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MANAGEMENT SUMMARY

Koninklijke Euroma B.V. (Euroma) is a leader in the production of herbs and spices. To meet
increasing demand, Euroma implemented a robotized high-bay warehouse system at its facility
in Zwolle. With no capacity for additional buffer spots, timely pallet deliveries are critical to
prevent production disruptions and truck waiting times.

Problem Statement

Full outbound pallets must reach their destination within one hour, yet 14% exceed this limit due
to inefficiencies in the outbound process. Queueing times are the largest source of variability,
influenced by scheduling logic, pipeline threshold configurations, and operator behavior. These
delays result in daily costs of up to €1,865 due to production standstills and truck waiting times.

Research Focus and Goal

The main research question is:

How can Euroma optimize the outbound process of its high-bay warehouse to improve on-time
delivery performance?

This study identifies strategies and parameter optimizations to enhance the outbound process.
The research classifies the high-bay warehouse operations as a Blocking Job Shop Scheduling
Problem (BJSSP). Due to system complexity, exact approaches and heuristics are infeasible
for real-time decision-making in the dynamic environment at Euroma. Instead, a discrete event
simulation is developed to evaluate:

• Dispatching rules (FCFS, R1)

• Pipeline threshold configurations

• Operator behavior affecting pallet retrieval from the outfeed lanes

Current System

The current outbound logic processes outbound pallets in two priority groups: workstation pal-
lets take precedence over full outbound pallets. A first-come-first-served (FCFS) approach is
applied within each priority group. Moreover, workstation pallets must strictly adhere to a pre-
defined sequence, preventing retrieval until the preceding pallet has been processed. Pipeline
thresholds further limit the number of pallets simultaneously in transit to a destination.
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Key Findings

Simulation results indicate that both proposed dispatching rules improve performance:
• The R1 dispatching rule maximizes on-time delivery but increases tardiness.

• The FCFS approach slightly reduces on-time delivery compared to R1 but is less complex
and shows advantages in tardiness performance.

Additionally, increasing the pipeline thresholds for outfeed lanes significantly improves perfor-
mance. Raising the pipeline threshold at the outfeed lane at MP0 by just one unit results in:

• 1.46% increase in on-time delivery

• 5.48-minute reduction in tardiness per delayed pallet, reducing daily tardiness by 7.29
hours

Finally, the simulation results highlight the importance of the operator behavior. Increasing full
outbound pallet retrieval times in 5-second increments (up to 300 seconds) leads to on average:

• 0.5% increase in on-time delivery

• 2.37-hour daily reduction in overall tardiness

Conclusions and Recommendations

Euroma’s high-bay warehouse operates at full capacity, yet outbound performance remains a
bottleneck. The simulation results confirm that adjusting pipeline thresholds and dispatching
rules can significantly improve warehouse efficiency. However, it is essential to acknowledge
that the simulation model does not fully replicate real-world operations due to missing Ware-
house Control System (WCS) logic and limited documentation. Despite this, the findings pro-
vide valuable insights into potential improvements.

Key Recommendations:
1. Increase Pipeline Thresholds

• Raising pipeline thresholds for outfeed lanes improves on-time delivery and tardiness
of full outbound pallets without negatively affecting other pallet flows.

• These changes do not require modifications to the WCS, allowing immediate imple-
mentation.

2. Pilot Test of FCFS Logic

• FCFS eliminates priority distinctions between pallet types, reduces overall tardiness
and on-time delivery percentages.

• Implementing FCFS requires minimal WCS modifications, making it feasible for real-
world testing.

• A controlled trial during week 52 (when production is paused) is recommended to
assess feasibility without operational disruptions.

3. Improve Operator Coordination

• Ensuring timely pallet retrievals from the outfeed lanes minimizes bottlenecks and
further enhances warehouse throughput.

This study demonstrates that Euroma’s high-bay warehouse can increase outbound pallet flow
without negatively impacting other operations, leading to more efficient resource utilization and
increased outbound pallet flow.
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1 INTRODUCTION

This chapter overviews the research and situates it within its broader context. Section 1.1 intro-
duces the company Koninklijke Euroma B.V. (Euroma), while Section 1.2 defines and motivates
the problem. Finally, Sections 1.3 and 1.4 outline this study’s research goal, approach, method-
ology, and structure.

1.1 Introduction of Euroma

Founded in 1899 by Antonij ten Doesschate, Euroma began producing herbs, spices, and phar-
maceutical items in Zwolle. The brand name ”Euroma” was introduced in 1966 and is still being
used. In 2001, Euroma received the Royal predicate – an acknowledgment of its national sig-
nificance and importance in its field (Euroma, 2023d).

In 2018, Euroma strengthened its position in the European and Dutch herb and spice markets
by acquiring Intertaste. A year later, a state-of-the-art production facility, shown in Figure 1.1,
was opened in Zwolle. This facility boasts a robotized warehouse, fully automated mixers, and
automatic guided vehicles (Euroma, 2023d).

Figure 1.1: Production Facility in Zwolle (Euroma, no date).

Following the acquisition, Euroma operated six production facilities. Three of these were grad-
ually integrated into the Zwolle facility, leveraging combined expertise in the dry production of
herbs, spices, and sauces (Euroma, 2023a). In addition to the Zwolle facility, Euroma operates
two other production sites: one in Nijkerk, specializing in ambient liquid solutions, and another
in Schijndel, focusing on the production and packaging of cooled fresh liquid products (Euroma,
2023a).

Euroma is the leader in the Dutch market for herbs and spices and has a top-three position in the
European market (Euroma, 2023d). With about 650 employees, Euroma reached a turnover of
230 million euros in 2020 (Euroma, 2021). Euroma continues to pursue its mission of becom-
ing ”Europe’s foremost partner of taste, providing food business with a range of spice-based
solutions” (Euroma, 2023b).
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1.2 Research Motivation

After opening the production facility in Zwolle, Euroma centralized the demand and stock from
the three merged facilities at this location. The company installed a 27-meter-tall robotized
warehouse system to accommodate increased operational demands with six automatic pallet
cranes (Euroma, 2023c). These cranes transport pallets between their storage locations and
conveyor belts on either side of the Automated Storage and Retrieval System (AS/RS). The
conveyor belts, referred to as MP0, EP0, and EP1, connect the AS/RS with the production site.

The departments within Euroma rely on timely pallet delivery to fulfill customer demand. The
high-bay warehouse outbound process involves various individuals and systems handling inter-
connected tasks. The team leaders initiate the process by requesting goods from the high-bay
warehouse. Subsequently, The Warehouse Control System (WCS) assigns the outbound tasks
to the cranes, transporting the pallets from storage to the conveyors. Operators retrieve full out-
bound pallets from the conveyors and move them to buffer spots near their intended destination
within the production site. There, they remain until further processing.

This division of tasks presents a challenge. Operators lack insight into the pallets’ initial re-
quest time, so they do not know the overall duration of the outbound process. Similarly, the
team leaders only notice the delays if a pallet fails to arrive at its destination on time. As a
result, neither the operators nor the team leaders perceive the typical duration of the retrieval
process.

Currently, Euroma anticipates that full outbound pallets will reach their destination within a max-
imum timeframe of one hour. However, approximately every seventh pallet fails to meet this
expectation. Table 1.1 presents the average daily pallet counts and the percentage that exceeds
or meets the 60-minute threshold for delivery.

Average Daily Pallet Quantity Percentage

MP0 EP0 EP1 MP0 EP0 EP1

Total Duration Exceeds Threshold (60 Minutes) 5.58 30.68 6.09 14.12% 18.24% 6.95%
Total Duration Within Threshold (60 Minutes) 33.95 137.52 81.54 85.88% 81.76% 93.05%

Table 1.1: Outbound Duration Analysis: Average Daily Pallet Counts and Percentage Split
Above and Within 60-Minute Threshold

On average, 43 pallets per day exceed the one-hour delivery threshold to their outbound des-
tination, accounting for 13.56% of all full outbound requests. Notably, pallets routed through
conveyor EP1 demonstrate the highest probability (93.04%) of meeting the desired timeframe,
while those utilizing EP0 are slightly less likely to meet the target (81.76%). This results in an
average of 31 pallets daily from EP0 and six from EP1 exceeding the threshold.

The untimely arrival of pallets can lead to significant issues, such as truck waiting times, pro-
duction interruptions, and last-minute schedule adjustments, all of which incur additional costs.
Expert consultation estimates the following costs for delays:

• Production standstill: €200 per hour

• Truck waiting time: €72 per hour

Delays at MP0 and EP1 primarily cause production standstills, while those at EP0 result in truck
waiting times. On average, these delays amount to daily costs of €902.82 for production stand-
stills and €962.28 for truck waiting times, totaling €1865.10 if all delays lead directly to costs.
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Based on the identified issues, we established a problem cluster (Figure 1.2). The cluster high-
lights the core problem in red as the fundamental cause of the action problem (in grey), while
the intermediary green boxes delineate the causal chain.

Figure 1.2: Problem Cluster

Although the high-bay warehouse collects substantial operational data, Euroma has not lever-
aged this information for analysis. Consequently, there is limited insight into the performance
of the high-bay warehouse, hindering effective decision-making regarding strategy and param-
eter optimization for the outbound process. Hence, this research defines the core problem as
follows:

“Euroma underutilizes existing data of high-bay warehouse performance, resulting in
suboptimal settings and strategy formulation for the outbound process of the high-bay

warehouse.”
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1.3 Research Goal

Euroma aims to enhance its production process, including the performance of the high-bay
warehouse. Therefore, this research seeks to optimize strategies and parameter settings that
impact the outbound process of the high-bay warehouse. Key areas of improvement include
sequencing outbound requests and examining parameters influencing the outbound operations.
This research identifies ways to improve the on-time delivery of outbound pallets by conducting
a discrete event simulation. While tailored to Euroma’s current demands, the study attempts to
offer solutions for varying demand scenarios in the future. Therefore, we formulate the research
goal as follows:

“Design of a discrete event simulation study that assesses the contribution of
strategies and parameter settings to achieving timely delivery of all requested

outbound pallets.”

Scope and Limitations The complexity of high-bay warehouse processes and the time con-
straints of a master’s thesis make it essential to define the scope and limitations of this thesis.
This research includes a historical data analysis aimed at evaluating the current performance
of the high-bay warehouse. The analysis uses historical data from 5 August 2023 to 31 De-
cember 2023. Specifically, the study focuses on identifying factors contributing to delays in full
outbound operations on both the AS/RS and the conveyor system. While the influence of other
pallet movements, like the inbound process, is recognized, we will not individually analyze them.

In two phases, the WCS assigns outbound tasks to a crane. This research does not investigate
the decision-making process of reserving specific pallets based on product requests. Instead,
it concentrates on the subsequent step: assigning reserved outbound pallets to cranes. Addi-
tionally, this research focuses on parameters directly influencing the assignment of outbound
tasks, while parameters related to the timing and quantity of pallet requests are not within the
scope of interest.

Finally, the destinations for full outbound pallets are predetermined and based on the distance
from the outfeed lane to the destination on the production side. In contrast, the WCS can assign
new orders to any of the available workstations. For the purpose of this study, we assume that
the destinations of full outbound pallets are fixed according to historical data and cannot be
altered.

1.4 Research Approach

First, we formulate the main research question to meet the research objective in a structured
manner. Subsequently, we develop sub-questions and outline the approach to addressing them.
The main research question is:

“How can Euroma optimize the outbound process of the high-bay warehouse to
increase the on-time delivery performance of pallets?”

The sub-research questions are established by following theManagerial Problem-SolvingMethod
(MPSM) from Herkens and Winden (2017). This approach structures the research into seven
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MPSM Approach Research Approach

Phase Description Chapter

1 Problem definition 1.2 Introduction of the Problem
2 Formulation of the approach 1.4 Research Approach
3 Analysis of the problem 2 Problem Context
4 Formulation of (alternative) solutions 3 Literature Review

4 Modelling and Solution Design
5 Choice of a solution 5 Simulation Experiments
6 Implementation of the solution 6 Implementation

Table 1.2: MPSM Approach and Application

phases. This research’s scope covers six phases, which impose the report’s structure. Ta-
ble 1.2 summarizes the phases and their mapping to the report structure.

The first group of sub-research questions aims to evaluate the current situation. This evaluation
is essential for understanding the current performance and identifying improvement opportuni-
ties. Chapter 2 addresses the questions corresponding to phase 3 of the MPSM, using insights
based on observations, stakeholder input, and available data.

Phase 3: Analysis of the problem
What are the current control policies and settings for managing high-bay ware-
house operations at Euroma?

• Which strategies does Euroma use for inbound and outbound pallet management?

• Which parameters influence warehouse processes?

• What key performance indicators (KPIs) are relevant for evaluating the high-bay
warehouse performance?

• How does the current system perform based on KPIs?

• Which specific stages of the outbound process offer potential for optimization?

Following the analysis of the current situation, phase four focuses on classifying and translating
the on-time delivery optimization problem into problems proposed in the scientific literature.
By analyzing various techniques, we identify similarities and differences. Chapter 3 details
the literature review. Afterward, Chapter 4 answers the question regarding the design of the
solution approach, where methods to solve the identified problems are developed based on the
literature.

Phase 4: Formulation of (alternative) solutions
What does the literature propose for optimizing the on-time delivery in an AS/RS
connected to a conveyor system?

• How is the integration of conveyor systems and AS/RS addressed in the literature?
• What are the similarities and differences between Euroma’s challenges and prob-
lems studied in the literature?

• Which optimization techniques does the literature propose for minimizing lead times
in outbound processes?
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• What are the advantages and disadvantages of the optimization models proposed
in the literature?

• How can discrete event simulation contribute to this study?

How should the solution approach be designed for the on-time delivery problem
of Euroma?

• How can the conveyor system’s capacity and requirements be incorporated into the
solution?

• Which solution approaches can solve the problem instances of Euroma in limited
computational time?

• What is the conceptual model for a discrete event simulation study for optimizing
the outbound process at Euroma?

In the fifth phase of the MPSM, the focus shifts to evaluating the model’s performance. We test
their effectiveness across various scenarios after developing and selecting appropriate solution
approaches. Chapter 5 presents the result and corresponding experimental setting.

Phase 5: Choice of a solution
Which model configuration performs best compared to the current system under
different scenarios?

• What scenarios and experimental setups should we consider?
• What is the impact of demand fluctuations on system performance?
• Which outbound points represent bottlenecks?

The last phase of the MPSM addresses the implementation of the solution approach. Thus,
Chapter 6 explores the requirements, possible consequences, and the benefits and drawbacks
of the proposed solution.

Phase 6: Implementation of the solution
What are the consequences and requirements of implementing the proposed so-
lution?

• What are the IT requirements for implementation?
• What are the benefits and drawbacks of the changes?

The study concludes with recommendations and suggestions for future research in Chapter 7.
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2 PROBLEM CONTEXT

This chapter’s main objective is to inform the reader of the current situation by providing a
detailed description of the problem and addressing the first research question: What are the
current control policies and settings for managing Euroma’s high-bay warehouse operations?

First, Section 2.1 presents an overview of the high-bay warehouse, while Section 2.2 focuses
on the key IT system in use. Afterward, Section 2.3 outlines the relevant performance measures
and gives insight into the outlier analysis. Furthermore, Section 2.4 explains the control rules
of the outbound process, followed by an analysis of the current performance. Finally, Section
2.5 summarizes the key findings.

2.1 Overview of the High-Bay Warehouse

Euroma operates an automated high-bay warehouse to store pallets containing raw materials,
packaging materials, and finished goods. The central part is the Automated Storage and Re-
trieval System (AS/RS), which manages the goods’ storage and retrieval process and integrates
with a conveyor network. The cranes pick up incoming pallets and drop off outgoing ones at
in- and output points (I/O-points), linked to the production site by conveyor belts. Figure 2.1
provides a schematical overview of the high-bay warehouse and its systems.

Figure 2.1: 3D Visualization of the High-Bay Warehouse and its Systems. Conveyor belt MP0
and EP1 have a direct connection with the AS/RS over I/O-points while EP0 is connected to the
EP1 via pallet lifts. Figure 2.2 presents a detailed representation of the conveyors.

2.1.1 Automated Storage and Retrieval System

The 27-meter high AS/RS consists of six aisles (highlighted in light green in Figure 2.1). Each
aisle accommodates an aisle-captive crane operating exclusively within its designated aisle.
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Additionally, cranes can move vertically and horizontally simultaneously and are limited to car-
rying one unit load (pallet) at a time (single shuttle).

The AS/RS employs a double-deep storage configuration. Thus, each compartment has space
for two pallets, one in the front and one in the back. It features 18,000 pallet locations and
accommodates various pallet heights and widths (Euro and Block pallets).

2.1.2 Conveyor System

Unidirectional conveyors connect the AS/RS with the production side. On the ground floor, the
high-bay warehouse features two conveyor belts: MP0 and EP0. A third conveyor belt, EP1, is
located on the first floor directly above EP0. As depicted in Figure 2.1, MP0 and EP1 are directly
linked to the I/O-points of the AS/RS. Conversely, EP0 is connected to EP1 through pallet lifts,
each dedicated to transporting pallets in a single direction. For visual clarity, the detailed layout
of these conveyor belts, along with key abbreviations representing significant conveyor spots,
is illustrated in Figure 2.2.

All three conveyor belts feature similar configurations, comprising distinct lanes designated for
specific functions.

• An infeed lane (green border) for pallets entering the system.

• An outfeed lane (red border) for pallets exiting the system.

• A reject lane (blue border) for pallets requiring review before entering the system.

The conveyors MP0 and EP1 fulfill roles beyondmere inbound or outbound pallet transportation.
Conveyor spots with an orange border represent workstations. At workstations, operators often
require only partial use of pallet contents. Therefore, the pallets subsequently undergo inbound
processing. Every outfeed lane and workstation comprises multiple buffer spots. At the last
buffer spot, pallets await further handling by operators. Unique IDs identify these spots:

• Out1 to Out3 for the outfeed lanes,

• F1 to F5 for the workstations at MP0, and

• P1 to P2 for the workstations at EP1 (illustrated in Figure 2.2).

The conveyor system operates unidirectionally, meaning pallets cannot bypass obstructions.
Arrows indicate this directional flow in Figure 2.2. Furthermore, each conveyor spot can ac-
commodate one pallet at a time.

The system continuously tracks the location and destination of pallets within the high-bay ware-
house, allowing it to monitor the number of pallets currently in transit to each destination. We
refer to the maximum number of pallets in transit or awaiting processing at an outfeed lane or
workstation as pipeline thresholds. Table 2.1 displays these thresholds.

Euroma initially based the pipeline thresholds on the number of available buffer spots. For
instance, the outfeed lane at MP0 comprises three buffer spots. Hence, the company set the
pipeline threshold to three. This principle extends also to the workstations. In contrast, the
pipeline threshold for EP0 and EP1 exceed the available buffer spots due to the control algo-
rithm’s ability to handle pallet blockages. If pallets occupy the outfeed lanes, the blocked pallets
complete another cycle on conveyor EP1 after a 25-second waiting period, allowing for a higher
threshold without causing congestion.
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(a) Location Overview of the Conveyor MP0 on the Ground Floor. The six pallet cranes of the AS/RS
facilitate pallet movement to and from the conveyor via I/O-points. The conveyor transports pallets be-
tween the workstations, inbound or outbound lanes, and the AS/RS.

(b) Location Overview of the Conveyor EP0 on the Ground Floor. Pallet lifts connect the conveyor to
EP1.

(c) Location Overview of the Conveyor EP1 on the Ground Floor. The six pallet cranes of the AS/RS
facilitate pallet movement to and from the conveyor via I/O-points. The conveyor transports pallets be-
tween the workstations, in- or outfeed lanes, and the AS/RS. Additionally, lifts transport pallets to EP0.

Figure 2.2: Location Overview of High-Bay Warehouse Conveyor Belts. An overview of key
locations within the warehouse conveyor system is provided, with a focus on connections to the
AS/RS, in- and outfeed lanes, and workstations
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Pallet Destination Abbreviation Pipeline Threshold (N. of Pallets)

Outbound Location at EP0 Out3 10

Outbound Location at EP1 Out2 7

Workstations at EP1 P1 & P2 7

Outbound Location at MP0 Out1 3

Workstations at MP0 F1 - F4 7

F5 5

Table 2.1: Pipeline Threshold for Pallet Destinations: maximum allowable number of pallets in
transit or awaiting processing at designated destination, including outfeed lanes and worksta-
tions

2.2 Overview of IT Systems

The automation of warehouses necessitates the development of IT systems designed for man-
aging warehouse operations. For the management of the high-bay warehouse, Euroma utilizes
two different IT systems: a Warehouse Management System (WMS) and a Warehouse Control
System (WCS). Typically, the WMS focuses on the management of orders and inventory, while
the WCS monitors and controls machinery (Son et al., 2016).

TheWMSmaintains information about the stock levels and pallet location across the production
site. In contrast, the WCS manages the processes within the high-bay warehouse. Placing a
pallet on the infeed lane initiates an inbound task in the WMS, which then communicates the
task details and pallet characteristics to the WCS. Considering the pallet’s specifications, the
WCS assigns the inbound task to a crane within the AS/RS. Additionally, the WCS monitors
the exact location of pallets on the conveyor belt and in the storage rack. Upon completing an
inbound task, the WCS updates the WMS with the pallet’s status, enabling the WMS to maintain
accurate stock information.

Outbound requests also originate from the WMS. Typically, a single order includes multiple pal-
lets. These orders do not necessarily require pallets simultaneously containing the same SKU.
Instead, the WMS communicates a specific number of requests for each SKU to the WCS, de-
pending on the availability of buffer spots on the production floor. Euroma designed these buffer
spots to store materials sufficient to sustain production for at least one hour. Once an operator
uses the first pallet from the buffer, the WMS automatically communicates the following request
for the same SKU to the WCS.

Upon receiving the SKU requests, the WCS determines the exact pallet location from which the
SKU is to be retrieved and assigns the outbound task to the crane. After completing the out-
bound process, the WCS informs the WMS about the pallet’s transfer to the outfeed conveyor.
Any further actions involving the pallet outside the high-bay warehouse are tracked directly by
the WMS.

Figure 2.3 visually summarizes the communication flow between these systems. The diagram
illustrates the interactions among the IT systems and the material handling equipment, with
arrows indicating the direction of communication.
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Figure 2.3: Communication of IT Systems. Schematic overview of the communication flow and
content between IT systems (oval forms) and material handling equipment (rectangular form)
during the outbound process. Arrows indicate the communication direction.

2.3 Assessment

Companies use key performance indicators (KPIs) to measure the performance of activities
or processes. Additionally, KPIs assist in planning future activities and identifying areas of
improvement (Faveto et al., 2021; Staudt et al., 2015). Thus, establishing a set of KPIs is
crucial for evaluating the performance of the warehouse system at Euroma. Currently, the KPIs
measured by Euroma reflect the technical availability of cranes and conveyors and the number
of pallets stored in each aisle. However, these KPIs are insufficient for thoroughly assessing
and monitoring the performance of the high-bay warehouse. Therefore, this section introduces
additional KPIs established based on expert opinions, followed by the outlier analysis.

2.3.1 Key Performance Indicators

Full Outbound Tardiness Euroma organizes its production activities to ensure that full out-
bound pallets delivered within 60 minutes do not cause any disruption in production. We classify
pallets that reach the outbound spot on the conveyor within one hour as on-time deliveries and
assign a tardiness value of zero. For late pallets, we calculate the tardiness by subtracting the
due time (60 minutes after the request time) from the arrival time. The sum of the tardiness of
all full outbound pallet requests determines this KPI.

On-Time Delivery Percentage With the full outbound tardiness, the on-time delivery percent-
age is the most critical KPI as delayed pallet deliveries can cause production standstills and high
waiting times for trucks. Outbound pallets with zero tardiness are considered on-time and con-
tribute to the on-time delivery percentage.

Other performance measures, in addition to the tardiness and on-time delivery percentages,
are relevant for evaluating the current situation and assessing the impact of potential changes
on the system’s performance.

Outbound Lead Time The outbound lead time measures the total duration of the outbound
process, comprising queueing time, crane, and conveyor travel time. After a pallet request, the
pallet has to wait for a crane to initiate the outbound movement by retrieving the pallet from its
storage location. This duration marks the queueing time, while crane travel time and conveyor
movement time refer to the duration taken by the crane to transport the pallet from its storage
position to the I/O-point and the duration taken by the conveyor to transport the pallet from the
I/O-point to the outbound location, respectively. Monitoring the outbound lead time is essential
for evaluating the possibilities for changes in production processes and demand.

