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Abstract

Oxygen uptake (V̇O2) and its kinetics are important indicators of fitness and health, yet
their measurement requires expensive, specialized equipment. This study aimed to vali-
date previously achieved results in predicting V̇O2 and its kinetics using wearable sensors,
as well as evaluating whether peripheral measurements could improve predictive accuracy.
Data were collected from 14 participants performing three different pseudorandom binary
sequence (PRBS) exercise tests at varying intensities. The model achieved high predic-
tion accuracy for V̇O2 with a mean and best repeated-measures correlation of 0.928 and
0.943, respectively. Slightly lower than prior results, likely due to sample heterogeneity.
However, predicting V̇O2 kinetics using the Mean Normalized Gain (MNG) method was
less successful, showing no meaningful correlation. Incorporating muscle oxygenation (via
near-infrared spectroscopy) and body composition data marginally improved prediction
accuracy. These findings illustrate the significant potential of wearable sensors for estimat-
ing V̇O2 and consequently accessible fitness and health monitoring, though methodological
improvements and larger datasets are still required.

Keywords: oxygen uptake prediction, machine learning, wearable sensors, body composi-
tion, near-infrared spectroscopy



Chapter 1

Introduction

Oxygen uptake (V̇O2) kinetics and V̇O2max are key indicators of the body’s ability to
meet changing oxygen demands during physical activity [1]. These metrics integrate re-
sponses from the pulmonary, cardiovascular, and muscular systems, reflecting fitness and
overall health [1, 2]. Therefore, these metrics are indicative of both exercise performance
[3, 4, 5] as well as disease prognosis [6, 7, 8, 9]. As such, being able to easily obtain this
measurement during daily activities does not only have the potential to detect changes in
physical fitness, but may also identify disease states before symptoms appear [10, 11].

However, obtaining these measurements typically requires specialized, expensive equip-
ment, limiting their availability to clinical and research settings [1]. To enable measure-
ments during daily activities, methods that enable cost-effective and user-friendly estima-
tion of V̇O2 and its kinetics are required. Wearable sensors provide a promising alternative
to the conventional systems used to measure V̇O2 data. They are minimally intrusive, can
be used outside of laboratory settings and have the ability to acquire large amounts of
physiologically relevant data [12]. These data may include measures such as heart rate,
air intake or muscle oxygen saturation, which contain relationships with V̇O2. These re-
lationships can be determined by supervised machine learning techniques, presenting an
opportunity to measure fitness and health more accessibly and conveniently [13].

Particularly measuring V̇O2 kinetics during (pseudo)random and daily activities has
been a significant hurdle, as traditional kinetics analysis is not applicable to activities with
varying work rate. However, a promising alternative method has been proposed in the form
of Mean Normalized Gain (MNG) [14], though this method has not been used or validated
by any other research group. Subsequently, Amelard et al. has shown the potential of a
Temporal Convolutional Network (TCN) in predicting V̇O2 using central measurements
captured by wearable sensors [13]. Recently, Hedge et al. have achieved encouraging re-
sults in predicting both V̇O2 and its kinetics [12], setting the stage for nonintrusive and
continuous V̇O2 monitoring and health assessments.

V̇O2 is an integration of the respiratory, cardiovascular and muscular systems. However,
the muscles are ultimately using most of the extracted oxygen [15]. Therefore, utilizing
techniques such as near-infrared spectroscopy (NIRS) and bioelectric impedance analysis
(BIA), through which oxygen utilization of the muscles and body composition statistics
can non-invasively be measured [16, 17], respectively, may help improve V̇O2 prediction
results. Consequently, the effect on the V̇O2 prediction accuracy of the addition of these
measurements will be examined in this work.
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Chapter 2

Scientific Background

Oxygen uptake serves as an important indicator of the metabolic demands placed upon
the body [1, 18]. The relationship between the power output and V̇O2 has traditionally
been characterized as a dynamic first-order linear and symmetric system, where the ratio
between power output and V̇O2, the gain of the V̇O2 response, has been shown to be ∼10
mLmin−1W−1 [1, 18]. A characteristic of such a system is that the kinetics and gain
of the system should be invariant to the amplitude of the work rates [1, 18]. However,
the body’s response to exercise varies substantially based on work rate, challenging the
assumption of dynamic linearity and symmetry of the V̇O2 system [1, 18]. Therefore, ex-
ercise is categorized into 4 intensity domains; moderate, heavy, severe and extreme, each
bounded by physiological thresholds and distinguished by different physiological responses.

In the moderate domain, O2 delivery and utilization are balanced, allowing V̇O2 to
reach a steady state while the exercise stimulus remains constant [1, 18]. The Lactate
Threshold (LT) (or Gas Exchange Threshold (GET)), marks the transition to the heavy
domain. At work rates above LT, the slow component emerges, which reflects a slow in-
crease in V̇O2 until steady state is reached. The slow component disrupts both the on- and
off-transient symmetry as well as increases the gain of the V̇O2 response [1, 18, 19]. The
upper bound of the heavy domain is the Critical Power (CP), which denotes the maximum
power output that can be sustained for prolonged periods of time, as all energy demands
should be able to be facilitated through aerobic means [20]. The severe domain exists above
CP, and within this domain the slow component will force V̇O2 (and lactate) to increase
until either maximal V̇O2 (V̇O2max) is reached or the exercise is ceased [1, 18, 21]. Finally,
work rates above V̇O2max are of extreme intensity and V̇O2 will not reach V̇O2max before
exercise has to be ceased.

Pulmonary V̇O2 is primarily driven by the O2 delivery and uptake occurring in the mus-
cles, as they are the primary consumers of oxygen during exercise [22, 15, 23]. The O2 uti-
lization can be measured non-invasively using Near-infrared spectroscopy (NIRS). By emit-
ting near-infrared (NIR) light into tissues and measuring transmitted and absorbed light
intensities, NIRS devices can measure concentrations of oxygenated hemoglobin (O2Hb),
deoxygenated hemoglobin (HHb) and total hemoglobin (tHB) as the sum of O2Hb and
HHb [16, 24]. Additionally, they can calculate the tissue saturation index (TSI), which
represents the percentage of oxygenated hemoglobin relative to total hemoglobin. NIRS
has a limitation to extend to broader populations due to its susceptibility to signal in-
terference from adipose tissue [16]. Despite this, NIRS’ ability to measure local oxygen
dynamics allows it to bridge the gap between O2 delivery and utilization.
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The interplay between pulmonary and muscular oxygen dynamics becomes evident in
the concept of the O2 deficit, which is the difference between energy demand and aer-
obically facilitated energy. It arises due to the vascular transit time and mitochondrial
oxidative limitations, leading to an initial reliance on anaerobic pathways [22]. Anaerobic
pathways can facilitate energy much faster than aerobic pathways [25], however anaerobic
resources are finite and the produced metabolites are associated with fatigue [26]. V̇O2

kinetics describe the speed at which the V̇O2 adjusts to a new stimulus and are thus in-
versely related to the O2 deficit. It is not by chance that faster V̇O2 kinetics are associated
with better exercise performance and disease is associated with slower V̇O2 kinetics [1].

