of the available pan-sharpening methods are not efficient
when dealing with the new commercial high resolution satellite images like
IKONOS and QuickBird [44, 45]. The quality of the pan-sharpened image of
these satellite images is seldom questioned by those people who use it. Some
researchers have mentioned that the results of the pan-sharpened images using
the different methods have a significant color distortions and there are only a
few pleasing outcomes [7, 22, 37] on these types of images. Therefore this study
focuses on developing a new Bayesian method for image pan-sharpening using
the Markov Random Field and the simulated annealing algorithm and assesses
its quality for satellite images.

1.3 Research objectives

The general objective of this research is to come up with a new Bayesian method
for satellite image pan-sharpening using the Markov Random Field Approach
(MRF) and the simulated annealing that can give a maximum a posteriori
(MAP) estimate of the pan-sharpened image. The sub-objectives are:

1. To formulate pan-sharpening as an image restoration model and to de-
termine the parameters of this model by building observation and prior
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models.

2. To integrate the modeled prior information with the conditional informa-
tion obtained from the multispectral and the panchromatic images using
the Bayesian estimation in order to get the final pan-sharpened image and
to find the optimal solution using the simulated annealing algorithm.

3. To assess the quality of the pan-sharpened image and,

4. To compare the new method with the already existing methods of pan-
sharpening.

The result of this research will provide image analysts, most notably from the
geo-informatics society with an efficient method for image pan-sharpening and
obtain more information from remotely sensed data. It will also be useful in
many applications of remote sensing especially to users of high resolution satel-
lite images to obtain better qualities of information that would come as a result
of the increase in spatial resolution; and gives awareness of the quality of pan-
sharpened products and consequences of using them in quantitative analysis.

1.4 Research questions

In line with the above mentioned research objectives the following research
questions are formulated in order to meet the objectives:

1. How to model the prior and the conditional information that are used to
obtain the maximum a posteriori (MAP) result?

2. What are the parameters that are necessary to use in modeling the prior
information and the conditional information and how to estimate these
parameter values from the data?

3. How to define the quality of the final result?

4. How to compare the quality of the pan-sharpened image with other meth-
ods of pan-sharpening?

1.5 Research setup

The adopted setup is carried out in five phases: pre-processing, modeling of
the prior information, modeling of the two conditional information, estimation
of the maximum a posteriori (MAP), quality assessment and performance com-
parison. The flow chart for all of the phases is shown in figure 1.1.

1.5.1 Phase 1 - Pre-processing

In this phase some pre-processing steps including co-registration and resam-
pling to common grid are performed (usually done by the data provider).
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Figure 1.1: Flow chart of the research.

1.5.2 Phase 2 - Modeling the prior information

The prior information (energy) is modeled from the assumed high resolution
multispectral image using the Markov Random Field (MRF). The suitable pa-
rameters and form of the model are set to generate the contextual information.

1.5.3 Phase 3 - Modeling the conditional information

The second stage of the method is to model the two conditional probabilities
that can be obtained from the two spatially and spectrally degraded images.
A model developed by Alvarez et al.[9] is used to model the two conditional
information.
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1.5.4 Phase 4 - Estimation of the MAP

In this phase the two conditional energies and the prior energy obtained from
the previous phases are integrated under the Bayesian framework in order to
get the maximum probability that will be used to get optimal solution for the
pan-sharpened image. Some of the optimization methods include, iterated con-
ditional modes, stochastic relaxation (which is a form of Simulated Annealing),
the highest confidence first (HCF) etc [13]. The Simulated Annealing method
of approximation is adopted to get the maximum a posteriori (MAP) estimate
for the pan-sharpened image that maximizes the posterior probability. Proper
parameters will be sought to get optimal solution for the pan-sharpened image.

1.5.5 Phase 5 - Quality Assessment and performance compari-
son

For assessing the quality of the pan-sharpened image a multispectral IKONOS
image is assumed as a true pan-sharpened image. Two artificial images are
prepared from this existing IKONOS image. It is degraded it into multispectral
and panchromatic images and a pan-sharpened image is restored from these
two degraded images. The quality of this pan-sharpened image is assessed by
comparing the reference image with the restored image on a pixel-by-pixel level
using statistical measures like correlation coefficients and the root mean square
error. A comparison between the method and other methods of pan-sharpening
is done using the statistical measures. In a separate experiment, a QuickBird
image with an aerial photograph is compared visually.

1.6 Structure of the thesis

This research thesis contains six chapters. The first chapter describes the
background, the problem statement, the objectives, the research questions and
the approach of the research. Chapter two presents a literature review on the
previous works of MRF in the field of remote sensing and a brief review of exist-
ing image pan-sharpening techniques. Chapter three describes the data types
and data sets used for this study and the preprocessing steps employed. Chap-
ter four discusses the new MRF-SA method developed in this study. Chapter
five presents the results of the research for both the synthetic and remote sens-
ing images followed by analysis and discussion. Finally chapter six depicts
conclusion of this study and gives recommendation for further research.
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Chapter 2

Literature review

This chapter briefly explains previous works of MRF in the field of remote sens-
ing and reviews existing pan-sharpening techniques.

2.1 Previous works of MRF in remote sensing

In the field of remote sensing the main application of the Markov Random
Fields is to model contextual relationships in image analysis. The first work of
MRF for image analysis was on MRF based statistical methodology for image
analysis done by Geman and Geman [18]. Since then MRFs are used in many
applications like image segmentation [18], filtering (denoising) [25], classifica-
tion of remotely sensed data [36], change detection [11, 21] and super resolution
land cover mapping [21].

Solberg and et al. [35] developed an MRF-based algorithm for multi-source
classification of remote sensing data. They studied that additional source in
addition to the information that can be obtained from individual sensors can
provide complementary data. They considered pixels in context with other mea-
surements to get more complete information. They merged the spatial and tem-
poral contextual information within the framework of their model. Based on the
experimental results they made they proposed MRF model for classification of
multi-source satellite imagery.

Bruzzone et al. and Kasetkasem et al. developed methods for detecting changes
in the year 2000 and 2002 respectively [11, 21]. The first authors modeled two
automatic change detecting techniques. Mainly their approach is based on MRF
models that consider inter-pixel dependence. Kasetkasem et al. also employed
an MRF model to detect changes. Their basic idea is that changes are more
likely to occur in connected regions rather than at disjoint points. They used
the MRFs in their method to use additional information from observed image
data and estimated the maximum a posteriori (MAP) solution to search for the
global optimum.

Super resolution mapping (SRM) is an other work that used the MRFs. It works
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by dividing the coarse pixel into subpixels and to each corresponding subpixels
it gives an estimate for the class proportion using subpixel classification. Then
class labeling is optimized using the principle of spatial dependency [33]. There
are few super resolution methods and among them Markov random field (MRF)-
based SRM is one of the most recently introduced techniques. Its suitability is
also assessed in a systematic way very recently.

The importance of MRF to integrate contextual information at pixel level is
shown in all the above applications of MRF in the field of remote sensing. The
next section briefly presents some existing techniques of image pan-sharpening.

2.2 Image pan-sharpening techniques

A number of pan-sharpening techniques have been developed by many authors
and can be found in many literatures. Recent works include the interband
structure modeling for pan-sharpening of very high resolution [15], remote
sensing image fusion using the curvelet transform [26], An MTF-based spectral
distortion minimizing model for pan-sharpening of very high resolution multi-
spectral images of urban areas and few others [10]. In the last few years a com-
prehensive revision and analysis [10] of the most well known and published im-
age pan-sharpening methods have been developed. Most of these known meth-
ods are successful especially on Landsat TM and SPOT images. Yun Zhang
[10] generally categorized these methods in to three groups: the projection and
substitution methods (like the Intensity-Hue-Saturation and the Principal com-
ponent analysis methods), the band ratio and arithmetic combinations (like the
Brovey method), and the different wavelet fusion methods which are the re-
cent “best” methods. In addition to these three groups, other pan-sharpening
methods using the Bayesian paradigm have also been developed recently using
different models.

2.2.1 The Intensity-Hue-Saturation (IHS) method

The Intensity-Hue-Saturation method for image pan-sharpening is based on
the Intensity-Hue-Saturation transform. The transformation separates the in-
tensity information from the color carrying information [34]. A pure color is
described by a hue and the degree to which this pure color is diluted by a
white light is called the saturation [8]. The Intensity-Hue-Saturation transform
helps to separate the spatial information into a single intensity band. Among
the different transformations that differ in computing the intensity component,
Smith’s hexacone and triangular models are the most widely known and used
ones [37]. The maximum value of red, green and blue (I = max(R,G,B)) is
taken as the intensity value in the hexacone model and one third of the sum of
the red, green and blue values (I = 1/3(R + G + B)) is taken as the intensity
value in the case of the triangular model. Since the hexacone model ignores
two of the values, the computed intensity value may not be representative of
the information. The best suited and preferred transformation model for image
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fusion is the triangular model.

There are different models of the Intensity-Hue-Saturation (HIS) method for
image pan-sharpening. The basic idea is as follows. First the multispectral
image composite is changed from the RGB color space to the HIS color space
domain. Then the intensity element which is the spatial component is substi-
tuted by using the histogram matched (higher resolution) panchromatic image.
At the same time the hue and the saturation parts are resampled to the resolu-
tion of the panchromatic image. Lastly the inverse IHS transformation is used
to get back into the RGB color domain to obtain a fused image [10, 15, 38, 41].
Satisfactory result can be obtained therefore if the intensity of the image of
the HIS transform has a high correlation to the panchromatic image used to
be fused. Due to the fact that the musltispectral and panchromatic images ob-
tained from IKONOS and QuickBird have very low correlation there is a color
distortion in the final outcome particularly when the bands 1, 2 and 3 are fused
with the panchromatic image [10].

2.2.2 The principal component analysis (PCA) method

The principal component analysis method for pan-sharpening abbreviated as
PCA is the other known method of image pan-sharpening that belongs to the
projection and substitution method categories. Principal component analysis
can easily be understood as the transformation of correlated variables into a
set of uncorrelated variables called principal components. It is possible to have
as many possible principal components as there are variables [37]. The com-
putation of the principal components involves the usage of the eigenvalues and
eigenvectors of the covariance matrix of the bands of the multispectral image.
The variance along the principal components is represented by the eigenvalues
and the direction of the principal components is represented by the eigenvec-
tors. Then by arranging the eigenvectors in the order that corresponds to the
eigenvalues the transformation matrix for finding the principal components will
be obtained. So the direction of the highest eigenvalue or maximum variance
belongs to the first principal component and the second maximum variance will
be represented by the second principal component and so forth [17, 34, 37].

So what the PCA method of image pan-sharpening does is that after the PCA is
applied to the multispectral image bands to compute the principal components,
the first principal component is substituted with the resolution panchromatic
image. Later in order to go back to the domain of the image the inverse PCA
transform is done [7, 12, 15]. The PCA sharpening method is sensitive to the
area to be sharpened. The performance of the method varies with images hav-
ing different correlation between the multispectral bands. The major problems
of this technique on the high resolution satellite images are dominant spatial
information and weak color information. This is mainly because the variance of
pixel values as well as the correlation between bands are different depending
on the land cover; but the first principal component that is replaced by the pan
image has a high variance and this favors the pan image to increase its effect
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on the final outcome [10, 12].

2.2.3 The Brovey transform method

The Brovey transform is the other known method of pan-sharpening that is
under those categories of techniques that use the band ratio and arithmetic
combinations. It is named after its author and uses ratios to sharpen the multi-
spectral (MS) image [12]. The basic idea in short is as follows. It first calculates
the ratio between a panchromatic cell value and the average of the correspond-
ing multispectral cell values and uses that ratio to compute the color component
values for the pan-sharpened result [1, 7]. It is expressed as:

DNfusedMSi
= (

DNbii

DNb1 +DNb2 + ...+DNbn

)DNPAN (2.1)

where DN is the digital number of a particular band and bi represents a partic-
ular band of the multispectral image. On the high resolution satellite images
this method has in fact a nice contrast but the spectral characteristic is greatly
artificial and hence there is a color distortion on the final output [7, 12].

2.2.4 The wavelet methods

The wavelet image fusion methods are among the latest techniques for im-
age pan-sharpening. It is based on the mathematical tool widely used in im-
age analysis called the wavelet transform. There are few wavelet-based pan-
sharpening methods available in most well known literature sources [7, 12].
All of them are developed based on the powerful mathematical tool mostly used
in signal analysis called the wavelet transform that decomposes an image into
various images with different spatial resolutions [29, 37]. By using the discrete
wavelet transform (DWT), a function f(t) in one dimension can be represented
by:

f(t) =
∑
j,k

aj,kψj,k(t) (2.2)

where aj,k are the wavelet coefficients,
ψj,k(t) are the basis functions of scale j and translation k of the function
called the mother wavelet ψ(t).