Inbound Queueing Time The queueing time refers to the duration pallets spend waiting for
cranes to retrieve them at the I/O-points. Excessive inbound queueing time can lead to con-
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veyor congestion. Therefore, although this research primarily focuses on the outbound process,
monitoring inbound queueing times is valuable.

Workstation Tardiness Similar to full outbound tardiness, workstation tardiness monitors de-
layed pallet arrivals. Euroma expects workstation pallets to arrive at their destination at least
when the preceding pallet of the same order finishes processing. The first pallet of a new order
is on time if it arrives 20 min after its request.

2.3.2 Outlier Analysis

We use data from August 2023 to December 2023 to analyze the high-bay warehouse’s per-
formance according to the KPIs. Before delving into the analysis, we thoroughly checked the
dataset for outliers and incomplete data points.

Handling Incomplete Data and Unusual Circumstances First, we exclude incomplete data,
such as missing end times of the outbound process, from the analysis. Subsequently, we filter
out instances resulting from unusual circumstances. For example, we discard pallet requests
made on weekends at EP0, as weekends typically have no scheduled truck arrivals to receive
goods. Although occasional requests might occur, they do not represent typical operational
patterns and are thus considered outliers. Additionally, we exclude requests made before Au-
gust 15th for MP0 due to changes in the pipeline threshold, leading to different queueing times.
Moreover, we omit data points from week 52 as there is no production during that week.

Identification of Unusual Behavior We identify prolonged outbound lead times resulting from
equipment failure. Afterward, we scrutinize days with multiple outbound lead times exceeding
five hours for patterns indicative of equipment failure. Next, we visualize the remaining data
points using histograms and establish cutoff points in collaboration with experts. Finally, we
determine outliers based on the duration of queueing and movement times.

Consequently, outlier removal accounts for 17.18% of full outbound data, 4.97% of inbound
data, and 23.38% of workstation pallets, resulting in a final dataset of 117,151 pallet data points.
The interconnected pallet movements explain the higher percentage of outliers in the full out-
bound and workstation pallets. A single instance of unusual behavior can affect all pallets in the
system, particularly those destined for the same location. This is due to the inability to overtake
on the conveyor, the pipeline restrictions, and the strict sequencing rules for workstations.

2.4 Outbound Process

Following receiving an order from the WMS, the WCS initiates the reservation process. This
process involves selecting and reserving pallets containing the requested products. Afterward,
the assignment process determines which pallet undergoes retrieval and when. Once these pal-
lets arrive at their designated conveyor destination, operators manually transfer them to their
final destination on the production side.

The reservation process is outside the scope of this research. Therefore, this section focuses on
the control policy guiding the assignment process. Additionally, subsequent sections evaluate
current performance and provide an illustrative example.
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2.4.1 Outbound Control Policy

The assignment process can be divided into two procedures: pallets destined for outfeed lanes
(full outbound pallets) and pallets assigned to workstations. Figure 2.2, marks the workstations
with an orange border at MP0 and EP1 while it highlights outfeed lanes in red. For outbound pal-
lets, the WCS treats the request with the highest priority and oldest timestamp first. Currently,
Euroma assigns priority values only for workstation pallets. Thus, the company generally han-
dles outbound tasks in a first-come-first-served (FCFS) manner, except in cases of workstation
pallets, which receive higher priority.

Euroma assigns a higher priority to workstation pallets because they must follow a strict se-
quence. The WCS verifies whether the previous pallet in the sequence has already started its
outbound movement. If not, the pallet must remain in the crane queue until a crane initiates the
retrieval for the preceding pallet.

Furthermore, the pipeline threshold influences the selection of pallets for both types of out-
bound tasks. When the number of in-transit pallets for an outfeed lane or a workstation is below
the pipeline threshold, the WCS chooses the next pallet based on the outbound control logic
and the workstation sequence. The flowchart in Figure 2.4 summarizes the criteria.

Finally, the WCS prioritizes outbound tasks over inbound tasks. Therefore, the crane performs
single commands of outbound movements until an inbound pallet is awaiting processing on the
I/O-point. At this point, the crane switches to a hybrid command, handling both the outbound
and inbound tasks subsequently. For more details on the inbound process, we refer the reader
to Appendix A.

2.4.2 Outbound Process Analysis

Three KPIs monitor the performance of the outbound process: full outbound tardiness, on-time
delivery percentage, and outbound lead time. Additionally, workstation tardiness is essential,
as improving the outbound process cannot deteriorate the workstations’ performance.

Full Outbound Lead Time The outbound movement of pallets comprises three main actions:

• Outbound queueing time: The waiting period before the crane begins the outbound move-
ment, specifically the interval between the request and the crane’s retrieval from storage.

• Cranemovement duration: The time the crane takes to transport the pallet from its storage
location to the I/O-point (O1.1 to O6.2).

• Conveyor movement duration: The time required for the pallet to travel from the I/O-point
to its retrieval from the outfeed lane.

Table 2.2 summarizes these durations across different outbound locations.

The average and median times of the crane movement remain consistently below one minute,
exhibiting minimal variation as indicated by a low standard deviation of seven seconds. Conse-
quently, the crane processing duration constitutes only a minor portion of the lead time. Con-
versely, the conveyor movement time contributesmore significantly to the lead time, withmedian
durations ranging between 8.43 and 9.97 minutes at MP0 and EP0, respectively. Moreover, the
conveyor duration displays a positively skewed distribution, with median durations smaller than
the averages. The observed fluctuations, averaging between six and 15 minutes, are w.l.o.g.
influenced by crane location, operator behavior, and the number of preceding pallets on the
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Figure 2.4: Flow Chart of the Assignment Process. This process assigns outbound tasks to a
crane when the destination’s pipeline falls below the threshold. If the destination is a worksta-
tion, the WCS checks whether it has assigned the preceding pallet to a crane before it assigns
the task. If the destination is not a workstation, the system checks for an idle crane with a re-
served full outbound pallet.

conveyor. Additionally, full outbound pallets destined for the outfeed lane at EP1 (Out2) show
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MP0 EP0 EP1

Outbound Queueing Time (min) Average 18.58 26.67 9.33

Median 3.18 19.2 2.2

Standard Deviation 26.72 26.77 13.56

Crane Movement Duration (min) Average 0.76 0.66 0.69

Median 0.78 0.65 0.68

Standard Deviation 0.12 0.12 0.12

Conveyor Movement Duration (min) Average 10.39 10.40 15.20

Median 8.43 9.97 9.57

Standard Deviation 5.93 5.99 14.96

Table 2.2: Average, Median, and Standard Deviation Duration for Outbound Process of Pallets
in Minutes. The outbound process is divided into three phases: queueing time, crane move-
ment, and conveyor movement, across the three full outbound locations MP0, EP0, and EP1.

a higher standard deviation due to the high pipeline threshold relative to the number of spots
on the outfeed lane, which increases the likelihood of congestion and the need for pallets to
re-loop. In the following, we analyze the factors influencing the full outbound lead time.

Factors Influencing Outbound Lead Time: Crane Location The distance pallets travel on the
conveyor depends on their storage aisle in the AS/RS. As depicted in Figure 2.2, pallets re-
trieved by crane six typically cover shorter distances on the conveyors MP0 and EP1. How-
ever, if these pallets’ destination is the outfeed lane Out3 at EP0, they must first loop through
conveyor EP1 due to the positioning of the lift between cranes three and four.

The average conveyor movement time decreases with increasing crane ID at MP0 and EP1.
Conversely, at EP0, pallets from cranes four to six require more time on the conveyor than from
one to three. Notably, we observe the most significant time difference at EP0, with crane four
averaging 15 minutes, nine minutes longer than pallets from crane three. Figure 2.5 illustrates
these varying conveyor movement times.

Factors Influencing Outbound Lead Time: Operator Behavior The duration of conveyor move-
ment is determined by the time a pallet takes to traverse the conveyor until it reaches its des-
ignated endpoint. If another pallet obstructs the terminal spot on the conveyor, the subsequent
pallet cannot complete its outbound process. This situation also impacts waiting pallets’ queu-
ing time if the current pipeline size exceeds its threshold. Although the dataset does not include
the operator retrieval time, the duration for a pallet to traverse the last four spots on the con-
veyor offers insights into this process. An increase in this time suggests that a preceding pallet
remained on the destination spot longer than usual.

At conveyor MP0, 50% of the pallets require at most 26 seconds to move across the last four
spots of the conveyor. For EP0 and EP1, this time is slightly higher, at 1.5 and 2.23 minutes,
respectively. This difference results from the varying request patterns for the outbound loca-
tions. Team leaders request about half of the pallets individually at MP0, meaning there is no
subsequent request within the next five minutes. Consequently, pallets can move directly to the
end location without waiting for an operator to retrieve the previous pallet. At EP1, this occurs
for about 40% of the pallets, and at EP0 for just 13%.
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Figure 2.5: Average Conveyor Movement Time per Crane per Outbound Location. The bars
represent the average duration, in minutes, pallets spend on the conveyor, starting from the
moment a crane drops them on the I/O-point until they reach the end of the outfeed lane at one
of the outbound locations MP0, EP0, EP1.

Additionally, we can attribute the shorter time at Out3 (EP0) compared to Out2 (EP1) to multiple
operators managing pallet retrieval. At Out1 (MP0) and Out2 (EP1), Euroma typically assigns
a single operator to retrieve pallets from the conveyor, leading to delays when they are un-
available, such as during breaks. In contrast, Out3 (EP0) benefits from additional operators
stepping in to maintain smooth operations. The 90th percentile reflects this impact. Compared
to the 50th percentile, MP0 and EP1 show significant increases in duration, exceeding ten and
20 minutes, respectively, indicating slower retrieval. Although pallets reaching the outfeed lane
and moving directly to the last spot are more common in the lower percentiles, the increase in
duration is also influenced by more prolonged waiting times for retrieval from the end position.

MP0 EP0 EP1

50th Percentile (min) 0.43 1.50 2.23

70th Percentile (min) 1.53 2.67 5.20

90th Percentile (min) 10.63 5.00 20.10

Table 2.3: Pallet Movement Durations Across the Last Four Conveyor Spots. Durations are
presented as the 50th, 70th, and 90th percentile in minutes across the three outbound locations
MP0, EP0, and EP1.

Factors Influencing Outbound Lead Time: Request Quantity Figure 2.6 illustrates the correlation
between the number of requested pallets and lead time. More requests result in longer queueing
times, particularly notable at Out1 (MP0) due to its lower pipeline threshold. The initial full
outbound pallet requested for MP0 within an hour spends an average of nine minutes in the
queue. By the fourth request, this time has already more than doubled. While the queueing
time increases with the number of requests, the movement time – comprising conveyor and
crane movement – remains constant. Moreover, queueing time accounts for most of the total
outbound duration, significantly influencing the overall process.
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Figure 2.6: Correlation between Lead Time and Number of Pallet Requests. The total lead
time (in minutes) is divided into the outbound queueing time and the movement time (crane
and conveyor movement). The average durations are displayed per xth request within an hour.
Each color represents one of the outbound locations MP0, EP0, and EP1.

Furthermore, Figure 2.7 shows that the hourly request rate at EP0 is generally higher than the
request volume at MP0 and EP1. On average, the daily number of full outbound requests at EP0
is approximately six times that of MP0. Together, Figure 2.6 and Figure 2.7 explain the lower
tardiness percentage of full outbound pallets at EP1 compared to MP0 and EP0 (Table 1.1). The
outbound lead time increases significantly with the number of requests at MP0, causing the 60-
minute threshold to be reached with fewer requests per hour. In contrast, the high frequency of
requests at EP0 results in more instances where lead times exceed the threshold.

Figure 2.7: Average Outbound Pallet Request Quantity per Hour. Columns represent the aver-
age request quantities per hour for the outbound locations: MP0, EP0, EP1.

Factors Influencing Outbound Lead Time: Prioritization Priorities impact queueing times in ad-
dition to the request volume and the pipeline size. While most outbound pallets share the same
priority, the WCS prioritizes workstation pallet requests over full outbound pallets. The worksta-
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tions at MP0 handle an average of 220 pallets daily, compared to 68 at EP1. The prioritization
increases queueing times for full outbound pallets, particularly at MP0.

Given the discussed factors, the high standard deviation of queueing times, as shown in Ta-
ble 2.2, is not surprising, reflecting considerable variability in durations. Notably, the standard
deviations for Out1 (MP0) and Out3 (EP0) reach 27 minutes, indicating significant fluctuation.
Furthermore, the average queueing time significantly exceeds the median. While 50% of out-
bound pallets at conveyor MP0 wait no longer than three minutes, the average waiting time is 19
minutes, suggesting the presence of prolonged queueing durations that increase the average.
The patterns for EP0 and EP1 are comparable but less extreme.

Total Tardiness and On-Time Delivery Percentage On average, 42 full outbound pallets
exceed their due date of 60 minutes after request each day, representing approximately 14%
of all full outbound pallets. For these delayed pallets, the average tardiness varies between
14 minutes at EP1 and 27 minutes at MP0 per pallet. Among the outbound locations, EP0
exhibits the highest tardiness percentage at 18.24%, followed by MP0 at 14.12%. In contrast,
EP1 achieves the lowest tardiness rate at 6.95%.

These results align with the analysis of factors contributing to tardiness. At MP0, the low pipeline
threshold appears to be a significant driver of delays for full outbound pallets, while the high re-
quest volume at EP0 contributes to its increased tardiness. No unique cause stands out for
EP1; instead, the factors contributing to tardiness at EP1, such as operator behavior and work-
station pallet prioritization, also impact MP0.

While workstation pallets face similar tardiness percentages, their delays are generally shorter.
At MP0, 15.12% of workstation pallets are delayed, averaging 8.62 minutes. At EP1, 10.31%
workstation pallets are tardy, with an average delay of 18.15 minutes. Table 2.4 shows detailed
results for all locations.

MP0 EP0 EP1

Out1 F1 - F5 Out3 Out2 P1, P2

On-Time Delivery Percentage 85.88% 84.88% 81.76% 93.05% 89.69%

Tardy Delivery Percentage 14.12% 15.12% 18.24% 6.95% 10.31%

Daily On-Time Pallet Volume 33.95 120.09 137.52 81.54 39.54

Daily Tardy Pallet Volume 5.58 25.54 30.68 6.09 5.63

Pallet Tardiness (min) 26.88 8.62 24.83 13.74 18.15

Table 2.4: Total Tardiness and On-Time Delivery Percentage. The pallet volumes represent
the average daily pallet volume that is either on time or tardy. Pallet tardiness indicates the
average delay, in minutes, for each pallet that exceeds its due date. Data is provided for the
three outfeed lanes at MP0, EP0, and EP1, as well as the workstations at MP0 and EP1.

The analysis of the outbound process highlights that queueing times contribute significantly to
the lead time variability. Factors such as the pipeline threshold, operator behavior, and re-
quest quantity influence the queueing time. Given these insights, the management of the crane
queues is a crucial factor in ensuring that full outbound pallets reach their destination within the
targeted one-hour timeframe.
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2.4.3 Example Assignment Process

Figure 2.8a illustrates the full outbound process for nine pallets at the outbound location MP0.
At 18:06, the team leader requests the first six pallets simultaneously. The first three pallets
promptly begin their outbound movement as the cranes retrieve them from their storage loca-
tions, while pallets four to six experience delays due to the pipeline threshold. The transparent
bars with dashed lines represent the queueing time.

The first pallet arrives at its destination (Out1) at 18:15, nine minutes after its request. Once an
operator retrieves this pallet, the pipeline resets to two, allowing pallet four to begin its outbound
movement. Figure 2.8a illustrates this transition by showing the transparent bar of pallet four
becoming solid at 18:19. This process repeats until pallet nine reaches its destination, resulting
in an outbound lead time of 45 minutes. Notable, pallet seven starts its outbound movement
significantly later than pallet four reaches Out1. Additionally, the movement times of pallets five
and six are considerably longer than those of the other pallets. These observations suggest that
pallet four was not retrieved promptly upon arrival, causing increased queueing and conveyor
movement times for the subsequent pallets.

MP0_Out7

MP0_Out8

MP0_Out9

18:06 18:14 18:22 18:30 18:38 18:46 18:54

MP0_Out2

MP0_Out3

MP0_Out4

MP0_Out5

MP0_Out6

MP0_Out1

(a) Example of the Current Situation. This demonstration captures the outbound lead time at location
MP0, reflecting the current process without any modifications.

MP0_Out7

MP0_Out8

MP0_Out9

18:06 18:14 18:22 18:30 18:38 18:46 18:54

MP0_Out4

MP0_Out5

MP0_Out6

MP0_Out1

MP0_Out2

MP0_Out3

(b) Example of Improved Lead Time. The example illustrates a full outbound movement process to
reduce total lead time. This approach minimizes queueing time by relaxing the pipeline threshold and
limiting the conveyor retrieval time.

Figure 2.8: Example of Outbound Lead Time Analysis. The timeline illustrates nine pallets’ full
outbound lead times at the Out1 (MP0) on 16.11.2023. Solid, non-transparent bars represent
the movement time, while transparent bars with dashed lines indicate the queueing time.

The improved scenario in Figure 2.8b demonstrates how relaxing the pipeline threshold, thereby
allowing pallet movements to overlap, can significantly improve the outbound lead time. Instead
of remaining in its storage location until a spot in the outfeed lane becomes available, the pallet
restricted by the pipeline threshold begins its movement earlier. This example underscores the
importance of constantly retrieving pallets from the conveyor to prevent congestion as succes-
sive pallets reach the outfeed lane faster.

19



2.5 Summary of the Problem

Euroma expects pallets to reach their destination within one hour. But, in 14% of the cases,
this expectation is not met. Consequently, Euroma aims to optimize the full outbound process.
This section summarizes the problem identified in Chapter 1 and analyzed in Chapter 2.

The full outbound process at Euroma consists of several stages: pallet request, retrieval by
the crane, transportation by the conveyor, and retrieval from the conveyor by an operator. As
highlighted in Section 1.3, the main focus of this research is on the assignment process de-
termining the retrieval schedule. This process significantly contributes to delays within the full
outbound process, as examined in Section 2.4.2.

Pallets traverse multiple material handling resources within the automated retrieval and trans-
port process in a predetermined order. These resources are shared and have the following
limitations:

• Crane Capacity: Each crane can transport one pallet at a time.

• Conveyor Capacity: Each conveyor spot can process one pallet at a time.

• Lift Capacity: The lifts connecting EP0 and EP1 can accommodate one pallet at a time.
Additionally, each lift is unidirectional, transporting pallets from EP0 to EP1 or vice versa.

• Workstation Capacity: Each workstation can process one pallet at a time.

• Buffer Capacity:

– Workstations can buffer up to six pallets simultaneously, except for workstation F5,
which has four buffer spots.

– Outfeed lanes have three buffer spots available, except for the outfeed lane at EP0,
which has five.

• Pipeline Threshold: Derived from the buffer capacity, the pipeline limits the number of
pallets in transit to a specific destination.

Consequently, to ensure the timely delivery of pallets, optimizing decisions regarding the order
and timing of pallet retrievals is crucial to maximizing the efficiency of shared resources.
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3 LITERATURE REVIEW

The main objective of the literature review is to address the second research question: What
does the literature propose for optimizing the outbound process in a high-bay warehouse?

This thesis focuses on a complex warehouse system integrating an AS/RS and a conveyor sys-
tem. These systems are critical to the overall performance of the production facility in Zwolle,
where they manage the flow of goods between the storage locations and the production site.
Since Euroma already installed the high-bay warehouse, modifications in the hardware com-
ponents of both the AS/RS and the conveyor system are limited. However, significant poten-
tial exists for optimizing the control decisions that govern the AS/RS and conveyor system.
This chapter establishes a basis for optimizing the outbound process by reviewing the literature
across these interconnected areas.

The review begins with a detailed examination of scheduling problems in Section 3.1. As job
shop problems can help model the situation presented in the first two chapters, we subdivide this
section into reviews on the machine environment (Section 3.1.1), job characteristics (Section
3.1.2), and optimality criterion (Section 3.1.3). Furthermore, Section 3.1.4 introduces different
solution approaches, while Section 3.2 covers the discrete event simulation.

The focus then shifts to the impact of the pipeline thresholds on system performance, focusing
on their influence on outbound lead times. Finally, the review concludes with a summary in
Section 3.4.

3.1 Scheduling in AS/RS and Conveyor Systems

The performance of an automated warehouse is usually attributed to the AS/RS, assuming it
operates independently from the interface system. However, this assumption holds only if a
crane can start a new cycle immediately after completing the previous one. In practice, poten-
tial delays in the conveyor system can prevent this (Basile et al., 2012). These delays in one
subsystem can significantly impact the performance of others, highlighting the interdependence
of the AS/RS and conveyor system (Roodbergen and Vis, 2009). Therefore, optimizing these
systems in isolation can reduce operational efficiency. Given this interdependence, exploring
the scheduling problems within this combined system is crucial.

Scheduling is a decision-making process that aims to optimize a given objective. In schedul-
ing terminology, a sequence refers to the order in which jobs are processed across machines
(Pinedo, 2016), while the centering challenge in scheduling problems involves the allocation
and timing of limited resources to a set of tasks (Blazewicz et al., 2019). Machine scheduling
involves coordinating jobs that need to be processed and machines that facilitate the processing
of jobs to optimize one or more performance metrics. Many practical situations require consid-
ering additional resources, including transportation devices and buffers. Besides, several job-
and resource-related attributes may be considered (Xiong et al., 2022).
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To classify these different considerations Graham et al. (1979) introduced a three-field classifi-
cation scheme {α|β|γ}. Here, α describes the machine environment, β the job characteristics,
and γ the optimality criteria. This notation serves as the framework for the subsequent sections,
followed by the presentation of solution approaches.

3.1.1 Machine Environment

The literature typically classifiesmachine scheduling problems as single- or multi-stage schedul-
ing problems. In a single-stage problem, each job consists of a single operation. Conversely,
jobs in a multi-stage scheduling problem comprise a set of operations (Graham et al., 1979).

Euroma’s scheduling problem involves jobs with multiple operations. Therefore, we consider
only multi-stage scheduling problems. In an open shop environment, each job requires pro-
cessing on a set of machines, and the system does not impose any restrictions on the order in
which the job’s operations are processed. Conversely, flow and job shop environments impose
precedence constraints for each job. In flow shop environments, each job follows the same pro-
cessing order, while job shop scheduling problems require a specific machine order for each
job (Blazewicz et al., 2019). As discussed in Section 2.1, three conveyor belts connect the pro-
duction side to the AS/RS. These belts handle pallets with various destinations. Therefore, the
route through the high-bay warehouse depends on each pallet’s specific start and endpoints.
Consequently, this section focuses on the job shop environment.

The Job Shop Scheduling Problem (JSSP) is one of the most popular combinatorial optimiza-
tion problems (Xiong et al., 2022). A job shop environment contains m resources, denoted as
R = {R1, R2, ..., Rm}, and n jobs, represented as J = {J1, J2, ..., Jn}. At Euroma the resources
are the cranes, conveyor spots and operators, while the jobs represent the pallet requests. Pro-
cessing a job on amachine is called an operation. Each job, Ji, consists of a series of operations
Oi = {Oi1, Oi2, ..., Oini} that have to be processed in a predetermined sequence on machines
in R, each with a specified and uninterrupted duration known as the processing time. In this
environment, each job can be processed on only one machine at a time, and each machine can
handle at most one job at any given time. This constraint necessitates a well-defined processing
order for operations that require the same machine (Pranzo and Pacciarelli, 2015).

3.1.2 Job Characteristics

A variety of job and resource characteristics can describe scheduling problems. A problem
may thereby involve more than one characteristic. This section discusses key factors relevant
to JSSPs.

Release Dates The release date ri of a job Ji indicates when a job arrives at the system.
Consequently, it denotes the earliest time a job can begin processing (Pinedo, 2016). The
classical JSSP assumes that all jobs are available at the beginning of the time horizon (Ku and
Beck, 2016). Integrating dynamic job arrivals into the JSSP schedules the start time of the first
operation Oi1 of each job Ji ∈ J after its release date.

Due Dates Due dates represent the committed completion date for jobs. Although completing
a job Ji after its due date di is allowed, it is usually associated with a penalty. When meeting a
due date is mandatory, we refer to it as a deadline (Pinedo, 2016).
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Transportation In the classical JSSP, jobs can be processed immediately on their next ma-
chine after completing the previous process, neglecting transportation time between machines.
Ignoring the transportation time results in solutions that often do not perform well in real-life ap-
plications (Xie and Allen, 2015). Gaiardelli et al. (2024) confirm the crucial role of considering
transportation systems. They compare themakespan of schedules with and without considering
the transportation system. In their experiments, not accounting for transportation times results
in a makespan error of up to 23% compared to the actual outcomes, whereas the schedules
considering transportation result in errors less than 5%. Furthermore, schedules that include
transportation improve the makespan by up to 14% compared to those that do not.