The speed of the V̇O2 kinetics is generally defined in terms of the time constant τ [27].
τ denotes the time it takes for the V̇O2 to reach 63% of the new steady state and after
4 τ ’s the new steady state is reached in full [26, 1]. Theoretically, the τ is an underlying
system parameter that defines the V̇O2 response. However, due to the non-linearities of
the V̇O2 response, kinetics are slower at higher exercise intensities [28]. The τ is typically
derived via non-linear least squares regression of a single exponential function on the V̇O2

of a step-increase in work rate. Often times multiple repetitions of such a protocol are
performed to increase the signal-to-noise ratio, as V̇O2 data is noisy and the regression is
sensitive to noise [29, 27]. Furthermore, the regression inherently assumes system param-
eters, which combined with the other limitations make τ unsuitable for kinetics analysis
outside of specific lab protocols.

Frequency-domain analysis offers a promising alternative to conventional time-domain
methods by transforming the V̇O2 signal into the frequency domain through Fourier trans-
formation. This yields harmonics, each representing a specific frequency, the amplitude
of which indicates the contribution of that frequency to the overall response [30, 31, 32].
The base frequency has a frequency of the inversion of the duration of the signal. The
other harmonics are integer multiples of the base frequency and typically have a lower am-
plitude [14]. The harmonics can be used to reconstruct the original signal with arbitrary
precision. However, frequency decomposition can only be used on signals with sufficient
variation, making it suitable for daily activities. The most common lab protocol for this
is the pseudorandom binary sequence (PRBS), where the work rate is pseudo-randomly
switched between 2 work rates as it allows for the detection of many different frequen-
cies from a single exercise protocol [32, 30, 31], though pseudorandom ternary sequencues
(PRTS) have also been used [33, 34, 35].

One method using frequency-domain analysis has been proposed by Beltrame et al.,
named Mean Normalized Gain (MNG) [14]. MNG attempts to quantify the kinetics by
comparing the system gain of frequencies up to a specified cut-off frequency with the base
frequency. The cut-off frequency helps filter out noise in the V̇O2 signal, as the noise is
almost invariably contained within the higher frequency components [32, 30, 31]. MNG has
demonstrated strong correlations with τ measured during cycling, walking and activities
of daily living, at least within the moderate domain [14, 36, 33, 35]. The inherent noise-
filtering capabilities, the absence of system parameter assumptions and the applicability
to a wider range of exercise protocols make MNG a promising alternative for τ . However,
it should be noted that MNG has only been used and validated by studies within a single
research group. Broader validation of MNG is essential to establish reliability as a valid
analytical tool.
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The estimation of non-maximal V̇O2 during activities is a remarkably novel field of
research with less than a handful of research papers. The end goal of this field is to be able
to accurately predict V̇O2 as well as its kinetics in real-time during activities of daily living
(ADL). The first papers have been performed by Beltrame et al. aiming to estimate V̇O2

during PRTS walking sequences and controlled ADL [35, 34]. A Random Forest machine
learning algorithm was trained on heart rate, breathing and walking derived features as
measured by a smart shirt and a hip accelerometer. Promising results were achieved with
Pearson correlation of 0.87 and 0.69 during ADL and PRTS, respectively.

To enable real-time predictions it is important that the chosen machine learning model
architecture is both sufficiently powerful to achieve high accuracy, but also small enough
to be used by embedded systems that are typically constrained in battery capacity, com-
putational power and storage [37, 38]. Therefore, Amelard et al. compared the size and
performance of different machine learning models, including the previously used Random
Forest method, a stacked Long Short Term Memory (LSTM) network and different sets
of parameters for a Temporal Convolutional Network (TCN) [13]. The TCN had the best
performance, most likely attributable to the receptive field it boasts, which allows it to use
data of previous time points for its next prediction, while also being the smallest model in
terms of parameters.

The TCN architecture with the best performance compared to its size was used by
Hedge et al. to estimate V̇O2 and its kinetics during medium and heavy intensity cycling
PRBS sequences [12]. For this, heart rate and breathing derived features were used as mea-
sured by the same smart shirt as used by Beltrame et al. in addition to the resistance of
the cycle ergometer. Repeated-measures correlation between predicted and measured V̇O2

was exceptionally high at r=0.974, and repeated-measures correlation between predicted
and measured MNG was present with r=0.68 [12]. These results provide high confidence
that accurate predictions of V̇O2 and its kinetics are indeed feasible, though more research
is needed to validate whether such accuracy is consistently possible.

Therefore, the goals of this research are threefold. First, we aim to validate Hedge et
al.’s V̇O2 prediction results by using a separately collected dataset, with the same TCN
architecture and input features. Second, we aim to validate the use and estimation of the
MNG method, proposed by Beltrame et al. to analyze the V̇O2 kinetics. Finally, up until
now only central measurements of the cardiovascular and pulmonary systems have been
used to estimate V̇O2. However, the muscular system is ultimately the largest consumer of
O2 within the body. Therefore, we hypothesize that adding NIRS and body composition
data as model inputs can improve V̇O2 prediction results.

4



Chapter 3

Methods

3.1 Participants

Data were collected from 14 young healthy adults (8 men, 6 women) who were recruited
through local sports associations or the personal network of the researchers. Participant
characteristics are displayed in table 3.1. All participants performed multiple exercise tests
including one ramp-incremental test and different pseudorandom binary sequence (PRBS)
exercise tests. Collected data was used to train a TCN model to predict the oxygen
uptake of the participants during cycling. All participants signed an informed consent
form before participating in the study, and were made aware of their right to withdraw
without prejudice. The research was approved by the Natural Sciences & Engineering
Sciences (NES) ethics committee, request number 240302.

Table 3.1: Participant Anthropometry

(n=14) mean± sd min −max
Age (years) 25.8 ± 3.2 22.3− 31.6
Height (cm) 180 ± 9 161 − 194
Weight (kg) 74.2 ± 9.5 58.8− 93.2

Peak V̇O2 (mLmin−1 kg−1) 46.9 ± 7.1 33.1− 60.9

3.2 Data Collection

Each participant was expected to perform a ramp-incremental test, followed by 3 PRBS
sequences of different intensities performed in random order, totaling 4 visits to the lab.
All visits were performed on a cycle ergometer (Lode Excalibur Sport, Lode, Groningen,
Netherlands).