For a two dimensional DWT, the function is just an extension of the one dimen-
sional DWT that is obtained by applying the DWT across rows and columns of
an image independently. It is represented as:
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f(x, y) =
∑
k,l

CJ0 [k, l]φj,k,l(x, y) +
∑

S=H,V,D

∞∑
j=J0

∑
k,l

DS
j [k, l]ψS

j,k,l(x, y) (2.3)

where CJ0 is the approximation coefficients,
φj,k,l(x, y) is the scaling function,
DS

j is the set of detail coefficients,
ψS

j,k,l is the set of wavelet function and
j, k, l represents the horizontal, vertical and diagonal subspaces

The basic idea of the wavelet-based pan-sharpening methods is as follows. The
first step is to decompose the low resolution multispectral image into high res-
olution panchromatic images using the wavelet transform coefficients. As the
wavelet coefficients go from finer scale to coarser one, they are of lower spatial
resolution. The second step is to look for a low resolution pan image and replace
it with one of the multispectral band that has the same level of resolution. The
last step is just to carry out an inverse wavelet transform in order to convert the
result of the second step to the original panchromatic resolution level [7, 12].
This method is relatively the most successful one especially on Landsat TM and
SPOT images and the color distortion on the high resolution satellite images is
smaller than the other methods. In many literature sources it is also noted
that it is computationally intensive and there is a loss of spectral information
especially for small features.

2.2.5 Method of Price and Method of Park & Kang

In Price’s method it is assumed that a high resolution panchromatic image X
and a low resolution multispectral image Y are available [14]. Yij represents
the ij pixel value for low spatial resolution data, and xuv represents the uv pixel
value for high resolution data with m the ratio of lengths of sides of the respec-
tive pixels. Each low resolution pixel corresponds to m2 high resolution pixels.
Let’s make m2 ( also called the magnifying factor ) to be 2 × 2. So each low
resolution pixel (i, j) consists of four high resolution pixels (u, v) with

(u, v) ∈ Hij = {(2i, 2j), (2i+ 1, 2j), (2i, 2j + 1), (2i+ 1, 2j + 1)}.

The performance of this method was investigated in using two sets of 500× 500
Landsat 7 Enhanced Thematic Mapper (ETM)+ panchromatic (15m resolution)
and multispectral (seven bands and 30m resolution except for the thermal band,
which is 60m resolution) images. Its performance over IHS and Prices methods
was confirmed visually and quantitatively. It was shown that incorporating
several high resolution images makes a further improvement to the quality of
the result. But the method may not provide a radiometrically accurate fusion if
there is a large number of mixed pixels in the low resolution image. In addition,
the proposed algorithm needs much processing time for calculating spatially
adaptive weights.
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2.2.6 The Bayesian methods

Bayesian theory has an important application in statistical modeling. The two
main components that make up the Bayesian theory are the prior informa-
tion and the conditional information in order to get a better estimate called a
maximum a posteriori (MAP) result. Two methods of super resolution and pan-
sharpening of multispectral images, Method of Eismann et al [28], and Method
of Molina et al [32], that are done under the Bayesian framework will be dis-
cussed here as the models in this research are put under Bayesian formulation.

Method of Hardie and Eismann et al

In this method a maximum a posteriori (MAP) estimation method is developed
for enhancing the spatial resolution of a hyperspectral image using a higher
resolution coincident panchromatic image [28]. The panchromatic high resolu-
tion image x can be written as:

x = Sty + η (2.4)

where y is the high resolution multispectral image to be estimated, St is a
sparse matrix whose rows are the spectral response functions for the panchro-
matic pixel locations and η is the noise. Equation 2.4 produces P (x|y).

The low resolution observations Y can be expressed as:

Y = Hy + ε (2.5)

where ε is the noise and H is a sparse matrix whose rows are the spatial re-
sponse functions for the low resolution hyperspectral pixels. Equation 2.5 pro-
duces P (Y |y).

Using the Bayesian paradigm, the goal was to find the maximum a posteriori
(MAP), that is

ŷ = argmaxyP (y|x, Y ), (2.6)

where P (y|x, Y ) ∝ P (y)P (x, Y |y)

Assuming independence between x and Y given y,

P (y|x, Y ) ∝ P (y)P (x|y)P (Y |y)

or P (y|x, Y ) ∝ P (y|x)P (Y |y)

Now the remaining task is the definition of P (y) or the conditional distribu-
tion P (y|x) depending on the model they want to use.

Using the model
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P (y|x, Y ) ∝ P (y)P (x|y)P (Y |y)

the authors propose to estimate P (y, x) using a joint Gaussian distribution for
(y, x) and then calculate the conditional. Mean and covariance matrices are ob-
tained from the panchromatic and low resolution images. Covariance matrices
are improved by the use of clustering techniques.

Using the model

P (y|x, Y ) ∝ P (y)P (x|y)P (Y |y)

they estimated P (y) for each pixel as a mixture of Gaussian distributions and
the mean and covariance of each member of the mixture is estimated using the
Stochastic Mixing Model (SMM). The element of the mixture with the highest
probability defines then the prior model.

The method was tested on three types of images: the first was a synthetically
generated image that provide a well-controlled test case where the imagery is
known to conform to the basic model assumption. The second image was col-
lected by the Airborne Visible-In-frared Imaging Spectrometer (AVIRIS) sensor.
The third image was collected by the NVIS airborne sensor which is a pushb-
room dispersive imaging sensor. The results showed that better hyperspectral
resolution enhancement results than conventional methods such as principal
component substitution and least square estimation can be obtained using the
method.

Method of Molina et al

Another method of pan-sharpening called, the new super resolution Bayesian
method for pan-sharpening Landsat ETM + imagery, constructs the multispec-
tral image y from its corresponding observed low resolution multispectral image
Y and the high resolution panchromatic image x by using a linear combination
of the high resolution multispectral bands, yb, to obtain the information that is
contained in the panchromatic image [32]. i.e.

x =
∑

b

λbyb + ρ, (2.7)

where λb > 0 are quantities that are used to weight the contribution of each
high spatial resolution multispectral band to the pan image and ρ is the obser-
vation noise assumed to be Gaussian with mean equal to zero and variance 1/γ.

In addition, the equation

Y b = Hbyb
i + ηb, (2.8)

where Hb is a matrix used to reproduce the low resolution band from the re-
constructed high resolution band and ηb is the observation noise assumed to be
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Gaussian with mean zero and variance 1/βb.

Prior model about the smoothness of the object with in each band was modeled
using

P (y) = const×
∏
b

exp{−1
2
αb‖Cyb‖2} (2.9)

where const is a constant, C denotes the Laplacian operator, and αb is the in-
verse of the variance of the Gaussian distribution.

Given the degradation model for the PAN image in equation 2.7, the distribu-
tion of the panchromatic image x given y is defined by

P (x|y) = const× exp{−1
2
γ‖x−

∑
b

λbyb‖
2
} (2.10)

From the degradation model described in equation 2.8 the distribution of the
observed multispectral image Y given y is defined by

P (Y |y) = const×
∏
b

exp{−1
2
βb‖Y b −Hbyb‖2} (2.11)

The true y is based on P (y|Y, x) given by

P (y|Y, x) ∝ P (y)P (Y |y)P (x|y) (2.12)

Maximization of this equation with respect to y yields the maximum a poste-
riori (MAP) estimate of y. Substituting equations 2.9, 2.10, 2.11 in 2.12 and
maximizing with respect to yb one can obtain,

ŷb = argminybαb‖Cyb‖2 + βb‖Y b −Hbyb‖2 + γ‖x− λbyb −
∑
j∈ȳb

λjyj‖2, (2.13)

where ȳb represents the rest of the bands except yb. Minimization of the equa-
tion is carried out by the following iterative gradient descendent algorithm.

yb
i+1 = yb

i −

ϕ{αbCtCyb
i − βbHbt

(Y b −Hbyb
i )− γλb(x− λbyb

i −
∑
j

∈ b̄λjyj)}, (2.14)

where yb
i+1 and yb

i are the high resolution estimates of the band b at the (i+1)th

and ist iteration steps respectively and ϕ is the relaxation parameter that con-
trols the convergence of the algorithm. Minimization was done with respect
to each band in a cyclic fashion; that is, for each iteration of the algorithm
each band is optimized while keeping the rest of the bands fixed. The method
developed gives a good result for Landsat 7 ETM and multispectral bands in
preserving the spectral information and increasing the spatial resolution.
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2.2.7 Summary

Having reviewed the well known methods for image pan-sharpening the fo-
cus of this research is to develop a new Bayesian pan-sharpening method us-
ing the Markov Random Field (MRF) and the simulated annealing algorithm
for satellite images that gives a maximum a posteriori (MAP) estimate of the
pan-sharpened image. The method developed in this research is similar to the
method of Molina et al. [32]. Their method is an MRF-deterministic method
where optimization is carried out by gradient-descent optimization procedure
that leads to locally optimal solution that does not correspond to MAP solution.
The MRF and SA-based method developed in this study is an MRF-stochastic
method which is non-deterministic, and any next value is determined by ran-
domness and partially but not fully determined by the previous value. The ran-
dom assignment is based on the Gibbs sampler. The prior model of the method
is not based on a quadratic potential function like their method; rather an ex-
ponential based potential function is used. In addition optimization is done in
such a way that global minimization can be carried out without keeping any
other band constant. Chapter 4 discusses the method in a more detailed man-
ner.
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Chapter 3

Data and pre-processing

This chapter discusses about the data sets that are used in the research includ-
ing the preprocessing steps and the degradation procedures. In this research
three types of remote sensing data - IKONOS & QuickBird images and an aerial
photograph - and two types of synthetic data are used. Section 3.1 discusses
about the generation of the synthetic data and its degradation procedures. Sec-
tion 3.2 discusses about the remote sensing data set in brief.

3.1 Synthetic data sets

Many researches reveal the use of synthetic data as a useful source of data for
improving and testing the performance of spatial and spectral multi-resolution
image fusion techniques. They are used to improve our understanding of in-
formation extraction from remotely sensed data [33, 37]. The main advantage
of using a synthetic image in this research is that the exact values of targeted
pan-sharpened image will be known. Besides since these synthetic images rep-
resent simple geometric features a visual checking of the method’s performance
will be easier. At the same time a good reference image that will be used to com-
pare with the pan-sharpened image is not available, so the synthetic image can
be used to make a quick visual comparison with a reference data. Unlike that of
synthetic data, for real data it is almost difficult to get a high resolution multi-
spectral image having the same spatial resolution as that of the pan-sharpened
image from sensors. For these reasons two types of synthetic data are prepared.

3.1.1 Synthetic data I

A synthetic pan-sharpened image is generated having four different bands. The
pixel values are assigned randomly in such a way that geometric features can
easily be checked visually. Figure 3.1 shows the synthetic pan-sharpened image
prepared.

Image degradation model

From the prepared synthetic pan-sharpened image two synthetic images one
multispectral (four bands) and another panchromatic images are degraded.
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Figure 3.1: A synthetic pan-sharpened (assumed) image of size 40× 40 pixel.

The synthetic pan-sharpened image, the degraded multispectral image and
degraded panchromatic image are denoted by F , D and P respectively. The
multispectral image is of spatial resolution r and the panchromatic image is of
spatial resolution R, where the scale factor S between the two input images is
S = R

r . If S = 4 and (u, v) denotes the pixel of the multispectral image D then
this pixel consists of sixteen high resolution pixels (i, j) of the pan-sharpened
image F . Where

(i, j) ∈ Huv = {(4u− 3, 4v − 3), (4u− 3, 4v − 2), (4u− 3, 4v − 1), (4u− 3, 4v),
(4u− 2, 4v − 3), (4u− 2, 4v − 2), (4u− 2, 4v − 1), (4u− 2, 4v),
(4u− 1, 4v − 3), (4u− 1, 4v − 2), (4u− 1, 4v − 1), (4u− 1, 4v),
(4u, 4v − 3), (4u, 4v − 2), (4u, 4v − 1), (4u, 4v)}.
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Figure 3.2: A band of the high resolution image that we want to estimate (upper) and a

band of the observed low resolution image (lower).

Since the scale factor of the images is 4 the following linear relationship model
to degrade the synthetic multispectral image from the synthetic pan-sharpened
image is used.

