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‘In the end, it cannot be doubted that each of us can see 
only a part of the picture. The doctor sees one, the patient 

another, the engineer a third, the economist a forth ‘…’ 
Human knowledge is never contained in one person. It 

grows from the relationships we create between each other 
and the world around us and still it is never complete. ‘ 

- When breath becomes air by Paul Kalanithi                                                                                    
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ABSTRACT 
 

 

 

Research aim 
This research investigates the predictive power of routinely collected blood values and CT scans in forecasting 
the response to immunotherapy in patients with stage IV non-small cell lung cancer.  
 
Method 
The study involved a retrospective analysis of patient data, including demographic information, clinical 
characteristics, blood values, and CT images. Various statistical and machine learning methods were applied, 
including Kaplan-Meier analysis, log-rank tests, multinomial regression, mixed-effects models, and random 
forest. 
 
Results 
Several blood biomarkers, particularly CRP, emerged as significant predictors of overall survival (OS) at various 
time points during treatment. In addition, immune cell ratios such as NLR, PLR, and LMR demonstrated notable 
prognostic value. Blood values obtained after the initiation of therapy showed a stronger association with OS 
compared to baseline values. Although the nnU-Net achieved the highest Dice scores (0.56)  for automated 
tumor segmentation from CT scans, these scores were insufficiently high to reliably extract radiological 
features. Mixed-effects models (MEM) and random forest (RF) models that integrated blood values and clinical 
data demonstrated potential for more accurate prediction of immunotherapy response. However, the low 
feature importance scores in the RF models indicated that the response to immunotherapy is shaped by a 
complex interplay of factors rather than by a single dominant feature. 
 
Conclusion 
This study provides initial insights into the relationship between clinical parameters and treatment outcomes in 
immunotherapy for NSCLC. Although it did not achieve the goal of identifying patients who would benefit the 
most from treatment, it demonstrated potential for developing models that can potentially identify non-
responders. 
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INTRODUCTION 
 

 

 

Immunotherapy has increasingly been adopted as one of the most effecƟve approaches to treaƟng Stage IV 
non-small cell lung cancer (NSCLC) [1-5]. However, not everyone benefits from immunotherapy and it can 
potenƟally lead to side effects. Therefore, it is important to idenƟfy those who will benefit from therapy and 
those who will not. This will not only help minimize side effects and minimize losing Ɵme to useless therapy but 
also reduces the overall cost of therapy. To address this need, Deventer Hospital collected data from all Stage IV 
lung cancer paƟents who received at least one dose of (chemo)immunotherapy between January 3, 2017, and 
June 1, 2024. This database provides an opportunity to analyse the rouƟnely determined bloodwork to predict 
response to immunotherapy and to analyse available CT scans to provide radiological features to idenƟfy long-
term survival in the early stages. 

The primary aim of this research is to develop a predicƟve model that can idenƟfy individuals who will benefit 
from immunotherapy and those who will not.  

Research quesƟons 

Based on the research objecƟve the following research quesƟons are formulated: 

1. Can rouƟnely determined bloodwork help predict response to immunotherapy? 
 Which rouƟnely determined blood markers can be a marker to predict response to 

immunotherapy? 
 Could combinaƟons of blood markers be used to predict response to 

immunotherapy? 
2. Can CT scans help determine the long-term survival of paƟents to immunotherapy? 

 How can tumours automaƟcally be segmented out of CT images? 
 How can the informaƟon needed to determine the prognosis be automaƟcally 

generated from CT images?  
 What informaƟon in CT scans is helpful in determining the prognosis? 

3. Can an automaƟc algorithm or model be created that predicts the response of paƟents to 
immunotherapy? 

 Which algorithms can and will be used by healthcare providers?  
 How is an algorithm or model created to predict the response to immunotherapy? 

  



 
12 

 

 
CHAPTER 1:         
CLINICAL BACKGROUND 
 

 

1.1 Non-Small Cell Lung Cancer 
Lung cancer is a global public health concern, represenƟng the most commonly diagnosed cancer [6, 7]. With 
more than 1.4 million deaths annually, it accounts for up to 18% of all cancer-related deaths with a poor 5-year 
survival rate of approximately 15% [7-9].  Lung cancer is broadly categorized into two main types based on 
histology: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for 
approximately 80% to 85% of all lung cancer cases, while SCLC consƟtutes about 10% to 15% of cases [2, 9]. 
Although NSCLC tends to grow and metastasize less rapidly than SCLC, it oŌen does not show a good response 
to first-line chemotherapy and/or radiaƟon therapy [10]. Advancements in treatment, like immunotherapy, 
offer hope for improved outcomes. However, much remains to be done to improve the overall 5-year survival 
rate of 92% in stage IA1, decreasing to 13% in stage IIIC and below 5% for stage IV [2, 11-13].  

1.2 Treatment 
The treatment opƟons for NSCLC have been evolving 
over Ɵme and are currently based on classified stage 
(Figure 1) [2, 3, 12, 14]. For resectable NSCLC, 
guidelines recommend surgery for stages I–II and a 
select set of stage III paƟents, with post-surgery 
chemotherapy for stages II–III. [3, 15, 16]. In stage IV, 
and some advanced stage III cases, treatment with 
chemotherapy and radiotherapy is oŌen not 
successful, but recent advancements in 
immunotherapy have significantly prolonged overall 
survival (OS) and progression-free survival (PFS) [1-5].  

1.3 Immunotherapy 
Immunotherapy is a form of cancer treatment that 
harnesses the body's immune system to idenƟfy and 
destroy cancer cells. The immune system is designed 
to recognize and eliminate abnormal cells through a 
process known as immunosurveillance. In the context 
of cancer, some geneƟc mutaƟons in tumour cells 
can produce abnormal anƟgens that the immune 
system can detect, leading to the acƟvaƟon of 
immune cells such as T cells to target and destroy 
cancer cells. However, tumours can evolve through a 
process called cancer immunoediƟng, which allows 
them to escape immune control and conƟnue 
growing. Immunotherapy aims to overcome this Figure 1: Treatment opƟons in NSCLC. 
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immune evasion by boosƟng the immune system's ability to recognize and aƩack tumour cells [17].  An 
important immunotherapeuƟc strategy in NSCLC is the immune checkpoint inhibitors (ICIs), which block the 
pathways tumours use to suppress immune responses. Examples of ICIs are anƟ-programmed cell death protein 
1 (PD-1) and anƟ-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) anƟbodies (Figure 2) which have 
become central to treatment, parƟcularly in advanced cases [18, 19]. 

 

Figure 2: ICIs mechanisms. A) CTLA-4 blocking mechanism. B) PD1/PD-L1 mechanism. Retrieved from: 
hƩps://www.nature.com/arƟcles/s41577-020-0306-5  

In the neoadjuvant seƫng, immunotherapy can accelerate the immune system's acƟvaƟon, targeƟng both the 
primary tumour and any micro metastaƟc disease. This can lead to a higher rate of mediasƟnal nodal clearance 
and potenƟally a greater rate of pathological complete response [18, 19]. For paƟents with advanced NSCLC, 
anƟ-PD-1 (an ICI) is recommended as a first-line treatment when PD-L1 expression is ≥50%. CombinaƟon 
therapies with ICIs and chemotherapy are preferred for lower PD-L1 expressions [4, 9, 12]. Unlike tradiƟonal 
chemotherapy, which targets rapidly dividing cells indiscriminately, ICIs enhance the immune system's precision 
in targeƟng cancer cells, potenƟally leading to long-lasƟng remissions [20]. Despite its benefits, immunotherapy 
is associated with a disƟnct set of side effects that can occur at any point during and aŌer treatment. Many side 
effects happen when the acƟvated immune system also acts against healthy cells and Ɵssues in the body, 
causing immune-related adverse events (irAEs) [4, 21]. An example is the PD-1/PD-L1 pathway, which plays a 
crucial role in immune homeostasis and the suppression of T cell acƟvity against autoanƟgens. With 
immunotherapy blocking this pathway, an immune aƩack can be triggered causing irAEs. Currently, it is 
unknown when or if side effects will occur or how serious they will be. Although immunotherapy for advanced 
NSCLC generally has fewer high-grade toxiciƟes than tradiƟonal chemotherapy [22], paƟents treated with ICIs 
can experience unpredictable and potenƟally fatal toxiciƟes affecƟng almost all Ɵssues and organs, parƟcularly 
the skin, colon, endocrine glands, liver, and lungs [22]. While most irAEs are mild to moderate, severe irAEs 
occur in up to 20% of paƟents on single-agent therapy and about 60% of those on combinaƟon of anƟ-PD-1 and 
anƟ-CTLA-4 drugs [5]. These severe side effects can lead to treatment interrupƟons [5, 8] and the need for 
steroid therapy, which may be associated with poorer survival outcomes [23]. The response to immunotherapy 
in NSCLC paƟents can vary between paƟents, with a subset of paƟents achieving significant clinical benefits. 
While immunotherapy can produce durable responses and long-term remissions in some paƟents, it remains 
unclear why others fail to respond [4, 21, 24, 25]. The high cost of treatment, which can exceed $100,000 per 
paƟent per year, or even $200,000 with combinaƟon therapies in the USA, further underscores the need to 
idenƟfy paƟents who are most likely to benefit from these therapies [5]. Therefore, there is a need for 
predicƟve biomarkers that can disƟnguish between responders and non-responders, helping to opƟmise 
treatment decisions and avoid unnecessary side effects and financial burdens [24, 25]. Developing reliable 
predicƟve tools would be a significant advancement in the field of immunotherapy, improving its effecƟveness 
while minimising costs and adverse effects. 
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1.4 Imaging 
Computed tomography (CT) is very important in the management of lung cancer paƟents because it allows for 
non-invasive visualizaƟon of tumours before, during, and aŌer treatment. CT imaging allows for the assessment 
of tumour size, mediasƟnal and vascular invasions, and the presence of distant metastases, helping to stage the 
cancer [3, 26]. AddiƟonally, it is also used to evaluate the effect of treatment on the cancer. Response 
evaluaƟon is needed in determining the effecƟveness of the treatment, which can be done with radiological 
response or pathological response. CT imaging is used to evaluate the radiological response to treatment. A 
standardized way for response assessment are the Response EvaluaƟon Criteria In Solid Tumours (RECIST) [27]. 
This method assesses the largest diameter of tumours and categorizes the treatment effect into complete 
response (CR), parƟal response (PR), progressive disease (PD), or stable disease. For paƟents receiving 
immunotherapy the iRECIST (immune RECIST) was created, it addresses how tumours respond differently to 
immunotherapies compared to chemotherapies [28]. This was created because of the phenomenon called 
pseudoprogression, pseudoprogression mimics disease progression although it is not. What makes it hard to 
disƟnguish pseudoprogression form progression is that only Ɵme tells if the progression is in fact progression or 
a reducƟon in tumour size will become apparent [21]. iRECIST builds on RECIST 1.1 but includes specific criteria 
for immunotherapy responses. This approach ensures a consistent way of tracking tumour response in trials, 
facilitaƟng beƩer data collecƟon and analysis of treatment response. Several radiographic features can be 
evaluated in CT imaging, including: 

 Size: DeterminaƟon of tumour size measured as diameter in X, Y, Z direcƟon.  
 Volume: DeterminaƟon of full tumour volume.  
 Density: EvaluaƟon of tumour density.  
 Internal Features: CharacterisƟcs of the tumour’s internal structure, such as necrosis, calcificaƟons, or 

cysƟc areas. 
 External Features and associated findings: CharacterisƟcs of the tumours external and surrounding, 

including spiculaƟon, lymph node involvement, vascular invasion, surrounding Ɵssue reacƟon or 
amount of volume/size reducƟon over Ɵme.  

CombinaƟons of the menƟoned radiographic features can potenƟally also be used in algorithms to predict 
cancer status and to predict response over Ɵme [29, 30]. 

1.5 Biomarkers in NSCLC 
In oncology, biomarkers are parƟcularly valuable for idenƟfying paƟents who are most likely to benefit from 
specific treatments, such as immunotherapy. By enabling personalized treatment approaches, biomarkers help 
opƟmise therapeuƟc efficacy and minimise unnecessary side effects, thus improving paƟent outcomes and 
resource uƟlisaƟon [4, 9, 21]. For NSCLC several biomarkers have been researched for their role in predicƟng 
response to immunotherapy: 

 PD-L1 Expression: High PD-L1 expression is associated with beƩer response rates to ICIs like 
pembrolizumab and nivolumab. It is therefore nowadays the most used predicƟve biomarker for 
immunotherapy, in which in mainly determines if a paƟent will receive solely immunotherapy or a 
combinaƟon with chemotherapy [15, 22, 33].  

 Tumour MutaƟon Burden (TMB): TMB measures the total number of mutaƟons per mega base of DNA. 
High TMB has been linked to improved responses to ICIs due to the increased likelihood of tumour 
cells presenƟng anƟgens. The Checkmate-227 and Checkmate-568 studies showed that TMB predicts 
clinical benefits of nivolumab plus ipilimumab in paƟents with NSCLC, regardless of PD-L1 expression 
[31, 32]. However, The Keynote-021 and Keynote-189 studies show inconsistent outcomes, creaƟng an 
uncertainty around the predicƟve value of TMB [33]. 
 

In gastric cancers the presence and density of tumour-InfiltraƟng Lymphocytes (TILs), indicated a favourable 
prognosis and potenƟal responsiveness to immunotherapy, as it reflects the immune system's engagement with 
the tumour [30]. Despite the significance of the biomarkers, the clinical use is limited by invasive biopsies, 
which are oŌen infeasible, unsuitable for monitoring disease response, and may not represent tumor 
heterogeneity accurately [34]. 
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Peripheral blood-based biomarkers offer a less invasive alternaƟve for paƟent selecƟon and treatment 
monitoring that is conƟnuously easy to access. Some blood markers (Figure 3) have already shown their 
potenƟal in previous studies within different tumour types [4, 25, 35], like lymphocyte and neutrophil count 
[36], or neutrophil to lymphocyte raƟo [4]. Some of the rouƟnely determined blood-based markers include: 

 
 Eosinophils: The accumulaƟon of eosinophils has been associated with diverse prognosƟc outcomes in 

various cancers. Responders to ICI treatment showed a significant increase in eosinophil counts 
compared to non-responders, suggesƟng that eosinophil counts could serve as an early predicƟve 
marker for immunotherapy response [37]. When looking at the relaƟon between eosinophil count and 
survival the literature shows incongruent results, someƟmes being a posiƟve predictor and otherwise 
predicƟng a negaƟve outcome [25, 37-39].  

 Peripheral Blood Cell Counts: Markers such as lymphocyte count, neutrophil count, and the 
neutrophil-to-lymphocyte raƟo (NLR) are rouƟnely measured and have demonstrated potenƟal in 
predicƟng responses to immunotherapy. For example, a high NLR might signal a more favourable 
response to treatment [15, 36]. 
 

Nevertheless, most of the available results are preliminary, so the potenƟal biomarkers sƟll have to be 
invesƟgated within NSCLC or cannot be implemented into rouƟne clinical pracƟce unƟl they are validated in 
large-scale trials. These trials should also take into account the differences in the applicaƟon of the potenƟal 
biomarkers alone (or combinaƟons of markers), and standardise thresholds for the guidance of clinical decision 
making. Therefore, further research opportuniƟes remain abundant, with the potenƟal to refine biomarker 
applicaƟons and enhance their clinical uƟlity. 

 

Figure 3: (Possible) markers for immunotherapy [4, 9, 35, 40, 41]. Created in  BioRender.com 
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CHAPTER 2:      
TECHNICAL BACKGROUND 
 

 
To address these challenges and advance the clinical applicability of potenƟal biomarkers, a robust analyƟcal 
approach is essenƟal. The following chapter delves into the technical background, exploring the staƟsƟcal 
methods, AI models, and segmentaƟon networks that can be used to determine whether a biomarker can 
predict a paƟent's response to immunotherapy. 

2.1 StaƟsƟcs 
2.1.1 Kaplan Meier Method & Log-Rank Test 
Kaplan-Meier curves and the log-rank test are staƟsƟcal tests that are oŌen used in survival analysis [42]. The 
Kaplan-Meier method esƟmates the survival funcƟon, which is the probability of "surviving" beyond a certain 
Ɵme point [42]. The Kaplan-Meier curve plots survival probability (y-axis) against Ɵme (x-axis). The curve is a 
step funcƟon where the survival probability drops verƟcally whenever one or more outcome events occur, and 
remains horizontal between events. The general formula for Kaplan-Meier survival probability at a failure Ɵme 
is expressed in equaƟon 1 [43]. 

(1)      𝑆൫𝑡(𝑓)൯ = 𝑆൫𝑡(𝑓 − 1)൯  × ቀ
௨  ௗ௩ௗ௨௦ ௦௨௩௩ ௨௦௧  ௧()

௨  ௗ௩ௗ௨௦ ௧ ௦ ௧ ௧()
ቁ 

The log-rank test provides an overall comparison of the Kaplan-Meier curves [48]. It tests the hypothesis that 
there is no difference in survival between two or more groups over time. The log-rank test statistic is a chi-
square statistic calculated using the observed and expected event counts at each failure time as depicted in 
equation 2 and 3 [44]. 

(2)       𝑋ଶ =  ∑
(ைିா)మ

ா


ୀଵ  

(3)      𝐸 =  
ௗೕ×ೕ

ೕ
 

In which Oi is the observed number of events in group i and Ei is the expected number of events in group i. dj is the total 
number of events at time j, nij is the number of individuals at risk in group i at time j and nj is the total number of individuals 
at risk at time j across all groups.  

2.1.2 Cox Hazard Model 
The Cox ProporƟonal Hazards Regression Model predicts the OS and PFS outcomes in relaƟon to one or more 
predicƟve variables. It can be used to assess the relaƟonship between different blood values and survival 
outcomes [45, 46]. The Cox model is a staƟsƟcal technique used for survival-Ɵme outcomes, assessing the 
probability that the event of interest (death or progression) occurs before a given Ɵme. It models the hazard 
funcƟon 𝜆(𝑡) (equaƟon 4) as an exponenƟal funcƟon of an arbitrary baseline hazard 𝜆0(𝑡) where all covariates 
are zero. The regression coefficient b quanƟfies the effect of the covariate x on the hazard.  
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(4)  λ(t) = λ(𝑡)𝑒௫    

The model assumes that survival curves for different groups have hazard funcƟons proporƟonal over Ɵme and 
that the relaƟonship between the log hazard and each covariate is linear [46]. Given the availability of mulƟple 
measurements of blood values at different Ɵme points, Ɵme-dependent covariates in the Cox model can be 
used to account for changes in the values over Ɵme. This approach allows for an assessment of how values 
influence survival outcomes throughout the treatment Ɵme. To explore combinaƟons of values, mulƟple values 
can be used as predictor values in the Cox model. CreaƟng interacƟon between terms allows for assessment of 
associaƟon between the combined effect of blood values and its effect on overall survival and progression-free 
survival. This approach offers insights into potenƟal relaƟonships between blood values and their impact on 
paƟent outcomes even with Ɵme-dependent changes and compeƟng risks [45-47]. 