Before the first visit, height was measured and before all visits, body composition data
such as weight, muscle mass and bodyfat % were collected using a bioelectric impedance
scale (Sacoma Original©).

V̇O2 data was collected through use of a metabolic cart (Quark CPET, Cosmed, Rome,
Italy) as ground truth for the machine learning model.

Central measurements such as Heart Rate (HR), minute ventilation (V̇E) and breath-
ing frequency (BF) were collected using an unreleased smart strap from the company
Tymewear. The smart strap is worn similarly to a typical heart rate strap and estimates
V̇E and BF by measuring the chest expansion during breathing. Before collecting data, a
calibration would be performed that included breathing in and out maximally 3 times.
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Peripheral measurements were collected using a NIRS device called the Portamon (Ar-
tinis, Netherlands) which measures TSI and O2Hb, HHb and tHb using 3 different frequen-
cies to examine different depths of the muscle. Additionally it provides a measure called
the TSI Fit Factor, which represents the signal quality. According to Artinis, if it is above
99, the signal should be representative.

The greater trochanter and the lateral condyle of the right femur were located using
palpation. The halfway point between these landmarks was used to align the top left corner
of the Portamon, such that the entire Portamon is anterior to the line connecting the two
landmarks. The Portamon was then kept in place by an elastic strap closed by velcro and
subsequently covered with a blackout cloth to ensure no light would pollute the Portamon
signal.

The signal quality would be observed while the participant would stand and perform
an isometric squat. It was expected that the TSI would be between 50 and 80 during
standing. O2Hb and TSI should drop, and HHb should increase during the isometric squat
as oxygen is continuously being used and the isometric contraction prevents much blood
from flowing into the quadriceps. If the TSI Fit Factor was consistently above 99.9 during
these movements, the signal was deemed sufficient.

Subsequently, the blackout cloth was removed and a bandage was wrapped around the
Portamon to keep it into place, followed by a blackout wrap. Finally, the same standing
and isometric squat would be performed to verify the signal quality was still sufficient. If
it was not, the Portamon would be moved slightly distally or anteriorly and the same steps
would be performed until the signal was of sufficient quality. If it was, the exercise test
could begin.

3.3 Exercise Tests

All exercise tests started with 2 minutes of rest whilst baseline measurements were recorded,
meaning no cycling was done during this time. The ramp-incremental test subsequently
consisted of 4 minutes of baseline pedaling at a low power output of 25 W, followed by
a continuous increase in power output until participants could no longer continue (20-35
Wmin−1, depending upon participant’s body composition and self-reported physical ac-
tivity levels). Throughout the test, participants were required to keep a cadence of 70-90
revolutions per minute. When the cadence dropped below 60 revolutions per minute, this
marked the end of the test.

The subsequent 3 exercise tests follow the 2 minute rest with a 3.5 minute warmup,
followed by 2 repetitions of a 16 minute long PRBS sequence. Each PRBS sequence uses
different work rates to elicit different physiological responses from the participant. The
work rates depend on the participants’ incremental ramp test results. The work rates that
were used are 25 Watt, 90% GET, GET and ∆30%. ∆30% refers to the work rate equiv-
alent of GET + 30% of the difference between GET and the V̇O2max. Hedge et al. used
∆50% instead [12], however, ∆30% was chosen because it is highly likely that ∆30% puts
participants into heavy intensity [39], whereas ∆50% could also be of severe intensity for
some participants.

The Easy protocol had participants pseudorandomly switch between 25 Watt and 90%
GET. This will keep participants within moderate intensity for the duration of the proto-
col.
The Medium protocol had participants switch between 25 Watt and ∆30%. This ensures
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participants switch between moderate and heavy intensity training.
The Hard protocol had participants switch between GET and ∆30%. This had partici-
pants exercising within heavy intensity for the duration of the protocol.
An example of the Easy protocol is shown in figure 1. The work rate profile is consistent
with the Medium and Hard protocols, but actual work rates are different as described
above.

Figure 1: PRBS sequence showing the Easy protocol. The work rates used during
the other protocols are also shown on the y-axis. The dark shaded area indicates
the warm-up period that starts after the 2 minute rest and the light-shaded area
indicates the exercise protocol. The vertical dotted line indicates the transition
from the first to the second repetition.

3.4 Machine Learning

In this work, the same model architecture was used as by the most recent paper by Hedge
et al. [12]. This model is based on the Temporal Convolutional Neural Network (TCN)
architecture described by Amelard et al. [13] which was used to estimate the V̇O2 of the
participants. This type of model architecture features causal convolutions and dilations to
extract features from a preceding time window called the receptive field. This particular
network uses a kernel size of 7 data points and the 4 layers of the network each dilate the
kernel width by a factor of 2, meaning that the time between the examined data points is
doubled each layer, ultimately yielding a receptive field of 187 seconds. Each layer contains
16 filters.

Due to a relatively small and non-homogeneous sample of 14 participants, k-fold cross
validation was expected to introduce significant bias into the results as it is impossible to cut
the sample into representative slices. Therefore, leave-one-out cross validation (LOOCV)
was used. With LOOCV, a model will be trained on every participant except for one and
subsequently tested on the one participant it was not trained on. This was repeated for
every participant, after which results of all (14) models were combined.

Each model was trained for 30 epochs using mean squared error as loss function and
the version with the lowest training loss was selected. Because neural networks are non-
deterministic, at least 5 sets of models are trained for any set of input features to be able
to show the consistency of the results.
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3.4.1 Validation

With the goal of validating the results of Hedge et al. [12], the same input features were
used to train the model as were used by them to be able to compare results. These
parameters include heart rate (HR), heart rate reserve (HRR), minute ventilation (V̇E),
breathing frequency (BF) and work rate (WR). If any of these parameters were missing or
invalid, the visit was excluded from training and testing data.

HRR is a variable derived using resting and maximal HR through the formula (HR−
HRrest)/(HRpeak − HRrest). HRrest was taken as the minimum of the average HR of a
participant during the 2 minutes rest before each visit. HRpeak was taken as the peak HR
during the Ramp protocol. If HR data from the Ramp was missing, maximum HR from
the Hard protocol was multiplied with the average ratio between maximum Ramp HR and
maximum Hard HR of the participants where both were available. If HR data from the
Hard protocol was also missing (n=1), HRpeak was selected to be 220 - age.

Hedge et al. applied a 5 breath median filter over the V̇O2 data in an effort to provide
a less noisy ground truth for the model, which was also done for this work [12]. In addition
to this, outlier rejection was applied to all the breath by breath parameters, which include
V̇O2, V̇E and BF. A 5 breath window was rolled through the data and every data point
subsequent to the window that was more than 3 standard deviations from the mean was
excluded from the final result. Outliers were still included within the rolling window. This
method of rejecting outliers is not perfect, but it does not interfere with the ultimate ideal
of real time predictions as it can be applied to a stream of data in real time.