Db(u, v) =
1
16

∑
(i,j)∈Huv

F b(i, j) + ηb, (3.1)

where Db is the degraded multispectral image band, F b is the synthetic pan-
sharpened image band and ηb is the observation noise assumed to be Gaus-
sian with mean zero and variance 1

βb . A brief illustration of the above relation-
ship between the assumed pan-sharpened image and the multispectral image
is given in figure 3.2.

Table 3.1: Assumed values for parameters in the degradation process

Parameter ηb βb ρ γ ωb

Value 0 1 0 2 0.25

In addition a synthetic panchromatic image is also degraded from the synthetic
pan-sharpened image using the following linear relationship model.

P =
∑

b

ωbF b + ρ, (3.2)

where ωb are values that weight the contribution of each band of the pan-
sharpened image to the panchromatic image and ρ is the observation noise

23



3.1. Synthetic data sets

assumed to be Gaussian with mean zero and variance 1
γ . The weights ωb are as-

signed a value of 1 for each band. Figure 3.3 shows the degraded multispectral
and panchromatic image bands. Table 3.1 gives the assumed parameter val-
ues in the degradation process of both the multispectral and the panchromatic
images.

Figure 3.3: Degraded synthetic multispectral (10× 10 pixel) and panchromatic (40× 40 pixel)

images.
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3.1.2 Synthetic data II (from IKONOS image)

The IKONOS Satellite, launched on 24 September 1999 in Vandenberg Air
Force Base, California, USA, is a high-resolution satellite operated by GeoEye.
It can capture a 3.2m multispectral and a 0.82m panchromatic resolution im-
ages at nadir, and a 4.0m multispectral and a 1.0m panchromatic images at 26
degree off nadir. IKONOS data is collected as 11 bits per pixel. Since it has
both cross and along track viewing instruments flexible data acquisitions and
frequent revisiting are possible. It can yield relevant data for nearly all aspects
of environmental study [6]. Table 3.2 summarizes the detail technical informa-
tion of the satellite imagery.

Table 3.2: Technical details of IKONOS satellite

Band Wave length Resolution Swath Revisit
Name (nm) off-nadir(m) width (km) time(days)

Pan 525.8 -928.5 1 11.3 3

MS-1 (Blue) 444.7 -516.0 4 11.3 3

MS-2 (Green) 506.4- 595.0 4 11.3 3

MS-3 (Red) 631.9 -697.7 4 11.3 3

MS-4 (VNIR) 757.3- 852.7 4 11.3 3

Figure 3.4 shows the spectral response curve for the different bands of the satel-
lite imagery. It shows that the spectral response of the pan is not uniform in the
entire wavelength; it is very low in the blue band and maximum in the Green,
Red and NIR bands and extends beyond 0.90m.

Figure 3.4: Spectral response curve of IKONOS imagery (Source: NASA Library).
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In this study part of the IKONOS image of the Enschede area, The Netherlands,
obtained in April 2000 is used. The multispectral image used is 4 meter reso-
lution and the panchromatic image is 1 meter resolution. A synthetic data is
prepared using the multispectral IKONOS image. Figure 3.5 shows the subset
of both the multispectral and the panchromatic images used for this study.

Figure 3.5: Subset of IKONOS multispectral (left) and panchromatic (right) images .

Preprocessing and Image degradation

Various preprocessing steps should be done before performing sharpening on
a set of images. Co-registration, viewing angle of the imagery and resampling
methods used for geometric correction and projection are the main factors that
should be considered [16, 23]. The multispectral and the IKONOS images that
are used for this study are already co-registered with the same Map Projection:
Universal Transverse Mercator with Datum: WGS84.

Figure 3.6: Pan-sharpened (assumed), degraded multispectral and panchromatic (from left

to right respectively) subset images of IKONOS .
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Since the two images are taken at the same time the viewing angle of the im-
ages are the same and pan-sharpening can be done. From the metadata of the
image it is understood that a bicubic interpolator method is used as a resam-
pling technique (already by the company that produced the images) and the
images are also already standard geometrically corrected.

Figure 3.7: Degraded panchromatic bands of the subset of IKONOS image.

Figure 3.8: Degraded multispectral bands of the subset of IKONOS image.

In this research the IKONOS image is used to validate the performance of the
method and to do experiments in order to estimate some parameters (to be dis-
cussed in chapters 4 and 5). So a small subset (40×40 pixel) of the multispectral
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Figure 3.9: Reference (assumed pan-sharpened) subset bands of IKONOS image.

image is taken and considered it as a pan-sharpened image and two images one
multispectral (degraded spatially) and another panchromatic (degraded spec-
trally) are degraded out of it. The models used for the degradation procedure
are done the same way done for the synthetic image using the equations 3.1
and 3.2. Figure 3.6 shows the assumed pan-sharpened image (the multispec-
tral subset) the degraded multispectral image and the degraded panchromatic
image, and Figure 3.7, 3.8 and 3.9 shows the degraded panchromatic image
band, the degraded multispectral image bands and the reference image (as-
sumed pan-sharpened) bands respectively.

3.2 Remote sensing data sets

3.2.1 QuickBird image

The QuickBird satellite, launched on 18 October 2001 in Vandenberg Air Force
Base, California, USA is a high-resolution satellite operated by DigitalGlobe.
It offers highly accurate, commercial high-resolution imagery of Earth. It can
capture a 2.44 multispectral and a 61 cm panchromatic resolution images at
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nadir, and a 2.88 m multispectral and a 72 cm panchromatic image at 25 de-
gree off nadir. QuickBird data is collected as 11 bits per pixel. Like that of
IKONOS image it has both cross and along track viewing instruments so that
flexible data acquisitions and frequent revisiting are possible. The satellite is
an excellent source of environmental data useful for analysis of changes in land
usage, agricultural and forest climates and it yield relevant data for almost all
aspects of environmental study [4]. Table 3.3 summarizes the detail technical
information of the satellite imagery.

Table 3.3: Technical details of QuickBird satellite

Band Wave length Resolution Swath Revisit
Name (nm) off-nadir(m) width (km) time(days)

Pan 450 - 900 0.72 16.5 1 - 3.5

MS-1 (Blue) 450 - 520 2.88 16.5 1 - 3.5

MS-2 (Green) 520 - 600 2.88 16.5 1 - 3.5

MS-3 (Red) 630 - 690 2.88 16.5 1 - 3.5

MS-4 (VNIR) 760 - 900 2.88 16.5 1 - 3.5

Figure 3.10 shows the spectral response curve for the different bands of the
satellite imagery. It shows that the sensor has low spectral response in the
Blue band, and maximum in the Green-Red bands. It also shows that though
the spectral ranges of the Pan sensors are provided as 0.45-0.90 m, the spectral
sensitivity is not uniform over the MS bands.

Figure 3.10: Spectral response curve of QuickBird imagery (Source: NASA Library).
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In this study part of the QuickBird image of the Enschede area, The Nether-
lands, obtained in September 2006 is used. Like that of the IKONOS image the
multispectral image used is 4 meter resolution and the panchromatic image is
1 meter resolution. Figure 3.11 shows a 120 × 120 pixel subset of the panchro-
matic image of Enschede area and a corresponding 30 × 30 pixel subset of the
multispectral image of the same area (4,3,2 band combination). In this research
this larger subset of QuickBird image is used to produce a pan-sharpened im-
age to see how the method performs.

Figure 3.11: Subset of QuickBird panchromatic image(left) and multispectral image (right).

As it can be seen from the two figures the multispectral image has a higher
spectral information but a lesser spatial resolution than that of the panchro-
matic image. A pan-sharpened image that has better spectral resolution than
the panchromatic image and better spatial resolution than the multispectral
image is expected to have using the method.

Preprocessing

It is understood that various preprocessing steps should be done before per-
forming sharpening on a set of images like Co-registration, viewing angle of
the imagery and resampling methods used for geometric correction and projec-
tion. The multispectral and the IKONOS images that are used in this study
are already co-registered with the same Map Projection: Universal Transverse
Mercator with Datum: WGS84. Since the two images are also taken at the
same time the viewing angle of the images are the same and pan-sharpening
can be done. From the metadata of the image it is understood that the images
are already standard geometrically corrected.

3.2.2 Aerial Photograph

A subset of an airborne image of the same area is also taken as one part of
the data to be used in this study. The image is taken on March 30, 1998 and
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Figure 3.12: Subset of aerial image.

has a spatial resolution of 1 meter. Figure 3.12 shows a subset of the aerial
photograph. In addition to the other methods of assessing the result of the
research, a visual comparison between this aerial image and the pan-sharpened
image will be done to assess the accuracy of the final pan-sharpened image.
Detail explanation on the accuracy assessment is given in the last sections of
chapter five.
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Chapter 4

MRF & simulated
annealing-based
pan-sharpening method

This chapter introduces the technique of MRF & simulated annealing-based
pan-sharpening which is employed in this research. The first section, section
4.1 briefly discusses about a neighborhood system and the MRF and the Gibbs
random fields. Section 4.2 and 4.3 illustrates how the prior and the conditional
energies are modeled respectively. Section 4.4 discusses how the global energy
is constructed and optimized. Lastly section 4.5 explains how the method is
assessed. All the processing and computation is done using the R programming
language and environment for statistical computation, version 2.4.0 [3]. The
main references for the coming sections are [24, 26], the interested reader can
refer to them for more detail.

4.1 Neighborhood system and MRF & Gibbs random
fields

4.1.1 Neighborhood system

Consider a rectangular fine resolution image of sizeM×N and d = {d1, d2, ..., dm}
denotes a set of pixels. We say the pixels in d are related to one another via a
neighborhood system. A neighborhood system for d is defined as:

N = {Ni|∀i ∈ d}, (4.1)

where Ni is the set of pixels neighboring pixel i. Two properties are there for a
neighborhood system.

1. i 6∈ Ni, a pixel can not be a neighbor to itself

2. j ∈ Ni ⇔ i ∈ Nj , the neighboring relationship is mutual

A popular choice for neighborhood system in image analysis is the first-order
neighbors as the four pixels that share a side with a given pixel which is as
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shown in figure 4.1(a). Second-order neighbors are the four pixels having corner
boundaries with a given pixel as shown in figure 4.1(b); and higher-order, for
instance, fifth order neighbors can also be extended like wise as shown in figure
4.1(c). Even though it is possible to use different neighborhood order it is stated
in most literature that a neighborhood order of two is sufficient [24, 26]. In this
study the neighborhood order is proposed in relation to the scale factor [33]. The
scale factor between the multispectral and the panchromatic image is 4. So all
pixels present within the coarse multispectral image pixel can be included in
the neighborhood system and this enables to keep the locality property within
the neighboring pixels [18]. A neighborhood size of various window size is used.
The minimum neighborhood order considered is first-order or window size 1. In
some literature [33] the following relation is also used to determine the window
size (Wsize) of a neighborhood system.

Wsize = 2 ∗ S − 1 (4.2)

Figure 4.1: Neighborhood order for a pixel r.(a),(b),(c) shows the first, second and fifth order

neighborhood system, respectively (adapted from [26]).

4.1.2 MRF and Gibbs random fields

Suppose d denotes a set of random variables d = {d1, d2, d3, ..., dm} and is defined
on a set A that containsm number of sites. The family d is called a random field.
We can consider the set A as an image containing m pixels, then in this case d
will be a set of pixel DN values. Now based on this random field let’s consider
a set F for the set A as F = {d1 = F1, d2 = F2, d3 = F3, ..., dm = Fm} which
will be denoted as F = {F1, F2, F3, ..., Fm}. A random field with respect to a
neighborhood system is called a Markov random field if the probability density
function satisfies the following three properties.

1. Positivity: P (F ) > 0 for all possible configurations of F ,
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2. Markovianity: P (Fr | FA−r) = P (Fr | FNr) , where r ∈ 1, ..,m, A − r are
all pixels in the set excluding r, FA−r denotes the set of labels at the sites
in A− r , Nr denotes the neighbors of r and,

3. Homogeneity: P (Fr | FNr) is the same ∀ sites r

The first property is usually true in practice. The basic idea behind the sec-
ond and the third mathematical properties is that, the second one states that
the probability of a certain pixel is only dependent on its neighbors. The third
one states that the conditional probability of a certain pixel with respect to its
neighbors is the same as the conditional probability of the pixel with all of the
pixels excluding the pixel itself.