To the best of our knowledge, most research appears to focus on interface systems involving
shuttles or other vehicles. This trend is likely present in the literature on JSSPs with trans-
portation resources. The review by Nouri et al. (2016) classifies JSSPs with transportation
resources, focusing solely on vehicles. They define the problem as a combination of two sub-
problems: job shop scheduling and vehicle scheduling. Similarly, Fontes et al. (2022) focuses
on transportation systems comprising vehicles. However, they add the dimension of simultane-
ously scheduling the cranes of the AS/RS.

Schwenke and Kabitzsch (2017) also observe that most research on transportation systems
focuses on vehicles. Their study appears to be the first to investigate integrated scheduling
using conveyors between machines in the semiconductor manufacturing context. Instead of
using fixed transportation times, which sum up traversing times along the predetermined path
between machines, their approach models transport operations similar to machine operations in
a JSSP. Furthermore, the authors address transport delays by feeding transport-related delays
back into the schedule. This approach is crucial because delays in the target machine cause
delays in subsequent transports and machines. This study aims to avoid transport delays re-
sulting from a predetermined machine schedule.

Gaiardelli et al. (2024) consider a flexible job shop scheduling problem where conveyor belts
transport the jobs between the machines. As they do not consider buffer spots, the jobs must
re-loop on the conveyor if the machine is busy with another job. Therefore, the authors include
the transportation time as follows

tkl = t0kl + tckl ∗ nc (3.1)

with t0kl representing the minimum time to travel from machine k to machine l, tckl representing
the cycle time in case machine l is unavailable, and nc the number of extra loops the job has to
complete until the machine becomes available.

Blocking Constraint Apart from neglecting transportation times, in its classical form, the
JSSP assumes that jobs can move between consecutive operations without restrictions, imply-
ing infinite buffer capacity. In practice, many applications face finite buffer capacities (Pranzo
and Pacciarelli, 2015), which necessitates including blocking constraints. Blocking situations
can arise when there is no or limited storage space between machines. In such cases, a job
Ju must remain on the current machine (Rk−1) until its next one (Rk) becomes available, pre-
venting it from processing other jobs (Dabah et al., 2019). The blocking constraint ensures that
the starting time of the succeeding operation Oi,j+1 of the preceding job Ji starts at least at the
same time as the succeeding operation Ouv on the considered machine Rk.

One typical application of the blocking constraint is routing trains on tracks (Hatzack and Nebel,
2001). In this traffic problem, trains travel through a network on predetermined routes, with
the trains representing jobs and the track sections representing machines. Due to safety con-
straints, a train can only move onto the next track section once it is clear, exemplifying the
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blocking constraint (Liu and Kozan, 2009).

Incorporating blocking constraints into the JSSP requires careful attention to the timing of job
transfers between machines (Lange and Werner, 2019b). In train scheduling applications,
avoiding frontal collision of trains is critical, making simultaneous interchanges of occupied
machines infeasible (Hatzack and Nebel, 2001; Lange and Werner, 2017). Preventing this
situation, known as deadlock or no-swap allowed, is essential. Also, the presence of setup
times necessitates their exclusion (Lange and Werner, 2019b). In contrast, swaps are feasible
in other applications and theoretical studies, such as those by Lange and Werner (2019a) and
Lange and Werner (2019b). Therefore, appropriately addressing these constraints allows for
successfully modeling various scheduling environments.

Another essential aspect to consider during machine transfer is the physical job length. Stud-
ies by Hatzack and Nebel (2001), Lange and Werner (2019a), and Lange and Werner (2017)
assumed that the physical length of the job does not impact the scheduling decisions. How-
ever, Liu and Kozan (2009) highlighted the importance of considering train length in schedul-
ing. When a train moves from one section to another, it occupies both sections until its entire
length has wholly exited the first section. This simultaneous occupation dramatically affects the
performance as visualized in Figure 3.1.

R1

0 2 3 4 5 61

R2

(a) Gant Chart without Considering Train Length.
The processing time is measured from when the
train head enters the section until the head leaves
the section.

R1

0 2 3 4 5 61

R2

(b) Gantt Chart Considering Train Length in Pro-
cessing Time. The processing time spans from the
train head entering to the tail leaving the section,
represented by solid and hatched bars

R1

0 2 3 4 5 61

R2

(c) Gantt Chart Excluding Train Length from Processing Time. The pro-
cessing time (solid bars) spans from the train head’s (yellow) entry to exit,
while the occupying time (hatched bars) accounts for the train tail (blue)
remaining on the section.

Figure 3.1: Gantt Charts Demonstrating Different Approaches for Handling Train Length. Green
bars represent the preceding train, while red bars represent the succeeding train (Liu and Kozan,
2009).

In Figure 3.1a, the model does not consider the train length. Thus, the subsequent train can
start on a section while the previous train’s tail is still present, potentially causing collisions. The
second case, Figure 3.1b, is feasible in practice but lacks precision compared to the third ap-
proach. By excluding the occupying time from the processing time, the start and completion time
on section two (R2) become smaller for the green train, which also influences the succeeding
red train.
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Setup Times The setup time represents the duration required to prepare a machine to per-
form a task. The literature classifies it into sequence-independent and -dependent setup times
(Sharma and Jain, 2015). Sequence-independent setup times solely depend on the current
operation. Conversely, sequence-dependent setup times depend on the current and preced-
ing operation (Sharma and Jain, 2015). Therefore, the setup time oijuv incurs between the
processing of two consecutive operations Oij and Ouv.

Preemption In the classical JSSP, jobs need to complete processing before they can leave
a machine. Allowing preemption eliminates this requirement, enabling jobs to be interrupted at
any point during processing (Pinedo, 2016).

Recirculation JSSPs with recirculation allow jobs to be processed on a machine more than
once (Pinedo, 2016). Therefore,

∑
Mk∈M oijk = 1 changes to

∑
Mk∈M

∑ni
j=1 oijk ≥ 1 (Lange

and Werner, 2017).

No-Wait Constraint In a classical JSSP, the succeeding operation may start after or at the
same time as the preceding one finishes. However, the no-wait constraint enforces that jobs
cannot wait between two successive machines (Pinedo, 2016). Therefore, the succeeding op-
eration must start as soon as the preceding one finishes.

Real Time Events The classical JSSP assumes that the input parameters are known in ad-
vance and fixed. This static environment is unrealistic in many real-world contexts (Z. Wang
et al., 2019). Real-time events may happen unavoidably and unpredictably and fall into two cat-
egories: resource-related and job-related. Resource-related real-time events involve machine
breakdowns and operator illnesses, while job-related events include changes in due dates, pri-
orities, and job arrivals (Ouelhadj and Petrovic, 2008). An extension of the general JSSP, the
dynamic JSSP, represents this dynamic behavior (Z.Wang et al., 2019). Moreover, in a stochas-
tic dynamic JSSP, at least one of the job characteristic parameters is probabilistic (Sharma and
Jain, 2015).

3.1.3 Optimality Criterion

The scheduling objective is to find a specific route through the machines for each job by opti-
mizing one or multiple performance metrics. Yenisey and Yagmahan (2014) summarize these
metrics into different categories: time-based criteria, job-number-based criteria, cost-based cri-
teria, revenue-based criteria, and energy and pro-environment-based criteria.

The most common optimality criterion in the JSSP literature is the makespan, Cmax, a time-
based criterion that minimizes the maximum completion time across all jobs (Xiong et al., 2022).
The completion time of any job Ji ∈ J , Ci, refers to the latest time the job Ji is in the system.
Another criterion related to completion time is the total flow time F . This criterion measures the
sum of time each job spends in the system, from its release date until completion (Yenisey and
Yagmahan, 2014):

Fi =
∑
i∈J

(Ci − ri) (3.2)

Time-based criteria can also consider a job’s due date di. From this, the lateness of a job, Li,
can be determined (Graham et al., 1979):

Li = Ci − di (3.3)
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Alternatively, the tardiness of a job, Ti, can be calculated. Unlike lateness, tardiness cannot be
negative; thus, it does not consider early arrivals:

Ti = max{Ci − di; 0} (3.4)

Minimizing the flow time aims to stabilize resource utilization and reduce work in progress,
while tardiness-related objectives focus on meeting customer demand (Yenisey and Yagma-
han, 2014). Further due date-related optimization criteria include job-number-based measures,
like the number of tardy jobs (Xiong et al., 2022), which is equivalent to the percentage of on-
time deliveries. Since this criterion does not account for the order in which the jobs miss their
due dates, some jobs might experience unacceptably long waiting times. Therefore, this objec-
tive is typically not used alone (Pinedo, 2016).

While to the best of our knowledge, most of the literature focuses on single objective optimiza-
tion, Xiong et al. (2022) and Yenisey and Yagmahan (2014) note that real-world scheduling
problems are often inherently multi-objective. Mathematically, an objective function f can be
formulated in several ways. Table 3.1 provides an overview of the formulation of objective func-
tions for multi-objective problems similar to the work of Yenisey and Yagmahan (2014), where
Zk is the k-th sub-objective function.

Formulations Aims Approach

fw(Z1, Z2, . . . , Zk) minimize weighted k objectives utility approach

fp(Z1 : Z2 : . . . : Zk) minimize all objectives Pareto-optimal approach

fL(Z1, Z2, . . . , Zk) minimize all objectives in a lexicographical orders lexicographical approach

fϵ(Zp|Z1, Z2, . . . , Zk) minimize the primary objective Zp and the other k objec-
tives are subject to constraints

ϵ-constraint approach

fgp(Z1, Z2, . . . , Zk) minimize each objective until their individual goal is
reached

goal programming

Table 3.1: Formulations of Multi-Objective Functions

Three main approaches exist for solving multi-objective problems, such as in Table 3.1. These
mainly differ in the role of the decision maker (T’kindt and Billaut, 2006; Yenisey and Yagmahan,
2014).

1. In the a priori approach, the decision maker seeks a unique solution by providing all neces-
sary information upfront. This approach applies to methods like the weighted and lexico-
graphical approaches. The weighted approach assigns weights to each objective before
the optimization. In contrast, the lexicographical approach prioritizes objectives, meaning
after minimizing the first objective Z1, the second objective Z2 is minimized subject to Z1.

2. The a posteriori approach generates a set of Pareto-optimal solutions from which the
decision maker can select. The pareto-optimal approach is applicable in this context.

3. In the interactive approach, the decision maker interacts with the solution process by ex-
pressing preference information at each step of the solution process.

3.1.4 Solution Approaches

This section aims to explore and identify solutions to the scheduling problem at Euroma.
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The literature broadly classifies the scheduling approaches into two main categories: exact
and approximate methods. Exact methods, while capable of solving JSSPs optimally, demand
substantial computing time (Zhang et al., 2017). Given that JSSPs are typically NP-hard, these
methods are often feasible for only small instances due to the dramatic increase in compu-
tational time as the problem size grows (Sels et al., 2012). For example, Ku and Beck (2016)
compared MIP formulations based on their computation times, showing that small to moderately
sized JSSPs can be solved to optimality in a reasonable time. A JSSP with eight machines and
eight jobs (8x8) can be solved using the solver GUROBI in less than one second, whereas the
computational time increases to 2.5 and 186.5 seconds for a 10x10 and a 12x12, respectively.
Consequently, exact scheduling methods are unsuitable for solving large-scale problems due
to their computational demands. In contrast, approximate methods can produce good solutions
for large problem instances in a reasonable computational time (Shady et al., 2022).

In a job shop environment, blocking constraints add significant complexity, making the blocking
job shop scheduling problem (BJSSP)more computationally challenging than JSSPswith unlim-
ited buffers (Mascis and Pacciarelli, 2002). Similarly, Lange and Werner (2019a) reference the
BJSSP with total tardiness minimization as one of the most challenging combinatorial problems.

The scheduling problem at Euroma involves over 200 resources, including cranes, lifts, and
conveyor locations. While with an average of 0.4 requests per minute, the number of newly
arriving jobs is low, the system sees, on average, five instances per day when requests ex-
ceed 15 pallets in a single minute. Furthermore, the dynamic nature of this problem further
necessitates short computation times while the blocking constraints add additional complexity.
Consequently, exact approaches are unsuitable for this scenario. Thus, the remainder of this
section focuses on promising approximate solution approaches.

Many solution approaches for JSSPs are based on the concept of the critical path. There-
fore, Appendix B briefly overviews graph theory in a job shop environment. For a more detailed
explanation, we refer the reader to Mascis and Pacciarelli (2002) and Mogali et al. (2021).

Dynamic Scheduling Strategies and Policies

Dynamic events necessitate the incorporation of uncertainties into scheduling. The literature
identifies three types of dynamic scheduling strategies: totally reactive, predictive reactive, and
robust pro-active scheduling (Z. Wang et al., 2019). The robust scheduling approach attempts
to create a schedule that anticipates potential changes. Its effectiveness depends on the accu-
racy of the assumptions made to reflect uncertainties and variations in the job shop environment
(H. Wang et al., 2023).

Predictive-reactive scheduling also generates an initial schedule; however, it does not account
for dynamic events in the pre-schedule. Instead, it allows for real-time adjustments through
event-driven or periodic rescheduling (H. Wang et al., 2023). The periodic policy creates sched-
ules regularly, incorporating all available information from the job shop environment. This ap-
proach entails that the schedule remains unchanged in response to real-time events until the
next predetermined rescheduling interval (Ouelhadj and Petrovic, 2008). Mannino and Mascis
(2009) employ this strategy. The authors propose a periodic rescheduling strategy, optimizing
the schedule every five seconds to respond to dynamic conditions. Given that the optimization
approach is an exact algorithm, the authors note that extending to larger instances is challeng-
ing, as incoming jobs substantially increase the complexity.

In the event-driven approach, unexpected events prompt the rescheduling process. Schwenke
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and Kabitzsch (2017) apply this approach to address scheduling in an automated material han-
dling system. The authors assign jobs to machines using the simulation of dispatching rules to
create an initial machine schedule based on ideal transport times. This schedule then serves
as a basis for evaluating three different transport scheduling methods. Among these, the MIP-
based solving method, which solves small MIPs by grouping related transports subproblems,
demonstrates the best performance. When transport delays occur, the initial schedule inte-
grates them, necessitating updates to subsequent operations. The event-driven approach can
combine with periodic rescheduling to create a hybrid policy. In the literature, experts often
regard the event-driven approach as superior to the periodic rescheduling policy (Ouelhadj and
Petrovic, 2008).

Completely reactive scheduling does not generate a schedule in advance. Instead, the sys-
tem makes decisions in real-time, responding locally to changes as they occur (Ouelhadj and
Petrovic, 2008). This approach demands rapid decision-making, similar to themethod proposed
by Hatzack and Nebel (2001). In their work, the proposed algorithm constructs a feasible solu-
tion by recursively inserting the operations into a schedule based on their release dates. When
a conflict arises, the algorithm revisits previous decisions to resolve it. When tested against
human schedulers, the backtracking algorithm generates solutions with an average delay of 27
more seconds but is about 60 times faster, delivering results within 0.5 seconds. Completely
reactive scheduling frequently relies on dispatching rules, which we will examine in the following
section.

Constructive Heuristics

This section describes constructive heuristics, which start with an empty solution and gradually
build a complete schedule by adding one job at a time. While all constructive heuristics share
this strategy, the heuristics differ in complexity and approach (Pinedo, 2016).

Dispatching Rules Dispatching rules determine the next job to process on a machine from a
set of awaiting jobs based on job and machine attributes (Ouelhadj and Petrovic, 2008). These
rules are computationally efficient, straightforward to implement, and can quickly adapt to dy-
namic changes (Shady et al., 2022). Consequently, they have been widely adopted in practice
even though they generally cannot outperform heuristics and exact methods (Sels et al., 2012).
Some of the most popular dispatching rules are w.l.o.g.

• First Come First Serve (FCFS): This rule prioritizes jobs based on their arrival time, giving
the highest priority to the job that has been in the queue the longest (Dominic et al., 2003).

• Shortest Processing Time First (SPT): This rule prioritizes jobs by their processing time.
Accordingly, the job with the shortest processing time receives the highest priority (Dominic
et al., 2003).

• Earliest Due Date First (EDD): This rule prioritizes jobs based on their due date, with the
job having the earliest due date receiving the highest priority. It selects the job with the
smallest allowance, representing the remaining time until the due date (H. Wang et al.,
2023).

These rules only take a single characteristic into account. However, research suggests that in-
corporating additional criteria and system information could significantly improve the dispatching
rules scheduling performance (Ouelhadj and Petrovic, 2008). Examples are:

• Work Content in the Next Queue (WINQ): This rule avoids prioritizing a job that will likely
face delays in a congested queue by considering the number of jobs in the job’s successive
machine queue. (H. Wang et al., 2023)
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• Remaining Processing Time (RPT): The remaining work of a job is the sum of the pro-
cessing times of all its subsequent operations. The job having either the most (MWKR)
or the least (LWKR) work remaining is then assigned the highest priority (Dominic et al.,
2003; Ferreira et al., 2022).

• Flow Due Date (FDD): This rule determines priority by adding the job’s release time to
the total processing time until now and gives the highest priority to the job with the lowest
resulting value (Sels et al., 2012).

Research by Dominic et al. (2003) demonstrates that despite the variety of dispatching rules
available, none have been universally effective across all job shop environments and objec-
tives. Nevertheless, combining effective rules can mitigate this drawback and increase overall
performance. This advantage of combined rules has been further validated in simulation stud-
ies by Ferreira et al. (2022) and Sels et al. (2012).

Sels et al. (2012) conduct a comparative study of various dispatching rules based on their per-
formance across different objectives. The best-performing dispatching rules for all considered
objectives are combined rules. To minimize mean flow time and tardiness, the authors iden-
tify a rule combining twice the processing time, LWKR, and FDD, outperforming all other rules.
The effectiveness of this rule across both objectives stems from its inclusion of flow time and
tardiness-related information. Additionally, this rule demonstrates robust performance. For
large problem instances and dynamic job arrivals, the rule remains the most effective for mini-
mizing mean tardiness. When extending the JSSP to include sequence-dependent setup times,
the rule is outperformed by several other rules. It regains superiority by incorporating the short-
est setup time rule.

By employing machine learning techniques to develop combined rules, the aim is to increase
the performance of dispatching rules by focusing on the overall structure of scheduling problems
rather than solely on local characteristics (H. Wang et al., 2023). While H. Wang et al. (2023)
generates complex results that are challenging to interpret, Ferreira et al. (2022) evaluate the
rule’s effectiveness on both the complexity of the expression and its performance in minimizing
tardiness.

The two best-performing rules identified by Ferreira et al. (2022) are expressed as follows:

• R1: 2 ∗ pij +
pij∗SL+

i
RPTi

+WINQi

• R2:

{
pij + pij ∗ CR+

i +WINQi ifSLi > 0

3 ∗ pij +WINQi − (WINQi

pij
) otherwise

In these rules, slack (SLi) of job Ji is the difference between the remaining work and the job al-
lowance. Furthermore, the critical ratio (CRi) is between the allowance and the remaining work.

The authors compare the performance of R1 and R2 rules against existing literature under
deterministic and stochastic processing times. While R2 generally outperforms R1, R1 is less
complex and outperformsmost dispatching rules proposed in the literature. Ferreira et al. (2022)
notes that under high utilization levels, it may be beneficial to develop specific rules customized
for these conditions. Additionally, Shady et al. (2022) propose a rule similar to R1 for the clas-
sical JSSP. This rule does not consistently outperform more complex rules based on machine
learning but provides less complexity.

Greedy Heuristics Greedy heuristics, like dispatching rules, expand a solution schedule in-
crementally. However, the heuristics make the locally optimal choice at each step.
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Mascis and Pacciarelli (2002) investigate four greedy heuristics based on a similar basic frame-
work. In their study, they model the job shop environment as a graph. Due to blocking con-
straints, alternative arcs emerge, representing conflicting sequence dependencies. We refer
the reader to Appendix B for an introduction to key graph theory concepts.

The greedy heuristics iteratively select among the alternative arcs. For instance, the Avoid
Maximum Current Completion Time heuristic (AMCC) chooses the alternative arc to schedule
next, preventing the selection that would most significantly increase the current completion time.
We refer to Mascis and Pacciarelli (2002) for a comprehensive explanation of these heuristics.

The increasing complexity of BJSSPs compared to general JSSPs, as noted in the introduc-
tion of Section 3.1.4, is evident in the computational results of Mascis and Pacciarelli (2002).
While the greedy heuristics successfully found feasible solutions for the general JSSP in all test
cases, they encounter difficulties when applied to BJSSPs. Although the AMCC outperforms
the tested heuristics in the quality of the solution, it fails to find feasible solutions for many test
cases of the BJSSP. Even though the other heuristics find feasible solutions more frequently,
they do not achieve acceptable results. Thus, the authors concluded that greedy heuristics are
inefficient in consistently providing feasible and reasonable quality solutions for the BJSSPs.

Improvement Heuristics

Improvement heuristics differ fundamentally from constructive heuristics as they start with a
complete schedule. By modifying the current schedule, these heuristics aim to enhance the
solution (Pinedo, 2016).

Iterated Greedy Pranzo and Pacciarelli (2015) build upon the results of Mascis and Paccia-
relli (2002) by proposing an iterated greedy heuristic (IG). This algorithm iteratively improves
the performance of a greedy heuristic through two main phases. The destruction phase partially
destroys the candidate solution by removing components. The subsequent construction phase
reconstructs the partial solution into a new, complete solution. In this paper, the reconstruction
utilizes the AMCC greedy heuristic, introduced as a constructive heuristic by Mascis and Pac-
ciarelli (2002) in Section 3.1.4.

Once a candidate solution forms, it is evaluated and potentially accepted as a new starting
point for the next iteration. The authors propose two acceptance criteria. The first always ac-
cepts the new candidate solution, while the second accepts it only if it is not worse than the
previous solution or with a certain probability. Finally, the heuristic continues until a specific
stopping criterion is reached.

The main advantages of this heuristic are its simplicity and independence from problem-specific
properties. Moreover, the experimental results demonstrate that the iterated greedy algorithm
outperforms previous algorithms in computation time and solution quality. For the objective of
minimizing the makespan, applying the second acceptance criterion and averaging ten inde-
pendent runs over 60 seconds each yields an average improvement of 2.25% compared to the
best-known solutions from the literature at that time, despite a percentage of failures within the
construction phase of about 31%. This feasibility problem, as highlighted in previous chapters,
will also recur in the following improvement heuristics.

Local search algorithms such as simulated annealing (SA) and tabu search (TS) are highly
efficient in solving classical JSSPs (Mati et al., 2001). However, extending these methods to
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BJSSPs poses considerable difficulties. The design of the neighborhood structures is a crucial
aspect of the efficiency of local search algorithms. Unlike in classical JSSPs, where the feasi-
bility of generated neighbors does not critically impact performance, BJSSPs are significantly
affected by this issue (Mogali et al., 2021).

Neighborhood Structures A neighborhood operation transforms a selection S into a different
solution S′ by reordering operations. The neighborhood structure, which comprises the set of
operations that generate candidate solutions, known as neighbors, controls this process (Lange
and Werner, 2019b).

Commonly used neighborhood operators in the field of BJSSPs are summarized in Table 3.2,
following the categorization by Błażewicz et al. (1996). Additionally, the table includes selected
papers that utilize these operators.

Neighborhood Neighborhood Operator Papers

N1 Swap two operations on the same machine by replacing
an arc on a critical path in S with its alternative arc.

Bürgy (2017), Dabah et al. (2019),
Gröflin and Klinkert (2009), Lange
and Werner (2019a), Lange and
Werner (2019b), and Mati et al.
(2001)

N4 Move an operation to the start or end of a block of opera-
tions processed on the same machine.

Mogali et al. (2021)

N5 Move the predecessor of the last operation to the end or
the successor of the first operation to the beginning of a
block of operations processed on the same machine.

Bürgy (2017) and Mogali et al.
(2021)

Table 3.2: Overview of Neighborhood Operators, Their Descriptions, and Corresponding Appli-
cations in the Literature.

Neighborhood operators often fail to generate feasible neighbors for the BJSSP. Dabah et al.
(2019) note that 98% of cases result in infeasible neighbors, while Mogali et al. (2021) report
only 40-45% feasibility. Consequently, a recovery algorithm is essential to transform infeasible
neighbors into feasible selections. These algorithms aim to restore feasibility without completely
altering the structure of the neighbor solution S′. A common approach is to remove all selected
alternative arcs associated with a job Ji that includes an operation causing infeasibility, meaning
an operation involved in the neighborhood transformation. By maintaining the changes made
during the neighborhood transformation, job Ji is reinserted while preserving feasibility, thereby
generating a feasible neighborhood S̄ (Bürgy, 2017; Mogali et al., 2021). Mogali et al. (2021)
call this algorithm job insertion feasibility recovery (JIFR).