3.4.2 Extension

The final goal of this research was to examine whether body composition and NIRS data
can improve the model performance compared to only using the previously described input
data. For this, first data from these 2 were separately be added as model inputs to examine
the difference with the original input features. Finally, both were added simultaneously,
to determine whether there was an additive effect.

Body Composition

For the extension of body composition features, previous work has shown that gender,
skeletal muscle mass (SMM) and body fat (BF) have among the strongest predictive values
of body composition features for predicting peak power output and V̇O2max [40]. As
such, it can be assumed that these features also influence submaximal V̇O2 substantially.
Given that the gender differences of the oxygen transport systems and fat (free) weight
have the strongest effect on the V̇O2max differences between men and women [41], and
representative features are already included for both (V̇E, SMM), including gender seemed
redundant. Therefore only muscle mass and body fat were included as features.

NIRS

For the extension of NIRS features, typically O2Hb and HHb are used from the channel
that goes deepest into the muscle tissue. However, blood volume changes often occur in
the collected data and the effect on O2Hb is largest, followed by HHb. Additionally, not
every channel always had representative data, meaning sometimes a certain channel was
not usable. While relatively infrequent, this would have required more visits to be excluded
from the training/testing data due to quality reasons.
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Therefore, it was chosen that only TSI was to be used as a feature, as it was most
consistent across participants, leading to the least amount of excluded visits while still
representing the muscle V̇O2. If TSI Fit Factor was too low or substantial blood volume
changes occurred in TSI, a visit or repetition was still excluded from the training/testing
data. If only 1 repetition was of insufficient quality, the other repetition was still used to
train and test the model.

3.4.3 Data preprocessing

Before being used as model inputs, data from different sensors were time-aligned. Breath by
breath data were interpolated to 1 Hz. NIRS data was captured at 10 Hz and downsampled
to 1 Hz. Each feature, except WR, was standardized to zero mean and unit variance across
all data. WR was normalized to [0, 1] across all data due to its non-normal distribution.

3.5 Data Analysis

3.5.1 Quality

Some visits were excluded from analysis due to missing features, insufficient data quality
or were not recorded at all. The only exception being P4’s Hard visit where the second
repetition of V̇O2 data was not recorded due to technical issues. Wearable sensor data was
intact and under the (slightly incorrect) assumption that V̇O2 data should be the same for
both repetitions, V̇O2 data from the first repetition was used for the second repetition as
well.

Considering 14 participants were recruited, a total of 56 visits should have taken place.
Instead, in total 58 visits were recorded, of which 50 have sufficient data quality to remain
included for the validation step. A further 9 visits are completely removed due to NIRS
data quality issues, and 2 visits have their second repetition excluded for the same reason.
In chapter 6, figure 6.1 displays a concrete view of which visits and repetitions were in-
and excluded.

3.5.2 Kinetics

In order to evaluate the V̇O2 kinetics, MNG was calculated from the measured and pre-
dicted V̇O2 data. First the V̇O2 data of both repetitions of a PRBS sequence were ensemble
averaged to yield a single 16 minute response for each visit. Then, the WR and V̇O2 were
both converted to the frequency domain and system gain was calculated by dividing V̇O2

harmonics by WR harmonics. Finally, MNG was calculated by taking the mean of the
harmonics up to a cut-off frequency of 0.01Hz with regards to the base harmonic [14].
In cases where 1 of the 2 repetitions were excluded due to signal quality, the ensemble
averaging step was skipped and MNG was calculated from the single repetition.

3.5.3 Statistical

To evaluate both the V̇O2 and MNG prediction results of the model, repeated-measures
correlation and repeated-measures Bland-Altman analysis were used. Both account for the
within-participant variance of the observations over time. Repeated-measures correlation
uses analysis of covariance (ANCOVA) to adjust for differences between the measurements
and predictions within each person [42]. By fitting parallel regression lines with a common
slope but varying intercepts for each individual, repeated-measures correlation evaluates
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the overall within-person association. It yields an r-value that describes the strength of the
relationship between the predictions and measurements that is bounded by -1 to 1, where
1 means the predictions are perfectly correlated.

Unlike standard Bland-Altman analysis, which assumes independent observations, repeated-
measures Bland-Altman adjusts for the clustering of repeated measurements within par-
ticipants. It separates variance into between-individual differences and within-individual
variability using analysis of variance (ANOVA). This yields more accurate bias and limits
of agreement (LoA), reflecting the variability at both individual and group levels [43].

All data analysis and processing has been performed in python. For repeated-measures
correlation, package pingouin was used. For repeated-measures Bland-Altman analysis,
code was used from Wade et al. [44]. Statistical significance is set at p=0.05.
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Chapter 4

Results

4.1 Ramp-incremental exercise responses

In table 4.1, the results of the ramp-incremental test are shown. Included are peak WR
and V̇O2, GET V̇O2 and all work rates used during the different PRBS sequences.

Table 4.1: Mean, standard deviation and range of peak and GET V̇O2 and cor-
responding work rates based on the ramp-incremental test results for all 14 partic-
ipants.

(n=14) mean± sd min −max
V̇O2 Peak (Lmin−1) 3.47 ± 0.62 2.44− 4.28
V̇O2 GET (Lmin−1) 2.22 ± 0.37 1.63− 2.74

WR Peak (W) 348 ± 62 250 − 471
WR 90% GET (W) 138 ± 27 107 − 184

WR GET (W) 153 ± 30 119 − 204
WR ∆30% (W) 194 ± 37 147 − 256

4.2 Oxygen uptake

Tables 4.2 and 4.3 present the mean, standard deviation and range of the V̇O2 prediction
and model training test losses for the different input feature sets, respectively. During
the rest of this work, a set of models will refer to a set of 14 models, one for each
participant, that together represent one data point for the results. Such that the described
analysis methods are to be performed on a single set of models and thus the results of this
single set will have a single repeated-measures correlation, Bland-Altman bias and limits
of agreement, etc... In tables 4.2 and 4.3 the n = x denotes that x sets of models were
included in the results for that input feature set. Furthermore, in table 4.2, a best column
is included, which denotes the results for the set of models that includes only the best
performing model for each participant.

Validation

Mean repeated-measures correlation is high with an r-value of 0.928. Systemic bias is low
with a mean of -14 mLmin−1, but the mean LoA are wide with a rage of -512 to 485
mLmin−1. Results for the best set of models are better with an r-value of 0.943 and LoA
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of -401 to 385 mLmin−1.

Participant test losses are relatively consistent, though P8 is a large outlier with a mean
test loss of 0.4. P1, P3, P11, P12 and P15 show relatively high mean test losses around
0.2 - 0.3.