If an energy function U(F ) can be expressed as,

U(F ) =
∑
c∈C

Vc(F ) (4.3)

where C is called a clique which is a collection of all possible cliques (a clique
is but a subset of F in which all pairs of sites are mutual neighbors. It can
be a single site, a pair of neighbors site, or a triple of neighboring sites, etc.)
and Vc(F ) called the potential function with respect to clique type C, then a
Gibbs random field (GRF) can give a global model for an image specifying the
following form of probability density function,

P (F ) =
1
Z

exp[−U(F )
T

] (4.4)

where F is as defined above, T is a constant termed temperature (mostly equal
to 1), and Z is called the partition function which is a normalizing constant
expressed as,

Z =
∑
F

exp[−U(F )
T

] (4.5)

Since Z is the sum of all configurations of F , it is mostly difficult to calculate Z
and is usually set to be equal to 1. From equation 4.4 it follows that maximizing
P (F ) is equivalent to minimizing the energy function U(F ).

Note that Gibbs random field and Markov random field are equivalent as far as
the cliques are concerned. One can read the conceptual and the mathematical
proof in the book by [26] where most of the above basic ideas of MRF are well
explained.

In this study the terms prior (conditional) information and prior (conditional)
energy can be used interchangeably. But energy and probability have inverse
relationships. Minimum energy implies maximum probability and vise versa.
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4.2 Modeling prior energy

This section briefly describes how a model for prior energy is constructed using
the MRF. The choice of the form and the parameters of a function for the en-
ergy function U(F ) is an important topic in MRF modeling. A pair wise clique
(window size of one) potential function is reported to be sufficient for a variety
of image analysis applications [24] that allows the following expression.

U(F ) = b
∑

{r,r′}∈C2

V (Fr, Fr′) (4.6)

which can be rewritten as,

U(F ) = b
∑

{r,r′}∈C2

(Fr − Fr′)2 (4.7)

where b is a potential parameter, V is a potential, r is a pixel and r′ is a neigh-
borhood pixel and C2 is the set containing pairwise pixels. In this study the
prior energy is modeled as follows:

Uprior(Fi) =
∑

b

αb

∑
j∈Ni

Wj g(F b
i − F b

j ) (4.8)

where,

g(x) = ρ(1− exp
−x2

ρ
) (4.9)

where g(x) is the potential function for the discontinuity adaptive (DA) MRF
model (this form of potential function is chosen in order to smooth differences
between pixel values smaller than ρ), b represents, αb are the relevance of the
different bands for the prior energy, F b

i is value of pixel i of band b of pan-
sharpened image F , F b

j shows the neighborhood pixel j of band b of image F , and
Wj is the weight given to the contribution of the neighborhood pixel calculated
as,

Wj =
Const∑Ni
j=1 dj

2
(4.10)

where dj is the distance between pixel i and its neighborhood pixel j expressed
in pixel resolution units R, and the Const is chosen so that

∑
j Wj = 1.

4.3 Modeling conditional energies

4.3.1 Conditional energy from the panchromatic image

The conditional energy from the panchromatic image is modeled using the prob-
ability density function defined by Alvarez et al. [9] used to obtain high reso-
lution images from a sequence of low resolution images that are acquired by a
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single sensor imaging the scene over a period of time. The panchromatic im-
age is obtained using the degradation model discussed in section 3.1.1. The
assumed relation ship between the panchromatic image and the pan sharpened
image is as follows:

Pi =
∑

ωbF b
i + ρi (4.11)

The conditional probability of the panchromatic image based on the pan sharp-
ened image is given as,

P (Pi|Fi) = const× exp{−1
2
γ(Pi −

∑
b

ωbF b
i )

2
} (4.12)

where P is the panchromatic image, F is the pan-sharpened image, ωb denotes
the weight given to the contribution of the pan-sharpened image bands to the
panchromatic image, ρ is the observation noise assumed to be Gaussian with
mean equal to zero and variance 1

γ .

From the relationship between probability and energy the above probability
density function provides the following conditional energy equation.

U(Pi|Fi) = const+
1
2
γ(Pi −

∑
b

ωbF b
i )

2
(4.13)

Since a minimum energy is needed 1
2γ is incorporated in γ. So the conditional

energy of the panchromatic image based on the pan-sharpened image is simpli-
fied to the following form in order to get minimum energy.

U(Pi|Fi) = γ(Pi −
∑

b

ωbF b
i )2 (4.14)

4.3.2 Conditional energy from the multispectral image

To model the conditional energy from the multispectral image a model devel-
oped by Alvarez et al. [9]is modified. The multispectral image is obtained using
the degradation model discussed in section 3.1.1. They assumed the following
relationship between the multispectral image and the pan-sharpened image.

Db
i = HbF b

i + ηb
i (4.15)

where Hb is an integration and decimation operator designed to produce the
measured low resolution multispectral image, D is the multispectral image de-
fined on coarse resolution pixel grid, and η is a Gaussian noise.

In this study since the scale factor between the multispectral and the panchro-
matic (hence the pan-sharpened) image is 4, the same to the degradation model
as illustrated in figure 3.2 if (u, v) denotes the pixel of the multispectral image
D then this pixel consists of sixteen high resolution pixels (i, j) of the pan-
sharpened image F . For example if S = 4,
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(i, j) ∈ Huv = {(4u− 3, 4v − 3), (4u− 3, 4v − 2), (4u− 3, 4v − 1), (4u− 3, 4v),
(4i− 2, 4v − 3), (4u− 2, 4v − 2), (4u− 2, 4v − 1), (4u− 2, 4v),
(4u− 1, 4v − 3), (4u− 1, 4v − 2), (4u− 1, 4v − 1), (4u− 1, 4v),
(4u, 4v − 3), (4u, 4v − 2), (4u, 4v − 1), (4u, 4v)}.

So the above linear relationship model is modified as follows,

Db(u, v) =
1
S2

∑
(u,v)∈Hij

F b(i, j) + ηb (4.16)

where Db is the multispectral image band, F b is the pan-sharpened image band
and ηb is the observation noise assumed to be Gaussian with mean zero and
variance 1

β .

The conditional probability of the panchromatic image based on the pan sharp-
ened image is given as,

P (Di|Fi) = const×
∏
b

exp{−1
2
βb(Db

i −HbF b
i )2} (4.17)

From the relationship between probability and energy the above probability
density function provides the following conditional energy equation.

U(Di|Fi) = const +
∑

b

1
2
βb(Db

i −HbF b
i )2 (4.18)

Since the interest is to find F that minimizes the energy U , 1
2β

b is incorporated
in βb. So the conditional energy of the multispectral image based on the pan-
sharpened image is simplified to the following form in order to get minimum
energy.

U(Di|Fi) =
∑

b

βb(Db
i −HbF b

i )2 (4.19)

4.4 Global energy Construction and optimization

To get the MAP estimate the posterior probability for image F has to be maxi-
mized. In other words the total energy has to be minimized. Three energy mod-
els: a priori energy (Uprior), a conditional energy from the panchromatic image
(U(Pi|Fi)) and a conditional energy from the multispectral image (U(Di|Fi)) are
developed. These three energies are considered under Bayesian context to get
the minimum energy.

According to Bayes formula for two events a and b:

P (a|b) ∝ P (b|a)P (a)∑
P (a|b)P (b)

(4.20)
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In this study since there are two conditional probabilities, equation 4.20 will
have the following form:

P (Fi|Pi, Di) = P (Pi|Fi)P (Di|Fi)P (Fi) (4.21)

From the relationship between probability and energy, equation 4.21 becomes,

U(Fi|Pi, Di) = U(Fi) + U(Pi|Fi) + U(Di|Fi) (4.22)

A new parameter λ, 0 < λ < 1, which is called the smoothness parameter is in-
troduced. It is used as a balancing factor between the prior and the conditional
energies.

U(total) = λU(prior) + (1− λ)[U(Pi|Fi) + U(Di|Fi)],

which implies,

U(Fi|Pi, Di) = λ
∑

b αb
∑

j∈Ni
Wj g(F b

i − F b
j ) +

(1− λ)[γ(Pi −
∑

b ω
bF b

i )2] +

(1− λ)[
∑

b

βb(Db
i −HbF b

i )2] (4.23)

where U(Fi|Pi, Di) represents the total energy, U(total).

The maximum a posteriori (MAP) solution for the pan-sharpened image pixel
F̂ b

i can be found by minimizing the total energy:

F̂ b
i = arg min

F
{(U(total)|F b

i )} (4.24)

4.4.1 Initial pan-sharpened image generation

In this study a small part of the IKONOS image is taken and two images are
degraded out of it: one panchromatic image P and another multispectral image
D where the degradation procedure is as explained in section 3.1.1. The aim is
to get a pan-sharpened image using the prior and conditional models developed
above and the simulated annealing algorithm in the Bayesian framework. Still
the actual pan sharpened image F is not known before the simulated annealing
algorithm that updates using the Gibbs sampler is applied. So at the start an
initial pan-sharpened image F [k, l] is generated as:

F [k, l] = D[ceiling(k/4), ceiling(l/4)] (4.25)

where the ceiling function takes a single numeric argument x and returns a nu-
meric vector containing the smallest integers not less than the corresponding
elements of x, and k & l are rows and columns respectively.
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4.4.2 Simulated annealing algorithm

After the introduction of the smoothness parameter and determination of the
total energy, the next step is to find the minimum of the total energy in MAP
estimate. In order to find the global minimum energy, different algorithms like
the Maximum a Posterior Margin (MPM) and Simulated Annealing (SA) can
be found in literature [26]. The (SA) algorithm is used as it leads to the MAP
estimate for the solution.

Simulated annealing was first proposed by Metropolis et.al. to simulate the
behavior of particles in the thermal equilibrium. It is a type of stochastic it-
erative optimization technique which is mainly based on the use of random
numbers and probability statistics for the global optimization problem [26, 36].
It generates a new label F ′b

i for each pixel F b
i based on the prior and conditional

energies.

The basic idea of this algorithm is just like introducing a noise to a system and
then to shake the search process away from the local minimum and get a global
minimum value. The process of optimization is controlled by a temperature
parameter T . The SA process is iterative, it starts with T = T0 and at the
iteration k

Tk =
T0

ln(1 + k)
, (4.26)

where T0 is an initial temperature and Tk is any next temperature value at the
kth iteration. In this research a faster empiric schedule is used which is given
as [24]:

Tk = Tk−1 × σ (4.27)

There are two main parameters in the simulated annealing algorithm that con-
trol the process of optimization. One is T and the other is σ that controls the
rate of temperature decrease. Both are parameters that are mostly estimated
experimentally.

The temperature parameter T controls the randomness of the optimization al-
gorithm. High temperature reveals high randomness and vise versa. This in-
dicates that high temperature increases the probability of a pixel F b(i, j) being
replaced by a new label F ′b(i, j). This is because the change in energy is less
than 0, large T indicates large exp(4U

T ), even though the energy of the new label
F ′b(i, j) is higher than that of F ′b(i, j). So the algorithm starts at a high temper-
ature T0. After the new label F ′b(i, j) converges to equilibrium at the current
temperature T , the temperature decreases inline with the aforementioned cool-
ing schedule (i.e. Tk = Tk−1 × σ). Usually T0 is set to a value between 2 and
4, and 0.8 < σ < 1 [26, 36] . When T reaches to a freezing point any increase
of energy can not be accepted. That means no pixel will be updated. In this
study the pixel updating is done row wise and the iteration was set to finish if
three consecutive energies are the same (if there is no change in pixel labeling
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Chapter 4. MRF & simulated annealing-based pan-sharpening method

for three consecutive iterations).

4.4.3 Gibbs sampler

The Gibbs sampler generates a sequence of energies for each pixel based on the
total energy (that means from the three joint probability distributions). It is
applicable when the joint distribution is not known explicitly. Gibbs sampling
is particularly well-adapted for sampling the posterior distribution of Bayesian
networks as Bayesian networks are typically specified as a collection of condi-
tional and prior distributions [40]. Simulated annealing is a stochastic process.
So the Gibbs sampler is used to generate random pixel values and for updating
the sample for the pan-sharpened image.

4.4.4 Optimization of the pan-sharpened image with SA & Gibbs
sampler

The first and the second partial derivatives of the total energy with respect to
pixel values F b

i in all the bands is taken. Note that the expression for the total
energy in equation 4.23 is not quadratic in F b

i because of the choice for g(x).
The sampling for F b

i is derived in the following way.

P (F b
i ) ∼ e−U(F b

i |Pi,Di) (4.28)

The total energy expression in equation 4.24 can be rewritten as:

U(Fi|Pi, Di) = λαb
∑

b

∑
j∈Ni

Wj g(F b
i − F b

j ) +

(1− λ)γ(Pi −
∑

b ω
bF b

i )2) +

(1− λ)βb( 1
S2

∑
j ∈ NSiF

b
j −Db

iS)

where j is a neighborhood pixel of pixel i and NSi is a window containing all the
neighborhood pixels j of pixel i.