2.1.3 MulƟnomial regression 
MulƟnomial regression is a staƟsƟcal method used when the outcome variable is categorical with more than 
two possible groups. When predicƟng paƟent response to immunotherapy, it esƟmates the likelihood that a 
paƟent will fall into one of several response categories, such as complete response, parƟal response, stable 
disease, or progression, based on a set of predictor variables. In mulƟnomial logisƟc regression, each response 
category is compared to a reference response category through dummy coding (1/0 variables) [48]. This results 
in one less than the amount of response categories, binary logisƟc regression models, each with its own 
intercept and coefficients. The models reveal how predictors influence the probability of each outcome 
category relaƟve to the reference group. Each category has its own intercept and coefficients, reflecƟng that the 
predictors may impact each category differently [48, 49]. EquaƟon 5 is the general equaƟon of the probability 
that the outcome Y is in category j given the predictors X, equaƟon 6 the reference category and equaƟon 7, the 
likelihood of the parameters belonging to a specific category compared to the reference category.  

(5) 𝑃 (𝑌 = 𝑗 | 𝑋 ) =  


ഁೕబశ ഁೕభೣభశ ഁೕమೣమశ ⋯ శ ഁೕೣ 

ଵା ∑ ഁబశ ഁభೣభశ ഁమೣమశ ⋯ శ ഁೣ ೖ
సమ

 

(6) 𝑃 (𝑌 = 1 | 𝑋 ) =  
ଵ

ଵା ∑ ഁబశ ഁభೣభశ ഁమೣమశ ⋯ శ ഁೣ ೖ
సమ

 

(7)    log ൬
 ൫𝑌 = 𝑗 ห 𝑋 ൯
൫𝑌 = 1 ห 𝑋 ൯

൰ =  𝛽 +  𝛽ଵ𝑥ଵ +  𝛽ଶ𝑥ଶ +  ⋯ + 𝛽𝑥   

Where Y is a categorical outcome variable with k categories, X represents the predictor variables (x1, x2, … , xp). 
𝑃 (𝑌 = 𝑗 | 𝑋 ) is the probability that the outcome Y is in category j given the predictors X. 𝛽 is the intercept for category j 
and 𝛽ଵ, ⋯ , 𝛽  are the regression coefficients for the predictors corresponding to category j. Each category has its own set 
of coefficients 𝛽 ,  

2.1.3 Mixed Effect Model 
A Mixed Effects Model (MEM) is a staƟsƟcal tool used to predict a single conƟnuous variable like OS or PFS 
using two or more other variables [50-52]. MEMs can be suitable to predict a paƟent’s response to 
immunotherapy due to their ability to handle repeated measures. MEMs can incorporate mulƟple independent 
variables, such as blood values and CT image metrics like size and volume, measured at various points during 
treatment. This allows for an analysis of how these variables interact and influence OS or PFS over Ɵme. It 
provides insights into the relaƟonships between the input variables with the output variable [50, 51, 53, 54]: 

(8)     𝑌 =  𝛽 +  𝛽ଵ𝑋 +  𝑢 +  𝑒   

Where Yij is the response variable for observaƟon i within group j, β0 is  the intercept (fixed effect), β1Xij is the fixed effect for 
predictor X, uj is the random effect for group j, which varies between groups and ϵij is the residual error term.  

To create a MEM, the hierarchical structure of the data must be idenƟfied. For example, in medical research, 
repeated measures from the same paƟent can be considered hierarchical data. Fixed and random effects must 
be determined, variables of primary interest and variables represenƟng random samples from a larger 
populaƟon [52]. By modelling the repeated measurements and accounƟng for both fixed and random effects, 
MEMs help to control for potenƟal confounding factors and improve the accuracy of predicƟons. This approach 
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reduces the likelihood of false posiƟves and negaƟves [54]. However, proper model specificaƟon and validaƟon 
are essenƟal to ensure accurate and interpretable results. For more informaƟon, appendix A.  

2.2 Machine learning 
ArƟficial Intelligence (AI) performs tasks that previously required human-like intelligence, including learning, 
reasoning and problem-solving. Machine Learning (ML), a subset of AI, enables computers to perform specific 
tasks by learning from data instead of explicit programming [55]. ML has two main categories [56]:  

1. Supervised learning uses a labelled datasets where algorithms learn by comparing predicƟons to 
known outcomes, adjusƟng parameters to minimize errors. This works well with limited, labelled data.  

2. Unsupervised learning idenƟfies paƩerns or structures in the data without predefined labels, used in 
larger datasets. 

In healthcare, ML algorithms can enhance treatment processes like treatment planning [57]. AI has also enabled 
the development of predicƟve models for assessing treatment possibiliƟes, responses and potenƟal side effects 
in cancer therapy [58, 59].  

2.3 Image segmentaƟon 
A common applicaƟon of AI in medical imaging is tumour segmentaƟon - isolaƟng and outlining the tumour on 
the image. SegmentaƟon can be performed manually, semi-automaƟcally, or through deep learning algorithms 
[60]. The process requires preprocessing to improve the efficiency and performance of the model, as images are 
oŌen obtained from different scanners with various image acquisiƟon and reconstrucƟon protocols [61, 62]. 
Preprocessing can include steps like normalizaƟon [63], noise reducƟon, standardizaƟon of size and data 
augmentaƟon [64], see appendix B for more informaƟon about preprocessing steps. Once preprocessing has 
been done, deep learning is oŌen used for segmentaƟon in cancer research [65]. Deep learning [55, 66] is a 
subset of ML that is based on arƟficial neural networks, like the brains neural network, see figure 4 and 
appendix C for more explanaƟon. These neural networks, inspired by the human brain’s structure, consist of 
interconnected layers of nodes or neurons. Deep learning networks like ConvoluƟonal Neural Networks (CNNs) 
excel in processing high-dimensional data such as images [60, 67]. A popular architecture for segmentaƟon 
tasks is the U-Net [64], which is a type of CNN designed to be suitable for image segmentaƟon. It consists of an 
encoder-decoder structure: the encoder takes an image as the input of the model and extracts necessary 
features and relevant informaƟon, whereas the decoder learns to generate the corresponding predicƟons 
(probability maps) [68]. U-Net is oŌen used in medical image segmentaƟon due to its ability to achieve 
adequate performance even with limited datasets. Together, the CNN-based methods provide powerful tools 
for lung cancer segmentaƟon, combining efficiency, accuracy, and the ability to work with diverse data.  
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Figure 4: Architecture of AI to deep learning networks. Retrieved from: hƩps://link.springer.com/arƟcle/10.1007/s10661-024-12443-
2/figures/2  
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CHAPTER 3:       
SEGMENTATION NETWORK 
 

 

3.1 IntroducƟon 
Accurately idenƟfying lung tumours in NSCLC is important for extracƟng radiomic features that can predict 
paƟent responses to treatment. SegmentaƟon networks can play a role in this process by isolaƟng and outlining 
tumours in CT images, enabling analysis of tumour characterisƟcs. This chapter evaluates the performance of 
four segmentaƟon networks designed to opƟmize tumour segmentaƟon in CT images. These networks were 
selected based on their reported Dice similarity coefficients (DSC) in previous studies [61, 68-70], which make 
them suitable candidates for this task, see table 1. This chapter systemaƟcally compares the networks based on 
their segmentaƟon performance on NSCLC CT images, to find their ability to detect primary and secondary 
tumour lesions. 

Table 1: informaƟon per segmentaƟon network. 

 Network 1 (Dune) 
[61] 

Network 2 (DS) [68] Network 3 
(Vermond) [69] 

Network 4 (nnU-
net) [70] 

Dice score 0.82 
 

 0.88 0.71 0.84 

training data 1328 scans of 8 
different 
insƟtuƟons 

64 scans from the 
medical 
segmentaƟon 
decathlon challenge 

1781 scans from 
three datasets: 
Medical 
segmentaƟon 
decathlon, NSCLC 
radiomics Lung-PET-
CT-Dx 

96 scans from 
Medical Decathlon 
SegmentaƟon 
Challenge 

Type of network 2D U-Net 
architecture 

MobileNetV2 
encoder with a U-
Net decoder 

teacher-student 
framework 

nnU-net 

 

3.2 Method 
A total of 100 CT images from a publicly available NSCLC dataset [71] were used. Corresponding ground truth 
segmentaƟon masks annotated by radiologists served as the reference standard. These masks were used to 
evaluate the performance of each network using a range of metrics. The DSC was used to measure the overlap 
between predicted tumour masks and ground truth annotaƟons. The Jaccard Index (JI) was calculated to assess 
the similarity between predicted and reference masks. Hausdorff Distance was employed to measure the 
maximum spaƟal discrepancy between tumour boundaries. AddiƟonally, precision, sensiƟvity, and specificity 
were computed to evaluate the classificaƟon accuracy of the segmentaƟons. Finally, the Spearman correlaƟon 
was used to invesƟgate the relaƟonship between the Dice score (segmentaƟon quality) and tumour volume as 
most networks are trained or on small nodes or on larger tumours. A second Spearman correlaƟon was done 
between volume of radiologist and of the AI predicƟon, to address consistency in the AI network. Spearman's 
rank correlaƟon is a non-parametric test that assesses the strength and direcƟon of the associaƟon between 
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two ranked variables. All the above menƟoned metrics were computed twice for each network: (1) considering 
only the primary lesion and (2) including all detected lesions in the scan. This allowed for a comprehensive 
comparison of the networks in both single and mulƟple tumour detecƟon scenarios. 
 
3.2.1 SegmentaƟon Networks and Steps 
Network 1 [61] begins with preprocessing steps aimed at standardizing the CT images. These images were 
normalized to ensure consistent intensity values across scans and harmonized to account for different image 
acquisiƟon protocols. The images were then cropped and padded to ensure uniform dimensions. The first step 
in the segmentaƟon process was lung isolaƟon, where a region-growing algorithm was applied to the CT scans, 
followed by morphological operaƟons like dilaƟon and erosion to remove small irrelevant structures. AŌer lung 
isolaƟon, a modified 2D U-Net architecture was used to segment the tumours. The output consisted out of 2D 
binary masks that were stacked to generate a 3D volume. Post-processing steps included extracƟng connected 
components from the generated mask, followed by resampling it to match the original dimensions of the CT 
scans. 

Network 2 [68] uses a hybrid architecture that combines MobileNetV2 as the encoder and U-Net as the 
decoder. The first step in preprocessing involved normalizing the CT images using min-max scaling, followed by 
standardizaƟon to resize the images to a fixed size of 256×256 pixels. The preprocessed images were used in the 
mobileNetV2 encoder and then the U-Net decoder. The tumour segmentaƟon masks are reconstructed in this 
model by skip connecƟons with the ReLU acƟvaƟon funcƟon to link the encoder and decoder layers. 

Network 3 [69] introduces a teacher-student framework, which uses two types of annotaƟons: 
semanƟc 3D annotaƟons (strong annotaƟons) and 2D bounding boxes in axial planes (weak annotaƟons). The 
preprocessing step involves converƟng the CT scans into 3D volumes and normalizing the voxel intensiƟes. The 
teacher model generates pseudo-strong labels for the weakly annotated data. The student model performs 
end-to-end segmentaƟon. 

Network 4 [70], nnU-Net, is a self-configuring framework designed to automaƟcally adapt to new 
datasets and segmentaƟon tasks. No extra manual preprocessing is needed. The model uses 3D full-resoluƟon 
U-Net with seƫng the lung segmentaƟon weights, it predicts segmentaƟons. Post-processing steps in nnU-Net 
include removing small regions and selecƟng the largest connected components to ensure that the tumour 
segmentaƟon is accurate and free of arƟfacts. 

The steps of implemenƟng these networks were followed and then the metrics were computed on the 
resulƟng segmentaƟons. 3D slicer was used to provide the CT scans in the right format (NiŌi, NRRD). For 
analyses python was used, version 3.7-3.10 depending on the usage needed per network.  

 
3.3 Results 
All metrics results can be found in table 2. Figure 5 shows segmentaƟons of all the networks of one paƟent out 
of the dataset. The analysis of the correlaƟon between volumes and dice scores provided the following results: 
the Pearson correlaƟon coefficient for the dune network was 0.1007 with a P-value of 0.3188. The network 
provided 3 empty predicƟons. For the DS network, the correlaƟon coefficient was 0.3167 with a P-value of 
0.0013. The network provided 10 empty predicƟons. For the Vermund Mask network, the correlaƟon 
coefficient was -0.0035 with a P-value of 0.9723. The network provided 1 empty predicƟon. For the nnU-Net 
network, the Spearman correlaƟon coefficient was -0.1137 with a P-value of 0.2601. The network provided 14 
empty predicƟons. Figure 6 shows all scaƩerplots of the networks on dice score versus volume. Figure 7 shows 
the scaƩerplots of radiologist volume vs AI volume. AddiƟonally, the analysis of the correlaƟon between AI 
volume and Radiologist volume yielded the following Spearman correlaƟon coefficients: 

 Network 1: 0.7292, P-value: 0.0000 
 Network 2: 0.3524, P-value: 0.0003 
 Network 3: 0.6979, P-value: 0.0000 
 Network 4: 0.4237, P-value: 0.0000 
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Table 2: Results metrics for all four networks, for both primary tumour and all locaƟons of tumour. 

  DSC Jaccard 
Index 

Hausdorff 
Distance 

Precision Sensitivity Specificity 

Network 1: Dune (all) 0.479 0.372 53.6 0.767 0.405 1 

Network 1: Dune (primary) 0.522 0.419 33.8 0.734 0.46 1 

Network 2: DS (all) 0.212 0.144 33.8 0.476 0.172 1 

Network 2: DS (primary) 0.215 0.147 46.49 0.415 0.184 1 

Network 3: Vermond (all) 0.365 0.258 103.34 0.55 0.342 1 

Network 3: Vermond (primary) 0.415 0.302 123.49 0.533 0.434 1 

Network 4: nnU-net (all) 0.523 0.409 96.09 0.688 0.492 1 

Network 4: nnU-Net (primary) 0.561 0.45 91.76 0.645 0.574 1 

 

 

Figure 5: SegmentaƟon results of the networks combined with the ground truth masks (green). a)  
Network 1: the dune network, b) Network 2:  the DS network, c) Network 3: the Vermond network and, d) Network 4: the 
nnU-Net. All images are within 10 slices of each other, showcasing the slices that best illustrate the networks in acƟon. 
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Figure 6: ScaƩerplots of volume vs dice scores. a) network 1:  the dune network, b) network 2: the DS network, c) network 3: 
the Vermond network and, d) network 4: the nnU-Net. 

 

Figure 7: ScaƩerplots of volume of radiologist (DR) vs volume of AI network (DL). a) network 1:  the dune network, b) 
network 2: the DS network, c) network 3: the Vermond network and, d) network 4: the nnU-Net. 
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3.4 Discussion 
Accurate segmentaƟon of tumours in NSCLC is an important step in understanding tumour characterisƟcs and 
extracƟng features for therapy strategy. The four segmentaƟon networks evaluated in this study demonstrated 
varying degrees of performance in segmenƟng lung tumours from CT images, as reflected in DSC, precision, and 
other metrics. Below, the performance of each network is discussed, contextualizing their strengths and 
limitaƟons in light of their original design and applicaƟon to the current research. 

Networks 2 showed a small correlaƟon between tumour size and DSC scores. Unlike network 1, 3 and 4 which 
show no significant correlaƟon. This suggests that segmentaƟon accuracy of these networks is less influenced 
by tumour size, making these networks more robust for segmenƟng tumours of varying sizes. 

The correlaƟon analysis between AI-predicted volumes and radiologist-determined volumes provides 
insight into the consistency of different networks. Network 1 and Network 3 demonstrated the highest 
correlaƟon with radiologist volumes (0.7292 and 0.6979, respecƟvely), suggesƟng that these models generate 
segmentaƟons that are more proporƟonal to those of the radiologist. Network 2 and Network 4 showed lower 
correlaƟons (0.3524 and 0.4237), indicaƟng higher variability in AI-predicted volumes relaƟve to the 
radiologist’s assessment. A high correlaƟon does not necessarily imply perfect agreement but rather suggests 
that the AI model maintains a consistent relaƟonship with the radiologist's measurements. This consistency is 
parƟcularly important when considering the use of AI-generated volumes in predicƟve models, as stability in 
predicƟons may be more valuable than exact volume replicaƟon. Further analysis could explore the potenƟal 
impact of AI volume variaƟons on downstream clinical applicaƟons and whether models with higher volume 
correlaƟons also yield more reliable predicƟons in paƟent outcome modelling. 

The first network  originally reported strong performance, with metrics including a DSC of 0.82, a 
Jaccard Index of 0.72, and an H95 of 9.43 mm [61]. However, on our dataset, these scores were lower (higher 
on the Hausdorff distance), possibly due to the network's focus on segmenƟng primary NSCLC tumours. This 
focus may lead to the exclusion of secondary tumour components, which lowers accuracy, although the effect is 
expected to show in dice score of all tumour lesions and not or less in the primary dice scores. The networks 
reliance on idenƟfying the largest connected component (GTV-1) as the tumour can help cause this issue, as it 
risks losing porƟons of the tumour when components are not fully connected. Addressing this limitaƟon could 
involve improving the network’s handling of disconnected tumour regions.  

The second network achieved a DSC of 0.88, a recall of 0.86, and a precision of 0.93 in its original study 
[68]. Its potenƟal lays in the transfer learning that offers computaƟonal efficiency. For future use, the 
computaƟonal efficiency is important in clinical applicaƟons where Ɵme and resources are constrained, 
although the primary focus now is the current network struggle with segmentaƟon consistency. The main 
limitaƟon of this network is the small dataset, which contains only 64 annotated CT images. This limited training 
dataset could hinder the network’s ability to generalize to more diverse cases. A significant limitaƟon noted in 
the original study [68] is that the model’s performance was only validated on the same dataset, and broader 
tesƟng on independent and more diverse medical imaging datasets is necessary to confirm its generalizability to 
more diverse cases. In our experience, this limitaƟon became evident when evaluaƟng its accuracy on our 
dataset, where it revealed limitaƟons with dice scores of just above 0.2.  