Figure 2: V̇O2 prediction results for best performing set of models using Valida-
tion input features. Each participant is represented by a different color.

A Repeated-measures correlation be-
tween measured and predicted V̇O2.
Black dashed line represents the line of
identity (i.e., y = x).

B Repeated-measures Bland–Altman
plot. The black dashed line represents
the bias, and the grey dashed lines rep-
resent the 95% limits of agreement.

Extension

NIRS input features achieve 0.932 and 0.943, Body Composition input features achieve
0.930 and 0.944 and Both input features achieve 0.931 and 0.947 mean and best repeated-
measures correlation, respectively. All different extension input features show a slight
increase in both mean and best repeated-measures correlation compared to the validation
input features, except for NIRS, which shares the same best correlation as the Validation
input features. Additionally, highest correlation is attained using Both input features.

Mean LoA are similar between all input feature sets, though best LoA are widest for
the Body Composition input features and smallest for Both input features. Both input
features attained the lowest bias for the best set of models, but the standard deviation of
the mean bias is largest of any set of input features, though differences are small.

Mean participant test losses seem lower for the NIRS input feature set compared to
the Validation input features, with exception of P15, which seems to be an outlier for the
NIRS data. Mean test losses are less consistent for the Body Composition input features,
as their standard deviation are generally higher than for the Validation and NIRS input
feature sets. Additionally, P15 is an even bigger outlier for the Body Composition features.
Both input feature set seems to have slightly more consistent test losses than the Body
Composition results, though relative outliers seem to be present more often.
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4.3 Oxygen Uptake Kinetics

In table 4.4 the results are shown for the comparison between measured and predicted
kinetics. Repeated-measures correlation is on average 0.07, with an average p-value of
0.59, showing that there is no meaningful correlation at all. Maximum correlation is 0.449,
with a statistically significant p-value of 0.017. Bias is relatively low at 5%, but 95% limits
of agreement are substantial with mean values of -59 to 69%.

Table 4.4: MNG results for the Validation input feature set. rrm and prm are
repeated-measures correlation and p-value, respectively. rrmHard

and prmHard
are

these same measurements but with the Hard condition excluded. The bias, LLoA,
and ULoA values are the mean bias, lower limit of 95% agreement, and upper limit
of 95% agreement, respectively, for the repeated-measures Bland-Altman analysis.
The ’best’ columns refer to the results of the set of models that includes only the
best performing model in terms of training loss for each participant.

(n=8) mean± sd min − max best
rrm 0.070± 0.170 -0.161− 0.449 0.015
prm 0.586± 0.269 0.017 − 0.913 0.942

rrmHard
0.292± 0.096 0.146 − 0.386 0.311

prmHard
0.34 ± 0.18 0.17 − 0.62 0.28

bias 5 ± 3 -1 − 9 1
LLoA -59 ± 16 -91 − -33 -65
ULoA 69 ± 11 47 − 88 68

Figure 3 displays the repeated-measures correlation and boxplot of the measured and
predicted MNG of the best set of models using the Validation input feature set. It can
be seen that there is indeed no correlation. However, all of the largest outliers are of the
Hard protocol. When excluding the Hard protocol from the correlation, mean correlation
is indeed higher, though not enough to make it statistically significant.

The boxplot shows that the ranges do not match up well at all, although a case could
be made that the Easy and Medium visits’ results are not poor. The range for the Hard
visit is particularly wide. It is expected to see kinetics slow as exercise intensity increases
[1]. However, at most there exists some semblance towards lower MNG as exercise intensity
increases, though the spread of the data is too large to state conclusively.

In chapter 6, figure 6.3 shows the results for the extension input features, though
there is no significant difference between any of the input feature sets. Very few sets of
models have statistically significant repeated-measures correlation and the correlations do
not go beyond 0.45. When the Hard protocol is excluded, some sets of models achieved
correlation between 0.6 and 0.7. However, the sets of models with the highest MNG
prediction accuracy do not correspond necessarily with the sets of models with the highest
V̇O2 prediction accuracy.
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Figure 3: MNG prediction results for lowest test loss set of models using Validation
input features.

A Repeated-measures correlation be-
tween measured and predicted MNG.
Black dashed line represents the line of
identity (i.e., y = x). Each participant
is represented by a different color, and
each type of visit is represented by a
different shape.

B Boxplot of the measured and pre-
dicted MNG results across the different
PRBS protocols. Orange and blue filled
boxes represent the measured and pre-
dicted kinetics, respectively. Solid lines
within the boxes represent medians and
open circles represent outliers.
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Chapter 5

Discussion

This study aimed to validate and extend the predictive capabilities of a TCN model for
estimating V̇O2 and its kinetics using wearable sensor data. It was found that high ac-
curacy can consistently be achieved, with a mean repeated-measures correlation of 0.928
and a best repeated-measures correlation of 0.943 using Validation input features. How-
ever, prediction of V̇O2 kinetics using the MNG method was less successful, showing no
meaningful correlation. Adding muscle oxygenation (NIRS) and body composition data
was input features improved the V̇O2 prediction results marginally, but did not change the
kinetics estimation.

5.1 Oxygen uptake

5.1.1 Validation

Hedge et al. achieved an overall repeated-measures correlation of 0.974, a bias of -17
mLmin−1and 95% LoA of -289 to 254 mLmin−1 [12]. Given that Hedge et al. only re-
port single results, without mention of how many times models have been trained, it is
likely the results are simply the congregated best results for all participants. Under those
circumstances, the correlation of 0.943, bias of -8 and 95% LoA of -401 to 385 mLmin−1

achieved in this study fell short of the results reported by Hedge et al.

The Tymewear strap that was used to measure V̇E only requires a simple calibration of
3 maximal in- and exhales. This allows it to be used as a stand-alone measuring tool, but
comes at the cost of accuracy. When comparing the strap’s V̇E measurements compare
to the CPET’s V̇E measurements, the signals are temporally very similar. However, the
ratio between them can vary between 1 and 2̃.3 in the collected sample, making it an in-
consistent measuring tool. Hedge et al. calibrated their Hexoskin vest with V̇E measured
by the CPET to improve their V̇E measurements making it likely that their V̇E values,
and consequently their prediction results, are more accurate [12].

A major difference in methodology was the choice to use ∆30% instead of ∆50% for
the high work rate of the Hard protocol in this work. It remains true that it is substan-
tially more likely to equalize the responses to exercise between different people, though it
significantly reduces the absolute work rate difference with the GET work rates. Given
that the V̇O2 signal is relatively noisy at higher work rates, which in combination with the
small absolute difference in V̇O2 makes the ultimate signal not always clear. This could
have had an effect on the ground truth V̇O2 values, even with the applied outlier rejection.