Substituting equation 4.9 in the above expression for the total energy and tak-
ing the partial derivative for the total energy (and hence the pan-sharpened
image) with respect to the four bands results in the following expression:

∂U(Fi|Pi,Di)

∂F b
i

= λ αb
∑

j∈Ni
Wj × 2(F b

i − F b
j ) × exp(

−(F b
i −F b

j )2

ρ ) +

2(1− λ) γ(
∑

b F
b
i ω

b − Pi) ωb +

2(1− λ) βb( 1
S2

∑
j∈iS F

b
j −Db

iS) 1
S2

⇒ ∂U(Fi|Pi,Di)

∂F b
i

' 2λ αb
∑

j∈Ni
Wj ∗ (F b

i − F b
j ) ϕij +
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2γ (1− λ) ωb(
∑

b F
b
i ω

b − Pi) +

2(1− λ) βb( 1
S2 ( 1

S2

∑
j∈iS F

b
j −Db

iS)),

where ϕij = e
−(Fb

i
−Fb

j
)2

ρ is a non linear factor. It is replaced by an approximate
expression:

ϕij ≈
{

1 if |F b
i − F b

j | << ρ

0 otherwise

Then

∂U(Fi|Pi,Di)

∂F b
i

= 2λ αb
∑

j∈Ni
Wj F b

i ϕij − 2λ αb
∑

j∈Ni
Wj F b

j ϕij +

2γ (1− λ) ωb [F b
i ω

b +
∑

b′ 6=b F
b
i ω

b − Pi] +

2(1− λ) βb 1
S2 [ 1

S2F
b
i + 1

S2

∑
j∈iS F

b
j −Db

iS ]

And finally,

∂U(Fi|Pi,Di)

∂F b
i

= 2F b
i [γ(1− λ)(ωb)2 + λαb

∑
j∈Ni

Wjϕij + (1− λ)βb 1
S4 ] −

2 [γ (1− λ) ωb (Pi−
∑

b′ 6=b F
b
i W

) + λαb
∑

j∈Ni
WjϕijF

b
j +

(1− λ)βb 1
S2 (Db

iS − 1
S2

∑
j∈iS F

b
j )]

∂U(Fi|Pi,Di)

∂F b
i

has a linear form that can be expressed as,

∂U(Fi|Pi, Di)
∂F b

i

= 2F b
i a1 − 2a0, (4.29)

where

a0 = γ (1− λ) ωb (Pi −
∑

b′ 6=b F
b
i W

) + λαb
∑

j∈Ni
WjϕijF

b
j +

(1− λ)βb 1
S2 (Db

iS − 1
S2

∑
j∈iS F

b
j )

a1 ≈ γ(1− λ)(ωb)2 + λαb
∑

j∈Ni
Wjϕij + (1− λ)βb 1

S4

Since 0 ≤Wj ≤ 1 ,
∑

j Wj = 1 and ϕij ∈ [0 : 1], the expression
∑

j∈Ni
Wj ' 1; and

the expression for a1 can be reduced to,
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a1 = γ(1− λ)(ωb)2 + λαb + (1− λ)βb 1
S4

The linear form equation in equation 4.29 corresponds to normal distribution
for F b

i . This makes sampling for F b
i simple and fast:

F b
i ∼ N(F b

0 , σb)

where mean F b
0 and standard deviation σb are defined in the following way:

∂U
∂F = 0

2F b
0a1 − 2a0 = 0, (4.30)

which implies

F b
0 =

a0

a1
(4.31)

Then the second partial derivative of the total energy is taken and equated
with the second partial derivative of the normal distribution in order to get the
standard deviation. i.e

∂U(Fi|Pi, Di)
2

∂F b
i
2 = 2a1 (4.32)

and for a normal distribution

U(Fi|Pi, Di) =
(F b − F b

0 )2

2σ2
b

(4.33)

which implies,

∂U(Fi|Pi, Di)
2

∂F b
i
2 =

1
σ2

b

(4.34)

Equating equation 4.32 and 4.34 and considering the Gibbs sampler in simu-
lated annealing,

σb =

√
T

2a1
(4.35)

The modified simulated annealing algorithm that is adopted in this research
performs as follows:
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parameters used and to be estimated

The following parameters are used.

1. S which is the scale factor between the multispectral and the panchro-
matic image that is mainly important to determine the window size and
generate the neighborhood system, a value S = 4 is chosen as the multi-
spectral image is 4m resolution and the panchromatic image is 1m resolu-
tion

2. ωb = 0.25 for each band (assumed) that weights the contribution of each
high spatial resolution multispectral band to the panchromatic image, the
contribution of each band is assumed to be equal and their sum is equals
1 (as the panchromatic image is one band image).

3. αb = 1 for each band (assumed) which is the relevance of the different
bands for the prior energy, the relevance of each band is assumed to be
equal and there is no band that has a greater or lesser contribution for
the prior energy.

The following parameters are to be experimentally estimated in the next chap-
ter. (Optimal values depend on S, ωb,αb)

1. T0 which is the initial temperature in the simulated annealing algorithm,
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Chapter 4. MRF & simulated annealing-based pan-sharpening method

2. σ which is the temperature updating factor used to calculate the next tem-
perature value,

3. λ which is the smoothness parameter that shows the contribution of the
prior energy to the total energy,

4. Wsize which is the window size that determines the neighborhood system
useful in the determination of the prior energy,

5. β which is the inverse of the variance of the noise that was assumed to be
Gaussian in relating the multispectarl image with the pan-sharpened im-
age. It is assumed to be (1, 1, 1, 1) for each band at first and to be estimated
later experimentally.

6. γ which is the inverse of the variance of the noise that was assumed to
be Gaussian in relating the panchromatic image with the pan-sharpened
image. It is assumed to be 2 at first and to be estimated later experimen-
tally.

7. ρ which is a parameter used to determine edges for the pan-sharpened
image.

4.5 Accuracy assessment

Once the optimized pan-sharpened image has been obtained, it is common and
necessary to evaluate accuracy against the reference image data. In this study
accuracy can be understood as the level of agreement between grey values of
the pan-sharpened image obtained using the method and the reference image.

4.5.1 Correlation coefficient

One of the quality measures that can be used to compare the level of agree-
ment is the correlation or the correlation coefficient. This measure indicates
the strength and direction of a linear relationship between two variables. In
general statistical usage, correlation or co-relation refers to the departure of
two variables from independence. There are different types of correlation co-
efficients. The best known is the Pearson-moment correlation coefficient. It is
obtained by dividing the covariance, Cov, (measures how much the two vari-
ables vary together) of the two variables by their standard deviations [2]. In
this study the two variables to be compared are the pan-sharpened image de-
noted by F and the reference image denoted by Ref .

The correlation Corr(F,Ref) between the two images F and Ref with expected
values (the sum of the probability of each possible outcome of an experiment
multiplied by the outcome value) µF and µRef and standard deviations σF and
σRef is defined as:

CorrF,Ref =
E(FRef)− E(F )E(Ref)√

E(F 2)− E2(F )
√
E((Ref)2)− E2(Ref)

(4.36)
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Correlation is defined only if both the standard deviations are finite and both of
them are nonzero. The correlation is 1 if there is an increasing linear relation-
ship, -1 if there is a decreasing linear relationship, and some value in between
in all other cases. As the correlation value gets closer to -1 or 1 the correla-
tion between the variables will be stronger. If the variables are independent
then the correlation is 0. A significant positive correlation exists between two
variables if the correlation is from 0.5 to 1 [2].

4.5.2 Root mean square error

In statistics the root mean square error is used to describe accuracy including
both random and systematic errors. The sum of the square of the differences
between corresponding grey values of the reference image Ref and the pan-
sharpened image divided by the total number of pixels gives the mean square
error (MSE). The square root of this value is called the root mean square error
(RMSE).

RMSE =
1

(M ∗N)

√∑
(Ref − F )2, (4.37)

where M and N are the number of rows and columns of the image respectively.
The RMSE tells the average value at which the pixel value of the pan-sharpened
image differs from the pixel values of the reference image. The highest value of
the RMSE is dependent on the value of the data. It may be 0 or a positive value.

In this study the correlation and the RMSE between the pan-sharpened image
and the reference image will be computed. These accuracy validation methods
will also be used in experiments on estimating optimal values for the parame-
ters. Besides they will also be used to compare the method developed with other
pan-sharpening methods.
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Chapter 5

Results and Discussions

This chapter illustrates the experimental results that are obtained in the pro-
cess of MRF & SA - based image pan-sharpening including the analysis of the
results. The first section, section 5.1, presents the experimental results done to
check the performance of the method on synthetic data I. Section 5.2 describes
the experimental results that are done in the determination of optimal values
for the parameters that need to be estimated using the synthetic data II (de-
graded IKONOS image). Section 5.3 presents a result of the method using the
optimal parameter values on the larger subsets of the QuickBird image. Sec-
tion 5.4 presents the accuracy assessment and comparison of performance of the
method with other existing pan-sharpening methods. Lastly section 5.5 winds
up the chapter summarizing the findings of the results of the experiments.

5.1 Experimental results from the synthetic data I

Labeling at the first step was done randomly in the initial pan-sharpened image
and therefore the image is distorted and has many isolated pixels and noisy ap-
pearance. In this experiment the main objective was to check the performance
of the method using a visual comparison between the initial pan-sharpened
image and the optimized pan-sharpened image, the curves of the total energy,
and the RMSE. If these curves are decreasing smoothly as the number of itera-
tions are increasing, it is considered as a good evidence for the method to work
and proceed looking for optimal values using synthetic data II and use these
optimal values on the remotely sensed images. For this purpose several exper-
iments were done using the assumed parameters by changing the parameters
that need to be estimated. The following parameters are used:

1. a scale factor S of 4, as the scale factor between the multispectral and the
panchromatic image is 4.

2. ωb = 0.25 which is the assumed contribution of each high spatial reso-
lution multispectral band to the panchromatic image, the contribution is
assumed to be equal for each band and the sum equals 1.

3. αb = 1 which is the assumed relevance of the different bands for the prior
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5.1. Experimental results from the synthetic data I

energy, each band is assumed to have equal contribution for the prior en-
ergy.

4. β = (1, 1, 1, 1) which is the assumed inverse of the variance of the noise
that was assumed to be Gaussian in relating the multispectarl image with
the pan-sharpened image and,

5. γ = 2 which is the assumed inverse of the variance of the noise that was
assumed to be Gaussian in relating the panchromatic image with the pan-
sharpened image.

Figure 5.1: Figure showing the initial (top left) and the optimized (top middle) pan-sharpened

and the reference (top right) band & the temperature (bottom left), the RMSE (bottom mid-

dle) and the energy (bottom right) plots for synthetic image band1.

In this experiment the last two parameters are assumed fixed. Several exper-
iments were done to find optimal values for the initial temperature parameter
T0, for the temperature updating factor parameter σ, for the smoothness pa-
rameter λ, for the appropriate window size Wsize and for the edge determiner
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parameter ρ. An initial temperature value of 2, a temperature updating factor
value between 0.5 and 0.9, a smoothness parameter of 0.1, a window size of 1
and a ρ value of 222 showed a good result for the synthetic image. Figure 5.1
shows a result at T0 = 2, σ = 0.5, λ = 0.1, Wsize = 1 and ρ = 222. The number
of iterations required for SA to converge depends on the parameter values. The
correlation and the RMSE between the optimized pan-sharpened image and the
reference image were equal to 0.943 and 5.45 respectively. The total energy was
equal to 5.13 and the optimization process stopped after 124 iterations. Figure
5.1 shows the initial and the optimized pan-sharpened and the reference bands
& the temperature, the RMSE and the energy plots for synthetic image band
1. Note that these parameter values are not the “best optimal” values. But
since the initial temperature parameter for synthetic data II is first estimated,
the values of these parameters are used as the starting optimal values. Hav-
ing done this synthetic data II are used (as they are synthesized from remotely
sensed data) to estimate optimal parameter values.

5.2 Experimental results from synthetic data II

Estimating proper values of the parameters is the most important part of this
research. In the following sub-sections proper values for the initial tempera-
ture parameter (T0), for the temperature updating factor parameter (σ), for the
smoothness parameter (λ), for the appropriate window size (Wsize), for β and γ
and for ρ parameters will be estimated. In each process the program is applied
at least five times in order to get a consistent result and determined the mean
and the standard deviation of the correlation and the RMSE values. These val-
ues are used to measure the quality of the pan-sharpened image and compare
a result obtained using one parameter from a result using another parameter.