Network 3 originally reported a DSC of 0.71 [69]. In this study, it achieved Dice scores just below 0.5, 
reflecƟng average performance compared to the other networks tested. According to its original research, the 
network’s performance is sensiƟve to preprocessing parameters, in parƟcular voxel spacing, which is not 
accounted for in their described preprocessing steps [69]. Improving these parameters through methods such 
as linear or nearest-neighbour interpolaƟon could help align the input data with the condiƟons of the training 
dataset, potenƟally enhancing performance. Another concern is the overlap between the training and tesƟng 
datasets. The network was trained using three public datasets: the Medical SegmentaƟon Decathlon (MSD)-
Lung, the NSCLC-Radiomics, and Lung-PET-CT-Dx. This includes part of the test dataset used in this research, 
potenƟally introducing bias and inflaƟng performance metrics.  

The last network achieved DSC scores of 0.82 for lung nodules and 0.84 for lung tumours in its original 
study [70]. In our research, it outperformed the other networks, with a DSC of 0.561 for primary tumours and 
0.523 for all tumour regions. Its automated configuraƟon capabiliƟes and robust preprocessing pipeline might 
have allowed it to generalize beƩer to our dataset, although there is definitely room for improvement. The 
network also showed limitaƟons in a high rate of empty predicƟons (14 out of 100 cases). While its automated 
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design simplifies applicaƟon, it may restrict manual opƟmizaƟon for specific challenges within a dataset. 
Despite these issues, nnU-Net’s adaptability and user-friendliness make it a strong candidate for NSCLC 
segmentaƟon tasks. 

3.4.1 Clinical implicaƟons 
A limitaƟon across all networks was their reliance on pretreatment CT scans for training. This training approach 
may lead to decreased segmentaƟon accuracy on post-treatment scans, where treatment-induced changes 
complicate tumour segmentaƟon. For instance, networks may over-segment areas of pseudoprogression or 
miss smaller regions altered by treatment, providing a higher change in volume than actually has been 
accomplished with treatment. Therefore, the networks should be trained in segmenƟng post treatment CT-
scans as well as the pretreatment scans. Another consideraƟon and the main aim of this research is the use of 
automated segmentaƟons for extracƟng radiological features. Current Dice scores are insufficient for reliably 
idenƟfying tumour areas and therefore the extracƟon of radiological features. Developing beƩer-performing 
networks tailored to the specific dataset is necessary. The nnU-Net is a promising opƟon for training on the 
intended dataset as it is a small dataset. However, using the same dataset for training and validaƟon poses 
challenges. Using some of the data for training and validaƟon would reduce the number of paƟents available for 
tesƟng later in the research. This trade-off makes nnU-Net training on this dataset less feasible. In the future, 
this approach could sƟll be viable if manually segmented CT radiological features were incorporated into the 
staƟsƟcal or machine learning models along with the automaƟcally segmented CT radiological features of the 
other paƟents. However, this would induce variability in predicƟons due to differences in how the 
segmentaƟons were gathered. While this method was not pursued in the current study due to Ɵme constraints, 
it could serve as a focus for future research aimed at finding or training a beƩer-funcƟoning network. As 
automated segmentaƟon offers significant advantages over manual methods, including faster processing Ɵmes 
and reproducibility. Radiologist and radiaƟon oncologists preferred automated segmentaƟon in 56% of cases 
[61], underscoring its potenƟal value, but also current precauƟon. While current networks require further 
refinement, automated segmentaƟon tools could significantly improve the accuracy, speed, and reproducibility 
of NSCLC tumour segmentaƟon, ulƟmately enhancing diagnosis and in words of this research: treatment 
planning/predicƟon. 

3.5 conclusion 
Network 4 was the best performing network researched, although the average dice score only reached 0.56. 
The results highlight that there is no "one-size-fits-all" soluƟon for lung tumour segmentaƟon. Further research 
is needed to compare the performance of segmentaƟon networks across diverse datasets and to evaluate the 
factors influencing segmentaƟon accuracy. Therefore, these networks will not be used to add radiological 
features to predicƟng response to therapy.    
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CHAPTER 4:                
BASIC STATISTICS 
 

 

4.1 IntroducƟon  
The recent advances in immunotherapy have shown promise in improving outcomes for paƟents with advanced 
NSCLC. While past research has mainly concentrated on the menƟoned markers in chapter 1, it could be 
advantageous to broaden the scope of inquiry. AddiƟonal blood markers, or a combinaƟon of those markers in 
raƟos, that are regularly tested during therapy could be examined. By incorporaƟng the tesƟng of addiƟonal 
markers, an easily accessible marker will potenƟally be provided. In general, follow-up response assessment 
every 6–12 weeks is recommended for iRECIST [28]. This moment also provides new informaƟon about the 
blood markers that could help predict if someone is responding to immunotherapy. Other factors may also hold 
predicƟve value. For example, tumours with a higher mutaƟonal load tend to be more sensiƟve to 
immunotherapy drugs, as they present a greater number of anƟgens recognizable by the immune system [21]. 
In NSCLC trials, smokers were found to have beƩer responses compared to non-smokers. Another potenƟal 
predicƟve marker studied before was the loss of muscle mass [41]. While clear recommendaƟons are sƟll 
lacking in this regard, in the absence of available biomarkers, these epidemiological findings may help guide 
challenging therapeuƟc decisions in clinical pracƟce. This chapter aims to evaluate various blood markers and 
non-blood markers on their predicƟve and prognosƟc value in NSCLC paƟents undergoing immunotherapy. 

Table 3: Blood values that will be tested on their possible predicƟve value in response to immunotherapy. 

PotenƟal markers literature Commonly determined blood values 
Baseline absolute lymphocyte count ALAT 
Absolute neutrophil count  ASAT 
NLR MCV 
Absolute Eosinophil Count TSH 
Absolute monocyte Count CreaƟnine 
Systemic Immunoinflammatory Index (SII) FT4 
Serum LDH Level Haemoglobin 
Platelet-to-Lymphocyte RaƟo (PLR) Leukocytes 
Lymphocyte-to-Monocyte RaƟo (LMR) Platelets 
 Sodium 
 Potassium 
 Glucose 
 Calcium 
 LDH 

 

4.2 Method 
4.2.1 PaƟent PopulaƟon & Data CollecƟon 
This study focused on paƟents with stage IV NSCLC who received (the first) immunotherapy between January 3, 
2017, and August 18, 2023. Inclusion criteria required baseline blood samples, CT images, and complete clinical 
data. Data were collected from medical records (HiX electronic paƟent file system) and included demographic 
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details, disease stage, comorbidiƟes, treatment informaƟon, and blood sample results at baseline (before start 
of therapy: Ɵmepoint 0) and during therapy (1 & 3 months, aŌer start: Ɵmepoint 1 and 3). 

4.2.2 StaƟsƟcal Analysis 
Primary outcome measures were OS and PFS. OS was defined as the duraƟon from treatment iniƟaƟon to death 
from any cause, while PFS was the Ɵme from treatment iniƟaƟon to disease progression as determined by 
imaging. Response to therapy was assessed based on the best response observed. Blood markers analysed 
included rouƟnely determined values as well as potenƟal other markers like the NLR, PLR, and SII. Table 3 shows 
all assessed blood markers. DescripƟve staƟsƟcs like the mean, median, standard deviaƟon and range were 
used to provide a first insight into all variables. Kaplan-Meier method with log-rank tests were employed to 
idenƟfy significant biomarkers in Ɵme Ɵll death or Ɵme Ɵll progression, when indicated as in the normal or 
abnormal range of the blood value. When one or more out of three Ɵme points was abnormal it was set to 
abnormal. The mulƟnomial regression analysis was performed to understand the influence of various features 
on different therapy outcomes (CR, PR, mixed response (MR), stable disease (SD) and PD). A posiƟve coefficient 
indicates an increased likelihood of a beƩer response (CR, PR, or SD) relaƟve to PD, while a negaƟve coefficient 
indicates a decreased likelihood. The blood values were further analysed using the Cox (Ɵme dependent) 
regression model to esƟmate their associaƟon with OS and PFS. Missing values were accounted for by excluding 
the paƟent solely for the test it has a missing value for. All staƟsƟcal analyses were performed in Python and R. 
Benjamini-Hochberg correcƟon was performed to control for the false discovery rate. 

4.3 Results 
DescripƟve staƟsƟcs can be found in table 4, more can be found in appendix D. The mean overall survival Ɵme 
is 637 days and the mean progression free Ɵme is 538 days.   

Table 4: DescripƟve StaƟsƟcs for non-blood value group parameters 

Variable Level Amount (% of 
total) 

n  216 
Survival time 0 (till 365 days) 121 
 1 (past 365 days) 95 
Progression free time 0 (till 365 days) 147 
 1 (past 365 days) 69 
Sex M/V (%) 0 (V) 85 (39.4) 
 1 (M) 131 (60.6) 
Smoking (At diagnosis) (%) FALSE 139 (64.4) 
 TRUE 77 (35.6) 
Smoking (In the past) (%) FALSE 86 (38.3) 
 TRUE 140 (61.7) 
Tumour type (0: adenocarcinoma, 1: 
squamous cell carcinoma, 2: large cell 
carcinoma, 3: other) (%) 0 145 (67.1) 
 1 52 (24.1) 
 2 9 (4.2) 
 3 1 (4.6) 
PD-L1 positive (%) FALSE 139 (64.4) 
 TRUE 77 (35.6) 
T (%) 0 3 (1.4) 
 1 25 (11.7) 
 2 23 (10.7) 
 3 39 (18.2) 
 4 111 (51.9) 
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 x 13 (6.1) 
N (%) 0 31 (14.4) 
 1 10 (4.7) 
 2 57 (26.5) 
 3 109 (50.7) 
 x 8 (3.7) 
M (%) 0 5 (2.3) 
 1 205 (95.3) 
 x 5 (2.3) 
Malignancy in medical history (%) FALSE 170 (78.7) 
 TRUE 46 (21.3) 
Comorbidities (%) FALSE 17 (7.9) 

 TRUE 199 (92.1) 
 

4.3.1 Kaplan-Meier and log-rank results  
The p-values of the different blood values for the different Ɵme points included are shown in table 5. The 
combined analysis of all three Ɵme points revealed the following significant associaƟons: 

 Sodium and MCV showed a significant associaƟon in OS but did not significantly correlate with PFS. 
 CreaƟnine levels and eosinophils indicated a significant associaƟon with PFS while showing no 

significant correlaƟon with OS. 

For the analysis of the different Ɵme points the following blood values were significant. Before the start of 
therapy, CRP, LDH, haemoglobin and ASAT showed significant associaƟon with OS.  For PFS, this was LDH, Free 
T4 (FT4), ASAT and ALAT. One Month AŌer Treatment, this changed to CRP, TSH, haemoglobin, sodium, calcium, 
glucose, leukocytes, Neutrophils, NLR and SII for OS. eGFR (CKD-EPI) and HB were significant in PFS. Three 
months aŌer treatment start, CRP, eGFR (CKD-EPI), MCV, thrombocytes, calcium, glucose, sodium, leukocytes, 
lymphocytes, neutrophils and PLR are significant for OS and non are significantly associated with PFS. AŌer 
correcƟon at all three Ɵme points combined, only MCV was significant. CRP remained significant before 
therapy. At 1 month aŌer, CRP, TSH, HB, Sodium, Leukocytes, glucose, Neutrophils and NLR remain significant 
for OS. At 3 months aŌer, CRP, MCV, Platelets, Glucose, Sodium, Leukocytes, Lymphocytes, Neutrophils and PLR 
are significant. For PFS creaƟnine remained significant on all three Ɵmepoints and FT4 and ASAT at Ɵmepoint 0. 
In the non-blood values, table 6, Age was significant for OS and PD-L1 for PFS. AŌer correcƟon in the non-blood 
values both remained significant. PD-L1 showed a p-value of 0.02 for OS when the acquisiƟon method was 
cytological. The P-value of PD-L1 for pathological acquisiƟon was 0.90 in OS, see appendix E.  



 
29 

Table 5: Log-rank test results for OS and PFS, on all different combinaƟons of Ɵmepoints. t:0 being before start of therapy, t:1 is 1 month 
aŌer start of therapy and t:3 is 3 months aŌer start of therapy. 

 

Table 6: Log-rank test results for OS and PFS for non-blood values.  

 
P-value OS  
(t:0+1+3) 

P-value PFS 
(t:0+1+3) 

P-value OS 
(t:0) 

P-value PFS 
(t:0) 

P-value OS 
(t:1) 

P-value PFS 
(t:1) 

P-value OS 
(t:3) 

P-value PFS 
(t:3) 

CRP 0.06 0.44 0.00 0.24 0.01 0.56 0.01 0.60 
Bilirubin 0.86 0.46 0.87 0.20 0.77 0.86 0.91 0.61 

eGFR (CKD-
EPI) 0.95 0.72 0.79 0.14 0.15 0.05 0.02 0.14 
TSH 0.96 0.56 0.62 0.14 0.01 0.79 0.72 0.54 
LDH 0.47 0.28 0.05 0.04 0.62 0.53 0.94 0.08 
MCV 0.00 0.28 0.59 0.75 0.86 0.16 0.01 0.96 

Creatinine 0.78 0.00 0.20 0.59 0.30 0.20 0.13 0.68 
Free T4 (FT4) 0.92 0.24 0.69 0.01 0.14 0.38 0.93 0.77 
Haemoglobin 0.52 0.79 0.05 0.78 0.00 0.03 0.33 0.97 

Platelets 0.86 0.19 0.63 0.21 0.10 0.70 0.01 0.32 
Sodium 0.03 0.06 0.17 0.25 0.00 0.36 0.00 0.15 

Potassium 0.45 0.15 0.10 0.82 0.06 0.40 0.31 0.09 
Calcium 0.18 0.34 0.17 0.16 0.02 0.21 0.04 0.32 
Glucose 0.46 0.93 0.29 0.55 0.00 0.41 0.01 0.96 

Leukocytes 0.45 0.14 0.19 0.30 0.00 0.53 0.00 0.64 
Lymphocytes 0.44 0.81 0.52 0.23 0.15 0.54 0.01 0.99 

Neutrophils 0.31 0.06 0.71 0.72 0.00 0.48 0.00 0.54 
Monocytes 0.59 0.38 0.99 0.45 0.54 0.07 0.86 0.40 

Eosinophils 0.51 0.04 0.48 0.39 1.00 0.15 0.51 0.85 
ALAT 0.88 0.61 0.10 0.02 0.76 0.61 0.77 0.14 
ASAT 0.21 0.86 0.04 0.01 0.91 0.73 0.82 0.45 
NLR 0.40 0.36 0.15 0.40 0.00 0.88 0.09 0.26 
PLR 0.98 0.36 0.14 0.13 0.41 0.95 0.01 0.35 
LMR 0.97 0.82 0.20 0.56 0.06 0.51 0.08 0.31 

SII 0.38 0.79 0.40 0.83 0.03 0.33 0.08 0.45 

 p-value OS p-value PFS 
Age at diagnosis (below or above 70) 0.01 0.19 

BMI 0.33 0.90 
Packyears(0-1 or more) 0.19 0.06 

FEV1 (% pred, below 80) 0.84 0.64 
DLCO (% pred below 80) 0.74 0.75 

DLCO/VA (% pred below 80) 0.47 0.62 
ECOG-score (higher then 1) 0.38 0.21 

Sex M/V 0.11 0.21 
Smoking (At diagnosis) 0.39 0.66 

Smoking (In the past)  0.56 0.37 
Tumour type  0.34 0.29 

PD-L1 positive 0.16 0.00 
Metastases at diagnosis 0.48 0.24 

T 0.78 0.65 
N 0.22 0.43 
M 0.92 0.68 

(Other) malignancy in medical history 0.66 0.29 
Comorbidities  0.58 0.28 
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4.3.2 MulƟnomial Regression Analysis 
The coefficients that represent the log-odds of being in a response category compared to the reference 
category: progression, are shown in table 7. The intercept for CR(-0.26), SD(-0.35) & MR (-0.01) are negaƟve. 
Sodium shows mixed effects across response categories, with a posiƟve associaƟon for SD and PR and negaƟve 
associaƟons for CR and Mixed Response. Potassium demonstrates a negaƟve effect in CR and SD and a posiƟve 
associaƟon for Mixed Response. Calcium shows a posiƟve associaƟon for SD (45.39) and a negaƟve effect for 
the other categories. Among immune markers, lymphocytes, monocytes exhibit mixed associaƟon. Total 
bilirubin exhibits negaƟve associaƟons for all four response to PD, as well as HB, neutrophils, eosinophils, ASAT, 
PLR, LMR, SII. CRP, LDH, and MCV show small posiƟve associaƟons in most categories, and glucose is posiƟvely 
associated with all categories. Age and BMI exhibit posiƟve effects across categories, such as PR (1.57 for BMI) 
and Mixed Response (1.62 for BMI). Packyears, FEV1, DLCO/VA, and ECOG-score show predominantly negaƟve 
effects. Smoking history shows mixed effects, smoking at diagnosis shows negaƟve associaƟons with CR and SD. 
Past smoking is posiƟvely associated with CR. PD-L1 posiƟvity correlates with CR (17.66) and Mixed Response 
(1.86). ComorbidiƟes are negaƟvely associated with CR but posiƟvely associated with SD. 

Table 7: MulƟnomial Regression Coefficients (std. errors)  for Response to Immunotherapy.  
 