16



Furthermore, the participant sample is substantially different. In addition to the mean
person being taller and fitter compared to theirs, the standard deviation of work rate or
anthropometric measurement is larger by a factor ranging from 1.4 to 2.5, indicating that
the sample is significantly less homogeneous. Homogeneity of the characteristics can have
a significant effect on the prediction results as LOOCV is quite prone to outliers.

Finally, it is typical to control participants’ exercise and consumption of food, alcohol
and caffeine prior to each visit, as these can influence the test results and physiological
measurements. However, due to strong time constraints on the data collection period,
these things were not controlled for as they typically would be. This can result in more
inconsistent measurements between and within participants. An example of this is caffeine,
as it will elevate heart rate and can improve exercise performance [45]. Consequently, this
may have added further heterogeneity to the sample.

5.1.2 Extension

A marginal improvement in V̇O2 prediction accuracy was observed when adding either
or both NIRS and body composition features compared to the Validation input features.
Despite the included data being physiologically relevant, the improvement is very small
and likely statistically insignificant. It could be that the variance within the participant
sample is limiting the improvement in prediction accuracy.

Looking at test loss, results from NIRS input features are consistently slightly better
than those from the Validation input features, with an exception of P15, indicating that
there seems to be some improvement. However, for both Body Composition and Both
input features, there seems to be an increased variance in the observed test losses. Mean
minimum test loss is only different for the body composition input feature set, where it is
higher.

The body composition features are different from the NIRS features in that they add
2 features, rather than 1, as well as being the only non-temporal features. Perhaps the
model can not consistently learn the most suitable relationships for a larger amount of
input features. Additionally, the TCN architecture is designed to use temporal features,
and so using non-temporal features may yield inconsistent or undesirable results.

5.2 Oxygen Uptake Kinetics

Hedge et al. reported a repeated-measures correlation between predicted and measured
MNG to be 0.68, with a bias of 1.12% and 95% LoA of -16.56 to 18.86%. These results are
substantially better than what is achieved in this work, given that generally no correlation
was observed and the highest found correlation was 0.449 or 0.694 when excluding the Hard
visits. The progressive slowing of kinetics as exercise intensity increases observed in their
results, was not conclusively found in this work. The slight reduction in V̇O2 prediction
accuracy compared to Hedge et al.’s work is unlikely to force such a strong reduction in
MNG prediction accuracy.
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Furthermore, the measured MNG values range from about 20 to 150%, whereas all
previous papers using the MNG method have not reported MNG values above 100%
[14, 33, 34, 36, 35, 12]. Higher MNG indicates faster kinetics and the average participant
in this sample is quite fit. However, the MNG outliers are primarily from data collected
during the Hard protocol, which should display slower kinetics.

Previous work found significant correlation between MNG and τ within the moderate
intensity domain, but not within the heavy intensity domain [36]. It was argued that this
was due to increased breath-by-breath noise during the heavy intensity cycling. The noise
would impact the calculations of τ , but not MNG, as the inherent noise-filtering capa-
bilities make it more robust to noise [36, 14]. However, the large range and outliers of
measured MNG during the Hard visits contradict their findings.

The largest methodological differences between Hedge et al.’s work and this work with
regard to MNG are the PRBS sequence that is twice as long in this work, as well as the
usage of ∆30% instead of ∆50%. However, if MNG were an ideal method of analyzing
V̇O2 kinetics, these methodological differences should not yield such different results.

Figures 4 and 5 display on the left the averaged V̇O2 and the reconstructed signal using
the cut-off frequency, and on the right the V̇O2 and WR harmonics from which MNG is
calculated for P13 and P15’s Hard protocols, respectively. These are the largest outliers
with regard to MNG. It can be seen that the V̇O2 signal is still very noisy, despite being
averaged to increase the signal to noise ratio. The reconstructed V̇O2 signal is substantially
less noisy, but also filters out significant parts of the actual signal, smoothing out some of
the valleys and peaks.

In the right figures, a higher amplitude of the V̇O2 and WR harmonics indicate that
there is a larger proportion of the original signal present within that frequency. Generally,
it is both expected and observed that the higher frequency V̇O2 harmonics drop off in
amplitude and are considered to be just noise. For most participant visits this happens
soon past the used cut-off frequency of 0.01 Hz, indicating that it is a relatively accurate
cut-off, though definitely not perfect.

More importantly, and the reason why calculated MNG is so high for the visits dis-
played in the figures, is that the harmonics before the cut-off frequency do not display a
clear trend downwards. To calculate MNG, first the gain of each harmonic is calculated
by dividing the V̇O2 by the WR amplitude. Then, the first gain harmonic is divided by
the mean of the 2nd harmonic until the last harmonic before the cut-off frequency. Given
that no MNG values below 100% have been reported before and that MNG’s unit is a
percentage, it makes intuitive sense that the first harmonic should be one of the highest in
amplitude. Evidently, this is not reliably the case.

Furthermore, dividing the V̇O2 by the WR harmonics makes sense from a physiological
perspective, as the relationship between V̇O2 and WR is a well known characteristic known
as the gain of the V̇O2 response. Clearly, by dividing the two, they try to capture whether
the V̇O2 increases relatively faster or slower than the WR does. However, the different
frequency harmonics of the V̇O2 signal already correspond to slower and faster oscillations
within the V̇O2 signal, making the division by the WR harmonics a questionable choice.
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5.3 Limitations

Due to data quality and data collection time restrictions, there are some visits with un-
representative data that had to be excluded. Due to this, there exists some inherent bias
within the sample as some visits are included twice and some are not included at all. Pre-
diction results are generally worse for the Hard visit compared to the Easy and Medium
visits. Consequently, for participants that had their Hard visit excluded, test loss is gen-
erally lower and participants who had more than 1 of a particular visit included may have
different test loss because of it. Furthermore, the model is trained on an inconsistent
amount of data per participant, which could also introduce bias.

Looking at the PRBS sequence in figure 1 it can be seen that both repetitions have the
exact same work rate profile. However, the warmup ends at the lower work rate, whereas
the first repetition ends at the higher work rate. Therefore, from a kinetics point of view,
the start of the first and second repetition are not the same. It only impacts roughly the
first 30 seconds of each 16 minute long sequence. Additionally, for the kinetics analysis, the
2 repetitions are averaged, so the visits should have a similar profile regardless. However,
because some of the NIRS repetitions have been excluded, it is not possible to average the
predicted repetitions in those cases. Thus, there is a small discrepancy between the V̇O2

profile of some specific visits when using NIRS input features.