5.2.1 Effect of initial temperature T0

One of the parameters that need to be determined is the initial temperature
T0. So the main objective of this experiment was to determine a proper value
for it. To estimate this parameter the optimal values determined for synthetic
data I are used. i.e. a σ factor of 0.5 , a λ value of 0.1, a Wsize of 1 and a ρ
value of 222. The experiments were done for values of T0 between 0 and 10. For
each T0 value the method was applied 10 times from which the mean and the
standard deviation values for the correlation, the RMSE and total energy were
determined. The summary is as shown in tables A.1, A.2 and A.3 in appendix A.
As it can be seen from the tables at T0 values between 2 and 10 the optimized
pan-sharpened image has a higher accuracy. As the value of T0 increases al-
most a similar but less accuracy can be obtained. But the number of iterations
needed for convergence is larger which makes the algorithm slower to reach to
a freezing point and make computationally intensive.

The plots in figure 5.2 show the correlation and the RMSE of the optimized pan-
sharpened image with the reference image and the total energy of the optimized
pan-sharpened image. They also reveal that for T0 = 5, 7 and 10 there is a large
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deviation between the minimum and the maximum values. Relatively, highest
correlation, lowest mean square error and lowest total energy is obtained at
T0 = 2.

Figure 5.2: Figure showing the plots for the correlation (a), RMSE (b), and total energy (c) of

the optimized pan-sharpened for searching optimal T0 value (Energy value is normalized by

the number of pixels and error bars represent standard deviation of the values).

Since the variation in the accuracy is very small a T0 value of 3 or 4 can also be
used. The experimental finding was in line with other previous works on MRF.
For instance in the books by Tso & Mather and Li [26, 24] it is stated that an
initial temperature value between 2 and 4 can result in a good result. Recent
works by Kasetkasem and Rahel [21, 33] on MRF also worked well at T0 = 2
and 3.
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5.2.2 Effect of temperature updating factor σ

Using the optimal value found in the above experiment, T0=2, and keeping the
other parameters constant, this experiment was aimed at looking for an optimal
value for the temperature updating factor σ at which optimum pan-sharpened
image can be obtained. The experiments were done varying the σ value from 0.1
to 0.9 and from 0.91 to 0.99. For each σ value the program was applied 10 times
from which the mean, and the standard deviation values for the correlation, the
RMSE and total energy are determined.

Figure 5.3: Figure showing the plots for the correlation (a), RMSE (b), and total energy (c) of

the optimized pan-sharpened for searching optimal σ value (Energy value is normalized by

the number of pixels and error bars represent standard deviation of the values).

The summary is as shown in tables B.1, B.2 and B.3 in appendix B. As it can be
seen from the tables at σ = 0.8 and 0.9 the optimized pan-sharpened image has
a higher accuracy. Further a best optimal value for σ was looked for between
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0.9 and 0.99. The experiments reveal that at σ = 0.92 relatively a best optimal
value can be found. In fact for values between 0.9 and 0.97 the results are
almost similar. The plots in figure 5.3 show the correlation and the RMSE
of the optimized pan-sharpened image with the reference image and the total
energy of the optimized pan-sharpened image. They show that there is a high
correlation, low mean square error and low total energy for a σ value between
0.8 and 0.97. The results from the tables and the plots show that one can set
the value of this parameter at 0.92 in order to get a best optimal pan-sharpened
image.

5.2.3 Effect of smoothness parameter λ

The smoothness parameter λ that is used to make a balance between the con-

Figure 5.4: Figure showing the plots for the correlation (a), RMSE (b), and total energy (c) of

the optimized pan-sharpened for searching optimal λ value (Energy value is normalized by

the number of pixels and error bars represent standard deviation of the values).
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ditional energies and the prior energy in the optimization process is an other
parameter that has to be optimized. This parameter determines the smooth-
ness of the pan-sharpened image. The experiment was done using the above
optimal values obtained (i.e T0 = 2 and σ = 0.92) and keeping the other param-
eters constant. The experiments were done changing the value of λ from 0 to
0.9. For each λ value each experiment was repeated ten times and the mean,
and the standard deviation values for the correlation, the RMSE and total en-
ergy were calculated.

Tables C.1, C.2 and C.3 in appendix C show the summary of the results. From
the experiments it is found that for λ values of 0.1 and 0.2 the accuracies are
higher than other values. After this result is found further experiments were
made for λ values between 0 and 0.09 in order to set a relatively best value
for it. The result shows that highest accuracy can be found at λ = 0.09. The
plots in figure 5.4 show the correlation and the RMSE of the optimized pan-
sharpened image with the reference image and the total energy of the optimized
pan-sharpened image. Both the table and the plots reveal that one can set the
value of λ between 0.08 and 0.2. In fact the accuracy at λ = 0.09 is the best.
The result indicates that the contribution of smoothness for the pan-sharpened
image is small. But making this value smaller (near to 0) makes the result
worse and making the value greater than 0.8 brings a worst result even if the
total energy seem to decrease to zero.

5.2.4 Effect of neighborhood size Wsize

The window size is one of the parameters that need to be determined exper-
imentally. A larger window size allows a value for a pixel to be determined
based on more neighborhood pixels. The window size determines the effect of
smoothness of the image and hence the contribution of the prior energy for the
total energy. The experiments were done using the optimal values obtained in
the above sections (T0 = 2, σ = 0.92 and λ = 0.09). A window size of 1, 3, 5 and
7 were chosen for the experiments. For each value of Wsize the experiment was
repeated ten times and the mean, and the standard deviation values for the
correlation, the RMSE and total energy were calculated.

Table D.1 in appendix D gives the summary of the results. The results revealed
that higher accuracy (higher correlation, lower RMSE and lower total energy)
was found for a window size of 1. This means a contextual information collected
from neighborhood pixels of window size 1 was enough in the determination of
the prior information. The plots in figure 5.5 show the correlation and the
RMSE of the optimized pan-sharpened image with the reference image and the
total energy of the optimized pan-sharpened image. The results from the plots
also show that a window size of 1 was enough to get an optimal pan-sharpened
image.
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Figure 5.5: Figure showing the plots for the correlation (a), RMSE (b), and total energy (c) of

the optimized pan-sharpened for searching optimal Wsize value (Energy value is normalized

by the number of pixels and error bars represent standard deviation of the values).

5.2.5 Effect of parameters β & γ

In this experiment optimal values are determined for the parameters β and
γ. These parameters control the contributions from the two likelihood mod-
els (multispectral and panchromatic). β and γ were assumed to be 1 and 2 in
looking for optimal values for the other parameters in the above sections. The
experiments were done changing the values of the two parameters proportion-
ally (when γ = 0 β = 1, when γ = 0.25 β = 4, when γ = 0.5 β = 2 etc.) from 0 to
16 for γ and from 1 to 0.0625 for β using the optimal values of T0 = 2, σ = 0.92,
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λ = 0.09 and Wsize = 1 obtained from the above experiments. Each experiment

Figure 5.6: Figure showing the plots for the correlation (a), RMSE (b), and total energy (c) of

the optimized pan-sharpened for searching optimal β & γ values (Energy value is normalized

by the number of pixels and error bars represent standard deviation of the values).

was repeated 5 times from which means of correlation, RMSE and total energy
are calculated.

Table 5.1 shows the summary of the results. The plots in figure 5.6 show the
correlation and the RMSE of the optimized pan-sharpened image with the ref-
erence image and the total energy of the optimized pan-sharpened image. The
plots show the correlation, the RMSE and the total energy when the value of
γ is changing. But since the two parameters are changed proportionally in the

55



5.2. Experimental results from synthetic data II

Table 5.1: Summary of the result in searching optimal β & γ value

γ β Mean Corr Mean RMSE Mean Total Energy

0 1 0.837 2.24 4.05
0.25 4 0.957 1.22 7.08
0.5 2 0.964 1.12 7.10
1 1 0.967 1.07 7.07
2 0.5 0.961 1.13 7.43
4 0.25 0.950 1.26 10.79
16 0.0625 0.867 2.21 7.98

experiment the pattern of the plot also holds true for the parameter β. Both the
plots and the table show that optimal pan-sharpened image can be obtained
when β = γ = 1.

5.2.6 Effect of parameter ρ

The parameter ρ is one of the parameters that need to be determined exper-
imentally. This parameter is used to determine edges in the pan-sharpened
image. The experiments were done using the optimal values obtained in the
above sections (T0 = 2, σ = 0.92 and λ = 0.09, and β = γ = Wsize = 1). Experi-
ments were done for ρ value of 102, 152, 202, 212, 222, 232, 252 and 302.

Table 5.2: Summary of the result in searching optimal ρ value

ρ Mean Corr Mean RMSE Mean Total Energy

102 0.937 3.11 10.02
152 0.945 2.82 9.06
202 0.955 2.56 8.42
212 0.957 2.32 8.01
222 0.967 1.07 7.07
232 0.952 2.34 8.50
252 0.948 2.54 8.62
302 0.941 2.73 8.87

Table 5.2 shows the summary of the results. The plots in figure 5.7 show the
correlation and the RMSE of the optimized pan-sharpened image with the ref-
erence image and the total energy of the optimized pan-sharpened image. Both
the table and the plots show that optimal solution was obtained at ρ = 222.

56



Chapter 5. Results and Discussions

Figure 5.7: Figure showing the plots for the correlation (a), RMSE (b), and total energy (c)

of the optimized pan-sharpened for searching optimal ρ value using optimal values from

synthetic data II (Energy value is normalized by the number of pixels and error bars represent

standard deviation of the values).

5.2.7 Control experiment for the initial temperature T0

As explained in section 5.2.1, initially optimal value for the initial temperature
was found using the other optimal values obtained from synthetic data I. In
this control experiment optimal value for it was determined, this time with
the optimal values obtained from the experiments in sections 5.2.2 to 5.2.5 (i.e.
σ = 0.92, λ = 0.09, Wsize = β = γ = 1 and rho = 222. The experiment was
done for the value of T0 between 0 and 10. For each T0 value the method was
applied 5 times from which the mean and the standard deviation values for the
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correlation, RMSE and total energy were determined.

Figure 5.8: Figure showing the plots for the correlation (a), RMSE (b), and total energy (c)

of the optimized pan-sharpened for searching optimal T0 value using optimal values from

synthetic data II (Energy value is normalized by the number of pixels and error bars represent

standard deviation of the values).

Tables E.1, E.2 and E.3 in appendix E show the summary of the result. Similar
to the result of the experiments obtained using the optimal values from syn-
thetic data I, at T0 = 2, 3, 4, 5, 7 and 10 the optimized pan-sharpened image has
a higher accuracy. As the value of T0 increases almost a similar but less accu-
racy can be obtained. But the number of iterations needed to finish processing
is larger which makes the algorithm slower to reach to a freezing point and
make computationally intensive. Figure 5.8 show the plots for the correlation
and RMSE of the optimized pan-sharpened image with the reference image and
the total energy of the optimized pan-sharpened image. They show that rela-
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tively highest correlation, lowest mean square error and lowest total energy is
obtained at T0 = 2. Since the variation in the accuracy is very small an initial
temperature T0 value of 3 or 4 can also be used. Again like that of the experi-
mental results in section 5.2.1 the experimental finding was in line with other
previous works on MRF showing that an initial temperature value between 2
and 4 can give a good result.

5.3 Pan-sharpening from the QuickBird image

In the above sections appropriate optimal values are determined experimen-
tally for the parameters to be estimated. Here using the method illustration
will be given on the QuickBird image described in section 3.2.1.

Figure 5.9: Figure showing the plots for the temperature and the total energy curves

The optimal values for the initial temperature T0, for the temperature updating
factor σ, for the smoothness parameter λ, for the window size Wsize, for γ, for β
and ρ are found to be 2, 0.92, 0.09, 1, 1, 1, and 222 respectively. Since QuickBird
image has similar characteristics as the IKONOS image, the same parameter
values are used and the method is applied on relatively larger subsets (120×120
panchromatic and a corresponding 30 × 30 multispectral) of the QuickBird im-
ages.