Complete 
Response  

ParƟal 
Response  

Stable 
Disease  

Mixed 
Response 

(Intercept) -0.26 (0.00) 0.35 (0.02) -0.35 (0.02) -0.01 (0.00) 

Sodium -0.46 (0.34) 0.15 (0.41) 0.58 (0.42) -0.42 (0.55) 

LDH 0.04 (0.26) 0.05 (0.11) -0.04 (0.11) 0.02 (0.25) 

CRP 0.07 (0.54) 0.11 (0.30) 0.01 (0.30) -0.01 (0.48) 

Total Bilirubin -0.38 (0.06) -1.42 (0.62) -1.10 (0.59) -0.48 (0.31) 

eGFR 0.49 (0.48) 0.09 (0.40 -0.51 (0.39) 0.21 (0.63) 

TSH 0.17 (0.80) 0.09 (0.80) -0.84 (0.81) -0.04 (0.14) 

MCV 0.33 (0.30) 0.60 (0.40) 0.46 (0.39) 0.30 (0.31) 

CreaƟnine 0.16 (0.56) -0.19 (0.18) -0.72 (0.18) -0.13 (0.47) 

Free T4 (FT4) 0.10 (0.46) 0.10 (0.44) 0.14 (0.45) 0.46 (0.62) 

Haemoglobin -4.00 (0.07) -1.13 (0.69) -8.01 (0.74) -3.33 (0.10) 

Platelets 0.09 (0.18) 0.07 (0.10) 0.05 (0.10) 0.10 (0.30) 

Potassium -1.39 (0.03) -0.96 (0.37) -7.99 (0.38) 2.04 (0.04) 

Leukocytes 0.83 (0.27) -1.17 (0.59) 0.65 (0.53) -0.41 (0.12) 
Glucose 1.94 (0.24) 0.96 (0.34) 2.96 (0.33) 1.42 (0.08) 
Calcium -5.26 (0.01) -48.47 (0.19) 45.39 (0.18) -1.33 (0.01) 

Lymphocytes -2.99 (0.09) 5.29 (0.52) 2.04 (0.50) 1.25 (0.03 

Neutrophils -1.81 (0.18) -0.10 (0.64) -3.09 (0.67) -2.19 (0.15) 

Monocytes -0.07 (0.03) -8.20 (0.29) 5.24 (0.29) 3.59 (0.02) 

Eosinophils -2.66 (0.01) -1.78 (0.40) -2.47 (0.39) -0.55 (0.02) 

ALAT 0.33 (0.37) 0.42 (0.41) 0.18 (0.42) 0.20 (0.50) 
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ASAT -0.47 (0.29) -0.61 (0.54) -0.33 (0.55) -0.32 (0.62) 

NLR 4.12 (0.14) 4.00 (0.72) 3.51 (0.71) 3.90 (0.14) 

PLR -0.05 (0.15) -0.06 (0.09) -0.06 (0.08) -0.08 (0.27) 

LMR -1.68 (0.08) -6.66 (0.57) -1.95 (0.56) -2.56 (0.5) 

SII -0.01 (0.02) -0.01 (0.01) -0.00 (0.01) -0.00 (0.03) 

Age at diagnosis 0.20 (0.48) 0.73 (0.41) 0.23 (0.41) 0.57 (0.67) 
BMI 0.95 (0.33) 1.57 (0.38) 1.36 (0.33) 1.62 (0.21) 

Packyears -0.13 (0.84) -0.45 (0.48) -0.75 (0.48) -0.44 (0.74) 
FEV1 (% pred) -0.17 (0.88) -0.30 (0.30) -0.55 (0.31) -0.31 (0.840 

DLCO (% pred) -0.08 (0.39) 0.14 (0.54) 0.99 (0.53) -0.20 (0.41) 
DLCO/VA (% pred) -0.13 (0.66) -0.38 (0.38) -1.28 (0.38) -0.23 (0.51) 

ECOG-score -7.95 (0.03) -3.50 (0.54) -9.20 (0.56) -0.77 (0.06) 
Sex M/V -5.73 (0.04) 7.53 (0.29) 14.42 (0.30) 5.3 (0.6) 

Smoking (At diagnosis) -4.22 (0.02) 35.3 (0.38) -49.99 (0.39) -0.46 (0.04) 
Smoking (In the past) 2.27 (0.02) 48.35 (0.42) -33.90 (0.43) 0.97 (0.04) 

PD-L1 positive 17.66 (0.02) 4.44 (0.22) 9.21 (0.21) 1.86 (0.02) 
(Other) malignancy in medical 

history 
6.26 (0.03) -7.51 (0.20) -6.01 (0.21) -1.11 (0.04) 

Comorbidities  -8.35 (0.01) -6.91 (0.42) 12.53 (0.42) 0.70 (0.00) 
1/PaƟentnr -0.26 (0.00) 0.35 (0.02) -0.35 (0.02) -0.01 (0.00) 

 

4.3.3 Cox Regression Analysis 
Figure 7 shows all significant blood values of the different models in vulcano plots. The first analysis of all three 
Ɵmepoints was conducted on the data with 427 observaƟons, with 291 events (death). A total of 122 
observaƟons were deleted due to missing data. LDH turned out significant with a p-value of <0.001, CRP had a 
p-value of 0.05. Each normalized unit increase in LDH was associated with a 15.2% higher risk. At baseline, the 
analysis included 159 paƟents, with 121 events, and 59 observaƟons deleted due to missing data. Glucose 
showed a staƟsƟcally significant HR of 1.337 with a p-value of 0.03, as ASAT was also significant. Other variables 
showed no significant associaƟons (p > 0.05). At Month 1, the analysis included 153 observaƟons, with 102 
events. A total of 35 observaƟons were deleted due to missing data. The HR for CRP was 1.442 with a p-value of 
0.04, as well as a posiƟve HR for SII. Calcium and platelets showed a significant HR of 0.686 and 0.499 
respecƟvely. At month 3, the analysis included 123 paƟents with 75 events, and 30 observaƟons were deleted 
due to missing data. LDH and CRP showed up significant. The analysis idenƟfied several blood values with 
associaƟons to increased risk. LDH, glucose, CRP, PLR, SII, and ASAT levels provided a posiƟve HR at various Ɵme 
points. Calcium, platelets, NLR and sodium levels were associated with negaƟve HR. Performing Lasso feature 
selecƟon or forward backward selecƟon and adding the markers that show up in these selecƟons, showed a 
higher AIC and a lower concordance index, therefore it was decided not to include these results.  
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Figure 5: Vulcano plots from the cox regression models with a) all three Ɵme points, b) Ɵme point 0, c) Ɵmepoint 1, d) Ɵme point 3. . 

4.4 Discussion 
This study examined a range of clinical parameters to evaluate their prognosƟc significance in relaƟon to OS and 
PFS of paƟents. A broad spectrum of biomarkers: LDH, CRP, MCV, glucose, ASAT, platelets, calcium, NLR, PLR, SII, 
TSH, sodium, FT4, leukocytes, neutrophils, were found to be significant predictors at different Ɵme points for 
OS. Age and PD-L1 status showed significance in OS and PFS, respecƟvely. More biomarkers were significant 
aŌer treatment iniƟaƟon than before. CRP emerged as a recurrent indicator associated with OS. RaƟos such as 
NLR, PLR, and SII were also significant at more than one Ɵmepoint. For PFS aŌer correcƟon for mulƟple tesƟng, 
PD-L1 was significant, no blood value remained significant. MulƟnomial regression further emphasized the 
criƟcal roles of specific markers. PD-L1 posiƟvity strongly correlated with the favourable outcomes CR and 
mixed response, but not with stable disease. Smoking history and ECOG score, also revealed paƩerns. Smoking 
at diagnosis had a strong negaƟve associaƟon with CR and SD, while a history of past smoking was posiƟvely 
associated with CR, suggesƟng a complex relaƟonship between smoking status and treatment outcomes.  

One of the most consistent findings was the significance of CRP in predicƟng OS across mulƟple Ɵme points. 
CRP is a well-known marker of systemic inflammaƟon [72] and has been implicated in cancer progression and 
poor outcomes [73]. Elevated CRP levels may reflect an inflammatory tumour microenvironment, which can 
foster tumour growth and suppress immune responses. InteresƟngly, it shows up significant consistently in both 
tests at 1 month or 3 months aŌer iniƟaƟon of therapy.  This may indicate that immunotherapy-related 
inflammaƟon or immune acƟvaƟon contributes to paƟent outcomes, highlighƟng the dynamic relaƟonship 
between treatment and systemic inflammaƟon. The immune and inflammatory raƟos, including NLR, PLR, and 
SII, also emerge as potenƟal predictors at more than one Ɵme-point for OS. These raƟos capture the balance 
between immune suppression and immune surveillance. A lower raƟo indicates a more acƟve immune system, 
which could potenƟally be because of less immune suppression by the tumour. This aligns with the therapeuƟc 
goal of immunotherapy ICI, which targets immune system acƟvaƟon.  
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An important observaƟon was the shiŌ in biomarker significance before and aŌer treatment iniƟaƟon. 
Prior to therapy, CRP was significant for OS, likely reflecƟng baseline tumour burden. Post-treatment, a broader 
array of markers gained significance, which could indicate the effects of therapy itself or indicate progression of 
the disease. This temporal change could suggest that therapy induces systemic changes that influence survival. 
An observed shiŌ was the significance of calcium levels detected only at the one-month post-therapy Ɵme 
point. There are mulƟple reasons for calcium to be high but a potenƟal explanaƟon for this phenomenon in 
being predicƟve for OS is tumour lysis syndrome (TLS) [74], a metabolic complicaƟon resulƟng from the rapid 
and extensive breakdown of tumour cells. This process releases intracellular components, such as electrolytes 
and nucleic acids, into the bloodstream. This disrupts homeostasis, which can lead to complicaƟons, like acute 
kidney injury, cardiac arrhythmias, seizures, or someƟmes death. Another possible reason for calcium to be 
significant is that calcium can also indicate bone metastases, only it would be expected to show up significant at 
more than the Ɵme point one month aŌer start of therapy. 

The predictors for PFS showed notable variability across Ɵme points. Markers such as sodium, 
neutrophils, and creaƟnine were significant, parƟcularly at earlier Ɵme points, suggesƟng they might reflect 
acute physiological changes in response to therapy. The absence of significant biomarkers at the 3-month mark 
may indicate that PFS reflects an interplay of factors, including tumour biology and response to treatment, 
which are harder to encapsulate through staƟc blood values. Which is reinforced by the fact that aŌer 
correcƟon, nothing remains significant. 

PD-L1 status, a known predicƟve biomarker [15, 22, 33], is significant for CR but shows limited 
associaƟon with PR and SD. It correlates with PFS but not OS. InteresƟngly, when PD-L1 is assessed cytologically, 
it becomes significant for OS, despite cytology typically being less accurate than pathology. Cytologically 
acquired samples are likely influenced more by immune cell infiltraƟon and tumour heterogeneity [34]. This 
inconsistency highlights the complexity of PD-L1's role, but it remains the most reliable clinical predictor of 
treatment outcomes.  

Lifestyle and clinical factors, such as smoking history and ECOG score, added prognosƟc informaƟon. 
AcƟve smoking at diagnosis was strongly associated with worse outcomes like lower CR and SD rates, possibly 
due to smoking-induced systemic inflammaƟon, immune suppression, and enhanced tumour progression [75]. 
InteresƟngly, a history of past smoking showed a posiƟve associaƟon with CR, potenƟally reflecƟng the higher 
mutaƟonal burden seen in smoking-related cancers, which might increase responsiveness to immunotherapy 
[21]. The ECOG score's strong negaƟve correlaƟon with favourable outcomes shows the important role of 
baseline funcƟonal status in determining prognosis, showing its relevance alongside blood-based biomarkers. 
 These findings demonstrate the complex nature of prognosƟc biomarkers in immunotherapy. The 
prominence of inflammatory markers and immune raƟos highlights the crucial role of systemic immune 
regulaƟon in shaping paƟent outcomes. The temporal variability in biomarker significance suggests that 
dynamic monitoring could provide an opƟon to predict response, offering potenƟal for treatment adjustments 
and more accurate long-term predicƟons.  

 

4.4.1 Comparison with ExisƟng Literature 
The findings from this study provide new insights into the role of blood-based biomarkers in predicƟng the 
response to immunotherapy in NSCLC paƟents. While previous research has pointed to specific biomarkers like 
CRP [76], eosinophils, NLR, PLR, and SII [4, 35, 36] as potenƟally predicƟve markers, our results were mixed for 
Ɵmepoints and did not fully support all the previous findings, but do show overlap.  

Eosinophils: Prior studies have suggested a role of eosinophils in predicƟng response to 
immunotherapy for melanoma and colorectal cancer [25, 37, 38]. In NSCLC, eosinophilia has been associated 
with improved outcomes in some cases, but the findings remain inconsistent [39]. This study found that 
eosinophil counts were not significant predictors of therapy response in NSCLC paƟents, even though their 
predicƟve value has been recognized in other cancers.  

Blood-Based Markers: This study analysed a range of blood-based markers and revealed significant 
associaƟons for some, but not all. Specifically, markers like CRP, and NLR, PLR, SII were found to be predicƟve of 
OS. For classic markers such as NLR, PLR, and SII, which have been previously highlighted in the literature as 
predicƟve of immunotherapy response [4, 35, 36], this is consistent with our findings. Only these studies mainly 
find them indicaƟve before therapy, where this study does not show any predicƟve values at this point. In the 
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menƟoned studies the blood markers that were significant, show significance for response in no progression. In 
this area none show up significant in this study. 

The differences between our results and prior studies may stem from several factors. First, paƟent 
populaƟon heterogeneity, along with variaƟons in the Ɵming and methods of blood sample collecƟon, likely 
contributed to these discrepancies. Second, the retrospecƟve design of this study limits control over 
confounding variables, such as concurrent medicaƟons, treatment regimens, and clinical trajectories, all of 
which could affect biomarker levels.  

4.4.2 LimitaƟons 
This study had several limitaƟons that should be considered when interpreƟng the findings. First, the 
retrospecƟve design introduced potenƟal biases, including variability in the Ɵming of blood sample collecƟon 
and the influence of unmeasured confounders such as therapy dosage, combinaƟon treatments, or 
comorbidiƟes. Second, the analysis relied on data from a single cohort at a specific medical centre, limiƟng the 
generalizability of the results to broader populaƟons. The relaƟvely small sample size also reduced the 
staƟsƟcal power to detect significant associaƟons for some markers, and missing data posed a significant 
challenge. To address missing values, excluding paƟents enƟrely was avoided, but this made it difficult to 
compare groups across different Ɵme points, since the groups oŌen included different individuals. This 
variability complicated efforts to draw definiƟve conclusions about treatment response. Moreover, interpreƟng 
blood marker levels was challenging due to variability unrelated to treatment response, such as the presence of 
comorbidiƟes, infecƟons, or other factors. For instance, some paƟents who died early may have responded to 
immunotherapy but succumbed to unrelated causes, such as infecƟons, before disease progression could be 
checked or confirmed. Similarly, radiological evaluaƟons were not always definiƟve. Early scans might show 
tumour growth due to pre-treatment progression rather than a lack of response, leading to potenƟal 
misclassificaƟon. Lastly, differences in analyƟcal methods, such as Kaplan-Meier survival analysis and Cox 
proporƟonal hazards regression, posed interpreƟve challenges. Kaplan-Meier provides descripƟve survival 
esƟmates without adjusƟng for covariates, whereas Cox models account for covariates but assume proporƟonal 
hazards over Ɵme. These approaches someƟmes gave conflicƟng results for the same covariates, complicaƟng 
predictor selecƟon. While both methods are valuable, careful integraƟon of their insights is necessary to ensure 
robust conclusions. Future studies should address these limitaƟons by using larger, more diverse cohorts, 
minimizing missing data, incorporaƟng addiƟonal confounders, and employing longitudinal designs to enhance 
causal inference and improve the reliability of blood biomarkers as predicƟve tools for immunotherapy 
response. 

4.4.3 Future DirecƟons 
These findings highlight the complexity of predicƟng treatment outcomes in NSCLC immunotherapy and 
emphasize the need for more sophisƟcated analyƟcal approaches. Although these findings can help develop 
more advanced models to predict treatment response, incorporaƟng the variables idenƟfied in this chapter as 
key inputs to enhance model accuracy and clinical applicability.  

Future research should explore opƟmal Ɵming for biomarker assessments in NSCLC immunotherapy, as 
markers showed more significance at one- followed by the three-month intervals than at baseline, likely 
reflecƟng the paƟent's evolving biological response to treatment. To address study limitaƟons, prospecƟve 
designs are a potenƟal soluƟon to minimize missing data and heterogeneity in treatment course. AdjusƟng for 
therapy variaƟons (e.g., monotherapy vs. combinaƟon therapy) and validaƟng findings in larger, mulƟ-centre 
cohorts will enhance reliability and generalizability. IncorporaƟng addiƟonal data, such as CT imaging and 
genomic profiling  [76, 77], could improve insights into tumour progression and treatment efficacy. Longitudinal 
studies tracking dynamic blood marker changes could provide stronger evidence for their prognosƟc value. 
AddiƟonally, integraƟng mulƟple biomarker types may further refine predicƟve models, supporƟng 
personalized immunotherapy strategies. DisƟnct predicƟve profiles for OS and PFS underscore the need for 
improved evaluaƟon measures. OS can be influenced by factors beyond disease progression, including 
unrelated causes of death. PFS, however, poses unique challenges due to its dependency on accurate detecƟon 
of tumour progression. Progression might remain undetected unƟl aŌer death, or paƟents may survive despite 
recorded progression in the first weeks. While iRECIST tries to account for this by requiring confirmaƟon of 
progressive disease (PD) aŌer a set period, there can sƟll be a significant Ɵme gap before confirmaƟon. As a 
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result, treatment may be disconƟnued prematurely, or cases of pseudoprogression can complicate decision-
making, making early PFS assessments challenging. Refining definiƟons and outcome measures is crucial for 
accurate prognosƟc evaluaƟons. Finally, studying the biological mechanisms through which blood markers 
affect immunotherapy response could deepen understanding of NSCLC pathology and reveal new therapeuƟc 
targets. 

4.5 Conclusion 
In conclusion, this study highlights the prognosƟc significance of a wide range of clinical and biochemical 
parameters in predicƟng outcomes such as OS and PFS in paƟents undergoing immunotherapy. The findings 
underscore the addiƟonal value of using a combinaƟon of several markers and also reveal possible paƩerns 
regarding their temporal significance and their relaƟonship with different outcomes. 
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CHAPTER 5:              
MIXED EFFECT MODELS 
 

 

5.1 IntroducƟon  
This chapter aims to complement the previous chapter and answer the quesƟon: which paƟent will respond 
favourably to immunotherapy. Various biomarkers, including blood values and clinical characterisƟcs may 
influence treatment outcomes [21, 41], as seen in the previous chapter but integraƟng these diverse data 
sources into a unified predicƟve model has shown to be difficult. MEMs are suited for analysing these complex 
data structures, parƟcularly when repeated measures are taken over Ɵme, and for accounƟng for both fixed 
effects (such as blood values and paƟent characterisƟcs) and random effects (such as inter-paƟent variability) 
[50-52]. In addiƟon to MEMs, linear models have been explored to invesƟgate relaƟonships between specific 
groups of variables and treatment outcomes. This preliminary analysis serves several purposes: it allows for an 
assessment of simpler, more interpretable models; it facilitates group-level exploraƟon of related predictors 
(e.g., infecƟon parameters, inflammaƟon markers) to idenƟfy trends or potenƟal interacƟons; and it provides a 
complementary approach to validate findings and refine variable selecƟon for a future more complex MEM 
framework. This chapter details the development part of a MEM aimed at predicƟng NSCLC paƟent response to 
immunotherapy by incorporaƟng rouƟnely collected clinical and imaging data. By using this model, the ulƟmate 
goal is to create a personalized predicƟon tool for treatment outcomes which can assist in clinical decision-
making in the future. 