It is important to note that despite using outlier rejection and the 5 breath median
filter, not all visits’ V̇O2 ground truth is perfectly representative of actual V̇O2. Large
outliers exist and are still reflected after the median filter. This inherently decreases model
accuracy by tainting the ground truth. While this is expected to also have been the case
for Hedge et al., there is a chance that the longer and different PRBS sequence, the choice
to use ∆30% or a different participant sample may have exacerbated the limitation.

5.4 Conclusion

This work demonstrated the potential of wearable sensors combined with machine learning
to predict V̇O2, paving the way for more accessible fitness and health monitoring tools.
High prediction accuracy was achieved with repeated-measures correlation reaching up to
0.947 by utilizing the TCN model architecture.

However, predictions for V̇O2 kinetics, evaluated through the MNG method, showed
no meaningful correlation, challenging previous statements about the robustness of the
method [36, 12]. Furthermore, inclusion of additional peripheral measurements, such as
muscle oxygenation from NIRS and body composition data from BIA, marginally improved
V̇O2 prediction results, but did not change kinetics estimation.

Several factors have potentially played a role in the slightly poorer results compared to
previous work [12]. Particularly sample heterogeneity and data quality issues have likely
contributed significantly, though differences in study design may have exacerbated the dis-
crepancy in prediction results. Future research should focus on gathering larger and more
diverse datasets, improving data (pre)processing techniques and exploring more robust
methods for analysing V̇O2 kinetics.

19



Bibliography

[1] David C. Poole and Andrew M. Jones. Oxygen uptake kinetics. Comprehensive
Physiology, 2(2):933–996, 4 2012.

[2] T. Beltrame and R. L. Hughson. Linear and non-linear contributions to oxygen trans-
port and utilization during moderate random exercise in humans. Experimental Phys-
iology, 102(5):563–577, 5 2017.

[3] S M Phillips, H J Green, M J Macdonald, R L Hughson, and S Ri. Progressive effect of
endurance training on a vo l 2 kl netics at the onset of submaximal exercise. Technical
report, 1995.

[4] Stephen R. Norris and Stewart R. Petersen. Effects of endurance training on transient
oxygen uptake responses in cyclists. Journal of Sports Sciences, 16(8):733–738, 11
1998.

[5] Scott K Powers, Stephen Dodd, and Ralph E Beadle. Oxygen uptake kinetics in
trained athletes differing in VO2ma x. Technical report, 1985.

[6] Audrey Borghi-Silva, Thomas Beltrame, Michel Silva Reis, Luciana Maria Malosá
Sampaio, Aparecida Maria Catai, Ross Arena, and Dirceu Costa. Relationship be-
tween oxygen consumption kinetics and BODE index in COPD patients. International
Journal of COPD, 7:711–718, 10 2012.

[7] Judith G Regensteiner, Timothy A Bauer, Jane E B Reusch, Suzanne L Brandenburg,
Jeffrey M Sippel, Andria M Vogelsong, Susan Smith, Eugene E Wolfel, Robert H Eckel,
and William R Hiatt. Abnormal oxygen uptake kinetic responses in women with type
II diabetes mellitus. Technical report, 1994.

[8] Bruna Varanda Pessoa, Thomas Beltrame, Valéria A. Pires Di Lorenzo, Aparecida M.
Catai, Audrey Borghi-Silva, and Mauricio Jamami. COPD patients’ oxygen uptake
and heart rate on-kinetics at cycle-ergometer: Correlation with their predictors of
severity. Brazilian Journal of Physical Therapy, 17(2):152–162, 4 2013.

[9] Marco Guazzi, Ross Arena, Martin Halle, Massimo F. Piepoli, Jonathan Myers, and
Carl J. Lavie. 2016 focused update: Clinical recommendations for cardiopulmonary
exercise testing data assessment in specific patient populations. European Heart Jour-
nal, 39(14):1144–1161, 4 2018.

[10] Joshua Rudner, Carol McDougall, Vivek Sailam, Monika Smith, and Alfred Sacchetti.
Interrogation of Patient Smartphone Activity Tracker to Assist Arrhythmia Manage-
ment. Annals of Emergency Medicine, 68(3):292–294, 9 2016.

20



[11] Toru Nakamura, Ken Kiyono, Herwig Wendt, Patrice Abry, and Yoshiharu Yamamoto.
Multiscale Analysis of Intensive Longitudinal Biomedical Signals and Its Clinical Ap-
plications, 2 2016.

[12] Eric T. Hedge, Robert Amelard, and Richard L. Hughson. Prediction of oxygen uptake
kinetics during heavy-intensity cycling exercise by machine learning analysis. Journal
of applied physiology (Bethesda, Md. : 1985), 134(6):1530–1536, 6 2023.

[13] Robert Amelard, Eric T. Hedge, and Richard L. Hughson. Temporal convolutional
networks predict dynamic oxygen uptake response from wearable sensors across exer-
cise intensities. npj Digital Medicine, 4(1), 12 2021.

[14] Thomas Beltrame and Richard L. Hughson. Mean normalized gain: A new method
for the assessment of the aerobic system temporal dynamics during randomly varying
exercise in humans. Frontiers in Physiology, 8(JUL), 7 2017.

[15] Andrew M. Jones and David C. Poole. Oxygen uptake dynamics: From muscle to
mouth - An introduction to the symposium. In Medicine and Science in Sports and
Exercise, volume 37, pages 1542–1550, 9 2005.

[16] Stephane Perrey, Valentina Quaresima, and Marco Ferrari. Muscle Oximetry in Sports
Science: An Updated Systematic Review, 4 2024.

[17] R. F. Kushner. Bioelectrical impedance analysis: A review of principles and applica-
tions, 1992.

[18] Harry B. Rossiter. Exercise: Kinetic considerations for gas exchange. Comprehensive
Physiology, 1(1):203–244, 1 2011.

[19] Thomas J Barstow and Paul A Mole. Linear and nonlinear characteristics of oxygen
uptake kinetics during heavy exercise. Technical report, 1991.

[20] David W Hill. The Critical Power Concept A Review. Technical Report 4, 1993.

[21] N. C. Spurway, B. Ekblom, T. D. Noakes, and P. D. Wagner. What limits VO 2max?:
A symposium held at the BASES Conference, 6 September 2010. Journal of Sports
Sciences, 30(6):517–531, 3 2012.

[22] Brian J. Whipp, Susan A. Ward, and Harry B. Rossiter. Pulmonary O2 uptake during
exercise: Conflating muscular and cardiovascular responses. In Medicine and Science
in Sports and Exercise, volume 37, pages 1574–1585, 9 2005.

[23] Jan Boone, Thomas J Barstow, Bert Celie, Fabrice Prieur, and Jan Bourgois. The
interrelationship between muscle oxygenation, muscle activation and pulmonary VO2
to incremental ramp exercise: Influence of aerobic fitness. Technical report, 2016.