Figure 5.9 shows the curves for the temperature parameter and for the total
energy. Both curves are decreasing as the number of iteration is increased. The
process converged after 59 iterations. Figure 5.10 shows the input panchro-
matic and multispectral images. Figure 5.11 shows the pan-sharpened image
obtained from the two images. As it can be seen from the result in the pan-
sharpened image the spatial resolution of the multispectral image is increased
via the panchromatic image keeping the spectral information from of the mul-
tispectral image. Since a reference image for this data set is not available qual-
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5.3. Pan-sharpening from the QuickBird image

Figure 5.10: Figure showing the multispectral image (top), the panchromatic image (bottom)

for the QuickBird imagery
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Figure 5.11: Figure showing the pan-sharpened image for the QuickBird imagery

itative assessment was done by visual comparison with the aerial photograph.
Figure 5.12 shows the aerial photograph and the pan-sharpened image using
natural color (3, 2, 1 band combination) side by side. The aerial photo is not in

Figure 5.12: Figure showing the subset of an aerial photograph (left) and pan-sharpened

image of the corresponding subset(right) of the QuickBird imagery

fact exactly the same to that of the pan-sharpened image. The pan-sharpened
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image has a better resolution that came from the panchromatic image. The
aerial photograph is not also taken at the same time to that of the satellite
images and the spectral information of the aerial photograph is not good. The
quality of this pan-sharpened image can better be determined based on the re-
sult of the quality assessment for synthetic data II.

5.4 Accuracy assessment and performance compari-
son with other pan-sharpening methods

In this research accuracy assessment is done using the correlation coefficient
and the RMSE between a reference image and a pan-sharpened image. The
data set used for comparison is the synthetic data set II. Using the correlation
coefficient and the RMSE a comparison is done between well known existing
methods of image-pan-sharpening and the method developed in this research.
Three wavelet methods (that use - a single band spectral transform, the IHS
spectral transform and the principal component spectral transform - all imple-
mented in ERDAS package), the Gram-Schmidt spectral sharpening method
that is based on the component substitution strategy invented by Laben and
Brover in 1998 and patented by Eastman Kodak, being implemented in the
ENVI package [5],

Table 5.3: Correlation coefficient and RMSE for the different methods of pan-sharpening using

synthetic data II

Pan-sharpening Correlation RMSE
method
Wavelet (PC) 0.89 10.82
Wavelet (IHS) 0.91 10.44
Wavelet (single band) 0.92 9.45
Gram-Schmidt 0.91 9.56
MRF-ICM 0.95 1.18
MRF-SA 0.97 1.07

and the MRF-ICM pan-sharpening method (a method similar to the method
developed by Molina et al. but extended to include edge preservation) are com-
pared with the MRF-SA method of pan-sharpening.

Table 5.3 shows the correlation and the RMSE of the different existing methods
of pan-sharpening and the new MRF-SA method developed in this study. The
table reveals that the correlation for the MRF-SA method is the highest (0.97)
as compared to the other methods. The RMSE for the MRF-SA method is also
very small (1.07) as compared to the RMSE of the other methods. The accuracy
of the MRF-ICM method is also higher but lesser than the MRF-SA method.
But the processing time it takes is a bit lesser than the MRF-SA method. The
other methods are also faster than the MRF-SA method. For the MRF-SA
method the correlation and the RMSE was found to be (0.99, 1.33), (0.98, 1.49),
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(0.96, 1.64) and (0.94, 3.46) for band 1 to 4 respectively in pairs. The result
shows that the method performs nicely particularly for the first three bands.
For these bands the correlation is very high and there is a very small error
between pixel values of the reference image and the out image.

Figure 5.13: Figure showing the reference image and pan-sharpened images obtained using

the Wavelet methods

The variation of accuracies for the different bands is because the spectral char-
acteristics of the deferent bands is not studied very well in this study. Figure
5.13 shows the reference and the output images of the three Wavelet methods
(the Wavelet PC method, the wavelet IHS method and the Wavelet single band
method) of pan-sharpening. Figure 5.14 shows the reference and the output im-
ages for the other two methods including MRF-SA (the Gram-Schmidt method,

63



5.5. Summary of findings from results

the MRF-ICM method and the MRF-SA method). Except for the Wavelet IHS
method where the band combination is 3, 2, 1, the images are displayed in 4, 3,
2 band combination both in the reference and in the output images.

Figure 5.14: Figure showing the reference image and pan-sharpened images obtained using

the Gram-Schmidt, the MRF-ICM and the MRF-SA methods

5.5 Summary of findings from results

The result of using the new method developed in this research on the synthetic
imagery has proved the capability of the method for image pan-sharpening.
The synthetic images show that the MRF-SA method produces a better pan-
sharpened image than the known existing methods. The QuickBird image used
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proved the method’s performance on satellite images. The accuracy of the re-
sult rely on the scale factor, on the assumed parameters and on the optimal
parameters that have an impact on the optimization process. The results from
both the synthetic and the remotely sensed data proved the reliability of this
new method for satellite image pan-sharpening.
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Chapter 6

Conclusion and
recommendations

6.1 Conclusion

The main objective of this study is to develop a new Bayesian method for image
pan-sharpening using the Markov random field and the simulated annealing
algorithm for satellite images that gives a MAP estimate for the pan-sharpened
image. It has the following sub-objectives:

1. To formulate pan-sharpening as an image restoration model and to de-
termine the parameters of this model by building observation and prior
models.

2. To integrate the modeled prior information with the conditional informa-
tion obtained from the multispectral and the panchromatic images using
the Bayesian estimation in order to get the final pan-sharpened image and
to find the optimal solution using the simulated annealing algorithm.

3. To assess the quality of the pan-sharpened image and,

4. To compare the new method with the already existing methods of pan-
sharpening.

In order to address the objectives four corresponding questions were posed dur-
ing this study. Experiments were done using synthetic and remote sensing
data sets in order to answer the research questions. In chapter 5 the results ob-
tained from the experiments were presented and discussed. This chapter gives
a conclusion for the research from the perspective of the research objectives and
questions. The performance of the new developed method is also discussed and
few recommendations are given below for further research.

6.1.1 Model formulation, optimal parameter determination and
optimization

One of the objectives of this research is to formulate image pan-sharpening as
an image restoration model and to determine the parameters of this model by
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modeling two models - prior and conditional models. One prior energy model
using the MRF and two conditional energy models are developed. The three
models are considered under the Bayesian framework and optimized using the
simulated annealing algorithm to meet the second objective of this study.

Optimizing parameter values of the developed models is the other objective of
the research. There are seven parameters for which optimal values were found
experimentally. The first parameter is the initial temperature (T0) used in the
simulated annealing algorithm. This study revealed that an T0 of 2 is works ef-
fectively. In addition an initial temperature T0 value of 3 or 4 can also produce
good results. The influence on the pan-sharpened image is very small for T0 = 2
to 4.

The second parameter that determines the optimization process is the tem-
perature updating factor σ, which refers to the decrease of the temperature
parameter according to the designed schedule. Annealing is scheduled in a
slow decreasing rate. This is because as T0 decreases, samples from the poste-
rior probability are forced towards the minimal energy configurations and this
leads to a tight coupling between the neighboring pixels. The experimental re-
sults show that the optimal σ value found is 0.92. σ values between 0.9 and
0.97 can also give good results but larger values result into longer processing
time.

The third parameter that influences the quality of a pan-sharpened image from
MRF-SA method is the smoothing parameter λ. If the value of this parameter
is larger than the optimal value there could be an over smoothing effect as the
spectral information is ignored and if it is set below the optimal value there
could be a noisy appearance due to the low weight given to the neighboring
pixel information. An optimal value for λ = 0.09 was determined. Values be-
tween 0.08 and 0.2 can also give good results.

The fourth parameter that an optimal value was looked for was the window size
(Wsize). It determines the effect of smoothness of the image and hence the con-
tribution of the prior energy for the total energy. A larger window size allows a
value for a pixel to be determined based on more neighborhood pixels. On the
contrary a smaller window size allows a value to be assigned for a pixel based on
small number of neighborhood pixels. The experimental results revealed that
a window size of 1 was a better estimate to get an optimally pan-sharpened
image.

The fifth and sixth parameters for which optimal values were found to them
experimentally were β and γ. Optimal value of 1 for both β and γ were found to
give better results. This shows that equal contribution of conditional energies
from the multispectral and panchromatic image can be taken to arrive at opti-
mal solution.

The last parameter that an optimal value was determined is the parameter ρ
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that is used to determine edges for the pan-sharpened image. Optimal value
of 222 was found to give better result. In this study the design of the Gibbs
sampler was found to be a novelty for the edge preserving energy.

6.1.2 The performance of the method and comparison with other
methods

In this study a new method for image pan-sharpening is developed. The quality
of the pan-sharpened image was assessed mainly using the correlation coeffi-
cient and the RMSE values. Results from the synthetic data II reveal that there
is a very high correlation (0.97) and a very small RMSE (1.07) between the ref-
erence and the pan-sharpened image pixel values. Results from the satellite
imagery also show that the method works effectively and most urban objects
can be recognized because of color differences in the pan-sharpened image un-
like that of the panchromatic image. Experimentation was also done to compare
the method with five other existing well known pan-sharpening methods. The
result shows that the MRF-SA method for image pan-sharpening performs bet-
ter than the other methods at a cost of more computational time.

6.2 Recommendations

A new and reliable MRF-SA based pan-sharpening method for satellite images
is developed in this research. Undoubtedly there exist some limitations that
need to be solved in further researches. The following are some of the recom-
mendations for future work:

1. It is recommended to take different image subsets and study the influence
of image characteristics on the developed method.

2. It is also recommended to analyze image quality descriptors for the ap-
plication of pan-sharpening and perform image quality analysis for the
developed method.

3. Since the simulated annealing algorithm is time consuming due to its
cooling schedule, it is recommended to implement the method in faster
software than the R programming language and statistical computation
software.
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Appendix A

Summary of the result in
searching optimal initial
temperature (T0) value

Table A.1: Correlation summary of the result in searching optimal initial temperature (T0)

value

W λ σ T0 Min Max Mean Std.Dev
size Corr Corr Corr Corr

1 0.1 0.5 0 0.9580282 0.9586282 0.9583282 0.00022624
1 0.9609364 0.9620753 0.96159992 0.0004973
2 0.9618629 0.9631862 0.96242552 0.0002262
3 0.9619836 0.9627031 0.96229685 0.0002593
4 0.9619633 0.9625361 0.96225689 0.0002208
5 0.9607658 0.9630035 0.96217304 0.0006455
7 0.9612298 0.9627546 0.96230447 0.0004518

10 0.960962 0.962922 0.96223823 0.0006522

1 0.1 0.92 0 0.957706 0.957706 0.957706 0.0002212
1 0.9629019 0.9652557 0.9649322 0.0011612
2 0.9658113 0.9657213 0.9657113 0.0002208
3 0.9648365 0.9652597 0.9652589 0.000436
4 0.9656547 0.9642557 0.965249 0.0005306
5 0.9650462 0.9651762 0.9650962 0.0006455
7 0.9651729 0.9659729 0.9653729 0.0004518

10 0.9652076 0.9658076 0.9655076 0.0006522
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Table A.2: RMSE summary of the result in searching optimal initial temperature (T0) value

W λ σ T0 Min Max Mean Std.Dev
size RMSE RMSE RMSE RMSE

1 0.1 0.5 0 1.1466592 1.1716592 1.166659 0.0056046
1 1.1242532 1.1395927 1.13097 0.0065576
2 1.1106902 1.128138 1.120252 0.0059007
3 1.1171077 1.1263532 1.122230 0.00331
4 1.118296 1.1260585 1.122469 0.0028908
5 1.112816 1.1414252 1.123657 0.0082762
7 1.1155855 1.1363835 1.121864 0.0060854

10 1.1132722 1.138444 1.122402 0.0084304

1 0.1 0.92 0 1.0637922 1.17523275 1.17523275 2.575E-07
1 1.07474 1.108631 1.07792125 0.0065576
2 1.07030 1.07113325 1.07075825 0.0059007
3 1.0761 1.07721 1.07716 0.0033104
4 1.08770 1.0909585 1.0902085 0.0028908
5 1.0791869 1.07956975 1.07936975 0.0082762
7 1.0755001 1.075704 1.07552675 0.0060854

10 1.0736370 1.073682 1.07365475 0.0084304
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Appendix A. Summary of the result in searching optimal initial temperature (T0) value

Table A.3: Total Energy summary of the result in searching optimal initial temperature (T0)

value

W λ σ T0 Min Max Mean Std.Dev
size Energy Energy Energy Energy

1 0.1 0.5 0 7.9543270 8.254327 8.154327 0.0230636
1 7.939202 8.0176131 7.9863377 0.0308609
2 7.908912 7.9732272 7.9338501 0.0220636
3 7.901054 7.9903993 7.9553336 0.03218
4 7.920197 7.9896782 7.9466349 0.0218070
5 7.883887 8.0207221 7.9402165 0.0434745
7 7.892586 8.0004859 7.9612818 0.0315737