Tabu Search The improvement heuristic tabu search (TS) explores the solution space by us-
ing memory structures. Starting from an initial solution, TS iteratively moves to the neighbor
with the best objective value G(S′) (Gröflin and Klinkert, 2009). Incorporating short-term mem-
ory through a tabu list thereby refines the search process. The tabu list stores recently visited
neighbor solutions and prohibits their selection to prevent cycling and getting trapped in local
optima (Mati et al., 2001). If a neighborhood selection contains attributes stored in the tabu list, it
can only be accepted if its objective value improves the best solution found so far (Bürgy, 2017).

Additionally, TS can utilize long-term memory to diversify and intensify the exploration of the
search space (Mati et al., 2001). For instance, Bürgy (2017) use elite solutions, adding any
solution surpassing the current best solution to the set. If the algorithm does not generate a
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new best solution for a specified number of iterations, it restarts with the most recent elite so-
lution. Moreover, as the TS cannot entirely prevent cyclic behavior, the authors incorporate an
evaluation of the sequence of objective values. The algorithm is restarted from an elite solution
if a cycle is detected—the heuristic stops based on a stopping criterion, such as a maximum
number of iterations.

Mati et al. (2001) apply a N1 neighborhood (Table 3.2), restricting permutations of consecu-
tive operations. Their recovery strategy consolidates jobs within the partial solution into one job
and reinserts the removed job using an optimal two-job insertion procedure. Their approach is
tested on non-standard instances, making comparison to later work impossible.

Building on this, Bürgy (2017) and Gröflin and Klinkert (2009) utilize the N1 neighborhood op-
erator with a recovery strategy based on the JIFR mechanism. Gröflin and Klinkert (2009)’s
concept of closure ensures minimal changes to convert an infeasible neighbor into a feasible
selection. Additionally, the authors incorporate a long-term memory to enhance intensification
and diversification through elite solutions and cycle detection. Bürgy (2017) expands this by
adding parallel computing capabilities, allowing for more extensive search space exploration.
Both approaches show improvements in makespan, with Bürgy (2017) outperforming Gröflin
and Klinkert (2009) across all benchmark instances. Additionally, Bürgy (2017) achieves better
results than the IG of Pranzo and Pacciarelli (2015) in the swapping-based approach. Further-
more, the authors emphasize that most improvements occur early in the computational process,
while running the algorithm longer yields further benefits, especially for larger instances.

Dabah et al. (2019) address the computational challenges implied by the recovery strategy
by introducing a parallel TS. The results demonstrate that this approach, combined with a JIFR
recovery strategy guided by AMCC, achieves a lower makespan than the closure-based ap-
proach in BJSSP where swaps are not allowed. Finally, Mogali et al. (2021) further improves
the computational efficiency of the TS approach by introducing new theoretical results. These
results allow quick infeasibility checks and efficient restoration of feasibility. Unlike earlier stud-
ies, their approach utilizes N4 and N5 neighborhoods, with N5 proving more efficient due to its
ability to perform more iterations within the same timeframe. This observation aligns with Bürgy
(2017), who preferred N5 for the makespan objective. The TS by Mogali et al. (2021) consis-
tently outperforms earlier approaches, setting a new standard in minimizing the makespan for
BJSSPs.

Among the reviewed papers, Bürgy (2017) uniquely evaluates the TS performance on objec-
tives beyond makespan, such as total tardiness minimization. Due to the lack of benchmark
results for the total tardiness, the author compares the results with MIP solutions. The TS
approach demonstrates clear improvements, especially for larger instances. Although their for-
mulation includes setup and transfer times, the authors set them to zero in their experiments.
To the best of our knowledge, only one earlier study, Gröflin and Klinkert (2009), considers this
generalization of the BJSSP.

Simulated Annealing Similar to TS, the simulated annealing procedure (SA) iteratively ex-
plores neighboring solutions, potentially accepting worse solutions until meeting a specific stop-
ping criterion. However, the acceptance criterion is probabilistic. The current neighbor solution
S′ is thereby always accepted if the value of the objective function of the neighbor solution
F (S′) is better than the value of the current solution F (S). Worse solutions are also occasion-
ally accepted with a certain probability. This probability depends on the difference between the
objective values F (S) and F (S′) and decreases over time, allowing the procedure to escape
local optima (Pinedo, 2016).
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Lange and Werner (2019a) and Lange and Werner (2019b) apply SA to solve the BJSSP with
total tardiness minimization. The authors use a neighborhood structure similar to N1 (Table 3.2)
but restrict the pairwise interchange to operations without idle time between them. This neigh-
borhood operator is applied in 90% of the iterations, while the remaining 10% involve shifting all
tardy job operations randomly to the left. The recovery algorithm constructs a feasible schedule
from the initial permutation by adjusting operations to maintain job precedence and machine
availability. This approach differs from previous recovery algorithms in that it continually reap-
plies the repair process after each change in the permutation.

Both Bürgy (2017) and Lange andWerner (2019b) evaluate their heuristics against the Lawrence
instances (Lawrence, 1984). However, as these benchmark instances do not provide release
and due dates, there are differences in their setups. While Bürgy (2017) releases all jobs at
time zero, Lange and Werner (2019b) randomly select release dates between zero and twice
the minimal total processing time. Additionally, the due dates in Bürgy (2017) are more lenient,
complicating direct performance comparisons.

The TS approach proposed by Bürgy (2017) matches or improves upon the results obtained
by their MIP model. In contrast, the results received by the SA from Lange and Werner (2019b)
match or surpass their MIP results only in three out of the ten smallest instances.

3.2 Discrete Event Simulation

Simulation is widely used in operations research and management science, gaining popularity
for modeling dynamic JSSPs and validating customized scenarios (Law, 2015; H. Wang et al.,
2023). Simulation studies generally imitate real-world facility operations or processes to gain
insights and identify areas for improvement (Robinson, 2014). This chapter focuses on discrete
event simulation, a common approach where a system evolves. Changes in the system’s state
occur only when specific events happen (Law, 2015).

Advantages and Disadvantages of Simulation Studies Based on the reviewed research,
discrete event simulation has been widely utilized to evaluate and analyze the performance
of a solution approach, particularly in the testing of dispatching rules. For example, Ferreira
et al. (2022) and Shady et al. (2022) use simulation experiments to compare dispatching rules
and their combinations. Multiple simulation runs with different parameter settings allow the
authors to evaluate the performance and robustness of these rules across various scenarios.
These studies exemplify several advantages of simulation studies. Simulation models provide
a controlled environment to test the impact of different experimental settings that real systems
cannot control. Thus, simulation allows for repeated testing and enables a large set of param-
eters and settings to be tested in a shorter timeframe than real-life experiments would allow
(Robinson, 2014). Schwenke and Kabitzsch (2017) also note the increased comparability due
to the decreased influence of random events. Furthermore, as observed in Shady et al. (2022),
simulation is a powerful tool for understanding the impact of experimental factors, offering more
profound insights into the behavior of dispatching rules than mathematical equations alone can
offer.

In addition to evaluating the performance of dispatching rules, simulation models can also be
used to assess the effectiveness of heuristics. Gaiardelli et al. (2024) highlight another ad-
vantage of simulation studies. The authors compare their approach in three ways: against
benchmark instances from the literature, on a real-world production line, and finally, using sim-
ulation experiments on a modified version of the real-world case. The simulation allows them
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to test their proposed algorithm in scenarios that do not exist.

Despite their numerous advantages, simulation studies have certain drawbacks. Firstly, they re-
quire considerable expertise and demand significant data. Additionally, the realistic appearance
of simulation animations can lead to overconfidence in the results. Therefore, when interpreting
the outcomes, it is essential to consider factors such as validity, underlying assumptions, and
simplifications made during the simulation process (Law, 2015; Robinson, 2014).

Modeling Processes of Simulation Studies Improper experimentation can lead to incorrect
understandings and ineffective improvements. Therefore, verifying and validating the model
throughout the modeling development is crucial. Two critical factors in setting up reliable ex-
periments are removing initialization bias and ensuring enough output data (Robinson, 2014).

Both Ferreira et al. (2022) and Shady et al. (2022) address the initialization bias by running
their model for a warm-up period to reach a steady state before collecting the data. Specifically,
both studies use a warm-up period of 500 jobs, with metrics calculated from the subsequent
2000 jobs. Alternatively, instead of waiting for the model to reach realistic conditions during the
run, the model can be initialized in a realistic state from the beginning (Robinson, 2014).

Collecting sufficient output data from the simulation is essential to estimate the model’s per-
formance accurately. Achieving this involves simulating for an extended period or conducting
multiple replications. While Shady et al. (2022) performs 20 replications for each test configu-
ration, Ferreira et al. (2022) conducts 100 replications for each scenario.

3.3 Pipeline Capacity

The pipeline size of a workstation or outfeed lane refers to the number of pallets that can si-
multaneously be transported to this destination at any point in time (Haneyah et al., 2013).
Therefore, pallets are only sent to the destination if the number of pallets in the pipeline does
not exceed the pipeline size, including scheduled retrievals that are not physically in the pipeline
yet. Consequently, the pipeline capacity influences pallets’ interarrival time and workstations’
idle time. As the pipeline parameter controls the material flow in the system and is used to
prevent overflows, the size is important to define in the control architecture.

Despite its importance, to the best of our knowledge, this capacity has not been studied much in
the literature. While Andriansyah et al. (2014) only refer to pipeline capacity as an experimen-
tal factor in their simulation model, Haneyah et al. (2013) provide two ways of determining the
parameter. The authors explain that typically, the pipeline size equals the number of locations
on the inbound buffer of a workstation. On the other hand, the authors propose the following
formula to determine the pipeline size

psi = capi ∗ (ti + ta) (3.5)

where index i represents the workstation or outfeed lane. The pipeline size psi of i results from
multiplying the capacity capi with the sum of the average travel time of a pallet to i, ti, and the
time allowance ta. This time allowance accounts for realistic delays caused by other pallets in
the system and scheduled requests not yet in the pipeline (Haneyah et al., 2013).

Haneyah et al. (2013) address the planning and control of automated material handling sys-
tems in two industrial sectors: baggage handling and distribution. The authors set the pipeline
size for distribution centers as the number of buffer spots at workstations to control flow in a
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small sorter system and prevent conveyor capacity wastage by looping due to blocked entry. In
baggage handling, they determined the Equation 3.5 to maintain a continuous flow of luggage
to the workstations. Furthermore, the larger size of this system results in longer travel times for
some workstations, leading to a higher pipeline size assigned to these stations.

3.4 Summary of the Literature Review

The scheduling problem at Euroma involves optimizing the outbound process in the high-bay
warehouse, which integrates the conveyor system and the AS/RS. Based on the reviewed lit-
erature, most research focuses on AS/RS optimization but comparatively little on optimizing
the conveyor performance. Given the interdependence between these subsystems, our re-
search builds upon existing scheduling studies while addressing Euroma’s specific constraints
and challenges.

Section 3.1, reviews JSSPs, involving the allocation of operations to machines in various en-
vironments. As highlighted in Section 3.1.2, numerous characteristics can be incorporated to
model system features adequately. Based on this review, we identify the problem at Euroma as
an extended blocking job shop scheduling problem, incorporating multiple constraints. Using
the three-field classification scheme, the problem is formulated as:

Jm|ri, di, blocking, oijuv, recirulation, no-wait|T, F,Q

The classification in Table 3.3 shows that the BJSSP literature addresses nearly all character-
istics of the system installed at Euroma. However, each existing study covers only a limited
range of practical aspects. Our analysis could not identify a scheduling problem in the literature
with a set of characteristics identical to our case.

The majority of BJSSP literature model blocking constraints in manufacturing or transportation
contexts but rarely consider conveyor-based BJSSPs. Our research explicitly incorporates con-
veyor movements, where pallets wait if the next spot is occupied, rather than imposing classical
no-wait constraints. To the best of our knowledge, no previous study has relaxed the no-wait
constraint in this context. Additionally, we integrate AS/RS operations, where crane movements
depend on conveyor flow as pallets are not allowed to wait on the cranes (classical no-wait con-
straint). Therefore, pallets wait in their storage location until the I/O-point becomes available.

All studies summarized in Table 3.3 incorporate blocking constraints, but due dates and re-
lease dates are primarily considered in dynamic scheduling problems. Furthermore, based on
the literature considered for this thesis, existing research does not address the combination of
setup times, recirculation, and no-wait constraints in dynamic environments. Additionally, to the
best of our knowledge, none of the reviewed studies involve precedence constraints between
jobs. At Euroma this constraint is critical as workstation pallets must adhere to a predetermined
sequence.

In Section 3.1.3, we observe that most research in this area concentrates on single objec-
tives. Table 3.3 reflects this observation. While some studies, such as Bürgy (2017), consider
multiple objectives, they evaluate them separately rather than simultaneously. The predomi-
nant objective in existing studies is makespan minimization, though tardiness is also frequently
considered. Our research adopts a multi-objective approach, optimizing tardiness (to increase
on-time deliveries) and flow time (to reduce work-in-progress), making it more applicable to
real-world warehouse operations. In addition to these objectives, we optimize queueing time to
prevent outbound pallets from being unnecessarily delayed in their retrieval, ensuring that any
postponement only occurs if it helps maintain the efficiency of other pallet flows.
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Section 3.1.4 highlights that BJSSPs are generally NP-hard, with complexity even more sig-
nificant than that of classical JSSPs. Consequently, exact algorithms cannot solve medium and
large problem instances for real-world applications. Therefore, Section 3.1.4 explores construc-
tive and improvement heuristics that can obtain suitable solutions for large problem instances in
a reasonable time. The potential of infeasibility due to constructive heuristics and neighborhood
operators makes direct adaptations from classical JSSPs challenging. The diversity of BJSSPs
further complicates the identification of a universally superior approach. Nevertheless, in static
cases, local search methods such as SA and TS are predominant, while dispatching rules are
common in dynamic settings. Although dispatching rules offer flexibility and ease of implemen-
tation, local search heuristics often yield higher-quality solutions. Additionally, dynamic BJSSPs
are frequently analyzed through simulation, as discussed in Section 3.2. However, comparative
studies on different dispatching strategies for BJSSPs remain limited. Our research evaluates
two alternative dispatching rules against Euroma’s current approach using discrete event sim-
ulation.

To our knowledge, no study within the BJSSP literature explicitly addresses the pipeline ca-
pacity. Although some research, like Schwenke and Kabitzsch (2017), indirectly considered
pipeline capacity by modeling the transportation process, no study explicitly evaluated restric-
tions on the number of jobs in transit. In general, the literature on pipeline capacity is limited,
as outlined in Section 3.3. Findings suggest that setting pipeline capacity based on available
buffer space prevents inefficient conveyor utilization, while a larger pipeline capacity supports
continuous job flow. We analyze different pipeline thresholds and their impact on system per-
formance, which is a novel aspect of our work.

In summary, this research provides a comprehensive and practical approach to scheduling in
high-bay warehouses with integrated AS/RS and conveyor systems. It introduces new insights
into pipeline management, multi-objective optimization, and dynamic scheduling strategies, ad-
dressing key gaps in the existing literature.
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Problem Type Release
Date

Due
Date

Setup
Time

Recircu-
lation

No-Wait Job Pre-
cedence

Pipeline Optimality Cri-
teria

Solution Approach

Bürgy (2017) static BJSSP ✓(0 in
tests)

✓ ✓ makespan,
flow time, or
tardiness

tabu search

Lange and Werner (2019a) static BJSSP ✓ ✓ ✓ tardiness simulated annealing

Liu and Kozan (2009) static BJSSP ✓ makespan local search

Mascis and Pacciarelli (2002) static BJSSP ✓ ✓ makespan Branch & Bound,
Greedy

Haneyah et al. (2013) dynamic material
flow control

✓ ✓ ✓ throughput dispatching rules,
simulation

Hatzack and Nebel (2001) dynamic BJSSP ✓ makespan backtracking,
simulation

Schwenke and Kabitzsch (2017) dynamic BJSSP ✓ ✓ delays dispatching rules,
simulation

Our Problem dynamic BJSSP ✓ ✓ ✓ ✓ ✓and
relaxed

✓ ✓ tardiness,
flow time, and
queueing time

dispatching rules,
simulation

Table 3.3: Framework Literature: This framework presents the most relevant papers on BJSSPs, highlighting the characteristics incorporated in
each study. A checkmark indicates the inclusion of a characteristic, with additional details provided where relevant. For example, Bürgy (2017)
consider release dates in their model development but assume them to be zero in their experiments.
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4 MODELLING AND SOLUTION DESIGN

This chapter addresses the third research question: How should the solution approach be de-
signed for Euroma’s lead time reduction problem?

The first part of the chapter focuses on the mathematical model. Section 4.1 provides an
overview, followed by the formal mathematical formulation in Section 4.2 and an illustrative
example in Section 4.3. Then, the focus shifts to the discrete event simulation. Section 4.4
introduces the conceptual model, while Section 4.5 discusses key assumptions and simplifica-
tions. Section 4.6 explores potential improvements in the scheduling strategy before Section
4.7 presents the discrete event simulation framework.

4.1 Model Description

The system under consideration comprises an AS/RS and conveyor modules, involving a set
of m resources (machines), R = {R1, R2, ..., Rm}, used to process a set of n pallet requests
(jobs), J = {J1, J2, ..., Jn}. The jobs compete for the resources, and each resource can handle
only one job at a time, which is typical for scheduling problems.

Jobs and Resources Following the notation in Section 3.1, each job is represented by the
tuple (ri, di, [oij , Rk, pij ]), where

• ri refers to the earliest release date,

• di denotes the due date,

• and [oij , Rk, pij ] represents the predetermined path through the high-bay warehouse, spec-
ifying the operations, corresponding resources, and processing times of job Ji. The pro-
cessing times pij depend on each operation’s specific resource Rk.

Based on their flow through the high-bay warehouse, we divide the pallet requests into three
subsets: inbound pallet requests J I, full outbound pallet requests J O, and outbound pallet re-
quests with a workstation as their destination JW. Since pallet requests are submitted through-
out the day, the scheduling problem operates in a dynamic environment. Therefore, each job
Ji ∈ J is assigned the earliest release date ri. Additionally, each outbound job Ji ∈ J O ∪ JW

is assigned a due date di.

The system comprises several types of resources, as described below:

• Storage Locations (RSL): Double deep storage racks in the AS/RS store pallets. Each
storage location buffers pallets until the crane retrieves them.

• Cranes (RC): Each aisle in the AS/RS is served by a single crane. The cranes transport
pallets one at a time between the storage locations and I/O-points.

• Operator (RO): Operators process pallets at outbound stations or workstations.
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• Main Conveyor (RMC): The conveyor system transports pallets between various resources,
with each spot on the conveyor representing a resource that can handle one pallet at a
time.

• Buffer Spots (RB): The inbound and outbound buffer spots reduce congestion on the main
conveyor by temporarily storing pallets before they reach the main conveyor or destination
points.

• Destination Spots (RD): Buffer spots always precede destination spots. Operators serve
these resources, marking the final processing point for pallets before they leave the system
or move (back) into the AS/RS.

• Entrance Spots (RE): Entrance spots, unlike destination spots, involve processing by op-
erators to initiate the transportation process on the conveyor. Buffer spots succeed these
resources.

• Lifts (RL): Lifts transport pallets vertically between different levels, operating only in one
direction.

Based on the system structure, the resources RMC, RB, RD, RE, and RL collectively form the
conveyor system, while the resources RSL and RC constitute the AS/RS.

Operations and Precedence Each pallet Ji ∈ J enters and leaves the system at desig-
nated resources Rk ∈ RE ∪ RD. The movement between the entrance and the destinations of
each pallet request Ji ∈ J is predetermined by an ordered sequence of ni operations (actions)
(oi,1, oi,2, ..., oi,ni). However, if a pallet is processed on a main conveyor spot Rk ∈ RMC and the
next operation oi,j+1 is scheduled on an occupied buffer spot Rk+1 ∈ RB, the pallet needs to
alter its predetermined path. In such case, action oi,j+1 occurs on the next main conveyor spot
instead of the buffer spot. Consequently, all subsequent actions must be adjusted, resulting in
the pallet continuing on the main conveyor until it can enter the buffer spot.

In addition to the precedence constraints within the operations of each pallet, pallets Ji ∈ JW

also have precedence constraints among each other. As a result, the first pallet requested for
a workstation must arrive before subsequent pallets for the same workstation. If pallets do not
meet this condition, they loop on the main conveyor until the preceding pallet arrives at the
workstation.

Constraints and Objectives A solution to this scheduling problem must define the exact start
time for each pallet’s processing while adhering to the following constraints:

• The processing of pallet Ji cannot start before its release date ri.

• Overtaking on machines is prohibited.

• Pallets Ji must obey any existing precedence relationships between jobs.

• Each job Ji can only be processed by one machine at a time.

• Each resource Ri can only process one job Ji at a time.

• Jobs cannot be interrupted once started.

The objective is to minimize the tardiness of the outbound jobs Ji ∈ J O ∪ JW while reducing
the time spent on the conveyor and in the queue. Therefore, the model minimizes the following
objectives in lexicographic order:
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1. Tardiness of all outbound jobs Ji ∈ J O ∪ JW: The tardiness T is calculated as

T =
∑

i∈J O∪JW

max{Ci − di; 0} (4.1)

where Ci represents the completion time and di the due date of job Ji.

2. Flow time of all jobs Ji ∈ J : The flow time F is given by

F =
∑
i∈J

(Ci − si) (4.2)

where si denotes the start of the processing time. For inbound pallets, si corresponds
to the time the pallet is placed on the conveyor, while for outbound pallets, it represents
the crane retrieval time. The flow time is adjusted to reflect only the pallet’s actual time
moving through the system, starting from its initial movement rather than the request time.

3. Queuing time of all jobs Ji ∈ J : The queueing time is defined as

Q =
∑
i∈J

Qi (4.3)

where Qi represents the queueing time for job Ji. For inbound pallets, Qi is the time
elapsed between the arrival at the I/O-point and crane retrieval. For outbound pallets, it
is the time between the request and crane retrieval.

The lexicographic order ensures that the main focus is on minimizing the tardiness of the out-
bound jobs Ji ∈ J O ∪ JW. At the same time, the secondary objectives prioritize minimizing
conveyor and queueing times. This approach prevents congestion on the conveyor, ensures
timely pallet retrieval by the crane, and avoids unnecessary delays. For inbound pallets that do
not have a due date di, the secondary objective ensures their timely retrieval without disrupting
outbound operations.

4.2 Mathematical Model

The mathematical formulation of the BJSSP of Euroma extends the classical BJSSP formula-
tion. Additionally, the model incorporates further characteristics and constraints presented in
Section 3.1.2. Table 4.1 summarizes the notation introduced in Section 4.1. The goal is to derive
an optimal schedule, minimizing tardiness and flow time while respecting various operational
constraints.

Objective Function The optimization problem is structured using a lexicographical objective
function, stated in Equation 4.4. This function minimizes three objectives – tardiness, flow time,
and queueing time – in lexicographical order. Each subsequent objective optimizes the schedule
without worsening the optimal value of the preceding objectives. Equation 4.1 and Equation 4.3
define each objective.

min fL(T, F,Q) (4.4)

Tardiness Constraints The first three constraints calculate each job’s tardiness based on the
completion times and due dates.

Ci = si,ni + pi,ni ∀Ji ∈ J , ni = |Oi| (4.5)

Ti ≥ Ci − di ∀Ji ∈ J (4.6)
Ti ≥ 0 ∀Ji ∈ J (4.7)
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Symbol Description

Sets

R = {Rk|k = 1, . . . ,m} set of m resources

J = {Ji|i = 1, ..., n} set of n jobs

A = {Ji|si, 1 ≥ t} set of active jobs

Oi = {Oij |j = 1, . . . , ni} set of ni operations of job Ji

O = ∪Ji∈JOi set of operations

ORk set of operations being processed on machine Rk

Parameters

Oij j-th operation of job Ji

pij processing time of operation Oij

ri request time of job Ji

di due date of job Ji

oi,u,k setup time between jobs Ji and Ju on machine Rk

t current time

M big-M, large positive constant

Variables

sij starting time of operation Oij

Qi queueing time of job Ji{
si,ni − si,ni−1 if job Ji ∈ JI

si,1 − ri otherwise

Ci completion time of job Ji

Ti tardiness of job Ji

Binary Variables

yijuvk

{
1 if operation Oij is scheduled before operation Ouv on machine k

0 otherwise

qij

{
1 if at least on job Ju ∈ J precedes job Ji on the machine of operation Oij

0 otherwise

xijuv

{
1 if operation Oij is scheduled immediately before operation Ouv on machine k

0 otherwise

zij

{
0 if waiting is required before starting operation Oij

1 otherwise

Table 4.1: Notation BJSSP. This table summarizes the notation used in the mathematical model
of the scheduling problem at Euroma.