[24] Darren S Delorey, John M Kowalchuk, Donald H Paterson, and D H Paterson. Re-
lationship between pulmonary O 2 uptake kinetics and muscle deoxygenation during
moderate-intensity exercise. J Appl Physiol, 95:113–120, 2003.

[25] Nicola Lai, Marco Camesasca, Gerald M. Saidel, Ranjan K. Dash, and Marco E.
Cabrera. Linking pulmonary oxygen uptake, muscle oxygen utilization and cellular
metabolism during exercise. In Annals of Biomedical Engineering, volume 35, pages
956–969, 6 2007.

21



[26] Mark Burnley and Andrew M. Jones. Oxygen uptake kinetics as a determinant of
sports performance. European Journal of Sport Science, 7(2):63–79, 6 2007.

[27] Norman Lamarra, Brian J Whipp, Susan A Ward, and Karlman Wasserman. Effect
of interbreath fluctuations on characterizing exercise gas exchange kinetics. Technical
report, 1987.

[28] C. J. Brittain, H. B. Rossiter, J. M. Kowalchuk, and B. J. Whipp. Effect of prior
metabolic rate on the kinetics of oxygen uptake during moderate-intensity exercise.
European Journal of Applied Physiology, 86(2):125–134, 2001.

[29] T Beltrame, M Gois, U Hoffmann, J Koschate, and R Hughson. Relationship between
maximal aerobic power with aerobic fitness. 2020.

[30] Uwe Hoffmann, Dieter Eflfeld, Hans-Georg Wunderlich, and Jiirgen Stegemann. Dy-
namic linearity of I O2 responses during aerobic exercise. Technical report, 1992.

[31] Uwe Hoffmann, Dieter Egfeld, Dieter Leyk, Hans-Georg Wunderlich, and Jiirgen
Stegemann. Prediction of individual oxygen uptake on-step transients from frequency
responses. Technical report, 1994.

[32] R L Hughson, D A Winter, A E Patla, G D Swanson, and L A Cuervo. Investigation
of VO2 kinetics in humans with pseudorandom binary sequence work rate changes.
Technical report, 1990.

[33] X Thomas Beltrame and Richard L Hughson. Aerobic system analysis based on
oxygen uptake and hip acceleration during random over-ground walking activities.
Am J Physiol Regul Integr Comp Physiol, 312:93–100, 2017.

[34] Thomas Beltrame, Robert Amelard, Alexander Wong, and Richard L Hughson. Ex-
tracting aerobic system dynamics during unsupervised activities of daily living using
wearable sensor machine learning models. J Appl Physiol, 124:473–481, 2018.

[35] T. Beltrame, R. Amelard, A. Wong, and R. L. Hughson. Prediction of oxygen uptake
dynamics by machine learning analysis of wearable sensors during activities of daily
living. Scientific Reports, 7, 4 2017.

[36] Eric T Hedge and Richard L Hughson. Frequency domain analysis to extract dynamic
response characteristics for oxygen uptake during transitions to moderate-and heavy-
intensity exercises. J Appl Physiol, 129:1422–1430, 2020.

[37] Eleftherios Batzolis, Eleni Vrochidou, and George A. Papakostas. Machine Learning
in Embedded Systems: Limitations, Solutions and Future Challenges. In 2023 IEEE
13th Annual Computing and Communication Workshop and Conference, CCWC 2023,
pages 345–350. Institute of Electrical and Electronics Engineers Inc., 2023.

[38] Sérgio Branco, André G. Ferreira, and Jorge Cabral. Machine learning in resource-
scarce embedded systems, FPGAs, and end-devices: A survey, 11 2019.

[39] Hester Van Der Vaart, Scott R. Murgatroyd, Harry B. Rossiter, Carey Chen, Richard
Casaburi, and Janos Porszasz. Selecting constant work rates for endurance testing
in COPD: The role of the power-duration relationship. COPD: Journal of Chronic
Obstructive Pulmonary Disease, 11(3):267–276, 2014.

22



[40] Charlotte Wenzel, Thomas Liebig, Adrian Swoboda, Rika Smolareck, Marit L.
Schlagheck, David Walzik, Andreas Groll, Richie P. Goulding, and Philipp Zimmer.
Machine learning predicts peak oxygen uptake and peak power output for customiz-
ing cardiopulmonary exercise testing using non-exercise features. European Journal
of Applied Physiology, 11 2024.

[41] Kirk Cureton, Phillip Bishop, Patricia Hutchinson, Hillary Newland, Susan Vick-
ery, and Linda Zwiren. Sex difference in maximal oxygen uptake Effect of’ equating
haemoglobin concentration. Technical report, 1986.

[42] Jonathan Z. Bakdash and Laura R. Marusich. Repeated measures correlation. Fron-
tiers in Psychology, 8(MAR), 4 2017.

[43] J. Martin Bland and Douglas G. Altman. Agreement between methods of measure-
ment with multiple observations per individual. Journal of Biopharmaceutical Statis-
tics, 17(4):571–582, 7 2007.

[44] Logan Wade, Laurie Needham, Murray Evans, Polly McGuigan, Steffi Colyer, Darren
Cosker, and James Bilzon. Examination of 2D frontal and sagittal markerless motion
capture: Implications for markerless applications. PLoS ONE, 18(11 NOVEMBER),
11 2023.

[45] Todd A Astorino and Daniel W Roberson. Efficacy of acute caffeine ingestion for
short-term high-intensity exercise performance: a systematic review. Technical report,
2010.

23



Chapter 6

Appendix

6.1 Data Collection

Table 6.1: Viability of collected data by participant and visit. VAL columns refer
to data necessary for validation step. N1 and N2 refer to NIRS data for the first
and second repetition of the sequence, respectively. Red: missing or invalid data,
Lightgreen: valid and sufficient, Darkgreen: 2 sufficient recordings

Ramp Easy Medium Hard

Participant VAL N1 N2 VAL N1 N2 VAL N1 N2 VAL N1 N2

P1

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15
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Figure 4: Averaged V̇O2 and frequency domain harmonics of P13’s Hard protocol,
MNG=121.1%

A V̇O2 of averaged repetitions and the same
signal reconstructed through Fourier using the
0.01 Hz cut-off frequency.

B Amplitude of harmonics of de-
constructed V̇O2 and WR signal.
Vertical red dotted line indicates
the cut-off frequency. First har-
monic is indicated in red.

Figure 5: Averaged V̇O2 and frequency domain harmonics of P15’s Hard protocol,
MNG=149.8%

A V̇O2 of averaged repetitions and the same
signal reconstructed through Fourier using the
0.01 Hz cut-off frequency.

B Amplitude of harmonics of de-
constructed V̇O2 and WR signal.
Vertical red dotted line indicates
the cut-off frequency. First har-
monic is indicated in red.
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