5.2 Method 
To analyse the associaƟon between blood biomarkers and survival outcomes, a Generalized Linear Mixed Effects 
Model (GLMM) was made, using R(version 2024.04.2) as well as a Linear Mixed effects model (LMM). Survival 
Ɵme was converted to surviving past 365 days, as a binary outcome for the GLMM and as conƟnuous days for 
the LMM. The general dataset was used in which values of before, 1 month aŌer and 3 months aŌer start of 
treatment were included. All blood biomarkers were standardized to a mean of 0 and a standard deviaƟon of 1 
to ensure comparability across variables. Polynomial transformaƟons (quadraƟc and cubic terms) were created 
for the biomarkers to capture potenƟal other non-linear relaƟonships. The dataset was divided in a training, 
validaƟon and test set (0.7:0.15:0.15). A GLMM was fiƩed on the training set with survival as the (binary) 
dependent variable and all standardized blood biomarkers and clinical values, including their transformed 
terms, as fixed effects. The opƟmal threshold was determined on the validaƟon set. MulƟcollinearity was 
assessed using Variance InflaƟon Factor (VIF) analysis. Biomarkers with high VIF values were removed, which 
ensured that the remaining predictors were independent and contributed unique informaƟon to the model. 
AŌer this, new models were made with a subset of the blood values. Models were also built with blood values 
selected based on the prior analyses (Chapter 4), biomarkers significantly associated with OS were isolated and 
included in the MEM. This was done including all three Ɵme points but also only including the Ɵmepoints aŌer 
iniƟaƟon of therapy. These models were compared to the full MEMs using Akaike InformaƟon Criterion (AIC), 
Bayesian InformaƟon Criterion (BIC) to assess the complexity of the models. Area under the curve (AUC), 
negaƟve predicƟve value (NPV), sensiƟvity and specificity was determined for evaluaƟng the funcƟon of the 
model using the test set. Lasso regression was aƩempted to refine the set of predictors and idenƟfy important 
biomarkers for survival.   
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To complement to building of the MEM, Linear models were employed to explore group-level effects of related 
biomarkers. Groups of blood values were formed based on their biological funcƟons or roles in immune 
response: 

 Inflammatory / immune markers: CRP, NLR, PLR, LMR, SII 
 Liver funcƟon markers: Bilirubin, ALAT, ASAT 
 Kidney funcƟon markers: CreaƟnine, eGFR (CKD-EPI) 
 Electrolytes: sodium, potassium, calcium 
 Haematological markers: haemoglobin, platelets, leukocytes, lymphocytes, neutrophils, monocytes, 

eosinophils 
 White blood cels: lymphocytes, monocytes, eosinophils, neutrophils 
 Endocrine and metabolic markers: TSH, FT4, glucose 

Linear models were used to invesƟgate the relaƟonships between these biomarker groups and survival 
outcomes. This step helped idenƟfy potenƟal trends and interacƟons that could inform subsequent MEM 
development. 

5.3 Results 
The iniƟal GLMMs and LMMs were fiƩed using all three Ɵme points and included all blood values along with 
their quadraƟc and cubic transformaƟons. However, these models faced significant convergence issues due to 
the large number of variables relaƟve to the dataset size, resulƟng in a degenerate Hessian matrix and failure of 
VIF computaƟons. AŌer removing quadraƟc and cubic terms, similar numerical issues persisted. AŌer further 
refinement as menƟoned in the methodology was performed some models no longer showed these issues. 
Table 8 shows the data used for every model, all specific blood values included in the different models can be 
found in appendix F. The results of all GLMM models can be found in table 9. Models 1, 1.1, 2, 6 and 6.1 failed 
to converge. In model 2 and 6 all included blood values were significant. Model 3, 4, 4.1, 5 and 5.1 did not fail to 
converge. Model 3 contained solely CRP at Ɵmepoints one and three based on its relevance found in the 
previous chapter. CRP showed significancy. In model 4 CRP, platelets and PLR were significant.  In model 4.1 
blood values with a high VIF in model 4 were deleted. In which CRP remained significant. In model 5 CRP 
showed a p value below 0.05. Model 5.1 was adjusted for VIF in which CRP remained significant.   

Table 8: Variables per model.  

Model Time points Variables included 
1 0, 1, 3 All possible blood values and transformaƟons 
1.1 0, 1, 3 Reduced set of model 1 based on VIF 
2 0, 1, 3 All blood values without transformaƟons 
3 1, 3 CRP only 
4 1, 3 All inflammatory/immune markers based on chapter 4 
4.1 1, 3 Reduced set of model 4 based on VIF 
5 1, 3 RaƟos, CRP and calcium, based on chapter 4 
5.1 1, 3 Reduced set of model 5 based on VIF 
6 1, 3 Same as model 2 
6.1 1, 3 Reduced set of model 6 based on VIF 

 

Lasso regression did not provide lower AIC, BIC, or higher AUC, sensiƟvity, specificity.   

The full results of the linear model can be found in appendix E. All residual standard errors ranged between 
0.467 and 0.5013. Linear models that were staƟsƟcally significant were: inflammatory, electrolytes and 
haematology. Blood values that were staƟsƟcally significant were, CRP, Sodium, HB and glucose.  
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Table 9: Results for the different MEMs. 

  AIC BIC logLik AUC NPV Sensitivity Specificity 

Model 1 332.6 620 -88.3 0.71 0.47 0.6 0.60 

Model 1.1 276 364.4 -114 0.82 0.55 0.55 1.00 

Model 2 249.1 352.3 -96.6 0.82 0.63 0.7 0.91 

Model 3 150.6 163.6 -71.3 0.74 0.75 0.88 0.67 

Model 4 157.1 195.8 -66.6 0.66 0.57 0.82 0.44 

Model 4.1 154.3 173.7 -71.2 0.77 0.67 0.82 0.67 

Model 5 156.8 185.9 -69.4 0.73 0.6 0.76 0.67 

Model 5.1 187 211.3 -86.5 0.71 0.75 0.88 0.67 

Model 6 156.5 246.8 -50.2 0.59 0.45 0.65 0.56 

Model 6.1 153.3 237.1 -50.6 0.63 0.38 0.53 0.56 

 

5.4 Discussion 
The development of a predicƟve model to assess the response of NSCLC paƟents to immunotherapy is complex. 
This study aimed to use MEMs to integrate blood-based data to advance personalized treatment predicƟons for 
outcomes such as OS. While MEMs have demonstrated their use in other fields, the applicaƟon of this 
framework in this context showed limitaƟons. These issues show both the potenƟal and the complex challenges 
of employing a MEM in this situaƟon. 

The primary obstacle in developing a MEM was convergence failure, which can be caused by several factors, 
mainly overfiƫng, mulƟcollinearity, and insufficient data. IniƟal aƩempts to include all biomarkers across three 
Ɵme points with polynomial transformaƟons resulted in degenerate Hessian matrices and high variance 
inflaƟon factors. This reflected numerical instability, likely due to the excessive complexity of the model relaƟve 
to the dataset size. Despite removing quadraƟc and cubic transformaƟons, filtering out collinear variables, and 
tesƟng reduced sets of biomarkers, many models conƟnued to show convergence problems. The performance 
of simpler models (e.g., those including only CRP or CRP and LMR) demonstrated no convergence failures, lower 
AIC and BIC values and also some higher sensiƟvity and NPV. However, these gains also came with the cost of 
lower AUC and specificity. 

Model 1.1 showed a high specificity which ensures that idenƟfied responders are accurate. Only at the 
cost of idenƟfying many responders as non-responders. This would not provide any clinical benefit, as therapy 
cannot be withheld from the idenƟfied non-responders, as there is a big change they could be a responder. And 
a Non-converging model, it raises concerns about the reliability and interpretability of the result. From the 
remaining models that did converge, model 5.1 shows the highest sensiƟvity and NPV, although it has the 
lowest AUC. With the found NPV of 0.75 on the test set, this sƟll results in a one in four paƟents being predicted 
as non-responder when they are a responder, limiƟng clinical use of the predicƟve model. The other models 
(models 3, 4, 4.1 and 5) trained on the found values in chapter 4 show their predicƟve power remains 
discussable because of their lower sensiƟvity, specificity and NPV compared to model 5.1. The majority of blood 
values used in all these models were not significant, further limiƟng their ability to provide meaningful insights 
into survival outcomes.  

CRP repeatedly emerged as the significant predictor. While CRP is a biologically plausible biomarker, 
relying on a single biomarker possibly limits the robustness of the model as other (not converging models) 
showed higher AUCs. The trade-off between model complexity and interpretability was evident throughout this 
study. Reducing the number of predictors lowered AIC and BIC values as expected and also solved convergence 
issues, but it also led to a decrease in AUCs. While reducing predictors can stabilize a model, it may 
inadvertently exclude variables that hold subtle but important predicƟve value.  
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Linear models provided complementary insights and were used to explore group-level effects. These 
models idenƟfied significant associaƟons between survival and inflammatory markers, electrolytes, and 
hematologic parameters. StaƟsƟcally significant predictors included CRP, sodium, haemoglobin, and glucose, as 
previously noted in Chapter 4. However, the residual standard errors (ranging from 0.467 to 0.5013) showed 
their limited predicƟve power for individual outcomes (e.g., binary classificaƟon of survival). These results 
illustrate the trade-off between interpretability and complexity: simpler models offer clearer insights but lack 
the granularity needed for personalized predicƟons. 

5.4.1 Comparison with literature 
Developing these models aligns with the growing interest in personalized medicine and the use of explainable 
staƟsƟcal models to predict treatment response [78-80]. MEMs have been successfully employed in other areas 
of medical research, parƟcularly when longitudinal, hierarchical, or repeated measures data are available. 
Examples of researches where MEMs where employed in predicƟng effect are; AnƟ-VEGF Therapy in 
Ophthalmology [79], Psychiatry and PsycholinguisƟcs [78, 80-82], and Language TesƟng [50] as well as analysis 
of tumour size dynamics in clinical seƫngs [83]. In contrast to those studies, the dataset used in this NSCLC 
study has several limitaƟons that impact the performance of MEMs. One of the challenges can be the small 
sample size, as the previous studies included for example 793 [82], up unƟl 3398 [83], and 193 with 13 
datapoints a paƟent [79], where in this research around 150 paƟents were included with 2 or 3 datapoints per 
paƟent. This reduces the staƟsƟcal power of the model and limits the ability to detect paƩerns or relaƟonships 
within all the different blood values tested. MEMs require a sufficient number of observaƟons to esƟmate both 
fixed and random effects accurately. With fewer data points, the models are more prone to overfiƫng, or failing 
to converge, as there was insufficient informaƟon to reliably esƟmate parameters, which is one of the things 
most likely to have happened here.  

AddiƟonally, the dataset has missing or infrequently collected measurements. This creates gaps in the 
data structure, which does not help the MEMs' ability to effecƟvely capture longitudinal trends. MEMs are 
suited to repeated measures and longitudinal data, but when data points are missing, their power to track 
changes over Ɵme or make reliable predicƟons is compromised. In this line, MEMs need data that is collected at 
regular intervals, comparable points, providing sufficient informaƟon to describe longitudinal trends. In this 
study the Ɵme points can vary about 6 weeks, which can affect the blood value measurement a lot. A 
measurement two days aŌer (chemo)immunotherapy can provide different values compared to measured 
measurement just before the next therapy.  

Another possible issue is noise in the data, parƟally caused by variables that are not included in the 
effects. High noise levels distract from the true signals in the dataset, making it difficult for the model to 
differenƟate between meaningful trends and random fluctuaƟons. Adding paƟent-specific random effects 
caused challenges as well. These random effects are meant to account for individual differences, like varying 
baseline biomarker levels or unique responses to treatment and are important for making personalized 
predicƟons. However, in this study, while the random effects worked well for the training data, the models had 
trouble making accurate predicƟons for new, unseen paƟents. This problem is especially relevant in clinical 
seƫngs, where models need to reliably predict outcomes for paƟents who were not part of the training data. 
Hence extending the dataset is desirable to limit overfiƫng.  

 

5.4.2 Future direcƟons 
The MEMs in other fields, such as ophthalmology, psychiatry, and language tesƟng as aforemenƟoned, show 
the importance of data characterisƟcs and study design in achieving reliable outcomes. A primary reason for 
this is the availability of more and high-quality data. Large datasets with frequent and consistent measurements 
enable accurate esƟmaƟon of model parameters, which reduces the likelihood of overfiƫng and enhances the 
reliability of the models and can beƩer filter out noise. These datasets oŌen show low variability and high 
repeatability, which is important to idenƟfy consistent trends within the data. What also comes into play is the 
focused scope of the studies. They target specific outcomes with well-defined predictors (found as predictors 
before), researchers are able to simplify the models, reduce complexity, and minimize instability. This focus 
makes sure that the models remain stable and predicƟve while maintaining a manageable level of detail. This 
provides several changes for future studies.  
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It would be beneficial to expand the dataset by including more paƟents and collecƟng data at 
addiƟonal Ɵme points. Increasing the size and scope of the dataset can help filling missing values, providing 
accurate measure points and with the addiƟon of Ɵmepoints it is less likely to miss fluctuaƟons in the data. 
Which could allow for the model to capture more meaningful paƩerns and interacƟons. However, care must be 
taken to ensure that the added complexity of a larger dataset does not lead to overfiƫng. Balancing the 
amount of data with the complexity of the model is essenƟal for achieving reliable results. More 
standardizaƟon of the data collecƟon also belongs to this suggesƟon, collecƟng data at consistent intervals and 
ensuring frequent measurements. 

 Finally, conducƟng a more thorough and extensive exploratory data analysis, along with careful 
specificaƟon of the MEM structures, is crucial for future studies. As demonstrated in this MEM development, 
the model based on the findings from Chapter 4 shows beƩer accuracy, precision, sensiƟvity, and specificity 
compared to other models, leading to improved performance. This shows the importance of idenƟfying the 
correct random and fixed effects early in the process to create a well-funcƟoning MEM, as these values were 
not found in the building of the MEM itself. Therefore, a recommendaƟon is to do more extensive research to 
determine which values belong to fixed and random effects and understanding their influence beforehand. This 
can offer valuable guidance in building a robust MEM that fits the data more effecƟvely. 

 

5.5 Conclusion 
This chapter shows the potenƟal and challenges of using MEMs to predict NSCLC paƟent response to 
immunotherapy, with convergence failure issues, mulƟcollinearity, and insufficient data. While the preliminary 
models demonstrated some predicƟve capabiliƟes, parƟcularly with CRP as a significant biomarker, more 
exploratory data analysis is needed to define beƩer models.  
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CHAPTER 6:         
RANDOM FOREST 
 

 

6. 1 IntroducƟon in the random forest 
When MEMs fail to produce reliable predicƟons, alternaƟve methods can be explored to idenƟfy meaningful 
variables and improve predicƟve performance. One such approach is the use of Random Forests (RF), a 
supervised learning method that has a robustness in handling high-dimensional datasets, ability to integrate 
mulƟvariate biomarkers, and more resilience to overfiƫng than MEM. RF is a learning method that constructs 
mulƟple decision trees during training and combines their outputs [30, 84]. For classificaƟon tasks, RF outputs 
the mode of the individual tree predicƟons, while for regression tasks, it calculates the mean of the outputs [85, 
86]. By combining the results of mulƟple trees, RF reduces the risk of overfiƫng and is robust against noise in 
the data. This makes it parƟcularly suited for complex datasets with mulƟvariate biomarkers [30, 84] In contrast 
with for example SVM, that can struggle with high-dimensional feature spaces or require extensive tuning to 
avoid overfiƫng, parƟcularly when the data is noisy, has a lot of missing values or when there are many 
irrelevant features. In the context of this thesis, RF can serve two purposes: First, RF can help idenƟfy important 
variables, such as blood or clinical biomarkers, that significantly influence outcomes, as indicated by a metrics 
like Gini and permutaƟon importance. These variables can then be used to refine MEMs. Second, RF itself is a 
robust predicƟve tool that may outperform MEMs when applied to the predicƟon of OS, both as a binary 
outcome and as a conƟnuous variable. However, while RF can achieve strong predicƟve performance, a 
limitaƟon is its lack of interpretability. Unlike MEMs, that provide insight into how specific variables contribute 
to the model, RF operates as a "black box" making it difficult to understand why a paƟent is classified as a 
responder or non-responder. Despite this drawback, RF can sƟll be a valuable tool for predicƟng outcomes, 
parƟcularly when tradiƟonal methods like MEMs struggle to deliver meaningful results. In this chapter, the 
applicaƟon of RF is explored to predict OS and idenƟfy potenƟal biomarker sets. By using RF’s ability to handle 
complex, high-dimensional data, this approach also aims to improve our understanding of which variables are 
most relevant to treatment outcomes and improve predicƟve performance in clinical decision-making. 

6.2 Method 
In this chapter three RF models were trained for survival predicƟon, progression predicƟon, and survival Ɵme 
regression. All datasets were loaded and processed using Python (version 2024.1.3). The data included paƟent 
characterisƟcs, clinical outcomes, and longitudinal blood test values. Records were filtered to include only the 
first three intervals of blood tesƟng. The blood values were set to a wide format and features such as the 
average and differences between the points were derived. The outcome variables varied by task. For survival 
predicƟon, "Time to death" was binarized to indicate whether a paƟent survived beyond 365 days but also 
retained as a conƟnuous target for survival regression. For progression predicƟon, the presence of disease 
progression was used. The dataset was split into training, validaƟon and tesƟng sets (70:15:15), to determine 
hyperparameters and the opƟmal threshold. Hyperparameter opƟmizaƟon was performed using 
RandomizedSearchCV, tesƟng 1000 combinaƟons with 3-fold cross-validaƟon. The best-performing Random 
Forest model was selected based on these results and retrained. The opƟmal decision threshold was 
determined using the Youden index from the ROC curve on the validaƟon set, maximizing sensiƟvity and 
specificity. Performance was evaluated on the test set using AUC, NPV, sensiƟvity and specificity. Similar steps 
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were applied for progression predicƟon. The last training model applied was a random forest regressor to 
predict the conƟnuous outcome of survival Ɵme. AŌer spliƫng the dataset as menƟoned before and trying 
different parameters, its performance was evaluated using the root mean squared error (RMSE). For all models, 
feature importance was extracted from the trained Random Forest models using Gini and permutaƟon 
importance. This analysis quanƟfied the contribuƟon of each feature to the predicƟve tasks, ranking features to 
idenƟfy the most influenƟal predictors.  