Release Date Constraints This set of constraints enforces that jobs cannot start before their
release dates or the system’s current time.

si,1 ≥ ri ∀Ji ∈ J 0 ∪ JW (4.8)

si,1 ≥ t ∀Ji ∈ J 0 ∪ JW \ A (4.9)

PrecedenceConstraints TheBJSSP of Euroma includes two types of precedence constraints.
The first ensures that operations within a job follow the correct sequence (Equation 4.10). The
second enforces adherence to a predefined sequence between jobs at workstations (Equations
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4.11 and 4.12).
si,j+1 ≥ si,j + pi,j ∀Ji ∈ J , j < |Oi| (4.10)

yi,ni,u,nu = 1 ∀Ji, Ju ∈ JW |Ji ̸= Ju, ni = |Oi|, nu = |Ou|,
Oi,ni , Ou,nu ∈ ORk,

Sequence Position(Ji) < Sequence Position(Ju)
(4.11)

yu,nu,i,ni = 1 ∀Ji, Ju ∈ JW |Ji ̸= Ju, ni = |Oi|, nu = |Ou|,
Oi,ni , Ou,nu ∈ ORk,

Sequence Position(Ji) > Sequence Position(Ju)
(4.12)

Resource Constraints These constraints ensure that a machine processes only one opera-
tion at a time. Together, they manage the start times of a job’s operation on resources while
considering the availability of resources, processing times, setup times, and precedence of other
jobs.

si,j ≥ su,v + pu,v + ou,i,k −M ∗ yi,j,u,v ∀Ji, Ju ∈ J |Ji ̸= Ju, j ∈ Oi, v ∈ Ou,

Oi,ni , Ou,nu ∈ ORk

(4.13)

su,v ≥ si,j + pi,j + oi,u,k −M ∗ (1− yi,j,u,v) ∀Ji, Ju ∈ J |Ji ̸= Ju, j ∈ Oi, v ∈ Ou,

Oi,ni , Ou,nu ∈ ORk

(4.14)

Blocking Constraint This constraint ensures that operations cannot proceed until the re-
source for the subsequent operation becomes available. The resource becomes available only
after the succeeding operation of the preceding job starts processing on the succeeding ma-
chine and any required setup time has passed.

su,v ≥ si,j+1 + oi,u,k −M ∗ (1− yi,j,u,v) ∀Ji, Ju ∈ J |Ji ̸= Ju, j ∈ Oi, v ∈ Ou,

Oi,ni , Ou,nu ∈ ORk

(4.15)

No-Wait Constraints No-wait constraints enforce that jobs cannot wait between two succes-
sive machines. In the high-bay warehouse installed at Euroma, this constraint (Equation 4.16)
applies to crane resources (RC). Other resources require a relaxed version of the no-wait con-
straint. In this relaxed version, jobs must proceed to the next machine if it is available. If the
machine is unavailable, the job waits on the preceding machine. Constraints 4.17 to 4.23 en-
force this condition.

si,j+1 = si,j + pi,j ∀Ji ∈ J , j < |Oi|, Oi,j ∈ ORk, Rk ∈ RC (4.16)

yi,j,u,v = 0 ∀Ji, Ju ∈ J , j ∈ Oi, v ∈ Ou,

Oi,ni , Ou,nu /∈ ORk

(4.17)

yi,j,u,v = 0 ∀Ji, Ju ∈ J |Ji = Ju, j ∈ Oi, v ∈ Ou (4.18)

• Constraints 4.17 and 4.18 ensure that the binary variable yi,j,u,v is zero if Ji and Ju are the
same job or if operation j of job Ji and operation v of job Ju are not processed on the same
machine. Enforcing these constraints is necessary to ensure that machine availability and
start times of operations are determined only by jobs preceding Ji on the machine.

yu,v,i,j ≤ qi,j ∀Ji, Ju ∈ J , j ∈ Oi, v ∈ Ou (4.19)

• Constraint 4.19 ensures that the binary variable qi,j equals one if at least one job Ju ∈ J
precedes job Ji ∈ J on the machine of operation j ∈ Oi.
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∑
Ju∈J ,v∈Ou

(yu,v,i,j ∗ xu,v,i,j) = qi,j ∀Ji ∈ J , j ∈ Oi (4.20)

• Equation 4.20 ensures that if there is at least one job Ju that precedes job Ji on their
common machine (where operation j ∈ Oi and v ∈ Ou are processed) then exactly one
binary variable xu,v,i,j must be one.

si,j ≤ M ∗ (qi,j + 1− zi,j) ∀Ji ∈ J , j ∈ Oi (4.21)

si,j ≤ su,v+1 + ou,i,k +M ∗ (2− xu,v,i,j − zi,j) ∀Ji, Ju ∈ J |Ji ̸= Ju,

j ∈ Oi, v < |Ou|
(4.22)

si,j ≤ si,j−1 + pi,j−1 +M ∗ zi,j ∀Ji ∈ J , j ∈ Oi|j > 1 (4.23)

• This set of constraints ensures that operation j− 1 of job Ji ∈ J begins its next operation
j as soon as the succeeding machine becomes available. By using binary variables qi,j ,
xi,j,u,v, and zi,j , the model establishes an upper bound for the start time of operation j
of job Ji ∈ J . Together with the lower bounds from Equation 4.10 and Equation 4.15,
these constraints ensure that job Ji ∈ J proceeds as soon as the succeeding machine
becomes available.

Fixed Start Times Constraint For active jobs, the start times of the first operations are fixed
due to system constraints. We consider jobs as active once they begin their movement through
the system. In other words, outbound jobs become active when the crane retrieval begins.
In contrast, inbound jobs become active when they enter the system, marked by an operator
placing the pallet on the conveyor. The start times of these operations are fixed since they have
already started in the actual system and, therefore, cannot be modified by the optimization
algorithm.

si,1 = fixed starti,1 ∀Ji ∈ A (4.24)

Binary Variable Constraint The binary variables yi,j,u,v, qij , and xijuv represent precedence
relationships between jobs on resources, while zij determines the necessity of waiting times on
the conveyor.

qi,j ∈ {0, 1} ∀Ji ∈ J , j ∈ Oi (4.25)

xi,j,u,v ∈ {0, 1} ∀Ji, Ju ∈ J , j ∈ Oi, v ∈ Ou (4.26)

yi,j,u,v ∈ {0, 1} ∀Ji, Ju ∈ J , j ∈ Oi, v ∈ Ou (4.27)

zi,j ∈ {0, 1} ∀Ji ∈ J , j ∈ Oi (4.28)

4.3 Illustrative Example

To demonstrate how pallets move through the high-bay warehouse and how the different ma-
chines interact, we present an illustrative example with four pallet requests and eight resources.
This example highlights the scheduling constraints and dependencies within the system. Fig-
ures 4.1a and 4.1b visually represent the warehouse operations, while Table 4.2 details the
request times, due dates, setup times, and processing times for each pallet and resource.

To validate the developed mathematical model described in Section 4.2 and assess its ap-
plicability, we formulated the problem in Python and solved it using GUROBI. The optimization
process yielded an optimal solution within 0.57 seconds. This example not only confirms the
solvability of the model but also illustrates how it determines an efficient schedule for pallet
movements in the warehouse system.
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J1
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R8

t = 0
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t = 1
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t = 2
queue at crane: J3, J4

t = 3
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t = 4
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queue at crane: -

R8

(a) Illustrative Example: Pallet Movement Over Time. The figure illustrates the warehouse
state at each time step, highlighting the movement of outbound (red) and inbound (green)
pallets across components. Pallets queued for the crane are also shown per time step.
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R1 ∈ RMC O1,1

R2 ∈ RMC O1,2

R3 ∈ RMC

R4 ∈ RMC O2,3 O4,3 O3,3

R5 ∈ RD O3,3O2,4 O4,4

R6 ∈ RB O1,3

R7 ∈ RB O2,2 O4,2 O3,2

R8 ∈ RC

0 2 3 4 5 6 71 8 9 10 12

O1,4O2,1 O4,1 O3,1

11

(b) Illustrative Example: Gantt Chart. This visualization displays the processing and setup
times for each pallet on each resource, depicting the sequence in which pallets are handled.

Figure 4.1: Illustrative Example. This figure provides an overview of pallet movements and
resource utilization within the warehouse system.

Initial Setup (t = 0) Initially, three outbound pallets (J1, J2, J3 ∈ J O) highlighted in red in
Figure 4.1 are stored in the AS/RS. Simultaneously, pallet J1 ∈ J I, an inbound pallet highlighted
in green, is placed on the conveyor.

First Requests (t = 1) At t = 1, pallets JO2 and JO3 are requested. Given the constraint that the
crane can only move one pallet at a time, it retrieves pallet JO2 first, as this sequence minimizes
tardiness (discussed later). Meanwhile, inbound pallet J I1 moves to the next conveyor spotRMC

2 .

Crane Operations (t = 2 - t = 5) After dropping off pallet JO2 at the I/O-point (RB
7 ) at t = 2, the

crane moves back to the storage area to retrieve JO4 , which is prioritized over JO3 to minimize
total tardiness. The crane does not retrieve pallet J I1 from the buffer spot RB

6 at t = 2 because
J I1 must first complete processing on this spot. This processing time accounts for the duration
required for a pallet to traverse a conveyor module. Additionally, since the inbound pallet J I1
lacks a due date and is thus not time-critical, it remains in place until the crane is idle or has
completed a retrieval of an outbound pallet. This occurs at t = 4 when the crane drops off pallet
JO4 at the I/O-point. On its way back to retrieve JO3 , the crane picks up pallet J I1 and stores
it, utilizing a dual command operation. This does not incur additional time, as the crane must
move from the I/O-point to the storage area.

Buffer and Conveyor Movements (t = 5 - t = 7) At t = 5, pallet JO2 reaches its destination
RD

5 and awaits further processing. Typically, pallets have a processing time of one minute per
conveyor module, but at the final destination, they require two minutes, as detailed in Table 4.2.
This additional time accounts for waiting for retrieval. By t = 6, pallet JO2 leaves the system,
allowing space for other pallets to advance. However, due to the setup time of one minute, pallet
JO4 cannot immediately proceed to the newly available destination. The setup times reflect the
real-life scenario where pallets occupy two conveyor spots simultaneously because they do not
transfer instantly from one spot to the next. Figure 4.1b visualizes the required setup time with
dashed bars after processing pallets.
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Request Date (ri) Due Date (di) Processing Times (pk)

J I
1 0 -

JO
2 1 6

JO
3 1 10

JO
4 2 9

RMC
1 - RMC

4 , RB
6 , RE

7 , RC
8 1

RD
5 2

(a) Release Dates, Due Dates, and Processing Times. While the first two parameters are job-related,
the processing time is resource-related. The times are given in minutes.

job \ resource RMC
1 RMC

2 RMC
3 RMC

4 RD
5 RB

6 RE
7 RC

8

J I
1, JO

2 1 1 1 1 1 1 1 0

J I
1, JO

3 1 1 1 1 1 1 1 0

J I
1, JO

4 1 1 1 1 1 1 1 0

JO
2 , J I

1 1 1 1 1 1 1 1 0

JO
2 , JO

3 1 1 1 1 1 1 1 1

JO
2 , JO

4 1 1 1 1 1 1 1 1

JO
3 , J I

1 1 1 1 1 1 1 1 0

JO
3 , JO

2 1 1 1 1 1 1 1 1

JO
3 , JO

4 1 1 1 1 1 1 1 1

JO
4 , J I

1 1 1 1 1 1 1 1 0

JO
4 , JO

2 1 1 1 1 1 1 1 1

JO
4 , JO

3 1 1 1 1 1 1 1 1

(b) Setup Time Matix.

Table 4.2: Input Parameter for the Illustrative Example.

Completion (t = 7 - t = 11) At t = 7, pallet JO4 starts processing at its destination RD
5 , waits

for retrieval at t = 8 and exits the system at t = 9. One time step later, at t = 10, the last pallet,
JO3 , reaches its destination RD

5 .

Schedule Discussion and Objective Calculations Retrieving JO2 first results in lower overall
tardiness, as retrieving another pallet first would delay JO2 ’s arrival without benefiting the overall
schedule. Early arrivals do not provide any scheduling advantage. For a similar reason, JO4 is
prioritized over JO3 .

• Sequence 1 (JO2 → JO4 → J I1 → JO3 )

– Both JO2 and JO4 meet their due date, resulting in a tardiness of zero time steps.
– JO3 reaches its destination at t = 12, resulting in a tardiness calculated as T3 =

max{0, 12− 10} = 2.
– The total tardiness is two time steps.

• Sequence 2 (JO2 → JO3 → J I1 → JO4 )

– JO2 meets its due date (T2 = 0).
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– JO3 meets its due date (T3 = max{0, 9− 10} = 0).
– JO4 reaches its destination at t = 12, resulting in a tardiness of three three time steps.
– The total tardiness is three time steps.

Due to the lexicographical approach, optimizing the schedule for the second objective must not
worsen the first objective. Therefore, we consider only schedules with a tardiness of twominutes
or less. This constraint limits the sequence of outbound pallets: JO2 → JO4 → JO3 . The crane
can retrieve inbound pallet J1 between JO4 and JO3 or at the end without increasing the tardiness.

Minimizing the flow time ensures that pallets do not wait on shared resources unless delay-
ing retrieval prevents increasing tardiness. For example, retrieving pallet JO3 at t = 7 instead
of earlier prevents unnecessary waiting on the conveyor without increasing its tardiness. Ad-
ditionally, the second objective prevents the inbound pallet from remaining in the crane queue
when the crane is idle. Consequently, the optimal sequence is: JO2 → JO4 → J I1 → JO3 . The
third objective, queueing time, does not influence this case, as reducing queueing time would
increase flow time due to conveyor congestion.

This example highlights the importance of the relaxed no-wait constraint. If the model applies
the traditional no-wait constraint to conveyor resources, it will delay JO4 ’s retrieval by at least one
time step. As a result, either inbound pallet J I1’s retrieval would also be delayed – increasing its
queueing and flow time – or J I1 would be retrieved before JO4 , increasing JO4 ’s queueing time and
tardiness by one time step. Conversely, removing the no-wait constraint would allow J I1 to wait
at another conveyor spot before entering RB

6 , reducing queueing time but creating unrealistic
conditions.

In this example, the model optimizes the scheduling process by considering release dates, due
dates, processing times, and resource constraints to minimize overall tardiness while ensuring
efficient pallet movement. Prioritizing JO2 and JO4 achieves lower tardiness, demonstrating the
importance of strategic scheduling. The optimal schedule results in a tardiness of two, a flow
time of 21, and a queueing time of eight time steps.

4.4 Conceptual Model of the Simulation

While the mathematical model successfully provides optimal schedules for small instances, its
scalability is limited. As the problem size increases, computation time grows rapidly. Table C.1
presents the computation time for varying example sizes. The reader can find the exact in-
put parameters for each scenario in Appendix C. When doubling the number of jobs from the
presented example in Section 4.3, the solution time increases to 2.75 seconds – more than
double the original 0.57 seconds. Doubling the job count again, the solver could not reach an
optimal solution within one hour. Increasing the number of machines to 15 also leads to higher
computation times, even for smaller job instances, emphasizing the additional complexity intro-
duced by a larger system configuration. This exponential increase in computation time makes
the exact approach impractical for larger, real-world instances.

Euroma’s scheduling problem is a dynamic BJSSP, where job arrivals and resource availabil-
ity change over time. Therefore, it requires rapid decision-making. Most of the literature on
dynamic BJSSPs addresses this challenge using dispatching rules. We employ discrete event
simulation to evaluate and compare the performance of different dispatching strategies under
realistic conditions. This decision is driven by the reviewed studies, which highlight that com-
paring dispatching rules in a controlled simulation environment is highly effective. Simulation
allows for repeated testing with excellent comparability within a short time frame. Therefore,
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Problem Size Solution Performance

Inbound Jobs Outbound Jobs Machines Computation Time (sec) Optimality Gap

1 3 8 0.57 0.00%

1 3 15 1.29 0.00%

2 6 8 2.95 0.00%

2 6 15 6.47 0.00%

4 12 8 3600 5.93%

Table 4.3: Problem Size and Solution Performance: The table presents the computational time
and optimality gap for different problem sizes based on the number of inbound and outbound
jobs, and the number of machines in the system.

it provides valuable insights into system performance under different conditions. While it does
not guarantee optimal solutions, simulation offers flexibility and realistic insights into dynamic
scheduling in real-world scenarios.

The following sections focus on the discrete event simulation model and its application to Eu-
roma’s scheduling problem. Before developing the simulation model in Siemens Tecnomatix
Plant Simulation 16.1, we created a conceptual framework to describe the high-bay warehouse
system at Euroma in a non-software-specific manner. Therefore, this section summarizes the
information provided by the main problem description in Section 2 in a conceptual model, which
serves as the foundation for building the simulation model.

Modeling Objectives Euroma faces challenges in the full outbound process of its high-bay
warehouse. Operators and truck drivers frequently report waiting times for pallets. These de-
lays do not result from stock or capacity issues but coordination issues affecting pallet outbound
processes. Therefore, Euroma aims to gain insights into the outbound process and identify op-
portunities for improvement. The primary goal is to ensure that all full outbound pallets achieve
a maximum lead time of one hour at any time of the day.

The simulation assesses the effects of potential adjustments on outbound lead times. Addition-
ally, it monitors the entire system’s performance, including inbound and workstation processes,
to ensure that improvements do not negatively impact other areas.

Inputs and Outputs The input variables represent the experimental factors that can be mod-
ified to achieve the model’s objectives (Robinson, 2014). At Euroma, these factors include
the sequencing policy, the operator behavior when retrieving pallets from the conveyor, and
adjustments influencing the pipeline threshold, as detailed in Section 4.6. Additionally, the sim-
ulation model relies on constant input parameters across experiments derived from historical
data. These parameters include pallet arrival times, processing time distributions at worksta-
tions, and crane and conveyor movement times.

The pallet arrival times in the simulation precisely replicate the timing observed in the historical
data. Similarly, the crane’s processing times for loaded outbound movements strictly follow the
historical data. For loaded inbound movements and empty crane travel times – where exact
historical data is unavailable – assumptions are made based on loaded outbound movement
times and real-system observations. A normal distribution models the crane travel times for

48



loaded inbound movements (time in seconds):

Normal(µ = 42.26, σ = 8.74, lower bound = 13, upper bound = 63) (4.29)

An additional delay is included for empty single command crane travel times to account for
the observed pause before the crane initiates its next task, modeled as a uniform distribution
between zero and ten seconds. Furthermore, the empty dual command travel times follow a
uniform distribution between 15 and 25 seconds.

We also derive the conveyor speed from historical data and system observations, ranging be-
tween 0.12 and 0.2 meters per second. Appendix G provides further explanations and details.

The simulation model provides its results by output parameters to evaluate the system’s per-
formance and the effectiveness of the implemented adjustments. The primary output focuses
on the percentage of pallets that reach the outfeed within the one-hour threshold and the re-
sulting total tardiness, ensuring the main objective is met. Secondary output KPIs include the
inbound queuing time and workstation tardiness. These metrics help to assess the broader
system performance, ensuring adjustments do not negatively impact the inbound processes or
disrupt production workflows.

We use additional outputs to analyze the factors contributing to the total outbound lead time.
These include crane queuing and pallet movement times. By monitoring these aspects, we
gain insights into how specific adjustments impact overall system efficiency and identify areas
for further improvement. Appendix D, specifically Table D.1, provides a detailed summary of
the input and output parameters.

Scope The scope of the simulation model is defined based on the identified objectives and the
input and output parameters. It includes the AS/RS, which encompasses the retrieval queue,
stacker cranes, and storage racks, as these are critical components of the outbound process.
The conveyor system and its retrieval process are also within the scope, as they directly impact
pallet movement. Additionally, we include the WCS to capture the coordination and control of
the entire system. Appendix D, particularly Table D.2, provides a detailed explanation of the
scope and justifications for including and excluding specific elements.

4.5 Modeling Assumptions and Simplifications

This section presents the assumptions and simplificationsmade in developing themodel. These
limit the complexity of the model without interfering with the model’s ability to provide valuable
insights into the scheduling and operational behavior of the high-bay warehouse.

• Dedicated Machines: Although the WCS can assign new orders to any available worksta-
tion, we treat this decision as fixed. This simplification is made because the assignment
depends on factors beyond the scope of this research.

• Breakdown and Maintenance: We exclude machine breakdowns and maintenance from
the model. Given a technical uptime between 98% and 99%, breakdowns are not consid-
ered critical. Additionally, Euroma schedules its maintenance, resulting in the assignment
of alternative machines to process the pallets. The model’s input data reflects this reor-
ganization.

• AS/RS: The simulation models the AS/RS as a black box. Therefore, methods repre-
sent the crane movement, logic, and storage aisles. For instance, the crane travel times
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implicitly account for varying distances between storage locations and the I/O-points. Ad-
ditionally, we assume requested jobs are always available for retrieval and transportation
without considering misplacement or unavailability. Finally, the model explicitly tracks and
stores the crane queue, as its behavior is an essential experimental factor.

• Pallet Dimensions: The pallet size does not affect the crane or conveyor processing time.
Additionally, storage assignment rules lay outside the scope of this research. Therefore,
we assign all pallets the same dimensions even though Euroma uses two types of pallets.

• Operator Availability: In a real-life situation, operators are not always available to retrieve
pallets from the conveyor due to breaks, other tasks, or absenteeism. This research con-
siders operator behavior only if it directly affects pallet retrieval. As such, we can indirectly
account for operator availability by including the duration of a pallet on the conveyor wait-
ing for retrieval.

Appendix E visualizes the simulationmodel we developed based on the information summarized
in Sections 4.4 and 4.5.

4.6 Potential Improvements in Scheduling Strategies

As elaborated in Section 3.2, dispatching rules offer a computationally efficient and straight-
forward method for managing scheduling tasks in dynamic environments. Their simplicity and
adaptability make them a practical choice for simulation-based analysis. For this study, we
selected two dispatching rules, each chosen for the following reasons.

FCFS Simulation The FCFS rule processes pallets in the order they are requested. In con-
trast to the scheduling logic currently applied by Euroma (details in Section 2.4.1), this simulation
applies FCFS to all pallets, regardless of the destination. This allows us to evaluate how the
system would perform without workstation-based pallet prioritization. Additionally, since the due
dates of full outbound pallets are derived from their release times, processing pallets in request
order naturally aligns with prioritizing those with earlier due dates.

R1 Simulation Ferreira et al. (2022) identified the R1 rule and highlighted it as one of the
most effective combined dispatching rules with relatively low implementation complexity. This
rule integrates multiple scheduling criteria:

• Current machine’s processing time (in this case, the crane)

• Remaining processing time

• Due date

• Workload in the next queue

Research consistently shows that combined rules outperform single-criterion rules. Therefore,
we selected the R1 rule to explore the behavior and performance of a combined approach.

The mathematical model explicitly optimizes tardiness, flow time, and queueing time in a lexico-
graphic manner. Conversely, dispatching rules are heuristic approaches approximating these
objectives by making real-time scheduling decisions. Therefore, they do not guarantee an opti-
mal solution. We assess their effectiveness based on how well they deliver full outbound pallets
on time without worsening the performance of other pallet flows, aligning with the objectives of
the mathematical model.
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Dispatching rules do not solve the lexicographic objective function directly. Instead, the dis-
crete event simulation helps evaluate their performance. Among the tested rules, R1 more
closely reflects the mathematical model’s objectives, as it considers slack (which affects tardi-
ness) and queue conditions (which influence flow time). In contrast, FCFS does not explicitly
account for these objectives but naturally prioritizes earlier-requested pallets, which may still
lead to favorable on-time delivery performance.

A key performance metric when evaluating dispatching rules is the on-time delivery percent-
age. While this metric is closely related to tardiness, the mathematical model does not directly
optimize it. Instead, it minimizes total tardiness, providing a structured way to prioritize and re-
duce lateness across all pallets. This prevents concentrating excessive lateness on a few jobs.
As highlighted by Pinedo (2016) on-time delivery does not account for the severity of delays,
which can lead to excessively long waiting times for some pallets. By minimizing tardiness, the
mathematical model encourages on-time delivery while ensuring scheduling decisions remain
effective in practical applications by minimizing delays balanced across pallets.

In contrast, the discrete event simulation explicitly monitors the on-time delivery percentage
when evaluating dispatching rules. In real-world operations, on-time delivery is often the more
intuitive measure, as it directly reflects adherence to due dates. Therefore, by assessing both
on-time delivery and tardiness, we identify the dispatching rule that maximizes on-time deliver-
ies while preventing excessive delays.