10 7.883724 8.0678443 7.9456258 0.0541798

1 0.1 0.92 0 7.455169 7.455169 7.455169 0.00000001
1 0.1 1 7.082704 7.175577 7.098468 0.046932835
1 0.1 2 7.067903 7.079671 7.07144 0.005450921
1 0.1 3 7.093962 7.045719 7.086371 0.00028345
1 0.1 4 7.099028 7.099368 7.099178 0.00023541
1 0.1 5 7.086128 7.086648 7.086448 0.000036345
1 0.1 7 7.074577 7.074887 7.074777 0.00036581
1 0.1 10 7.0394089 7.041589 7.070089 0.00006454
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Appendix B

Summary of the result in
searching optimal
temperature updating factor
(σ) value

Table B.1: Correlation summary of the result in searching optimal temperature updating fac-

tor (σ) value

W λ σ T0 Min Max Mean Std.Dev
size Corr Corr Corr Corr

1 0.1 0.1 2 0.9586095 0.9589333 0.95877398 0.0001241
0.2 0.958967 0.959982 0.9594563 0.0004760
0.3 0.959703 0.960591 0.96015517 0.0002788
0.4 0.960887 0.9616656 0.96134137 0.0003143
0.5 0.9612298 0.9627546 0.96230447 0.0004518
0.6 0.9624038 0.9633909 0.96303116 0.0003213
0.7 0.963412 0.9643005 0.96398606 0.000295
0.8 0.9641057 0.9648907 0.96452816 0.0002394
0.9 0.9636454 0.9650149 0.9645404 0.0004041
0.91 0.9625596 0.9659714 0.964581 0.0011116
0.92 0.9645943 0.9656445 0.96490592 0.0003618
0.93 0.9636195 0.9649758 0.96470552 0.0004043
0.94 0.9646164 0.9651166 0.9648260 0.0002401
0.95 0.9640868 0.965166 0.9648926 0.0003498
0.96 0.9645127 0.964853 0.9646803 0.0001498
0.97 0.9643592 0.9648766 0.9647163 0.0001842
0.98 0.961172 0.9636255 0.9633068 0.0007536
0.99 0.94669 0.954876 0.95314025 0.0024428
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Table B.2: RMSE summary of the result in searching optimal temperature updating factor (σ)

value

W λ σ T0 Min Max Mean Std.Dev
size RMSE RMSE RMSE RMSE

1 0.1 0.1 2 1.163709 1.169034 1.1662323 0.0020350
0.2 1.151137 1.16365875 1.1578356 0.0057522
0.3 1.143715 1.15450875 1.1492767 0.00343903
0.4 1.130161 1.14008975 1.1345413 0.0041116
0.5 1.11558 1.1363835 1.1222301 0.0060735
0.6 1.106567 1.1205815 1.1121229 0.0045350
0.7 1.09560 1.1068855 1.0992459 0.0039064
0.8 1.086889 1.09774275 1.09181 0.0032449
0.9 1.085000 1.10322675 1.0914245 0.0054693

0.91 1.06027 1.0911935 1.0849692 0.009428
0.92 1.05526 1.16433 1.0965703 0.0371254
0.93 1.08575 1.08909725 1.0876892 0.001677
0.94 1.068183 1.090101 1.0842318 0.0080659
0.95 1.081755 1.08924075 1.0854353 0.0033016
0.96 1.075635 1.091104 1.0880293 0.0047502
0.97 1.077721 1.090316 1.0872982 0.0037915
0.98 1.102536 1.12099975 1.10536485 0.0055795
0.99 1.21117 1.30408025 1.2322389 0.0278210
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Appendix B. Summary of the result in searching optimal temperature updating factor (σ)
value

Table B.3: Total Energy summary of the result in searching optimal temperature updating

factor (σ) value

W λ σ T0 Min Max Mean Std.Dev
size Energy Energy Energy Energy

1 0.1 0.1 2 8.145959 8.212977 8.1698326 0.029334322
0.2 8.100198 8.201726 8.1495455 0.036536237
0.3 8.012684 8.123748 8.0888326 0.033085087
0.4 8.012603 8.06742 8.0339669 0.022801959
0.5 7.892586 8.000489 7.9612818 0.031573751
0.6 7.863724 7.973175 7.9058323 0.030914496
0.7 7.810591 7.874166 7.8489842 0.019762046
0.8 7.770852 7.851354 7.8243611 0.024281307
0.9 7.774204 7.886612 7.8057648 0.032386118

0.91 7.802071 7.80944 7.8079662 0.003107043
0.92 7.765513 7.802782 7.7766937 0.018002637
0.93 7.799816 7.80944 7.8019059 0.002874595
0.94 7.786323 7.81049 7.7994622 0.007487957
0.95 7.779575 7.794638 7.7856002 0.0077785
0.96 7.777784 7.786278 7.7811816 0.004386283
0.97 7.776494 7.791842 7.784168 0.008089106
0.98 7.998144 8.029534 8.016978 0.016209726
0.99 6.152043 9.217615 8.9110578 0.969418985
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Appendix C

Summary of the result in
searching optimal smoothness
parameter (λ) value

Table C.1: Correlation summary of the result in searching optimal smoothness parameter (λ)

value

W λ σ T0 Min Max Mean Std.Dev
size Corr Corr Corr Corr

1 0 0.92 2 0.4398918 0.4398918 0.4398918 0.0000001
0.02 0.926916 0.9356916 0.9296916 0.0000132
0.04 0.9656916 0.9656916 0.9656916 0.0000002
0.05 0.9644566 0.9651371 0.965001 0.0002869
0.06 0.9641655 0.9657046 0.96447077 0.0006435
0.07 0.963627 0.9641000 0.9640527 0.0001495
0.08 0.9652785 0.9654151 0.96540144 0.0000431
0.09 0.9653478 0.9657411 0.96570177 0.0001243
0.1 0.9636454 0.9650149 0.96453534 0.0003994
0.2 0.959411 0.959928 0.95964016 0.0001630
0.3 0.952574 0.9529865 0.95271985 0.0001339
0.4 0.9428412 0.9435805 0.94322817 0.0002569
0.5 0.931571 0.932347 0.93193063 0.0002638
0.6 0.9154313 0.9169585 0.91648949 0.0004605
0.7 0.8955123 0.8968364 0.89631978 0.0003836
0.8 0.8662926 0.8692356 0.86751133 0.0008358
0.9 0.4407393 0.4722589 0.45294568 0.0111206
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Table C.2: RMSE summary of the result in searching optimal smoothness parameter (λ) value

W λ σ T0 Min Max Mean Std.Dev
size RMSE RMSE RMSE RMSE

1 0 0.92 2 7.36081 7.82126 7.775221 0.145609
0.02 1.65863025 1.69561 1.670608 0.1161435
0.04 1.06418975 1.06418 1.064189 0.000000
0.05 1.064355 1.07341 1.066167 0.0038214
0.06 1.05970225 1.0808165 1.0739829 0.0092222
0.07 1.0844425 1.0911935 1.0857927 0.0028464
0.08 1.07059425 1.072672 1.0710098 0.0008760
0.09 1.05033875 1.070338 1.0605216 0.0103535
0.1 1.08500075 1.103226 1.0915538 0.0053552
0.2 1.2083855 1.213932 1.2113233 0.0022137
0.3 1.35271725 1.355803 1.3545954 0.0010446
0.4 1.50790875 1.515209 1.5119084 0.002102
0.5 1.67048125 1.676060 1.673345 0.002091
0.6 1.8390735 1.853143 1.8469516 0.004691
0.7 2.037615 2.045479 2.0413018 0.002271
0.8 2.26483825 2.27183 2.2674132 0.002359
0.9 3.9325775 3.992317 3.96320 0.020339
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Appendix C. Summary of the result in searching optimal smoothness parameter (λ) value

Table C.3: Total Energy summary of the result in searching optimal smoothness parameter (λ)

value

W λ σ T0 Min Max Mean Std.Dev
size Energy Energy Energy Energy

1 0 0.92 2 0.1319531 0.1335547 0.13323438 0.0006752
0.02 7.98453 7.98453 7.98453 0.0000001
0.04 7.774204 7.886612 7.8126632 0.0365193
0.05 7.769162 7.886612 7.8056632 0.0351686
0.06 7.703315 7.886612 7.7986632 0.0470273
0.07 7.593315 7.886612 7.7876632 0.0758439
0.08 7.586612 7.831791 7.7776632 0.0696516
0.09 7.064641 7.091802 7.0727893 0.0131200
0.1 7.774204 7.886612 7.8076632 0.0333857
0.2 14.07973 14.17549 14.140082 0.0323363
0.3 18.69675 18.76753 18.729927 0.0290312
0.4 21.44002 21.62196 21.486313 0.0631378
0.5 22.42546 22.58708 22.502362 0.0565199
0.6 21.85669 22.01999 21.965036 0.0553243
0.7 19.82025 19.96852 19.902638 0.0448577
0.8 16.3031 16.38765 16.345806 0.0276877
0.9 0.2039039 0.276329 0.24676946 0.0262192

85



86



Appendix D

Summary of the result in
searching optimal window
size value

Table D.1: Correlation summary of the result in searching optimal Window size (W size) value

W λ σ T0 Min Max Mean Std.Dev
size Corr Corr Corr Corr

1 0.09 0.92 2 0.9653478 0.96574 0.965701 0.000124
3 0.9632565 0.9635844 0.963333 0.000133
5 0.9624084 0.962637 0.9624982 0.000083
7 0.9617742 0.962146 0.961927 0.000165

W λ σ T0 Min Max Mean Std.Dev
size RMSE RMSE RMSE RMSE

1 0.09 0.92 2 1.050338 1.070338 1.0605216 0.010353
3 1.13395 1.13901 1.1376743 0.001375
5 1.16286 1.165201 1.16460 0.000941
7 1.18207 1.185755 1.184171 0.001776

W λ σ T0 Min Max Mean Std.Dev
size Energy Energy Energy Energy

1 0.09 0.92 2 7.064641 7.091802 7.0727893 0.013120
3 12.10074 12.1376 12.117737 0.015746
5 14.35663 14.41622 14.39888 0.024488
7 15.81269 15.85634 15.823796 0.017421
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Appendix E

Summary of the result in
searching optimal initial
temperature (T0) value using
optimal values from synthetic
data II

Table E.1: Correlation summary of the result in searching optimal initial temperature (T0) value

using optimal values obtained from synthetic image II

W λ σ T0 Min Max Mean Std.Dev
size Corr Corr Corr Corr

1 0.09 0.92 0 0.957706 0.957706 0.957706 0.000221245
1 0.9629019 0.9652557 0.9649322 0.001161226
2 0.9658113 0.9657213 0.9657113 0.000220835
3 0.9648365 0.9652597 0.9652589 0.00043634
4 0.9656547 0.9642557 0.965249 0.000530663
5 0.9650462 0.9651762 0.9650962 0.000645502
7 0.9651729 0.9659729 0.9653729 0.000451869
10 0.9652076 0.9658076 0.9655076 0.000652288
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Table E.2: RMSE summary of the result in searching optimal initial temperature (T0) value using

optimal values obtained from synthetic image II

W λ σ T0 Min Max Mean Std.Dev
size RMSE RMSE RMSE RMSE

1 0.09 0.92 0 1.06379225 1.17523275 1.17523275 2.575E-07
1 1.0747455 1.108631 1.07792125 0.006557664
2 1.0703075 1.07113325 1.07075825 0.005900717
3 1.076135 1.07721 1.07716 0.003310401
4 1.0877085 1.0909585 1.0902085 0.002890837
5 1.079186975 1.07956975 1.07936975 0.008276271
7 1.075500175 1.075704 1.07552675 0.006085496
10 1.073637025 1.073682 1.07365475 0.008430447

Table E.3: Total Energy summary of the result in searching optimal initial temperature (T0)

value using optimal values obtained from synthetic image II

W λ σ T0 Min Max Mean Std.Dev
size Energy Energy Energy Energy

1 0.09 0.92 0 7.455169 7.455169 7.455169 0.00000003
1 7.082704 7.175577 7.098468 0.046932835
2 7.067903 7.079671 7.07144 0.005450921
3 7.093962 7.045719 7.086371 0.00028345
4 7.099028 7.099368 7.099178 0.00023541
5 7.086128 7.086648 7.086448 0.000036345
7 7.074577 7.074887 7.074777 0.00036581

10 7.0394089 7.041589 7.070089 0.00006454
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