 

Figure 8: Flow chart of creaƟon of the RF models, white is the preprocessing, dark blue the training of the model, and light 
blue the evaluaƟon of the trained models.   

6.3 Results 
The best parameter seƫngs for the models predicƟng progression can be found in Table 10. Table 11 presents 
the performance metrics of these models. The T1 model achieved the highest sensiƟvity (0.86), while the T0,3 
model showed the highest specificity (1.00). The highest AUC was 0.71 for the T1 model. 

Table 10: The found best parameters for the different inclusions of Ɵmepoints in PFS. 

 T0,1,3 T0 T1 T3 T0,3 T1,3 T0,1 
N 

esƟmators 
100 
 

50 500 100 200 100 200 

Min 
sample 

split 

5 5 2 10 2 2 2 

Min 
sample 

leaf 

1 1 4 4 2 2 1 

Max 
features 

None Log2 Log2 Sqrt Log2 Log2 Sqrt 

Max depth None None None None None  None  None 
 

Table 11: The results of the models on the found best parameter seƫngs for the different Ɵmepoints for PFS. 
 

T0,1,3 T0 T1 T3 T0,3 T1,3 T0,1 
SensiƟvity  0.24 0.72 0.86 1.00 0.00 0.73 0.38 
Specificity  0.88 0.29 0.12 0.10 1.00 0.14 0.57 

AUC 0.66 0.49 0.71 0.66 0.53 0.51 0.54 
NPV 0.27 0.22 0.25 1.00 0.27 0.14 0.20 
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For binary OS predicƟon, the best parameters are shown in table 12, with model results shown in table 13. The 
T1,3 model had the highest sensiƟvity (0.88), while the T0 model had the highest specificity (0.97). The highest 
AUC was 0.86 for the T3 model. The highest NPV was model T0,1.  

Table 12: The found best parameters for the different inclusions of Ɵmepoints in binary OS. 

 T0,1,3 T0 T1 T3 T0,3 T1,3 T0,1 
N 

esƟmators 
50 
 

50 200 200 50 100 50 

Min 
sample 

split 

10 10 10 10 10 10 5 

Min 
sample 

leaf 

2 2 4 4 4 1 1 

Max 
features 

Log2 Sqrt Sqrt  Sqrt Log2 Sqrt Sqrt  

Max depth None none None  None  None  None  None 
 

Table 13: The results of the models on the found best parameter seƫngs for the different Ɵmepoints for binary OS. 
 

T0,1,3 T0 T1 T3  T0,3 T1,3 T0,1 
SensiƟvity  0.82 0.07 0.87 0.61 0.35 0.88 0.82 
Specificity  0.67 0.97 0.43 0.80 0.83 0.33 0.47 

AUC 0.72 0.53 0.77 0.86 0.69 0.64 0.73 
NPV 0.57 0.53 0.75 0.36 0.31 0.50 0.80 

 

For conƟnuous OS predicƟon, the opƟmal hyperparameters are listed in Table 14, and Table 15 reports the 
RMSE values. The T0,1,3 model had the lowest RMSE (332.45), while the T3 model had the highest RMSE 
(515.31). 

Table 14: The found best parameters for the different inclusions of Ɵmepoints in conƟnuous OS. 

 T0,1,3 T0 T1 T3 T0,3 T1,3 T0,1 
N 

esƟmators 
500 200 100 200 100 100 200 

Min 
sample 

split 

10 10 2 10 2 5 10 

Min 
sample 

leaf 

4 4 2 4 4 1 4 

Max 
features 

None  Log2 Log2 Log2 Log2 Log2 None 

Max depth None  None None None None  None 10 
 

Table 15: The RMSE of the models on the found best parameter seƫngs for the different Ɵmepoints for conƟnuous OS in 
days. 

 T0,1,3 T0 T1 T3 T0,3 T1,3 T0,1 
RMSE 332.45 374.47 412.95 515.31 348.49 489.12 390.62 

 

Lastly, Table 16 displays the top 5 feature importances for each model, showing the variables with the greatest 
impact on predicƟon across different outcomes, such as progression, binary survival, and conƟnuous survival. 
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The highest feature importance was 0.117 for CRP at T3 in binary survival predicƟon. Other features ranked 
highly across different models include leukocytes at T3, NLR at T3, and creaƟnine at T1 

Table 16: The feature importance per model. 

 
6.4 Discussion 
In this chapter, the applicaƟon of RF algorithms was invesƟgated to predict paƟent responses to 
immunotherapy, focusing on OS and PFS as outcomes. The highest AUC score was achieved in T3 for OS binary 
model, aŌer which the best performance metrices were found by integraƟng data from all three Ɵme points 
(T0, T1, T3) or the Ɵmepoints aŌer iniƟaƟon of therapy (T1 or T0+1). ConƟnuous outcome predicƟon, however, 
showed limited potenƟal, as the RMSE exceeded one year. Among the predictors, CRP consistently emerged as 
the most influenƟal feature. However, both Gini importance and permutaƟon importance scores were low 
across all features. The findings imply that the predicƟve strength of RF lies in the combined contribuƟons of 
mulƟple features.  

6.4.1 Clinical implicaƟons 
The feature importance analysis highlighted CRP [76] and raƟos as significant predictors across mulƟple models. 
These biomarkers are indicators of systemic inflammaƟon and immune response, making their prominence 
clinically meaningful, as discussed in chapter 4. However, the relaƟvely low and closely spaced Gini and 
permutaƟon importance scores suggest that no single feature alone is strongly predicƟve. This can occur in 
datasets where relaƟonships between features and the target variable are weak or where many features are 
redundant or correlated. This aligns with the understanding that immunotherapy response is likely influenced 
by a combinaƟon of factors and cannot be captured using solely one or two blood values. This reinforces the 
need of using an algorithm like a RF for capturing complex mulƟvariate interacƟons. Gini importance scores 
ranked features by their predicƟve contribuƟons in this and other studies. For instance, breast cancer research 
[87], tuberculosis treatment failure [88] and a study on brain metastases in NSCLC [89] used Gini importance to 
idenƟfy important predictors. In a radiomics study on early-stage ground-glass opacity pulmonary 
adenocarcinoma, top feature importances were around 0.25 [90], whereas the top score found in this study 
only reached Ɵll 0.117 for 1 model and all the others reached no higher than 0.044. Feature importances vary 
across models and domains as well as their exact use. Studies can find high scores due to rich data structures, 
while a biomarker-based models, like this research, can show lower scores due to redundancy or weaker direct 
associaƟons. Class imbalance influences results, as standard permutaƟon struggle to differenƟate associated 
predictors under imbalance [91]. These factors could explain differences in feature importances across studies. 
 The binary models trained on data from mulƟple Ɵme points and Ɵmepoints aŌer start of therapy 
demonstrate the value of longitudinal data in capturing dynamic changes in biomarker levels, even though the 
Random Forest model itself does not explicitly account for a longitudinal data structure. Among these, the 
model incorporaƟng data from all three Ɵme points (T0, T1, T3) achieved a solid sensiƟvity (82%) and AUC 
(0.72). This underscores the benefit of comprehensive longitudinal data in capturing criƟcal paƩerns, however 

 Model 
Progression 
binary  Gini  

Model Progression 
Binary Permutation  

Model Survival Binary 
Gini 

Model Survival 
Binary  Permutation  

Model Survival 
Continuous 
Gini  

Model Survival 
Continuous 
Permutation 

1 Creatinine t1: 
0.044 

ECOG: 
0.028 

CRP t3: 
0.117 

Age: 
0.000 

Neutrophils t3: 
0.037 

CRP t3: 
0.042 

2 DLCO/VA: 
0.042 

FT4 t1: 
0.024 

Leukocytes t3: 
0.073 

Oligometastasis: 
0.000 

CRP t3: 
0.029 

Neutrophils t3: 
0.028 

3 Age: 
0.041 

PD-L1: 
0.024 

NLR t3: 
0.068 

Total bilirubin t3: 
0.000 

Calcium t3: 
0.026 

Creatinine t3: 
0.017 

4 PD-L1: 
0.039 

Sodium t1: 
0.021 

SII t3: 
0.065 

ALAT t3: 
0.000 

creatinine t3: 
0.025 

FT4 t1: 
0.014 

5 NLR t1: 
0.036 

DLCO: 
0.017 

LDH t3: 
0.051 

Tumour type: 
0.000 

SII t3: 
0.022 

ASAT t3: 
0.013 
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its NPV (57%) and specificity (67%) suggest some limitaƟons in correctly idenƟfying non-responders. The T1 
model shows the highest sensiƟvity (87%) and an AUC (0.77) and a relaƟvely high NPV (0.75), demonstraƟng its 
use in idenƟfying non-responders from a single Ɵme point. Its relaƟvely low specificity (43%), however, implies 
a higher risk of misclassifying non-responders as responders. The T3 model achieved a notable balance 
between sensiƟvity (61%), specificity (80%), and the highest AUC (0.86). Although the high AUC suggests that 
T3 captures criƟcal predicƟve informaƟon effecƟvely, its NPV (36%) is lower compared to other models, 
therefore limiƟng its clinical use. The T0,1 model also performed with sensiƟvity (82%) equal to the T0,1,3 
model and an AUC (0.73). Importantly, its NPV (80%) was the highest among all models. This indicates that 
when the model predicts a paƟent as a non-responder, it is correct more oŌen. Although it might misclassify 
non-responders as responders more oŌen, in a clinical context the high NPV is beneficial. Overtreatment poses 
risk of unnecessary side effects and increases healthcare costs. While misidenƟfying a responder as a non-
responder would result in withholding a potenƟally effecƟve therapy. This approach ensures that the paƟents 
that are excluded from therapy are all unlikely to benefit from therapy, opƟmizing resource use and sparing 
paƟents from unnecessary side effect, but assuring that all paƟents that might benefit from the therapy will get 
treated.  

The regression task for predicƟng survival Ɵme showed limited uƟlity, with RMSE values exceeding 350 
days, far beyond a clinically meaningful threshold. This highlights the need for more sophisƟcated modelling 
techniques or richer datasets to improve conƟnuous outcome predicƟons. 

 

6.4.2 LimitaƟons  
While binary RF models demonstrate notable predicƟve capabiliƟes, their clinical applicaƟon is limited by a lack 
of interpretability. Unlike staƟsƟcal models like MEMs, which provide clear coefficients indicaƟng how variables 
influence outcomes, RF operates as a "black box." This makes it difficult to understand the relaƟonships 
between predictors and clinical outcomes, complicaƟng efforts to trust, validate, or jusƟfy treatment decisions 
based on RF predicƟons. The integraƟon of AI model into clinical pracƟce is therefore researched [92], where 
the biggest issues idenƟfied was adapƟng AI models to real-world situaƟons, with incomplete or incorrect data 
in pracƟce. However, creaƟng and evaluaƟng explanaƟons of AI models can provide deeper insights into both 
the models themselves and the underlying subject maƩer. Explainable AI techniques can help idenƟfy key 
factors influencing the model's decisions, making it easier to test and refine hypotheses [93]. By implemenƟng 
such techniques, not only can the transparency of RF models be improved, but also the trust of healthcare 
professionals in AI-driven decisions can be strengthened, as almost a forth of healthcare professionals in AI and 
cancer point out ethical problems and who is legally responsible for decisions made with the help of AI? [92]. 
These ethical and legal concerns add to the complexity. Can a model that lacks transparency be relied upon for 
potenƟally life-altering decisions in clinical seƫngs? Without interpretability, there is a risk of implicit bias, 
making it essenƟal to complement RF models with explainability tools or more transparent approaches [92, 93]. 
Clear rules and guidelines are needed to resolve this uncertainty and build more trust in the use of AI in 
healthcare, potenƟally with explainable AI.  

The RF models faced addiƟonal hurdles due to class imbalances, with more people passing the one 
year than people not reaching the one-year mark in the dataset. This uneven distribuƟon can cause the model 
to become biased toward predicƟng the majority class, reducing specificity in idenƟfying true responders. 
Techniques such as oversampling, under sampling, or applying class-weight adjustments could help with this 
bias, though they were not explored in depth here. Missing data also affected the models' reliability and 
generalizability, although it will also be seen in real-life situaƟons. Important biomarkers or paƟent 
characterisƟcs might be incomplete due to inconsistent record-keeping or paƟent dropout. Advanced 
imputaƟon methods or models that can handle missing data intrinsically might address this limitaƟon.  

PFS is challenging to use as a binary outcome in RF models due to its inherent clinical complexity. PFS 
indicates the Ɵme during which a paƟent’s disease does not worsen, but defining a binary PFS response can be 
problemaƟc. A paƟent might respond well to immunotherapy for several years before experiencing disease 
progression. In a binary PFS model, such a paƟent would be labelled a "non-responder" as soon as progression 
occurs, ignoring the treatment's earlier effecƟveness. 

Using "days to PFS" as a conƟnuous target also introduces complicaƟons , as progression depends on 
scan intervals and is not measured conƟnuous. If paƟents who never show progression are included, their Ɵme 
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to PFS would be undefined. To address this, some models use the date of death as a proxy for PFS, assuming 
death indicates disease progression, even though this is not confirmed by scans. This assumpƟon may be 
inaccurate, especially if paƟents die from unrelated causes. This could obscure the true relaƟonship between 
biomarkers and treatment effecƟveness, complicaƟng aƩempts to idenƟfy reliable predictors. 

Overall, these challenges highlight the need for a nuanced approach when defining outcomes like PFS 
and OS in prognosƟc models, emphasizing the importance of careful data preprocessing and clinically informed 
labelling strategies. 
  

6.4.3 RecommendaƟons for Future Research 
Future studies should enhance feature selecƟon through advanced engineering techniques, incorporaƟng 
interacƟon terms and biomarker trajectories. By capturing the relaƟonships between variables and their 
changes over Ɵme, these methods could improve model performance and beƩer reflect the dynamic nature of 
paƟent responses. Another important area to invesƟgate is the applicaƟon of explainability tools to improve the 
interpretability of RF models. Techniques such as SHAP (Shapley AddiƟve ExplanaƟons) or feature importance 
visualizaƟon can provide insights into the decision-making process of RF models, enabling clinicians to 
understand the important drivers of predicƟons. This could bridge the gap between model complexity and 
clinical applicability, making RF models more transparent and acƟonable in pracƟce. Future research can also 
focus on exploring more advanced predicƟve models. Given the superior performance of models integraƟng all 
three Ɵme points, temporal modelling approaches such as recurrent neural networks (RNNs) or Ɵme-series 
analyses could be explored. Causal ML could also provide a soluƟon as it provides flexible, data-driven methods 
for predicƟng treatment outcomes, including efficacy and toxicity, thereby supporƟng the assessment and 
safety of treatments [94]. The main advantage of causal ML is its ability to esƟmate individualized treatment 
effects, allowing clinical decision-making to be personalized to individual paƟent profiles. Causal ML techniques 
can handle high-dimensional and unstructured data, including paƟent covariates, and esƟmate treatment 
effects from mulƟmodal datasets containing images, text, Ɵme series, and geneƟc data. For instance, these 
methods can esƟmate treatment effects from CT scans or electronic health records. These models can predict 
personalized esƟmates of treatment effects for subpopulaƟons or even predict outcomes for individual 
paƟents. They can idenƟfy paƟent subgroups for whom a treatment is effecƟve. However, esƟmaƟng treatment 
effects from data is challenging because individual paƟent outcomes under alternaƟve treatments are not 
directly observable. Causal ML methods generate esƟmates, but these esƟmates must be carefully validated, as 
reliable decision-making in medical applicaƟons requires robust and well-calibrated evidence. Causal ML offers 
the possibility of predicƟng the efficacy and safety of treatments, and personalizing treatment strategies to 
improve paƟent health. Successful applicaƟons of causal ML in clinical use are sƟll emerging, but they offer a 
good potenƟal method in the future. Besides RF and causal Ml several other types of algorithms could sƟll have 
potenƟal like: 

 Support Vector Machine (SVM) is a supervised learning model that can classify both linear and non-
linear data. It works by mapping data points into an n-dimensional feature space and finding the 
hyperplane that best separates the data into two classes while maximizing the margin between them. 
The SVM can handle high-dimensional data and is effecƟve in cases where the number of dimensions 
exceeds the number of samples and could therefore be useful on this dataset [56, 85, 95]. 

 Extreme Gradient BoosƟng (XGBoost) is an opƟmized gradient-boosƟng library designed to be highly 
efficient, flexible, and portable. It is used for supervised learning tasks and can handle regression, 
classificaƟon, ranking, and user-defined predicƟon problems. It is parƟcularly known for its speed and 
performance [96]. 

6.5 Conclusion 
RF modelling is a promising method for predicƟng paƟent responses to immunotherapy, outperforming 
tradiƟonal mixed effects models in clinical importance for NPV. By idenƟfying significant biomarkers and 
improving predicƟve performance, RF can guide the refinement of clinical decision-making tools and models. 
However, future work should address limitaƟons in interpretability and class imbalance while exploring 
complementary modelling approaches to enhance predicƟon accuracy and reliability. IntegraƟng RF insights 
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with more transparent models, such as mixed effects models, could bridge the gap between predicƟve power 
and clinical applicability, ulƟmately improving paƟent outcomes. 
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CHAPTER 7:       
SUMMARY & 
RECOMMENDATIONS 

This thesis explores the potenƟal of rouƟnely collected blood values and CT scans to predict the response of 
paƟents with stage IV NSCLC to immunotherapy. The findings provide a first insight into the relaƟonship 
between clinical parameters and treatment outcomes, showing potenƟal in predicƟve modelling in oncology, 
but also showing current complexiƟes. 