Beyond tardiness, the discrete event simulation also considers the other optimization objec-
tives. Following the lexicographic approach, we analyze dispatching rule performance on these
secondary objectives to ensure that improvements in one area do not negatively impact overall
system efficiency.

4.7 Discrete Event Simulation

In this research, we use Siemens Tecnomatix Plant Simulation 16.1 for discrete event simula-
tion. The simulation framework follows the logic outlined in the conceptual model (Section 4.4),
ensuring an accurate representation of the warehouse processes. This section describes how
the warehouse functionality is implemented in the discrete event simulation software.

Figure 4.2 illustrates the general pallet flow in the high-bay warehouse. Inbound pallets move
along the conveyor system toward the AS/RS, while outbound pallets follow the reverse pro-
cess. Next to the logical sequence of operations, the flowchart highlights methods responsible
for key simulation decisions. Red boxes indicate these critical decision-making points that guide
the scheduling and execution of pallet movements.

In conjunction with the applied dispatching rule, the method CraneTask selects the next out-
bound pallet for retrieval whenever a crane is idle and queueing pallets are available, based on
the pipeline size and workstation sequence. The InboundQueue method selects the next pallet
from the inbound queue when an inbound pallet reaches the I/O-point. The method HybridCom-
mand connects both queues by tracking the crane’s current position and prioritizing inbound
retrieval if a dual command is feasible; otherwise, the crane retrieves the selected outbound
pallet. Finally, the CraneProcessing method manages empty and loaded crane movements
while ensuring precedence constraints between workstation pallets and compliance with no-
wait constraints. This method oversees the entire crane processing for inbound and outbound
pallet movements. Appendix E provides detailed flowcharts of these methods.

51



Figure 4.2: Flowchart General Simulation Logic: The flowchart illustrates the pallet flow through
the high-bay warehouse and highlights the methods responsible for determining and executing
the scheduling logic.

We implement the conveyor system using the conveyor modules available in Siemens Tecno-
matix Plant Simulation. These modules inherently manage pallet movements, eliminating the
need to explicitly model constraints such as pallet overtaking. Each conveyor spot can hold a
single pallet at a time and automatically advances the pallet whenever possible. As a result, the
conveyor system in the simulation naturally enforces a relaxed no-wait constraint. This differs
from the mathematical model, where such constraints must be explicitly formulated.
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5 SIMULATION EXPERIMENTS

This chapter’s main goal is to answer the fourth research question: Which model configuration
performs best compared to the current system under different scenarios?

First, Section 5.1 presents the validation and verification of the simulation model. Afterward,
Section 5.2 outlines the experimental setups, while Section 5.3 explores the results of the con-
ducted experiments. Finally, Section 5.4 summarizes the key findings. In this chapter, an
experiment refers to a specific set of input configurations. In contrast, a replication refers to
a single simulation run using a particular stream of random numbers. Multiple replications are
conducted by varying the random number streams.

5.1 Verification and Validation

This section focuses on validating the model’s performance, ensuring it adequately represents
the real-world system, and enabling its confident use as a decision-support tool. We devel-
oped the conceptual model (Section 4.4) through expert consultations and direct observations
of the real-world system. Validation of the simulation model based on this conceptual framework
involves three key steps: verification, operational, and experimental validation.

5.1.1 Verification

Verification is conducted continuously throughout the simulation study to confirm that the im-
plemented model accurately follows the conceptual model (Robinson, 2014). Frequent expert
consultations ensure the implemented logic aligns with the conceptual assumptions and struc-
ture. We verify this alignment through visual observation of the animated elements in the simu-
lation model and discussions to confirm that the underlying logic reflects real-world constraints.
The flowcharts provided in Appendix E help the discussion with experts as they illustrate the
simulation methods’ logic software independent. Additionally, we perform systematic reviews
of the code to detect any syntax and logical errors.

We evaluate three simplified test scenarios to verify the model’s logic further. By using fixed
durations for crane travel times and operator actions, we remove variability, making it easier to
trace the flow of elements through the system. Each test focuses on a specific aspect of the
model’s logic: adherence to pipeline and workstation sequence requirements, compliance with
prioritization rules, and execution of hybrid command requirements.

Finally, we use pallet request data and inbound start times from a one-hour segment of the
real dataset to test the model’s expected behavior against simulation outcomes. We select
this one hour, taken from a day with minimal outliers and including all possible movement di-
rections (both inbound and outbound movements to all locations), to ensure comprehensive
testing across scenarios and allow this data segment to serve in operational validation. Based
on these criteria, we choose data from December 4, 2023, between 8 and 9 a.m. We calculate
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each pallet’s expected paths and timings and compare them with the simulated results.

Across all four experimental scenarios, the calculations show only minor deviations in the sim-
ulated timings. Any observed differences could be explained by pallet interactions on the con-
veyor, which are not considered in the expected lead time calculations. This confirms that the
simulation model accurately reflects the conceptual model and aligns with the logic described
by the experts. Appendix F provides detailed datasets for each experimental scenario.

5.1.2 Operational Validation

Operational validation assesses how well the model’s outputs align with historical data to en-
sure accuracy in replicating system performance. In our approach, we compare the model’s
performance with historical data using the Mean Absolute Error (MAE) and the Mean Absolute
Percentage Error (MAPE) as key validation metrics. Furthermore, summary statistics and vi-
sual comparisons, such as histograms, provide additional insights into the alignment between
the model and historical data.

The primary performance measure is the lead time, representing the duration between the re-
quest and destination arrival times. The calculated error for this metric reflects how accurately
the model reproduces overall system performance compares to historical data on a per-pallet
basis. However, validating only the overall lead time may obscure discrepancies in the individ-
ual components contributing to it. Therefore, we also evaluate the subcomponents contributing
to the overall lead time. Appendix G presents the detailed results of these comparisons.

While system-wide comparisons confirm that the simulation captures overall performance with
reasonable accuracy, deviations remain on a per-pallet basis – particularly in operator behavior
and queueing times. The most notable discrepancies appear in outbound movements for EP0
and the workstations.

Several factors contribute to these discrepancies:

1. Limited available documentation and expert insights, resulting in uncertainties regarding
specific AS/RS processes, as well as system durations and flows.

2. Limitations in recorded data, such as conveyor retrieval times, which are essential for
accurately capturing the full system dynamics.

Historical data analysis reveals discrepancies between the simulation model’s outbound logic
for workstations and real-world processes. Despite conducting ten additional simulation exper-
iments to adjust the logic, significant differences in queueing time statistics persist. The simula-
tion consistently underestimates queueing times, and multiple modifications fail to resolve these
discrepancies. Consequently, we revert to the original logic verified by experts, where cranes
can retrieve workstation pallets when the previous pallet in the sequence starts its outbound
movement.

The system lacks documentation on two key aspects: the time operators take to retrieve full
outbound pallets from the conveyor and the empty crane travel times. Additionally, historical
data records inbound pallet crane travel and queueing times as a single timestamp, making it
difficult to model these components separately. In contrast, outbound pallet crane movements
are well-documented. This allows us to make more precise assumptions for inbound pallets,
despite the lack of separate timestamps for their crane travel and queueing times. Histogram
comparisons of crane processing and queueing times for inbound pallets confirm that the model
accurately captured overall system trends.
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Modeling operator behavior proves more challenging. We conduct two experiments using ex-
isting data to estimate operator behavior. One method estimates waiting times based on the
recorded arrival of the next pallet, as the retrieval of the previous pallet must occur before its ar-
rival. The other approach estimates waiting times by measuring traversal times across the last
three conveyor spots and subtracting the minimum required travel time, accounting for poten-
tial delays due to preceding pallets. In addition, two expert-opinion-based experiments provide
alternative estimates. The expert-based distributions generally produce more realistic operator
behavior, except for EP1, where the distribution derived from conveyor traversal durations is
more accurate. While the model accurately captures trends for MP0 and EP1, significant devi-
ations remain for EP0, and additional experiments do not resolve these differences.

Following consultations with experts and the analysis in Appendix G, we summarized the agreed-
upon input parameters in Table 5.1. For the loaded outbound crane movement and workstation
operator behavior, the simulation applies the distributions only when a pallet is identified as an
outlier, as we can not use the historical durations for those pallets.

Crane Specifications Distribution Distribution Parameters (time in minutes)

µ σ Lower Bound Upper Bound

Operator Behavior: Workstations (in minutes)

F1 (MP0) lognormal 11.27 25.40 0.25 60

F2 (MP0) lognormal 10.03 19.73 0.25 60

F3 (MP0) lognormal 9.60 18.52 0.25 60

F4 (MP0) lognormal 9.48 20.07 0.25 60

F5 (MP0) lognormal 7.87 13.22 0.25 60

P1 (EP1) lognormal 4.68 8.45 0.25 30

P2 (EP1) lognormal 4.80 9.52 0.25 30

Operator Behavior: Full Outbound Locations (in minutes)

Out1 (MP0) lognormal 3.50 2.67 0.17 15

Out3 (EP0) normal 0.33 1.33 0.17 5

Out2 (EP1) lognormal 29.08 625.67 0.17 8

Crane Processing Times (in seconds)

empty, single command normal 37.26 8.74 13 63

+ uniform 0 15

empty, dual command uniform 20 25

loaded, inbound normal 37.26 8.74 13 63

loaded, outbound normal 42.26 8.74 13 63

Table 5.1: Input Parameter Distributions for the Simulation Model

5.1.3 Experimental Validation

Before conducting experiments to improve the system performance, obtaining accurate data
on the model performance is crucial, thereby avoiding biased and misleading results. Key as-
pects of this process include mitigating initialization bias and collecting sufficient output data,
as emphasized by Robinson (2014).
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Initialization Bias Euroma operates on a 24/7 schedule, meaning the system lacks a clear
starting point with no work in progress. Therefore, collecting results from the beginning of a
simulation run with an initially empty system could produce biased outcomes. Since pallet flow
fluctuates and pallets typically influence one another only when their request times are close,
moments of an empty system occur naturally but inconsistently. We implement a one-day warm-
up period to address this, during which the system does not collect data. This approach records
results only after the system reached realistic operating conditions.

We determined the duration of the warm-up period based onWelch’s graphical procedure, which
identifies the warm-up phase by plotting moving averages of lead times. From approximately
480 pallets onward, the plot stabilizes, indicating the end of the warm-up phase. This number
aligns closely with the typical number of pallet requests on a weekend day, reinforcing the choice
of a one-day warm-up period. The reader can find further details on this validation process in
Appendix H. Additionally, we assume that the AS/RS is fully stocked at the start, containing all
pallets that will be requested during the simulation.

Sufficient Output Data Sufficient output data can be obtained by extending the simulation
runtime or performing multiple replications. Each replication generates a unique sequence of
random events due to the random number streams used. By averaging results across multiple
replications, we can estimate the model’s performance more reliably (Robinson, 2014).

We assess convergence of results as additional replications are performed, to determine the
minimum number of replications. This approach indicates that the simulation requires at least
three replications. However, as a general guideline, a simulation should include at least five
replications. A common rule of thumb suggests that the simulation run length should be at
least ten times the warm-up period (Robinson, 2014). Based on these guidelines, we set the
run length to two weeks and the number of replications to five. Appendix H.2 provides further
details and supporting calculations for these choices.

5.2 Experimental Setup

The simulation experiments evaluate different scheduling logics and analyze the impact of op-
erational factors. The Baseline simulation is based on the validated and verified model and rep-
resents the current system at Euroma. In this scenario, scheduling follows Euroma’s existing
approach: a FCFS strategy with workstation prioritization and pipeline thresholds, as detailed
in Table 2.1. Section 5.3.1 compares the Baseline simulation’s performance with the historical
data.

Section 5.3.2 investigates the potential impact of scheduling improvements outlined in Section
4.6. We compare the FCFS approach and R1 logic against the Baseline simulation to ensure
that observed performance differences result from actual changes rather than modeling simplifi-
cations or assumptions. By comparing against the Baseline simulation, we ensure consistency
in the analysis, as both sets of results are based on the same assumptions and simplifications.

Beyond scheduling logic, the experiments explore variations in pipeline configurations, oper-
ator behavior, and pallet demand to assess the system’s robustness. Table 5.2 provides an
overview of the experimental setup.

Operator time, defined as the time required to retrieve pallets from the conveyor or process
them at a workstation, is a key experimental factor for two reasons:
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Parameter Description/Value

Scheduling Logic

Baseline A modified FCFS approach where pallets requested for a work-
station are prioritized. This is the current prioritization rule applied
by Euroma.

FCFS A pure first-come-first-served rule without any additional prioriti-
zation.

R1 A dispatching rules combining multiple scheduling criteria, identi-
fied by Ferreira et al. (2022).

Operator Time

Exp. 3

Full Outbound Pallets [-10, 300]

Workstation Pallets –

Pipeline Configurations

Exp. 4a Exp. 4b Exp. 4c

Outfeed Lanes Out1 (MP0): [3, 4, 5] [5] [7, 8]

Out3 (EP0): [10, 11, 12] [10, 11, 12] [24, 25, 26, 27, 28]

Out2 (EP1): [5, 6, 7] [7] [9, 10, 11]

Workstations F1 - F4 (MP0): [7] [3, 4, 5, 6] [7]

F5 (MP0): [5] [3, 4] [5]

P1, P2 (EP1): [7] [3, 4, 5, 6] [7]

Looping Configurations

Exp. 4a Exp. 4b Exp. 4c

Looping Behavior Out1 (MP0): no yes yes

Out3 (EP0): yes yes yes

Out2 (EP1): yes yes yes

Demand Configurations

Exp. 5

Demand Increase Factors [5%, 10%, 15%, 20%, 25%, 30%]

Experimental Settings

Number of Replications 5

Length of Warmup Period 1 day

Run Length 14 days

Table 5.2: Overview of Experimental Factors in the Simulation Study. The table presents the
experimental factors used in the simulation study to analyze the impact of scheduling logic,
operator time, and pipeline configurations.

1. The validation identifies deviations in operator times at full outbound locations, which rely
on significant assumptions due to a lack of historical data.

2. As analyzed in Section 2.4.2, delays at the end location can significantly affect conveyor
movement times and the queueing times of subsequent pallets. Additionally, examining
performance under varying operator times accounts for potential human variability.

Section 5.3.3 assesses the impact of the operator duration on the performance of the three
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considered dispatching rules. Therefore, we modify the mean (µ) of the lognormal distribution
representing operator behavior at full outbound locations. Since the µ for Out3 (EP0) is 20 sec-
onds with a lower bound of ten seconds, the maximum reduction applied to the µ is ten seconds.
Additionally, we increase µ by up to 300 seconds in steps of five seconds to analyze the impact
of extended operator behavior.

Experiments 4a to 4c in Section 5.3.4 analyze the pipeline configurations, which define the
number of pallets allowed in transit or at a destination. We assess how different configurations
influence outbound efficiency by increasing and decreasing the pipeline unit. Pipelines can re-
strict or enhance flow efficiency, making it a critical factor in system performance.

Finally, Section 5.3.5 evaluates the robustness of scheduling rules and pipeline configurations
for fluctuating pallet volumes. The demand increases ranging from 5% to 30%.

The primary performance indicators – total tardiness and tardiness ratio – measure the adjust-
ments’ effectiveness in reducing delays for full outbound pallets. Additional output parameters
assess the influence on workstation and inbound pallet flows. Sections 2.3.1 and 4.4 discuss
the KPIs used in the analysis in more detail.

5.3 Results

The experiments provide insights into the performance of the three dispatching rules – Current
Prioritization (Baseline), FCFS, and R1 – under various scenarios involving different operator
times and pipeline configurations. We compare and analyze the results based on the KPIs de-
termined in Section 2.3.1, primarily focusing on improving the on-time delivery percentage and
reducing tardiness for full outbound pallets. Workstation and inbound pallet flows are secondary
measures to ensure their performance remains stable. Appendix K provides the detailed results
in tables for all experiments.

Computation Time The computation time for each replication solely depends on the used
dispatching rule because all other methods work the same (regardless of the dispatching rule).
Table 5.3 provides the computation time among the three dispatching rules. The average de-
cision time indicates that FCFS and the Baseline logic determine the next retrieval pallet faster
than R1. As a result, the average run time of a replication for R1 takes 13 seconds longer than
the FCFS simulation.

Average Run Time (sec) Average Decision Time (sec)

Baseline 125.50 0.000026

FCFS 115.99 0.000022

R1 129.09 0.000126

Table 5.3: Comparison of Computational Time Among Dispatching Rules. The average runtime
represents the total time for a single simulation replication, while the average decision time
reflects the time to determine the next crane task. Both metrics, reported in seconds, highlight
differences in computational efficiency.
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5.3.1 Experiment 1: Comparison Historical Data with Baseline Simulation

On-Time Delivery Percentage The Baseline simulation generally outperforms the real sys-
tem regarding on-time delivery percentage. Without altering the validated and verified param-
eters determined in Section 5.1, the Baseline logic achieves an 86.28% on-time delivery rate,
which is approximately 1.10% higher than the historical data analysis reveals.

Notable differences emerge when distinguishing the on-time delivery percentage between pallet
types. As shown in Table 5.4, full outbound pallets in the Baseline simulation reach their desti-
nation on time about 4% more often than in the real system. In contrast, workstation pallets in
the Baseline simulation show a 2% decrease in on-time delivery performance.

Tardiness When evaluating average pallet tardiness, the Baseline simulation underperforms.
The actual system has a lower average tardiness per tardy pallet for both types. These find-
ings align with the results from the validation (Section 5.1 and Appendix G). Lead times for full
outbound pallets in the Baseline simulation are generally shorter than those in the historical
dataset, contributing to increased on-time delivery. While workstation pallet lead times are also
lower, this does not improve on-time delivery; instead, it leads to more tardy workstation pallets.
Two potential explanations for this discrepancy include:

• The due dates of workstation pallets depend on the processing times of preceding pallets.
A shorter lead time for a preceding pallet also necessitates a shorter lead time for the
succeeding pallet to maintain on-time delivery.

• Uncertainty in the logic governing workstation outbound pallet processing may contribute
to the observed differences.

All Outbound Pallets Full Outbound Pallets Workstation Pallets

On-Time Delivery Percentage

Baseline Simulation 86.28% 90.78% 81.34%

Historical Data 85.18% 86.44% 83.46%

Pallet Tardiness (min)

Baseline Simulation 21.06 55.08 2.65

Historical Data 12.41 23.11 0.41

Table 5.4: Results Experiment 1: Comparison Historical Data with Baseline Simulation. The
table presents the on-time delivery percentage and average tardiness for outbound pallet flows
based on historical data and the Baseline simulation. The observed differences reflect the
deviations identified during validation.

Table 5.5 highlights that the Baseline simulation produces shorter durations for all queueing and
movement durations than the real system, especially for workstation pallets. This reinforces the
notion that the logic for processing workstation outbound pallets in the Baseline simulation does
not accurately replicate the real system.

5.3.2 Experiment 2: Comparison of Dispatching Rules

The second experiment compares the performance of the three dispatching rules – Baseline,
FCFS, and R1 – under the same conditions established in Section 5.1. While the Baseline sim-
ulation and FCFS exhibit similar performances, the R1 logic stands out with notable differences.
Table 5.5 summarizes the detailed results.
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On-Time Delivery Percentage

Historical Data Baseline Simulation FCFS Simulation R1 Simulation

All Outbound Pallets 85.18% 86.28% 86.39% 86.67%

Full Outbound Pallets 86.44% 90.78% 90.90% 91.35%

Workstation Pallets 83.46% 81.34% 81.45% 81.53%

Pallet Tardiness (min)

Historical Data Baseline Simulation FCFS Simulation R1 Simulation

All Outbound Pallets 12.41 21.06 21.27 22.14

Full Outbound Pallets 23.11 55.08 55.83 60.08

Workstation Pallets 0.41 2.65 2.66 2.73

Maximum Pallet Tardiness (h)

Historical Data Baseline Simulation FCFS Simulation R1 Simulation

Full Outbound Pallets 1.58 3.72 3.72 6.60

Workstation Pallets 0.29 0.52 0.56 0.55

Full Outbound Pallet Volume Exceeding Threshold

Historical Data Baseline Simulation FCFS Simulation R1 Simulation

> 30 min Tardiness 4.63% 4.83% 4.92% 4.07%

> 60 min Tardiness 0.91% 2.92% 2.93% 2.44%

> 120 min Tardiness 0.00% 1.38% 1.44% 1.13%

Queueing and Movement Durations (min)

Historical Data Baseline Simulation FCFS Simulation R1 Simulation

Inbound Queueing Time 1.04 0.90 0.90 0.90

Full Outbound Queueing Time 19.22 17.24 17.17 17.24

Workstation Outbound Queueing Time 41.36 6.15 6.38 6.25

Full Outbound Conveyor Time 12.12 17.40 17.30 17.30

Full Outbound Lead Time 32.03 27.77 27.62 27.66

Workstation Outbound Lead Time 129.33 40.51 40.61 40.48

Table 5.5: Results Experiment 2: Comparison of Three Dispatching Rules

Although the primary focus is on full outbound pallets, we include workstation pallet performance
in the figures to provide a more comprehensive view of the system’s behavior under different
dispatching rules. This experiment focuses on the comparison of the dispatching rules. Since
workstation pallets share resources with full outbound pallets, changes in scheduling logic can
affect their performance. Including both pallet types allows us to assess whether optimizing full
outbound pallet performance comes at the expense of workstation pallet efficiency or if certain
rules improve both simultaneously.
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On-Time Delivery Percentage Among the three dispatching rules, the R1 scheduling logic
achieves the highest on-time delivery percentage for both pallet types: 91.35% for full outbound
pallets and 81.53% for workstation pallets. Compared to the Baseline logic, this results in ap-
proximately 21 more full outbound pallets and six more workstation pallets delivered on time
over two weeks – equivalent to about two additional pallets per day. FCFS performs second
best, improving on-time deliveries by about one pallet per day compared to the Baseline logic.
Figure 5.1 visualizes the comparison between the three dispatching rules. Additionally, the
performance of the real system is shown, underscoring the findings discussed in Experiment 1.
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Figure 5.1: Comparison of On-Time Delivery Percentage between Dispatching Rules. The chart
distinguishes the dispatching rules by color and groups them by pallet type. The real system’s
performance, derived from historical data analysis, is included for reference.

Tardiness While R1 improves on-time delivery percentages, it results in higher average tardi-
ness for full outbound pallets. Figure 5.2a shows that R1 exceeds FCFS by an average of five
minutes per tardy pallet. For workstation pallets, tardiness differences between the rules are
minimal, with a maximum variation of five seconds per pallet.

Figure 5.2b depicts a similar trend for maximum pallet tardiness. While the maximum work-
station pallet tardiness remains comparable across all three rules, R1 results in a maximum
full outbound pallet tardiness that is about three hours longer than for the other two dispatching
rules. The highmaximum tardiness for R1’s full outbound pallets suggests that only a few pallets
disproportionately increase the average tardiness. The distribution of tardy pallets exceeding
the thresholds of 30, 60 and 120 minutes supports this observation. In these categories, R1
consistently shows the lowest volume of tardy pallets, as presented in Table 5.5.

Queueing and Movement Times The three dispatching rules show no significant differences
in queueing and movement times. As expected, the inbound queueing time remains consistent
across all three dispatching rules since they all follow the same hybrid command strategy. The
Baseline simulation exhibits the shortest queueing times for workstation pallets, while FCFS
achieves the lowest queueing times for full outbound pallets. However, the differences between
the dispatching rules are minimal, with a maximum variation of 14 seconds.
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(a) Pallet Tardiness (b) Maximum Pallet Tardiness

Figure 5.2: Comparison of Maximum and Average Tardiness per Tardy Outbound Pallet be-
tween Dispatching Rules. The charts distinguish the dispatching rules by color and group them
by pallet type. The real system’s performance, derived from historical data analysis, is included
for reference. The average tardiness is given in minutes, while the maximum tardiness is rep-
resented in hours.

5.3.3 Experiment 3: Impact of Operator Durations

Operator times significantly influence system performance. As shown in Figure 5.3 and Fig-
ure 5.4, shorter operator times generally improve on-time delivery percentages and reduce
tardiness. In contrast, longer operator times have the opposite effect. The x-axis of the graphs
represents adjustments to the mean (µ) of the lognormal distribution for full outbound pallet
retrieval times (operator time) from Table 5.1.

On-TimeDelivery Percentage The on-time delivery percentage for full outbound pallets across
the three dispatching rules remains relatively similar for shorter operator times. Among them,
the R1 scheduling logic generally achieves the highest on-time delivery percentage. The Base-
line logic and FCFS perform slightly worse by an average of 0.4%. As the operator time in-
creases, the difference between the dispatching rules becomes more significant.