7.1 Summary 
This research focused on improving the predictability of immunotherapy outcomes by leveraging rouƟnely 
collected blood values and CT scan data. Various blood biomarkers were idenƟfied as significant predictors of 
OS at different stages of treatment, as detailed in Chapter 4. Among these, CRP emerged as a consistent and 
significant indicator of OS, underscoring the importance of monitoring inflammaƟon during treatment. 
Significance of raƟos such as NLR, PLR, and SII, which reflect the balance between immune cell populaƟons, 
further emphasize the role of systemic immune balance in survival. This aligns with immunotherapy's 
mechanism of acƟon, which acƟvates the immune system to combat cancer. The predicƟve value of blood 
biomarkers for PFS was less consistent, possibly reflecƟng a more complex interplay of factors influencing PFS. 
PD-L1 status, a well-established biomarker, was a significant predictor of achieving CR but did not show a direct 
impact on OS. Blood values taken aŌer the iniƟaƟon of therapy were more strongly associated with OS, 
suggesƟng the importance of monitoring during treatment. While pre-treatment predicƟons are desirable, 
idenƟfying early indicators of survival could sƟll help clinicians avoid ineffecƟve therapies, minimize side effects, 
and explore alternaƟve treatments such as chemotherapy to prolong survival. 

In this research, several networks were tested for their ability to automaƟcally segment tumours from 
CT scans. Since accurate tumour segmentaƟon is an important step in extracƟng radiomic features, this 
evaluaƟon was performed to assess whether automated segmentaƟon methods can support prognosƟc 
analysis. This aligns with the overarching goal of determining whether CT-based informaƟon can help predict 
long-term survival in paƟents undergoing immunotherapy. Among the tested networks, the nnU-Net achieved 
the highest Dice scores, outperforming the other tested networks. However, it currently lacks the robustness 
required for reliable analysis of all scans for the extracƟon of radiological features. 

Developing MEMs to predict immunotherapy response was challenging due to factors such as 
convergence issues, mulƟcollinearity, and limited dataset size. Despite these difficulƟes, MEMs demonstrated 
potenƟal, with some models achieving high AUC values. However, integraƟng mulƟple variables oŌen led to 
convergence failures, highlighƟng the need for careful model design, variable selecƟon, and larger datasets. 

RF models showed relaƟvely good AUCs (~0.8) and demonstrated high NPV, which is parƟcularly useful 
clinically. Although these models are less effecƟve at predicƟng responders, their ability to reliably idenƟfy non-
responders makes them valuable. The low Gini and permutaƟon importance scores for individual variables 
suggest that the predicƟve power of RF lies in the combined contribuƟon of mulƟple features, reflecƟng the 
mulƟfactorial nature of immunotherapy response. The study emphasizes the trade-off between model 
complexity and interpretability. While simpler models may enhance clarity, they risk omiƫng criƟcal variables. 
Conversely, more complex models, such as RF, funcƟon as "black boxes," potenƟally limiƟng their clinical 
applicability. Clear and interpretable models are essenƟal for clinicians to make informed treatment decisions. 
Both MEM and RF models combining blood markers and clinical data demonstrated potenƟal for more accurate 
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predicƟon of immunotherapy outcomes. However, challenges such as small datasets, generalizability, and 
interpretability must be addressed. 

7.2 Clinical Relevance 
This research shows potenƟal implicaƟons for clinical pracƟce in the future. Given the cost and potenƟal side 
effects of immunotherapy, idenƟfying paƟents most likely to benefit from the treatment is the aƩempted end 
point. While the study did not achieve its goal of idenƟfying paƟents most likely to benefit from treatment, it 
demonstrated promise in developing models that can reliably idenƟfy non-responders. This represents an 
important first step, as excluding paƟents unlikely to benefit from therapy could reduce unnecessary exposure 
to treatment-related toxicity and improve resource allocaƟon in clinical seƫngs. However, implemenƟng such 
models in pracƟce remains challenging. For instance, while a model with an NPV of 0.80 is promising in a 
research context, the clinical decision to withhold therapy from a paƟent with a 20% chance of responding 
requires careful ethical consideraƟon. AddiƟonally, these models need further validaƟon of these scores, before 
they can be integrated into rouƟne clinical workflows. Some blood markers, as explored in this study, show 
potenƟal as less invasive tools for idenƟfying responders or non-responders. However, further research is 
required to refine these markers, including more extensive exploratory data analysis. Improved paƟent 
selecƟon strategies could eventually have a significant clinical impact by sparing non-responders from 
unnecessary toxicity while maximizing the benefits of immunotherapy for responders. Validated predicƟve 
models, incorporaƟng both blood biomarkers and other clinical data and CT scans, could support personalized 
treatment strategies in NSCLC, enhancing the overall effecƟveness and efficiency of immunotherapy. 

7.3 RecommendaƟons for Future Research 
Based on the findings, several recommendaƟons are proposed to guide future research aimed at improving the 
predictability of immunotherapy outcomes and enhancing clinical applicability: 
In the future incorporaƟng CT image data in the models also provides valuable informaƟon about the tumour 
that could help predict response. The first step to achieve this would be to opƟmise the CT segmentaƟon 
models, to be able to incorporate radiological features. This would include finding segmentaƟon networks that 
can show higher performance scores, or retraining for example the current nnU-net on the dataset used in this 
research. The dataset worked with in this research also includes per/post-treatment scans, therefore it could 
improve the network to funcƟon on this dataset. Including data per/post-treatment is also very valuable as 
recent research showed potenƟal of using the radiological features in disƟnguishing progression from pseudo 
progression [97]. Once segmentaƟon models are sufficiently robust, radiological features extracted from CT 
scans can be integrated into predicƟve models to determine if they provide addiƟonal value in predicƟng 
therapy response. This step will help evaluate the combined impact of imaging and blood biomarkers. 
Developing models capable of reliably making this disƟncƟon would also provide immediate clinical value, even 
without integraƟng radiological features with blood biomarkers for response predicƟon. This could already 
assist doctors in accurately determining whether a paƟent is truly experiencing progression on a CT scan. 

CollaboraƟons between data collectors and developers are essenƟal to create larger, more diverse 
datasets and improve the robustness of segmentaƟon models. Such collaboraƟons can support the 
development of networks that funcƟon reliably across different insƟtuƟons and paƟent populaƟons.  

A second recommendaƟon would be to perform more exploratory data analysis on more 
homogeneous and larger dataset. CreaƟng a dataset where paƟents receive uniform treatment regimens (e.g., 
exclusively immunotherapy or a combinaƟon of chemotherapy and immunotherapy), ensuring consistent 
follow-up intervals, such as standardized Ɵme points for blood draws and imaging, will reduce variability and 
improve the reliability of findings. Efforts to include larger, mulƟ-insƟtuƟonal datasets can enhance 
generalizability while maintaining homogeneity in criƟcal variables like therapy type, dosage, and metastasis 
profiles. This approach will also address part of the missing values and enable tracking biomarker fluctuaƟons 
over Ɵme beƩer, leading to more robust models. With taking this step “back” research can focus on a beƩer 
idenƟficaƟon of both fixed and random effects in mixed-effect models to improve model performance. By 
refining these models, researchers can beƩer understand the complex interacƟons between various biomarkers 
and treatment outcomes. 

 As a last recommendaƟon, once more comprehensive and homogeneous datasets are available, the 
current AI models could be retrained/updated and be externally validated. Ensuring external validaƟon of these 
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models is crucial to prevent overfiƫng and establish reliability across diverse paƟent populaƟons. The potenƟal 
use of neural networks and other advanced machine learning models should be explored for their potenƟal to 
improve predicƟve performance. Although these models may lack interpretability, if they provide a higher 
predicƟve accuracy or NPV it could jusƟfy their use for specific clinical applicaƟons. If “black box” models, such 
as random forests or neural networks, demonstrate superior performance, efforts should be made to develop 
methods that enhance their interpretability. This could involve creaƟng visualizaƟon tools or hybrid models that 
provide clinicians with acƟonable insights while retaining predicƟve strength. 

 

7.4 Conclusion 
This thesis provides first insights into the potenƟal of blood values to predict immunotherapy response in 
NSCLC paƟents. The idenƟfied biomarkers, parƟcularly CRP, and the promising results of random forest models 
in idenƟfying non responders offer a foundaƟon for future research. By expanding datasets, employing 
segmentaƟon techniques, and improving model interpretability, this research paves the way for personalized 
medicine in NSCLC, ulƟmately leading to improved paƟent care. 
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Appendix A:            
Mixed Effect Models 
explained 
 

MEMs, also known as mulƟlevel models, are a powerful class of staƟsƟcal models increasingly used across 
various scienƟfic disciplines, including biology [98] & medicine [83, 99, 100]. Their popularity stems from their 
ability to analyse complex data structures, parƟcularly those involving repeated measurements or clustered 
data [98]. They offer several advantages over tradiƟonal staƟsƟcal methods, most notably their ability to 
account for correlaƟons between repeated measurements and individual variability in therapy response. [50, 
99] These models provide a flexible framework for studying the relaƟonships between variables while 
accounƟng for the hierarchical structure of the data and the variability among individuals or groups [98, 99]. 
Most important in MEMs is the concept of fixed and random effects [99]. Fixed effects represent the impact of 
variables that are central to the research quesƟon, such as treatment or experimental condiƟon. These effects 
are assumed to be constant across all individuals or groups in the sample [98]. Random effects, in contrast, 
model the variability among individuals or groups in their response to the fixed effects [50, 98]. MEMs build on 
tradiƟonal linear models by integraƟng a combinaƟon of fixed and random effects as predictor variables. By 
including random effects, these models explicitly account for the correlaƟon between repeated measurements 
within an individual while simultaneously acknowledging heterogeneity in individual responses to therapy. [50, 
79, 99]  

MEM also offer several other advantages over tradiƟonal methods [50, 79, 99]: 

 Handling Missing Data. MEMs can accommodate missing data under the assumpƟon of "missing at 
random" (MAR), meaning the likelihood of missing data does not depend on the unobserved values.  

 IdenƟfying Predictors of Therapy Response: MEMs enable researchers to invesƟgate factors (e.g., age, 
gender, baseline disease acƟvity) that predict therapy response, paving the way for personalized 
treatment plans.  

 PredicƟng Future Outcomes: Based on modelled individual trajectories and idenƟfied predictors, 
MEMs can forecast future therapy responses, aiding decisions on opƟmal treatment duraƟon or 
alternaƟve therapies. 

Within the family of MEMs, various models are tailored to the specific nature of the data and research 
quesƟons: [50]  

LMMs are the simplest form of MEMs and are used when the outcome variable is conƟnuous and follows a 
normal distribuƟon [50, 100]. An example is the analysis of plant growth under different treatments, where the 
height of each plant is measured at mulƟple Ɵme points. In this case, the treatment would be a fixed effect, 
while the individual plant would be a random effect. The mathemaƟcal formulaƟon of an LMM is: 

𝑦  =  𝑋𝑏 +  𝑍𝑏  + 𝑒  

 yi: Vector of observaƟons for individual i 
 Xi: Design matrix for fixed effects for individual i 
 b: Vector of fixed effect parameters 
 Zi: Design matrix for random effects for individual i 
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 bi: Vector of random effects for individual i 
 ei: Residual errors for individual i 

 
This equaƟon shows that the response of each individual is determined by a combinaƟon of fixed effects, 
random effects, and residual errors [100].  

GLMMs extend the applicability of LMMs to non-normal outcome variables, such as binary (yes/no), count, or 
categorical data[50, 98]. For instance, a study on animal survival in different habitats could use a GLMM with 
survival (alive or dead) as the binary outcome variable and habitat as a fixed effect. GLMMs use link funcƟons to 
model the relaƟonship between the linear predictor and the non-normal outcome variable [99]. Examples of 
link funcƟons include the logit, probit, and log funcƟons [99].  The mathemaƟcal formulaƟon will then become: 

𝑔൫𝐸(𝑦)൯ =  𝑋𝑏 +  𝑍𝑏   

 g: link funcƟon (e.g., logit, probit, log) 
 E(yi): expected value of the outcome variable for individual i 

 
The choice of the link funcƟon depends on the distribuƟon of the outcome variable. For example, the logit link 
funcƟon is used for binary data, while the log link funcƟon is commonly used for count data. 

Generalized AddiƟve Mixed Models (GAMMs) combine the flexibility of generalized addiƟve models (GAMs) 
with the strength of MEMs [98]. GAMs allow for non-linear relaƟonships between predictors and the outcome 
variable, making them suitable for complex datasets [98]. GAMMs introduce non-linear relaƟonships between 
predictors and the outcome variable using smoothing funcƟons (f):  

𝑔(𝐸(𝑦))  =  𝑏 +  𝑓ଵ(𝑥ଵ)  +  𝑓2(𝑥ଶ) + . . . + 𝑍𝑏   

 f1, f2, ...: smoothing funcƟons for predictors x1i, x2i, ...  

These smoothing funcƟons are esƟmated from the data and allow for complex non-linear relaƟonships.  

The key difference between these models lies in how they model the relaƟonship between predictors and the 
outcome variable: LMMs: Assume a linear relaƟonship and a normal distribuƟon for the outcome variable. 
GLMMs: Handle non-normal outcome variables using link funcƟons while retaining the linear relaƟonship 
between predictors and the transformed outcome variable. GAMMs: Allow for non-linear relaƟonships through 
the use of smoothing funcƟons. In summary, LMMs are the most constrained, while GAMMs are the most 
flexible. The choice of model depends on the specific research quesƟon and the characterisƟcs of the data. 
While MEMs are a powerful tool, careful implementaƟon is essenƟal. The choice of fixed and random effects is 
criƟcal for reliable results and should be based on the research quesƟon, data structure, and underlying 
mechanisms [98]. StaƟsƟcal criteria like AIC and BIC can guide the selecƟon of the best-fiƫng model. 
Comparing models with different combinaƟons of fixed and random effects is important to improve and find a 
fiƫng model[98]. Residual plots and predicƟve accuracy should also be assessed to ensure the model 
adequately describes the data.  

MEMs provide a robust and flexible framework for analysing longitudinal data and predicƟng therapy response. 
By accounƟng for correlaƟons between repeated measurements within individuals and heterogeneity across 
individuals, MEMs yield valuable insights into therapy effecƟveness and the factors influencing response.  
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Appendix B:  
Preprocessing types 
 

 

Table 17:  Preprocessing possibiliƟes [62-64] 

Preprocessing type Options What How  
Normalization Min-max Rescales pixel values to a 

consistent range (e.g., 
[0, 1] or [-1, 1]), ensuring 
uniform input 

𝑥ᇱ =  
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 

Rescales original pixel value  
𝑥 based on its minimum and 
maximum values in the dataset.  

 Mean Centers data around 0, 
eliminating the effect of 
lighting conditions or 
sensor variations and 
improving convergence 

𝑥ᇱ =  
𝑥 −  𝜇

𝜎
 

 
Subtracts the dataset’s mean  
𝜇 from each pixel value 
𝑥 and divides by the standard 
deviation 𝜎 

Noise Reduction Gaussian blur Smooths the image by 
averaging pixel values 
with neighbors, reducing 
sharp noise without 
distorting the image 

𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎ଶ
𝑒

ି
௫మା௬మ

ଶఙమ  

Applies a Gaussian filter where 
𝐺(𝑥,𝑦) represents the Gaussian 
kernel and  
𝜎 controls the smoothing. Pixels 
are averaged with neighboring 
pixels weighted by the Gaussian 
distribution. 

 Median Filtering Removes dotted noise 
while preserving edges 

Replaces each pixel value with 
the median value of 
neighboring pixels in a defined 
window (e.g., 3x3 or 5x5). This 
approach is effective in 
reducing isolated noise points. 

Standardization of Input 
Size 

Resizing Ensures uniform input 
size for all images to 
meet the fixed 
dimensional 
requirements of neural 
networks. 

Resizes all images to a target 
size (e.g., 224x224 pixels) using 
interpolation techniques like 
bilinear or bicubic interpolation. 
However, resizing can distort 
the image’s aspect ratio. 

 Cropping and Padding Crops or pads images to 
focus on the region of 
interest or preserve 
aspect ratio. 

Crops images to a fixed size, 
focusing on key regions, or pads 
images (with values like 0 or 
border reflection) to fit target 
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dimensions without distorting 
the image’s content. 

Data Augmentation Rotation Simulates different 
orientations of objects in 
the image. 

Rotates the image by small 
random angles (e.g., ±10°) to 
create variations. 

 Flipping Introduces variations in 
image orientation 

Flips images horizontally or 
vertically 

 Translation Shifting the position of 
the object in the image 

Shifts the image horizontally or 
vertically by a small amount 
(e.g., 10-20 pixels) 

 Brightness/Contrast 
Adjustment 

Adjustment of contrast 
and brightness 

Brightness is adjusted by adding 
or subtracting a constant from 
all pixel values, and contrast by 
scaling pixel values by a factor 

 Adding noise  Adds small amounts of random 
noise (e.g., Gaussian noise) to 
images 
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Appendix C:            
Neural Networks 
explained 

Deep learning [55, 66], a subset of machine learning within AI, is designed to model complex paƩerns and 
relaƟonships in large datasets. It employs deep neural network, structures with mulƟple layers of arƟficial 
neuron, to map input data to meaningful outputs. The term deep refers to these networks’ many hidden layers, 
each of which learns a different level of abstracƟon. As data passes through the layers, the network transforms 
it progressively into higher-level representaƟons, enabling the model to learn complex paƩerns. A neural 
network mimics the way the human brain processes informaƟon. It consists of layers of arƟficial neurons, 
connected in a network-like structure, see figure 9. These neurons receive input, perform simple calculaƟons, 
and pass the output to the next layer. Neural networks typically have three types of layers: an input layer, where 
data enters the network; hidden layers, where the bulk of the processing occurs and paƩerns are learned; and 
an output layer, which generates the final predicƟon. The network learns through training, where it adjusts the 
connecƟons and weights, calculaƟons in its neurons based on examples it has seen, enabling it to make 
accurate predicƟons on new data. In the context of image processing, deep learning amplifies features in an 
image that disƟnguish between different classes, while suppressing irrelevant details. Early layers of a deep 
neural network might detect basic elements like edges and textures, while deeper layers idenƟfy more complex 
structures. This is achieved through a chain of mathemaƟcal funcƟons, where each layer processes the data and 
refines the network’s output to match the desired target. 

 

Figure 6: Neural network architecture, retrieved from: hƩps://www.v7labs.com/blog/neural-network-architectures-guide 

ConvoluƟonal Neural Networks 
CNNs are a specialized type of arƟficial neural network designed for processing grid-structured data, such as 
images [55, 60, 66, 67]. They are parƟcularly effecƟve for tasks like image classificaƟon, object detecƟon, and 
image segmentaƟon because they can automaƟcally learn meaningful paƩerns from raw image data. CNNs 
process images through a series of layers, each designed to transform and refine the data to extract features 
and make predicƟons. The first and most fundamental layer in a CNN is the convoluƟonal layer, which is 
responsible for detecƟng paƩerns in the image. This layer applies a small grid, typically 3x3 or 5x5, containing 
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numbers (weights) called a filter or kernel to the input image. A kernel can be thought of as a sliding window 
that moves across the image, analyzing small regions at a Ɵme.  

 
Figure 7: Example of a kernel, that detects edges in the images. 

When this kernel moves over the image, it looks for changes in intensity from leŌ to right, which would indicate 
an edge. This process of moving the kernel over the image is called convoluƟon. At each posiƟon, the kernel 
performs an operaƟon called a convoluƟon: it mulƟplies the pixel values of the region it covers with the 
corresponding values in the kernel, then sums the results into a single number. This process creates a new 
representaƟon of the image, known as a feature map, which highlights where specific paƩerns (like edges or 
shapes) are present. Different kernels can detect different types of paƩerns, such as edges, corners, or textures. 
For example, one kernel might be sensiƟve to horizontal edges, while another might detect verƟcal edges. By 
stacking mulƟple convoluƟonal layers, a CNN can learn increasingly complex features, from simple edges to 
high-level structures like shapes or objects. AŌer each convoluƟonal layer, an acƟvaƟon funcƟon is applied to 
introduce non-linearity into the network. The most common acƟvaƟon funcƟon used in CNNs is the RecƟfied 
Linear Unit (ReLU) funcƟon, which replaces all negaƟve values in the feature map with zeros. This allows the 
network to learn more complex paƩerns compared to linear transformaƟons alone. To reduce the size of the 
feature maps and make the network more efficient, CNNs use a pooling layer. This layer reduces the spaƟal 
dimensions of the feature map while retaining its most important informaƟon. A common type is Max Pooling, 
which divides the feature map into small regions (for example, 2x2) and takes the maximum value from each 
region. Another type is Average Pooling, which takes the average value of each region. Pooling reduces the 
number of parameters and computaƟons, making the model more efficient and less likely to overfit. It also 
helps the network focus on the most prominent features. Once the feature maps have been processed through 
several convoluƟonal and pooling layers, they are flaƩened into a one-dimensional vector and passed to a fully 
connected layer. This layer comes aŌer the convoluƟonal and pooling layers. It flaƩens the feature maps into a 
single vector and connects every neuron in this vector to every neuron in the next layer. Fully connected layers 
are typically used for making final predicƟons, such as class probabiliƟes in classificaƟon tasks. 

The U-Net 
The U-Net [64] architecture is a specific type of CNN designed for the task of image segmentaƟon, where the 
goal is to classify each pixel in an image. Unlike tradiƟonal classificaƟon tasks that assign a single label to an 
enƟre image, segmentaƟon involves creaƟng a detailed map that idenƟfies objects or regions at the pixel level. 
The U-Net is named aŌer its U-shaped structure, which consists of two main components: an encoder and a 
decoder, see image ... These two parts are connected by a boƩleneck and uƟlize skip connecƟons to improve 
accuracy. The encoder, also known as the contracƟng path, is responsible for extracƟng features from the input 
image. It begins with the raw image and is responsible for extracƟng features from the input image. It 
progressively reduces the spaƟal dimensions (height and width) of the image while increasing the number of 
feature maps (depth). Each step in the encoder consists of convoluƟonal layers, which extract spaƟal features 
such as edges and textures, possibly a acƟvaƟon funcƟon, followed by a pooling layer, which halves the 
dimensions of the feature maps. For example, an input image of size 256x256 might be reduced to 128x128 
aŌer one pooling step and to 64x64 aŌer another. As the spaƟal size decreases, the depth of the feature maps 
increases, allowing the network to capture more complex features. At the deepest point of the network, known 
as the boƩleneck, the spaƟal dimensions of the image are small, but the feature maps are rich with abstract 
features. The boƩleneck consists of convoluƟonal layers that capture high-level paƩerns in the data, providing a 
compact representaƟon of the input image. 

The decoder, or expanding path, reconstructs the image to its original size while using the features extracted by 
the encoder to make pixel-wise predicƟons. This is done through upsampling layers, which increase the spaƟal 
dimensions of the feature maps. At each step, the decoder uses skip connecƟons to combine the feature maps 
from the encoder with those in the decoder. These skip connecƟons ensure that fine details lost during the 
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downsampling process are preserved and incorporated into the final output. For instance, if the encoder 
detects fine edges or textures, the decoder can use this informaƟon to produce more accurate segmentaƟon 
results. AŌer upsampling and combining features, the decoder uses convoluƟonal layers to refine the 
upsampled feature maps to produce precise predicƟons. The decoder outputs a segmentaƟon mask of the 
same size as the original image, with each pixel assigned to a specific class. The U-Net architecture is specifically 
designed for image segmentaƟon tasks where precise localizaƟon is criƟcal. For example, in medical imaging, U-
Net can be used to idenƟfy tumours in an MRI scan or segment organs in a CT image. Given an input image, U-
Net produces a segmentaƟon mask where each pixel belongs to a specific class, such as tumour, healthy Ɵssue, 
or background. This pixel-wise classificaƟon capability makes U-Net suitable for applicaƟons where fine-grained 
detail is required. The nnU-Net [101], or "No New U-Net," is an advanced version of the U-Net designed to 
simplify and opƟmize image segmentaƟon without requiring manual adjustments. It automaƟcally adapts its 
architecture to different datasets and tasks, selecƟng the best configuraƟon—such as layer numbers and kernel 
sizes—based on the input data. Like U-Net, it uses an encoder-decoder structure with skip connecƟons, but its 
strength lies in this dynamic adaptaƟon. ParƟcularly effecƟve in medical image segmentaƟon, nnU-Net delivers 
high accuracy, outperforming many custom networks, while reducing the need for human intervenƟon. 

 

Figure 8: The U-net architecture example, retrieved from: hƩps://viso.ai/deep-learning/u-net-a-comprehensive-guide-to-its-architecture-
and-applicaƟons/ 
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Appendix D:      
Descriptive statistics 
 

 

Table 18: DescripƟve StaƟsƟcs for blood value conƟnuous parameters 

Variable n miss p_miss mean sd median p25 p75 min max 

Sodium 754 1 0.13 138.64 3.26 139 137 141 125 150 
LDH 750 5 0.67 273.1 295.6 238 198 288 102 5791 
CRP 754 1 0.13 28.91 40.5 12 4 38 0.5 297 
Bilirubine Total 693 62 8.95 6.4 3.47 6 4 8 1 32 
eGFR (CKD-EPI) 755 0 0 78.81 19.14 82 66 100 15 114 
TSH 704 51 7.24 2.95 6.48 1.6 1 2.6 0 95 
MCV 755 0 0 93.59 6.84 93 89 97 74 122 
Creatinine 755 0 0 81.10 29.06 76 63 92 34 309 
Free T4 (FT4) 711 44 6.19 17.02 4.16 16 15 19 1 56 
Haemoglobin 755 0 0 7.78 1.16 7.8 7 8.6 4.6 10.7 
Trombocyten 754 1 0.13 306.12 116.57 292 230 365 29 911 
Potassium 754 1 0.13 4.35 0.46 4.3 4.1 4.6 2.9 6.3 
Calcium 749 6 0.80 2.41 0.13 2.41 2.33 2.48 1.64 2.99 
Leukocytes 755 0 0 8.85 3.94 8.2 6 10.75 1.4 37 
Lymfocytes 739 16 2.17 1.75 0.82 1.6 1.2 2.1 0.19 6.8 
Glucose 625 130 20.8 7.34 3.01 6.4 5.6 8 3.1 33.2 
Neutrophils 736 19 2.58 5.79 3.42 5 3.4 7.23 0.04 29.1 
Monocytes 739 16 2.17 0.85 0.38 0.81 0.62 1 0.05 5.1 
Eosinophils 739 16 2.17 0.22 0.25 0.15 0.07 0.28 0 2.3 
ALAT 752 3 0.40 30.62 38.07 21 14 33 4 513 
ASAT 753 2 0.27 33.89 28.01 28 22 37 11 378 
NLR 734 21 2.86 4.29 5.11 2.92 1.93 5 0.03 81.58 
PLR 738 17 2.30 213.81 147.20 174.83 122.26 255.76 26.36 1463.16 
LMR 738 17 2.31 2.33 1.32 2.06 1.45 2.91 0.19 11.19 
SII 734 21 2.86 1388.08 1871.14 838.73 497.97 1527.93 2.46 21210 

 

Table 19: DescripƟve StaƟsƟcs for blood value binary parameters, with false meaning a paƟent had a value outside of the 
normal ranges at any Ɵme during therapy measured.  

Parameter FALSE_Count TRUE_Count 

Sodium_normal 52 (24.1) 164 (75.9) 
LDH_normal 145 (67.1) 71 (32.9) 
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CRP_normal 185 (85.6) 31 (14.4) 
Bilirubine Total_normal 57 (26.4) 159 (73.6) 
eGFR (CKD-EPI)_normal 98 (45.4) 118 (54.6) 
TSH_normal 78 (36.1) 138 (63.9) 
MCV_normal 52 (24.1) 164 (75.9) 
Kreatinine_normal 93 (43.1) 123 (56.9) 
Glucose_normal 111 (51.4) 105 (48.6) 
Free T4 (FT4)_normal 53 (24.5) 163 (75.5) 
Hemoglobine_normal 143 (66.2) 73 (33.8) 
Trombocytes_normal 97 (44.9) 119 (55.1) 
Potassium_normal 46 (21.3) 170 (78.7) 
Calcium_normal 38 (17.6) 178 (82.4) 
Leukocytes_normal 145 (67.1) 71 (32.9) 
Lymfocytes_normal 78 (36.1) 138 (63.9) 
Neutrophils_normal 131 (60.6) 85 (39.4) 
Monocytes_normal 94 (43.5) 122 (56.5) 
Eosinophils_normal 48 (22.2) 168 (77.8) 
ALAT_normal 68 (31.5) 148 (68.5) 
ASAT_normal 101 (46.8) 115 (53.2) 
NLR_normal 186 (86.1) 30 (13.9) 
PLR_normal 125 (57.9) 91 (42.1) 
LMR_normal 167 (77.3) 49 (22.7) 
SII_normal 157 (72.7) 59 (27.3) 

 

Table 20: DescripƟve StaƟsƟcs for non blood value conƟnuous parameters 

Variable n miss p.miss mean sd median p25 p75 min max 
Age at time of diagnosis 216 0 0 67.09 9.64 67.73 60.41 74.00 37.92 89.77 
BMI 215 1 0.47 25.41 4.83 24.97 22.38 27.84 13.52 41.1 
Pack years 172 44 25.58 37.75 18.22 40 30 48 0 150 
FEV1 (L) 151 65 30.09 2.14 0.81 2.03 1.52 2.53 0.65 5 
FEV1 (% pred) 151 65 30.09 71.78 19.45 72 60 83 24.5 113 
DLCO 139 77 35.65 5.48 1.97 5.06 4.02 6.68 1.68 11.52 
DLCO (% pred) 114 102 47.22 64.79 18.67 64 50 77 24 110 
DLCO/VA 134 82 37.96 1.12 0.29 1.13 0.94 1.28 0.4 1.97 
DLCO/VA (% pred) 102 114 85.78 79.70 21.30 79 64.04 92.75 28.45 144 
ECOG-score at start of 
therapy 173 43 19.91 1.61 1.61 1 0 1 0 3 
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Appendix E:           
Survival function PD-L1 
 

 

Table 21: P-values of the log rank for OS for PD-L1 and the method used to acquire the samples. 
 

Log-rank p-value 
All 0.16 

Pathologisch 0.90 
Cytologisch 0.02 

 

 

Figure 12: Kaplan Meier curve of OS for PD-L1. 
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Figure 13: Kaplan Meier curve of OS for PD-L1 cytological determined 

 

Figure 14: Kaplan Meier curve of OS for PD-L1 pathological determined 
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Appendix F:              
Blood variables per model 
 

 

Table 22:  Variables included per MEM.  

Model 1 t0+1+3 Sodium + Sodium_quad + Sodium_cube + LDH + 
LDH_quad + LDH_cube + CRP + CRP_quad + 
CRP_cube + Total_Bilirubin + Total_Bilirubin_quad + 
Total_Bilirubin_cube + Hemoglobin + 
Hemoglobin_quad + Hemoglobin_cube + Monocytes 
+ Monocytes_quad + Monocytes_cube + 
eGFR_CKD_EPI + eGFR_CKD_EPI_quad + 
eGFR_CKD_EPI_cube + TSH + TSH_quad + TSH_cube 
+ MCV + MCV_quad + MCV_cube + CreaƟnine + 
CreaƟnine_quad + CreaƟnine_cube + Free_T4 + 
Free_T4_quad + Free_T4_cube + Platelets + 
Platelets_quad + Platelets_cube + Glucose + 
Glucose_quad + Glucose_cube + Potassium + 
Potassium_quad + Potassium_cube + Leukocytes + 
Leukocytes_quad + Leukocytes_cube + Calcium + 
Calcium_quad + Calcium_cube + Lymphocytes + 
Lymphocytes_quad + Lymphocytes_cube + 
Neutrophils + Neutrophils_quad + Neutrophils_cube 
+ ALAT + ALAT_quad + ALAT_cube + NLR + NLR_quad 
+ NLR_cube + PLR + PLR_quad + PLR_cube + LMR + 
LMR_quad + LMR_cube + Eosinophils + 
Eosinophils_quad + Eosinophils_cube + SII + SII_quad 
+ SII_cube + ASAT + ASAT_quad + ASAT_cube 

Model 1.1 t0+1+3 Sodium + Sodium_quad + Sodium_cube + LDH +  
Bilirubine_Total +  Bilirubine_Total_quad + 
Hemoglobine_quad + Hemoglobine_cube +  
Monocytes_cube + FT4 + FT4_quad + Potassium + 
Potassium_quad + Potassium_cube + Calcium + 
Calcium_quad + Calcium_cube + ASAT 

Model 2 t0+1+3 Sodium + LDH + CRP + Bilirubine_Total + 
Haemoglobin + Monocytes + eGFR_CKD_EPI + TSH + 
MCV + CreaƟnine + FT4 + Platelets + Glucose + 
potassium + Leukocytes + Calcium + Lymfocytes + 
Neutrophils + ALAT + NLR + PLR + LMR + Eosinophils 
+ SII + ASAT 

Model 3 t1+3 CRP 
Model 4 t1+3 CRP + Leukocytes + Lymphocytes + Neutrophils + 

platelets + LMR + PLR + NLR + SII 
Model 4.1 t1+3 CRP + Lymphocytes + LMR 
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Model 5 t1+3 CRP + NLR + PLR + LMR + SII + Calcium 
Model 5.1 t1+3 CRP + PLR + LMR + Calcium 
Model 6 t1+3 Sodium + LDH + CRP + Bilirubine_Total + 

Haemoglobin + Monocytes + eGFR_CKD_EPI + TSH + 
MCV + CreaƟnine + FT4 + Platelets + Glucose + 
potassium + Leukocytes + Calcium + Lymfocytes + 
Neutrophils + ALAT + NLR + PLR + LMR + Eosinophils 
+ SII + ASAT 

Model 6.1 t1+3 Sodium + LDH + CRP + Bilirubine_Total + 
Haemoglobin + Monocytes + eGFR_CKD_EPI + MCV + 
CreaƟnine + Platelets + Glucose + potassium + 
Leukocytes + Calcium + Lymfocytes + Neutrophils + 
ALAT + NLR + PLR + LMR + Eosinophils + SII + ASAT 
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Appendix G:           
Results linear models 
 

 

Group: Inflammatory  
 

Estimate Std. Error t value Pr(>|t|) 
Intercept 0.55 0.03 15.92 0.00 

CRP -0.11 0.04 -2.90 0.00 
NLR -0.07 0.09 -0.74 0.46 
PLR -0.01 0.05 -0.28 0.78 
LMR 0.02 0.04 0.45 0.65 

SII 0.02 0.09 0.24 0.81 
 

Residual standard error: 0.48  

p-value: 0.00 

Group: Liver FuncƟon  
 

Estimate Std. Error t value Pr(>|t|) 
Intercept 0.56 0.03 15.51 0.00 
Bilirubine 

total 
-0.01 0.04 -0.37 0.71 

ALAT 0.00 0.07 0.07 0.95 
ASAT 0.01 0.07 0.17 0.87 

 

Residual standard error: 0.50  

p-value: 0.97 

Group: Kidney FuncƟon  
 

Estimate Std. Error t value Pr(>|t|) 
Intercept 0.56 0.03 15.70 0.00 

Creatinine -0.10 0.07 -1.54 0.13 
eGFR (CKD-

EPI) 
-0.09 0.07 -1.35 0.18 

 

Residual standard error: 0.50  

p-value: 0.31 
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Group: Electrolytes  
 

Estimate Std. Error t value Pr(>|t|) 
Intercept 0.55 0.03 15.82 0.00 

Sodium 0.10 0.04 2.78 0.01 
Potassium 0.02 0.04 0.46 0.65 

Calcium 0.02 0.03 0.57 0.57 
 

Residual standard error: 0.49 

p-value: 0.03 

Group: Haematology  
 

Estimate Std. Error t value Pr(>|t|) 
Intercept 0.55 0.03 16.36 0.00 

Haemoglobin 0.15 0.03 4.31 0.00 
Platelets 0.02 0.04 0.62 0.53 

Leukocytes -0.06 0.07 -0.89 0.37 
Lymphocytes 0.06 0.04 1.77 0.08 

Neutrophils -0.08 0.07 -1.14 0.26 
Monocytes -0.01 0.04 -0.15 0.88 

Eosinophils -0.02 0.04 -0.58 0.57 
 

Residual standard error: 0.47 

p-value: 0.00 

Group: Endocrine Metabolic  
 

Estimate Std. Error t value Pr(>|t|) 
Intercept 0.57 0.04 15.06 0.00 

TSH -0.04 0.04 -1.04 0.30 
FT4 0.01 0.04 0.23 0.82 

Glucose -0.10 0.04 -2.66 0.01 
 

Residual standard error: 0.49 

p-value: 0.05562 

 