From the point where we increase the mean (µ) of the lognormal distribution by 135 seconds,
R1 consistently outperforms both the Baseline logic and FCFS by at least 2% in on-time deliv-
ery percentage. The maximum observed difference amounts to 6.7%. Meanwhile, the perfor-
mance gap between FCFS and the Baseline logic remains negligible. Furthermore, Figure 5.3
illustrates a critical threshold where on-time delivery percentages decline significantly. Increas-
ing µ by up to 95 seconds causes only minor decreases across all dispatching rules. Beyond
this point, on-time delivery percentages decline sharply, with reductions of up to 1.71% when
adding just five seconds to µ (FCFS from 110 to 115 seconds). After an additional increase
of 120 seconds to µ, the decline flattens out, indicating a stabilization in the on-time delivery
percentage.

The on-time delivery percentage of workstation pallets fluctuates across all three dispatching
rules between 81% and 82% without a clear pattern. Given this stability and the primary focus
on full outbound pallet performance, we excluded it from the figure. While small variation in on-
time delivery can have significant impacts, the lack of a trend suggests that changes in operator
time do not significantly affect workstation pallet performance. We attribute this fluctuating be-
havior to the dependency of workstation pallet due dates on the processing times of preceding
pallets, which are not directly influenced by changes to full outbound operator times. How-
ever, increases and decreases in retrieval time of full outbound pallets may provoke changes
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to the shared resource sequences. As workstation pallets must strictly adhere to their given
sequence, these adjustments can result in small changes in crane operations. For instance,
when the next workstation pallet in sequence is ready to start, a previously idle crane may now
be occupied, or vice versa. Such changes can lead to variations in queueing times and con-
veyor times for workstation pallets. The average workstation pallet tardiness is only about 2.6
minutes, so these small changes can significantly impact the on-time delivery percentage.
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Figure 5.3: Comparison of Full Outbound On-Time Delivery Percentages between Dispatching
Rules under Different Operator Times. The chart distinguishes the dispatching rules by color.
The x-axis represents the adjustment to the operator time, where the value indicates the addition
or subtraction to µ from the lognormal distribution.

Tardiness The average daily tardiness follows a similar trend as the on-time delivery percent-
age. Increasing the full outbound operator time worsens the daily tardiness of full outbound
pallets. This trend is evident in Figure 5.4a. However, due to the relatively similar performance
across dispatching rules and the more significant impact of operator time adjustments, Fig-
ure 5.4a does not highlight variations between individual rules.

To provide a clearer view of these differences, Figure 5.4b and Figure 5.4c present a more
focused comparison at different operator time levels. At lower operator times, the Baseline and
FCFS scheduling logic generally perform slightly better. As the operator time increases, no sin-
gle dispatching rule consistently outperforms the others. Notably, from an increase of µ by 225
seconds onward, R1 consistently achieves lower average daily tardiness compared to FCFS
and the Baseline scheduling logic.

Much like their on-time delivery percentage, the daily tardiness of workstation pallets exhibits
fluctuating behavior without a clear pattern. We attribute this variability again to the dependency
on their due dates and changes in the utilization of shared resources.

Queueing andMovement Times The inbound andworkstation queueing times remain largely
unaffected by adjustments to the full outbound operator times. While the inbound queueing time
decreases slightly – by up to 1.31 seconds as operator time increases – the workstation pallet
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(a) Daily tardiness of Full Outbound Pallets Over the Entire Range of Operator Time Adjustments

(b) Zoomed-In View of Daily Tardiness for Operator
Time Adjustments up to +60 Seconds

(c) Zoomed-In View of Daily Tardiness for Operator
Time Adjustments from +225 Seconds onward

Figure 5.4: Comparison of Average Daily Tardiness of Full Outbound Pallets between Dispatch-
ing Rules under Different Full Outbound Operator Times. The charts distinguish the dispatching
rules by color. The x-axis represents the adjustment to the operator time, where the value indi-
cates the addition or subtraction to µ from the lognormal distribution.

queueing times fluctuate between 6.08 and 6.55 minutes without any identifiable pattern. In
contrast, the queueing time for full outbound pallets changes significantly. As expected, shorter
operator times result in lower queueing times, whereas longer operator times increase them.
The lowest observed queueing time averages around 17 minutes (at µ− 10), while the highest
queueing time approaches 60 minutes (at µ+300). Even though the R1 scheduling logic tends
to achieve lower queueing times, the differences among the three dispatching rules are minimal
for shorter operator times. As operator times increase, the gap between R1 and the other two
rules becomes more pronounced.

The lead times show a similar trend. Notably, the average lead time surpasses the 60-minute
threshold for on-time delivery when increasing µ by 220 seconds for FCFS and the Baseline
logic, and by 230 seconds for R1. Similarly, an increase in operator time increases the conveyor
time. Unlike the queueing and lead times, the conveyor time increases proportionally with the
operator time, suggesting that the increased operator times do not cause additional congestion
on the conveyor but results in longer retrieval waiting times at the last spot on the outfeed lanes.
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5.3.4 Experiment 4: Impact of Pipeline Configurations

Experiment 4 investigates how changes to the pipeline threshold influence pallet flow perfor-
mance. Table 2.1 in Section 2.1.2 presents the current configurations Euroma applies for the
pipeline threshold. We structure the analysis of Experiment 4 into three parts. First, Experiment
4a explores the effects of increasing or decreasing the pipeline threshold for full outbound pal-
lets. Next, Experiment 4b shifts the focus to workstation pallets, examining how their pipeline
threshold influences workstation and full outbound pallet performance. Finally, Experiment 4c
uses the methodology introduced by Haneyah et al. (2013) to determine the appropriate pipeline
threshold for full outbound pallets.

Experiment 4a: Impact of Pipeline Configurations – Adjustments in Full Outbound Desti-
nation Configurations The impact of pipeline adjustments varies depending on the dispatch-
ing rule, type of pallet, and KPI. Generally, increasing the pipeline improves on-time delivery
percentages while reducing tardiness, particularly for full outbound pallets. In this experiment,
we increase the pipeline thresholds for Out1 (MP0) and Out3 (EP0), whereas the threshold for
Out2 (EP1) is decreased. We base this decision on their original configurations: Euroma set
the threshold for Out1 (three) according to its available outfeed lane spots, whereas the thresh-
olds for Out2 (seven) and Out3 (ten) exceeded their outfeed lane capacity. As illustrated in
Figure 2.2b, the original threshold of Out3 allows all waiting pallets to remain on the conveyor
without obstructing other pallets. In contrast, the threshold for Out2 exceeded the number of
pallets that could queue on the outfeed lane without causing congestion on the conveyor. We
do not adjust the pipeline threshold for workstation pallets.

On-Time Delivery Percentage Figure 5.5 shows how different pipeline threshold settings
affect on-time delivery for full outbound pallets. The x-axis represents different pipeline con-
figurations, with Out1 at the top, Out2 in the middle, and Out3 at the bottom. To analyze the
impact of adjusting one threshold, one can observe performance variations for different values
of that outfeed lane while keeping the other two thresholds constant.

We observe the most distinct effect of pipeline threshold adjustments for Out1 (MP0). Increas-
ing the pipeline threshold from three to five improves the on-time delivery percentage for full
outbound pallets by about 1.70% for R1 and FCFS and 1.51% for the Baseline scheduling
logic. In contrast, increasing the threshold for Out3 (EP0) leads to a maximum improvement of
only 0.30% (FCFS) and even a small reduction of 0.18% for R1. Decreasing the threshold for
Out2 (EP1) follows the same trend, reducing the on-time delivery percentage across all three
dispatching rules. We observe the highest on-time delivery percentages for R1 (93.02%) at the
pipeline configuration Out1 = 5, Out2 = 7, Out3 = 10, whereas FCFS achieves its best perfor-
mance (92.68%) at Out1 = 5, Out2 = 7, Out3 = 11.

Adjusting the pipeline thresholds for full outbound pallets has little effect on the on-time delivery
percentage of workstation pallets. The on-time delivery percentage for workstation pallets fluc-
tuates between 81% and 82% with no clear pattern indicating whether an increase or decrease
improves performance.

Tardiness Average pallet tardiness follows the same trend as the on-time delivery percent-
age: a higher pipeline threshold generally reduces tardiness. Increasing the threshold for Out1
results in the most significant improvement, reducing full outbound pallet tardiness by an av-
erage of approximately 15 minutes for all three dispatching rules. In comparison, increasing
the pipeline threshold for Out2 and Out3 reduces tardiness by a maximum of four minutes. Ta-
ble 5.6 also presents this trend for the average daily tardiness. Increasing the Out1 threshold
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Figure 5.5: Comparison of On-Time Delivery Percentage between Dispatching Rules and Dif-
ferent Pipeline Configurations for Full Outbound Pallets. The chart distinguishes the dispatching
rules by color. The x-axis indicates the pipeline threshold, i.e. the maximum number of pallets
simultaneously in transit to an outfeed lane. The first row corresponds to Out1, the second to
Out2, and the third to Out3.

from three to five reduces daily average tardiness by almost nine hours for FCFS and R1, while
adjustments to the other pipeline thresholds result in reductions by a maximum of 90 minutes.
Workstation tardiness shows no clear pattern, fluctuating by a maximum of ten seconds in av-
erage pallet tardiness.

Tardiness KPI (h) Baseline Simulation FCFS Simulation R1 Simulation

[3, 7, 10] [5, 7, 12] [3, 7, 10] [5, 7, 11] [3, 7, 10] [5, 7, 10]

Daily 23.67 19.2 23.71 14.98 24.19 15.57

Pallet 0.35 0.24 0.35 0.24 0.37 0.25

Maximum 3.72 2.76 3.72 2.67 6.60 4.48

Table 5.6: Results Experiment 4a: Tardiness Comparison Between High Pipeline Thresholds
and Original Settings. This experiment compares full outbound tardiness values under the orig-
inal pipeline thresholds with those best performing in Experiment 4a. The original thresholds
are set at 3 for Out1, 7 for Out2, and 10 for Out3. Tardiness values are measured in hours.

Queueing andMovement Times The inbound andworkstation queueing times remain largely
unaffected by adjustments to the full outbound pipeline thresholds. While increasing the pipeline
threshold slightly increases inbound queueing time (by up to one second), workstation pallet
queueing times fluctuate between six and 6.5 minutes without an identifiable trend. In contrast,
full outbound pallet queueing times show more significant changes. The FCFS logic produces
by an average of 1.8 minutes the highest reduction when increasing the pipeline thresholds by
one unit. In terms of outfeed lanes, Out1 (MP0) shows the highest reduction with an average of
3.22 minutes. The configuration yielding the best performance results in substantial improve-
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ments compared to the original pipeline configurations, with a reduction in the queueing time
of full outbound pallets of approximately four minutes across all dispatching rules. Specifically,
the configuration Out1 = 5, Out2 = 7, Out3 = 12, results in average queueing times of 13.02
minutes for R1, 13.06 minutes for FCFS, and 13.30 minutes for the Baseline logic.

The full outbound lead times follow a similar trend, decreasing by approximately one minute
across all dispatching rules (to an average lead time of 25 minutes across all pipeline configu-
rations) as the pipeline threshold increases. Similar to the full outbound queueing times, FCFS
and Out1 show the highest reductions. In contrast, the conveyor times increase slightly (up to
30 seconds) with higher pipeline thresholds. This minor increase indicates that a higher pipeline
threshold only slightly impacts conveyor congestion.

Experiment 4b: Impact of Pipeline Configurations – Adjustments in Workstation Config-
urations Experiment 4a focuses solely on adjusting the pipeline threshold for full outbound
pallets. The best settings identified for each dispatching rule in that experiment serve as the
basis for Experiment 4b. Here, we adjust workstation pipeline thresholds and analyze their im-
pact on workstation performance and full outbound pallet performance.

Unlike Experiment 4a, which primarily impacts full outbound pallet KPIs, Experiment 4b sig-
nificantly affects workstation KPIs. We assumed that reducing workstation pipeline thresholds
has a limited effect on their on-time delivery since due dates depend on the lead times of preced-
ing pallets. However, the results show that reducing workstation pipeline thresholds decreases
on-time delivery percentages by up to 9.5% to a minimum of 71%.

The three dispatching rules perform similarly, with no clear advantage for any specific rule. Even
though the on-time delivery percentage of full outbound pallets remains largely unaffected, we
observe a slight trend: reducing workstation pipeline thresholds leads to a marginal increase
in the full outbound on-time delivery percentage. As the on-time delivery percentage remains
within a range of 92% to 93%, we can not observe a clear improvement compared to Exper-
iment 4a. Specifically, by decreasing the workstation pipeline threshold, the best-performing
configuration for each dispatching rule increases the full outbound on-time delivery percentage
by an average of 0.39% while simultaneously decreasing the workstation on-time delivery per-
centage by an average of 5.64%.

Reducing the workstation pipeline thresholds to three decreases the average conveyor move-
ment duration of full outbound pallets by approximately four minutes. This result suggests that
workstation pallets on the conveyor significantly influence the travel duration of full outbound
pallets.

Experiment 4c: Impact of Pipeline Configurations – Pipeline Calculation Experiments 4a
and 4b adjust pipeline thresholds by increasing or decreasing their original values. In contrast,
Experiment 4c applies the pipeline calculation introduced by Haneyah et al. (2013) in Chapter
3.3. Using Equation 3.5, we calculate pipeline thresholds under different time allowance (ta)
values, ranging from zero to one minute. These calculations result in increased pipeline thresh-
olds across all full outbound locations compared to Experiment 4a. Since the threshold for Out1
significantly exceeds the available buffer spots, we introduce a looping mechanism similar to
those for Out2 and Out3. Appendix I details the pipeline threshold calculations.

Experiment 4c confirms previous findings: increasing pipeline thresholds improves on-time de-
livery percentages, though the improvement is less pronounced than in Experiment 4a. The
highest observed on-time delivery percentage for full outbound pallets is 93.62%, achieved us-
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ing outbound logic R1 with pipeline configurations of 7 (Out1), 11 (Out2), and 25 (Out3). This
represents only a 0.60% improvement compared to the best configuration in Experiment 4a
(5, 7, 10). Similarly, for FCFS and the Baseline simulation, the on-time delivery percentage
increases by just 0.5%, while the maximum workstation on-time delivery percentage even de-
creases by 0.3% for R1 and the Baseline simulation (while increasing by only 0.03% for FCFS).

We observe a similar trend for tardiness-related KPIs. Table 5.7 shows slight reductions in
daily, pallet, and maximum tardiness in Experiment 4c compared to Experiment 4a. Given the
pipeline adjustments, the improvements remain relatively small. The best-performing configura-
tion in Experiment 4c reduces daily tardiness by approximately two hours across all dispatching
rules. Reductions in average pallet tardiness are less pronounced, and the maximum tardiness
values remain largely unchanged. Table 5.7 provides the corresponding pipeline thresholds for
each experiment above the tardiness values.

Tardiness KPI (h) Baseline Simulation FCFS Simulation R1 Simulation

Exp. 4a Exp. 4c Exp. 4a Exp. 4c Exp. 4a Exp. 4c

Daily [5, 6, 10] [8, 10, 28] [5, 7, 12] [8, 10, 26] [5, 7, 12] [7, 9, 28]

14.95 12.56 14.51 12.32 14.51 12.56

Pallet [5, 6, 12] [8, 10, 25] [5, 5, 10] [8, 10, 26] [5, 5, 10] [7, 11, 24]

2.65 2.52 2.43 2.38 4.36 4.00

Maximum [5, 6, 10] [8, 10, 28] [5, 7, 12] [8, 10, 26] [5, 7, 12] [8, 9, 28]

0.23 0.20 0.23 0.20 0.23 0.21

Table 5.7: Results Experiment 4c: Tardiness Comparison Between Various Pipeline Thresh-
olds. This experiment compares best tardiness values under the thresholds in Experiment 4a
with those from Experiment 4c. The corresponding threshold values are provided above the
tardiness values in the following format [Out1, Out2, Out3]. Tardiness values are measured in
hours.

The differences in the queueing and movement times are more significant. Experiment 4c
shows an increase in conveyor movement times, fluctuating between 19 and 20 minutes. This
represents an increase of on average 2.4 minutes. We attribute this increase to the higher pallet
volume on the conveyor, resulting in:

• more frequent waiting times as pallets queue behind each other before processing,

• and increased looping, as more pallets in transit result in more pallets potentially congest-
ing the outfeed lanes.

Even though the conveyor movement time increases, the lead time decreases, attributed to the
significant decrease in queueing time (average of seven minutes) across all dispatching rules.

5.3.5 Experiment 5: Impact of Increased Demand

Euroma aims for long-term growth. Therefore, it is essential to analyze the impact of increased
demand and how different dispatching rules respond to these changes. To address this, we
conduct experiments simulating demand increases ranging from 5% to 30%. Appendix J out-
lines the methodology for adjusting demand levels. We perform these experiments under three
different pipeline threshold configurations [Out1, Out2, Out3]:

• the currently applied threshold: [3, 7, 10]
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• and two of the best performing thresholds from Experiment 4a and 4c: [5, 7, 11] and [7,
11, 27]

As expected, performance deteriorates when demand increases. While R1 generally achieves
the highest on-time delivery rate for full outbound pallets under lower demand conditions, its ad-
vantage diminishes when demand increases beyond 10%. Beyond this point, the performance
of R1 aligns with the performance of the other two dispatching rules. When demand increases
by 30%, on-time delivery rates decrease by approximately 2% across all dispatching rules and
pipeline threshold configurations compared to historical demand levels.

Beyond on-time delivery rates, increased demand also negatively impacts movement and queu-
ing times. Specifically, the queueing time for full outbound pallets increases by approximately
threeminutes across all dispatching rules when demand rises by 30% for lower dispatching rules
([3, 7, 10] and [5, 7, 11]). For the highest threshold ([7, 11, 27]), the queuing time increases
by up to 2.25 minutes. Similarly, conveyor travel times also rise with increased demand. How-
ever, unlike queuing times, the most significant increase occurs at the highest pipeline threshold
rather than the lower thresholds. This effect is likely due to more frequent pallet interactions on
the conveyor for higher pipeline thresholds. As a result, the lead time for full outbound pallets
increases for all pipeline configurations, leading to higher tardiness levels.

The effects of increased demand are not limited to full outbound pallets but also impact worksta-
tion and inbound pallets. Similar to full outbound pallets, their performance declines. However,
as observed in previous experiments, pipeline thresholds have only a marginal influence on
workstation and inbound pallets.

5.4 Summary of Experimental Results

This chapter aims to find the best-performing model configurations for the situation at Euroma.
Therefore, we began by verifying and validating the created simulation model in Section 5.1.
The verification confirms that the model follows the conceptual design through controlled test
scenarios and real-data experiments. However, validation reveals discrepancies between his-
torical data and simulation results, particularly regarding workstation and operator behavior at
EP0. These deviations align with limitations in recorded data and WCS documentation, neces-
sitating expert-based assumptions.

Despite these limitations, the experimental phase provids valuable insights into warehouse per-
formance. In general, the Baseline simulation results in a better performance than the historical
data of the real system. Despite the discrepancies, the simulation captures the trend that the
full outbound delivery percentage and tardiness of full outbound pallets is higher compared to
the workstation pallets. In the remainder of the experiments, we tested the three proposed
dispatching rules – Baseline, FCFS, and R1 – under varying operator behavior, pipeline thresh-
olds, and demand levels.

The R1 logic achieves the highest on-time delivery percentages across the conducted exper-
iments. Simultaneously, this logic results in the highest average tardiness values among the
tested dispatching rules, driven by a small number of significantly delayed pallets. Therefore,
R1 effectively prioritizes most pallets to maximize on-time delivery at the cost of a few extreme
queueing times.

Generally, the difference to other dispatching rules is not that distinct; however, when increasing
the pipeline and operator time, the R1 logic shows its advantages as the difference to the other
considered rules gets more distinct.
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FCFS performs slightly below R1 in on-time delivery but demonstrated less complexity and
lower average tardiness. Across all pipeline configurations, FCFS reduces daily tardiness by
an average of 23 minutes compared to R1, with significantly lower maximum tardiness. Gener-
ally, FCFS results in the lowest tardiness related KPIs and while performing close to the Baseline
simulation’s performance, FCFS performs slightly better in most KPIs with less complexity as
the prioritization applied in the Baseline simulation is removed here.

Moreover, an increase in demand and operator time results in reduced high-bay warehouse
performance. Additionally, decreasing the pipeline threshold for workstations worsens the per-
formance of workstation pallets significantly while only marginally improving the full outbound
pallet performance. In contrast, increasing the full outbound pallet threshold improves the on-
time delivery percentage and tardiness for full outbound pallets without significantly worsening
the performance for workstation and inbound pallets. Especially, increasing the threshold for
Out1 (MP0) leads to significant improvements. While higher pipeline thresholds increase the
time pallets spend on the conveyor, it reduces queueing times, ultimately decreasing lead times.

Table 5.8 summarizes the best-performing pipeline configurations across the three dispatching
rules with their corresponding on-time delivery percentage and average pallet tardiness. The
deviations in parentheses behind the KPI values show the possible increase (+) or decrease
(-) the best pipeline configuration shows for this logic. The R1 logic with pipeline configuration
[7, 11, 25] achieves the highest on-time delivery (93.62%), resulting in an increase of 2.84%
compared to the settings currently applied at Euroma. However, this configuration increases
average tardiness by one minute per tardy pallet compared to FCFS. The lowest recorded tar-
diness using FCFS is compared to R1 2.52 minutes lower per tardy pallet, further highlighting
the trade-off between on-time delivery percentage and tardiness.

Dispatching Rules On-Time Delivery Percentage Tardiness (min)

Full Outbound Pallets Workstation Pallets Full Outbound Pallets Workstation Pallets

pipeline Configuration Out1 = 5, Out2 = 7, Out3 = 11

Baseline 92.37% (+0.23%) 81.22% (+0.64%) 40.03 (-2.08) 2.70 (-0.08)

FCFS 92.68% (± 0.00%) 81.33% (+0.52%) 41.35 (-2.44) 2.70 (-0.08)

R1 92.95% (+0.07%) 81.97% (±0.00%) 44.95 (-3.77) 2.72 (-0.08)

pipeline Configuration Out1 = 7, Out2 = 11, Out3 = 25

Baseline 93.12% (± 0.00%) 81.47% (+0.13%) 38.40 (-3.55) 2.71 (-0.03)

FCFS 93.18% (+0.02) 81.52% (+0.37%) 39.55 (-4.30) 2.80 (-0.11)

R1 93.62% (± 0.00%) 81.12% (+0.52) 40.43 (-2.66) 2.75 (-0.10)

Table 5.8: Results Best Performing Configurations. This table summarizes the on-time delivery
percentage and average pallet tardiness performance of the three dispatching rules for two of
the best-performing pipeline configurations under the historical demand pattern. The values in
parentheses indicate the possible increase (+) or decrease (-) in performance compared to the
best pipeline configuration for each logic.
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6 IMPLEMENTATION

This chapter outlines the necessary steps for implementing the evaluated improvement oppor-
tunities within the WCS. The proposed changes focus on three key areas: dispatching rules,
pipeline configurations, and looping mechanisms. It discusses the implementation feasibility
and requirements.

Implementation of Dispatching Rules The WCS manages the internal processes within the
high-bay warehouse, including sequencing reserved pallets for crane retrieval. Therefore, im-
plementing new dispatching rules requires adjustments to the WCS logic. The implementation
of the FCFS requires minimal changes to the existing system. All pallets must be assigned the
same priority to ensure retrieval occurs in the order of arrival. Since the WCS already tracks
pallet arrival times, this modification can be implemented by adjusting priority assignment rules
in the system’s logic.

The implementation of the R1 rule is more complex, as it requires additional calculations within
theWCS. Even though the necessary parameters can be pre-calculated or are already recorded
by the WCS, modifications to the WCS logic are necessary to integrate these factors into the
dispatching decision process.

Pipeline Configuration Adjustments The WCS already tracks the pipeline size and applies
a predetermined pipeline threshold. Since this threshold is integrated into the user interface,
Euroma can make adjustments without requiring changes to the underlying WCS logic.

Implementation of Looping Mechanisms Currently, full outbound pallets at EP0 and EP1
can loop when outfeed lanes are obstructed. Since the possible reloop conveyor spot at MP0
(IP1 in Figure 2.2) is the same model type as the one at EP1 (IP2), implementing a looping
mechanism at MP0 is technically feasible. The necessary adjustments require modifications to
the WCS logic, similar to those implemented for EP1.

In summary, Euroma can adjust pipeline configurations immediately using the existing WCS
functionalities. In contrast, implementing new dispatching rules and looping mechanisms re-
quires expertise in the WCS logic.
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7 CONCLUSIONS AND RECOMMENDATIONS

This chapter presents the conclusions of the research. First, Section 7.1 addresses the main
research question by summarizing the key findings. Subsequently, Section 7.2 presents rec-
ommendations to Euroma. Next, Section 7.3 outlines this research’s limitations and provides
directions for further research. Finally, Section 7.4 discusses the study’s contribution to theory
and practice.

7.1 Conclusions

Euroma’s facility in Zwolle is operating at full capacity, with nearly every available square meter
utilized. Nevertheless, the facility struggles to meet internal and external pallet demand on time.
Additionally, Euroma aims to increase production further in the future. A critical bottleneck in
this process is the high-bay warehouse, where delays in the outbound process can cause de-
lays in production and order fulfillment. An analysis of the current system indicates that less
than 90% of the full outbound pallets arrive at their destination on time. This leads to the main
research question:

How can Euroma optimize the outbound process of the high-bay warehouse to increase the
on-time delivery performance of pallets?

We modeled this problem as a BJSSP, incorporating several constraints, such as setup times,
looping possibilities, and job precedence constraints. The model aims to generate a feasible
schedule that optimizes retrieval times for pallet requests. Due to the complexity of the prob-
lem and the need for real-time adjustments, we chose dispatching rules over more advanced
heuristics. Therefore, we proposed two alternative rules – FCFS and R1 – in addition to the
currently used dispatching rule.

We conducted a series of experiments in a simulation environment to evaluate these dispatching
rules. Next to the dispatching rules, the experiments analyzed different pipeline configurations,
operator behaviors, and demand scenarios. These various scenarios account for real-world
fluctuations and potential future conditions.

The results demonstrate that both proposed dispatching rules outperform the current one. In
particular, R1 shows significant advantages as the pipeline threshold increases, leading to a
maximum full outbound on-time delivery percentage of 93.62%, an improvement of 2.84% com-
pared to the baseline configurations. FCFS performs slightly below R1 (by 0.42%) but yields
significantly lower tardiness values.

A difference of 0.40% in on-time delivery translates to approximately one additional pallet ar-
riving on time per day. While this may seem marginal, historical data suggests that a delayed
pallet incurs an average tardiness of 23.11 minutes, leading to estimated costs of €27.73 for
truck waiting times (€72 per hour) or €77.03 for production standstills (€200 per hour). Over a
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week, this amounts to €388.35 or €1,078.47, depending on the pallets’ destination.

On average, FCFS reduces tardiness per delayed pallet by 1.5 minutes compared to R1 across
all pipeline configurations. This equals to cost savings of approximately €1.80 per tardy pal-
let for truck waiting times and €5.00 per tardy pallet for production standstills. Additionally, the
maximum full outbound tardiness for a delayed pallet under R1 is, on average, two hours longer
than under FCFS. Given the estimated delay costs, a single pallet with an additional two-hour
tardiness could result in €144.96 for truck waiting times and €402.66 for production standstills.

Moreover, increasing the pipeline threshold alone – without modifying the dispatching rules
– already leads to noticeable improvements without negatively impacting the other pallet flows.
In particular, increasing the threshold of the outfeed lanes at MP0 and EP1 each by two already
improves the full outbound on-time delivery percentage by 1.82% and the daily tardiness by
8.59 hours.

7.2 Recommendations

After evaluating the proposed dispatching rules and pipeline modifications, we recommend that
Euroma increase the pipeline threshold for the outfeed lanes. This adjustment enhances the
performance of full outbound pallets without significantly affecting workstation and inbound pal-
let operations.

It is essential to acknowledge that the simulation model does not accurately model the real-
world system. Validation reveals notable discrepancies, though multiple experiments confirmed
that the model behaves as expected based on expert understanding. This strengthens confi-
dence in insights gained by the simulation but also highlights the need to address deviations
from reality. Therefore, before implementing significant changes to the real-world system, we
recommend enhancing data collection and verifying the expert’s understanding of the system
logic to improve model accuracy.

Pipeline adjustments do not require modifications to the WCS logic and can immediately be
implemented. Therefore, we suggest testing the real system’s performance under slightly in-
creased pipeline thresholds. In particular, the simulation already showed significant improve-
ments when raising the pipeline threshold for Out1 (MP0) by one unit. Since the historical
data analysis indicates that full outbound pallets for MP0 experience long queuing times, and
the simulation results consistently demonstrate that a higher pipeline threshold reduces these
delays, we are confident that this improvement will translate effectively to the real-world system.

Additionally, we propose a controlled test phase for the FCFS dispatching rule. Implement-
ing FCFS requires minimal modifications to the WCS, as it simply removes priority distinctions
between pallet types. The simulation results indicate that this logic improves on-time delivery
and tardiness performance.

Although the simulation does not accurately replicate real-world dynamics, several factors sug-
gest that FCFS is unlikely to disrupt workstation pallet retrieval significantly. First, pipeline
thresholds limit the number of full outbound pallets a crane can retrieve before a workstation
pallet. Additionally, the average crane retrieval time of 42 seconds suggests that workstation
pallet delays due to FCFS would be minimal. Although sequence dependencies could theoreti-
cally cause a chain reaction of delays, simulation results do not support this concern. To further
minimize potential disruptions, we recommend scheduling initial trials under realistic demand
patterns during week 52 when Euroma’s production is paused. This approach allows Euroma
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to evaluate the impact without affecting ongoing operations.

While the R1 dispatching rule achieves the highest on-time delivery percentage, we do not
recommend testing it in the real system at this stage. The primary reason is the significantly
higher tardiness of delayed pallets, which could lead to severe disruptions in production and
logistics. Additionally, implementing R1 requires more substantial changes to the WCS, likely
requiring specialized expertise. Nevertheless, simulation results suggest that under optimized
system configurations – particularly with increased pipeline thresholds – R1 can mitigate these
drawbacks. To further explore its potential, we recommend refining the discrete event simula-
tion with more accurate input parameters. This would provide greater certainty regarding R1’s
feasibility and potential trade-offs.

Finally, the simulation results highlight the significant impact of operator behavior on warehouse
performance. Therefore, we strongly recommend that Euroma emphasize the importance of
timely retrieval of full outbound pallets from the outfeed lane to optimize system efficiency fur-
ther.

7.3 Limitations and Future Research

The study’s scope is limited to processes within the high-bay warehouse. Therefore, we did not
consider processes outside this system. The analysis reveals that high demand for one out-
bound destination increases lead times and tardiness. In this study, we addressed this issue
by increasing pipeline thresholds. Another potential approach could focus on the root cause –
the pallet request pattern. Developing a production schedule that incorporates the constraints
of the high-bay warehouse could distribute the demand for a single outfeed lane more evenly.
Additionally, enabling the WCS to select the optimal outfeed lane dynamically – potentially ap-
plying a penalty for choosing a suboptimal outfeed lane – could further enhance the high-bay
warehouse’s performance.

Furthermore, this study does not encompass storage assignment policies. Our analysis shows
that retrieval times can vary by up to nine minutes, depending on the storage aisle’s location.
While increasing the pipeline threshold mitigates this issue, optimizing storage assignment to
minimize conveyor transport times could improve pallet flow without requiring increased pipeline
thresholds.

Moreover, we only investigated possibilities for totally reactive scheduling, as this is the ap-
proach Euroma currently uses. This focus prevents us from exploring more computationally in-
tensive schedulingmethods, like tabu search. Thus, considering alternative dynamic scheduling
strategies, such as predictive-reactive scheduling, could have allowed the application of heuris-
tics that may generate a schedule closer to optimal than dispatching rules. Further research
could explore the feasibility of predicting pallet requests based on a predetermined production
schedule. However, such an approach would also require incorporating the reservation process
into the model, as multiple pallets with the same SKU are stored across different aisles of the
AS/RS.

Finally, it is important to acknowledge data availability and reliability limitations. While Euroma
collects a significant amount of data, some necessary data points are missing. As a result, we
relied heavily on expert opinions and established assumptions. Although several verification
experiments confirm that the simulation model adheres to the rules described by experts, the
model does not fully align with real-world observations. Notably, the workstation outbound logic
does not match historical data, and accurately modeling operator behavior proved challeng-
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ing. This discrepancy raises concerns about how well the simulation results translate to the
real-world system. Future work should focus on refining the model by incorporating additional
details, such as actual retrieval times for full outbound pallets and the precise logic used for
outbounding workstation pallets.

7.4 Contribution to Theory and Practice

First, as discussed in Section 3.1.4, existing studies on BJSSPs typically incorporate only a lim-
ited set of practical constraints. Our research extends the literature by developing a mathemat-
ical formulation with a broad and unique set of real-world constraints. Notably, our formulation
accounts for queuing on conveyor resources when necessary. To the best of our knowledge,
this aspect is not addressed in prior studies, which either impose strict no-wait constraints or do
not consider such limitations at all.

Moreover, our research evaluates the performance of well-known dispatching rules within a
unique operational environment. In this study, key constraints limit the ability of dispatching
rules to influence system performance. First, workstation pallet sequences are predefined, pre-
venting dispatching rules from dynamically adjusting their retrieval order. Additionally, pipeline
thresholds impose further restrictions by defining a maximum number of pallets in transit. As a
result, even if a dispatching rule prioritizes a specific pallet, it may need to select an alternative
option when the preferred choice is not feasible. To the best of our knowledge, no previous
research has examined the effectiveness of dispatching rules under these practical constraints.

From a practical perspective, this research provides Euroma with a comprehensive analysis
of the processes and flows within the high-bay warehouse. Additionally, it delivers the first per-
formance evaluation of the warehouse based on historical data, offering valuable insights into
its efficiency. Furthermore, the study offers educated improvement recommendations for op-
erational enhancements and future optimization strategies. Finally, the developed simulation
model serves as a foundational tool for Euroma, enabling further experimentation and a deeper
understanding of warehouse dynamics.
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A INBOUND PROCESS

The process of storing pallets in the high-bay warehouse is not the center of this research. How-
ever, the inbound process requires available spots on the conveyor belt and the cranes. While
the conveyor belts can accommodate multiple pallets simultaneously, each crane is limited to
one active in- or outbound task. Additionally, incoming products need to be stored in a reason-
able time to avoid obstruction on the conveyor. Therefore, the inbound process is connected
to the performance of the outbound process of the high-bay warehouse. Consequently, the
inbound process is discussed in this appendix to provide additional context without shifting the
main focus of the analysis. This chapter provides an overview of the inbound control policy and
the performance of the inbound process.

A.1 Inbound Control Policy

The loading docks on the ground floor serve as the primary delivery access point to Euroma.
Upon arrival, operators assign incoming products a unique pallet ID. Afterward, the pallets are
directed to storage within the high-bay warehouse, utilizing the infeed lane at EP0 (In3). Plac-
ing a pallet on the infeed lane triggers the creation of an inbound task. Additionally, internally
produced products, materials, and ingredients not fully utilized during production can trigger in-
bound tasks. These types of inbound processes mainly occur through the infeed lanes at MP0
(In1) and EP1 (In2).

After creating an inbound task, the WCS assigns a storage location. Upon the arrival of a
pallet at the I/O-point, the assigned crane performs the inbound in a FCFS manner if either of
the two conditions holds:

1. The crane executes an outbound task on the same side where the inbound pallet awaits
processing.

2. The crane has no outbound tasks in progress and thus is idle.

Under these conditions, the cranes follow a single cycle of outbound tasks until an inbound
pallet is on the same side as an ongoing outbound task. At this point, the crane transitions into
a dual cycle, handling both inbound and outbound tasks.

A.2 Inbound Process Analysis

In this research, the performance of the inbound process is monitored by the KPI Inbound
Queueing Time. Obtaining this KPI directly from the data is not feasible. Instead, estimat-
ing a pallet’s inbound queueing time involves calculating the duration between the arrival at the
I/O-point and the arrival at the storage location, with an additional deduction for the estimated
crane travel time.

According to the information provided in Table 2.2 in Section 2.4.2, it takes an average of 42
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seconds for a crane to transfer a pallet from its storage location to the I/O-point. We assume
the same duration applies to the reverse movement to determine the average inbound queue-
ing time. Table A.1 displays the average and median time incoming pallets spend waiting in
the crane queue and being transported by the crane. After accounting for the average crane
travel time, the adjusted average queueing time is approximately 1.5 minutes. It is essential to
note that the queueing time specifically refers to the period during which a pallet waits at the
I/O-point (I1.1 to I6.2, excluding the time spent on the conveyor segment leading to the crane’s
pickup spot. Moreover, the slight difference between the median and average suggests that the
inbound queueing time is subject to minor fluctuations, and cranes consistently pick up pallets
from the I/O-points at regular intervals.

MP0 EP0 EP1

Average Response Time (min) 1.69 1.83 1.68

Median Response Time (min) 1.53 1.53 1.42

Average Inbound Queuing Time (min) 1.00 1.14 0.99

Table A.1: Inbound Queuing Time. Average and median response time, including the queueing
time added to crane travel time, alongside the average queuing time calculated by subtracting
the average crane travel time. The times are provided in minutes.
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B GRAPH REPRESENTATION

This appendix introduces key graph theory concepts relevant to a job shop environment, as
many solution approaches for JSSPs rely on the critical path concept. Particular emphasis is
placed on alternative graphs, which are essential for BJSSPs.

Representing a JSSP as a graph involves associating each operation with a node and each
precedence relationship with an arc. The literature categorizes these precedence relationships
into fixed and alternative sets. Fixed precedence relationships occur between consecutive op-
erations of the same job and have arcs with weights corresponding to the processing time.
Conversely, alternative arcs link operations of different jobs sharing the same resources and
have an arc weight of zero. These alternative relationships are paired, reflecting the constraint
that each machine can handle only one operation at a time (Mascis and Pacciarelli, 2002).
Consequently, there is a direct correspondence between pairs of operations requiring the same
machine and pairs of alternative arcs.

An alternative graph G = (V, F,A) for the BJSSP is defined by the set of nodes V , the set
of fixed directed arcs F , and the set of directed alternative arc pairs A (Mogali et al., 2021).
The alternative arcs represent blocking constraints for a BJSSP. Therefore, for each pair of
operations sharing common resources, the job successor of each of the two operations is con-
nected to the machine successor of each. Figure B.1 exemplifies this situation. Different colors
represent each machine, with alternative arcs represented by dashed lines and fixed sequence
dependencies by solid lines. It clearly illustrates the characteristic of blocking constraints: ma-
chines become available only after the job moves on to the next operation.

O1,1 O1,2

O2,1 O2,2

Figure B.1: Segment of an Alternative Graph. Machines are shown in different colors, with
dashed arrows for alternative arcs and solid lines for fixed sequence dependencies.

In a selection S ⊂ A, at most, one arc of each alternative arc pair in A can be selected, meaning
either job J1 starts its second operation before job J2 starts its first or vice versa. A selection S is
complete if it includes precisely one arc from each alternative arc pair. Furthermore, a selection
S is consistent if the graphG(V, F ∪S), which includes only fixed arcs and the selected subset of
alternative arcs, is acyclic. A feasible selection is complete and consistent. A schedule can be
generated from a feasible selection S by determining the longest path on the graph G(V, F ∪S).
The length of this path corresponds to the makespan of S. Any of the longest paths is called a
critical path (Mascis and Pacciarelli, 2002; Mogali et al., 2021).
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C INPUTPARAMETERSFORCOMPUTATIONALEXPER-
IMENTS

This appendix provides the input parameters for the computational experiments that analyze the
scalability of the mathematical model. Table C.1 summarizes the scenarios, including varying
numbers of inbound jobs, outbound jobs, and machines. Additionally, the table lists the first and
last machine IDs, as well as the release and due dates for each scenario. All other parameters
follow the definitions provided in Section 4.3, except for the scenario with 15 machines, where
the machine layout is illustrated in Figure C.1.

Figure C.1: Machine Configuration for the 15-Machine Scenario. This figure illustrates the
machine setup for the scenario with 15 machines, which differs from the standard configuration
described in Section 4.3.
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First Machine Destination Machine Request Time Due Date

Scenario 1: 8 machines

JI
1 1 8 0 -

JO
2 8 5 1 6

JO
3 8 5 1 10

JO
4 8 5 2 9

Scenario 2: 15 machines

JI
1 1 8 0 -

JO
2 8 12 1 6

JO
3 8 12 1 10

JO
4 15 12 2 9

Scenario 3: 8 machines

JI
1 1 8 0 -

JI
5 1 8 2 -

JO
2 8 5 1 6

JO
3 8 5 1 10

JO
4 8 5 2 9

JO
6 8 5 3 11

JO
7 8 5 4 12

JO
8 8 5 5 12

Scenario 4: 15 machines

JI
1 1 8 0 -

JI
5 1 15 2 -

JO
2 8 12 1 6

JO
3 8 12 1 10

JO
4 15 12 2 9

JO
6 15 12 3 11

JO
7 8 12 4 12

JO
8 8 12 5 12

Scenario 5: 8 machines (Scenario 3 jobs + additional jobs

JI
9 1 8 4 -

JI
1 0 1 8 6 -

JO
1 1 8 5 7 14

JO
1 2 8 5 7 15

JO
1 3 8 5 9 17

JO
1 4 8 5 10 17

JO
1 5 8 5 10 20

JO16 8 5 12 20

Table C.1: Input Parameters for Computational Experiments: This table presents the input pa-
rameters for different problem sizes used to evaluate computation time.
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D CONCEPTUAL MODEL

Conceptual modeling is a crucial step in a simulation study as it outlines the important aspects
of the real world to be modeled. Table D.2 summarizes the conceptual model for the simulation
study at Euroma as a component list. Key aspects involve developing a thorough understand-
ing, formulating modeling objectives, and designing the conceptual model by identifying inputs,
outputs, scope, and the level of detail (Robinson, 2014). The tables presented in this appendix
follow the conceptual model description in Section 4.4.

Table D.1 summarizes the input and output parameters discussed in Section 4.4. The inputs
are categorized into experimental factors and constant parameters, while the output parameters
are divided into those used to evaluate the achievement of the objectives and those that help
identify underlying causes.

Experimental Factors

pipeline threshold

conveyor retrieval time (operator behavior)

sequencing policy

Constant Parameters

system arrival time

workstation processing time (operator behavior)

crane processing time

conveyor speed

(a) Inputs of the Simulation Study

Responses (determination of achievement of objec-
tives)

on-time delivery ratio

total tardiness

inbound queueing time

Responses (identification of reasons for failure to meet
objectives)

outbound queueing time

conveyor movement time

crane movement time

lead time

(b) Outputs of the Simulation Study

Table D.1: Inputs and Outputs of the Conceptual Model

Table D.2 provides an overview of the scope and assumptions defined for the simulation study,
as outlined in Sections 4.4 and 4.5. The tables are organized by components, specifying
whether each component is included or excluded from the simulation. Table D.2a explains
the rationale behind these decisions, while Table D.2b delves into the details of the included
components, highlighting the specific assumptions and simplifications applied.
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Component Incl./Excl. Justification

Pallets include flow through high-bay warehouse

Staff include required for conveyor retrieval and workstation tasks

Storage Racks include required for holding the stock

Stacker Cranes include contribution to outbound lead time

Conveyor include contribution to outbound lead time

Workstations include required for measuring achievement of objective

Crane Retrieval Queueus include required for determination of total outbound lead time and sequencing
policy

Storage Queues at Infeed exclude queues outside high-bay warehouse not related to outbound lead
time

Storage Queues at I/O-points include required for measuring achievement of objective

WCS include required for decision making and strategy formulation

WMS exclude movements outside the high-bay warehouse not relevant

(a) Scope of the Simulation Study
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Component Detail Incl./Excl. Comment

Pallets system arrival time include time stamps of real data collected at Euroma

order size exclude does not influence speed of outbound lead time

dimensions include dimensions of Euro pallet, block pallet dimensions excluded

storage location include inclusion of crane assignment (based on historical data),
exact storage location not included

Staff retrieval time include full outbound pallets remain on their destination for a dura-
tion following an assumed distribution (operator behavior)

transportation time exclude assumed distribution for conveyor retrieval time (operator
behavior) includes assumptions on transportation time

breaks exclude not explicitly modeled but could be represented by in-
creasing retrieval time

absenteeism exclude not explicitly modeled but could be represented by in-
creasing retrieval time

Storage Racks dimensions exclude storage racks modeled as black box

Stacker Crane speed include historical data

capacity include unit load

failure exclude technical uptime above 98%

Conveyor speed include speed based on historical data analysis and real-system
observations

capacity include one pallet per conveyor spot

size include based on data from manufacturer

failure exclude technical uptime above 99%

Workstations processing time include historical data

failure exclude workstations are not main objective

Retrieval Queue queueing include required for crane queueing time and queue size response
(sequencing policy)

capacity exclude no effective limit

behaviour include experimental factor

Storage Queue queueing include output measurement

behaviour include FCFS

WCS pallet assignment policy exclude historical data

task assignment policy include experimental factor

(b) Level of Detail of the Simulation Study

Table D.2: Conceptual Model of the Simulation Study. Representation of the content of the
conceptual model with the help of the component lists.
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E SIMULATION MODEL DESIGN

This appendix outlines the simulation model designed to analyze Euroma’s high-bay warehouse
operations, primarily focusing on outbound processes. First, we visualize the general logic gov-
erning pallet flow through the high-bay warehouse as implemented in the simulation. Subse-
quently, we introduce detailed flowcharts to illustrate the simulation model’s logic, highlighting
critical decision points and the key constraints embedded in the system. The chapter concludes
with an overview of the simulation dashboard.

E.1 Flow Charts

Section 4.7 presents an overview of the general pallet flow and introduces the key methods
utilized in the discrete event simulation model. This appendix expands on the introduction by
offering a detailed explanation of the structure and operation of these methods, along with their
corresponding flowcharts.

Method: CraneTask Together with the considered scheduling logic, the CraneTask method
determines the next outbound pallet for retrieval by the crane. This method is invoked whenever
a new outbound request enters the queue, or the crane completes its current task. If the crane
is idle and there is at least one pallet in the outbound queue, the method identifies the next task
based on the scheduling rules (refer to Figure E.5).

Figure E.1 outlines this decision-making process in two stages. When the queue contains a
single outbound pallet, the crane retrieves it directly, as no scheduling method is required. How-
ever, if multiple pallets are waiting, the scheduling method is applied to determine which pallet
should be retrieved next.

Before executing the outbound task, the HybridCommand method ensures proper coordina-
tion between the inbound and outbound queues. This method enforces the rules governing
both queues and is also triggered when the crane finishes a task but finds no pallets waiting in
the outbound buffer. This ensures that inbound pallets in the buffer are considered, maintaining
an efficient workflow.

Method: InboundQueue Similar to the CraneTask method, the InboundQueue method de-
termines the next inbound pallet to be retrieved by the crane. Since the inbound queue operates
in a FCFS manner, and the HybridCommand method dictates when the next inbound pallet is
retrieved, the primary task of the InboundQueue method is to maintain the queue in the correct
order for each inbound side. This process is visually represented in Figure E.2.

Method: HybridCommand TheHybridCommandmethodmanages the coordination between
inbound and outbound queues by tracking the crane’s current position and state. If a dual com-
mand is feasible, the method prioritizes retrieving an inbound pallet by invoking the CranePro-
cessingmethod before handling the assigned outbound pallet determined by CraneTask. When
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Figure E.1: Flowchart Method CraneTask: The flowchart depicts the method CraneTask, which
initializes a new task assignment for the crane whenever it is idle.

a dual command is impossible, the crane initiates the next single command cycle, also triggered
through the CraneProcessingmethod. Figure E.3 visualizes this decision-making process, with
key decision points leading to either dual or single command cycles highlighted in red boxes.
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Figure E.2: Flowchart Method InboundQueue: The flowchart illustrates the InboundQueue
method, which updates the queue of inbound pallets assigned to their respective cranes.

Figure E.3: Flowchart Method HybridCommand: The flowchart illustrates the HybridCommand
method, which coordinates inbound and outbound queues based on the crane’s current position
and state. When a dual command is feasible, the method prioritizes retrieving an inbound pallet.
Otherwise, the crane proceeds with the next single command cycle.

Method: CraneProcessing The CraneProcessing method simulates the crane’s operations,
including both empty and loaded movement times, to represent its handling durations realisti-
cally. These key activities are marked in red within Figure E.4.
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The method incorporates an additional step for pallets destined for workstations: verifying
whether the next pallet in the workstation sequence is ready to begin its crane movement.
This check calls via method SortCraneBuffer the applied scheduling rules (see Figures E.5a to
E.5c).

Scheduling Rules The simulation offers three distinct scheduling methods. These methods
are triggered whenever the SortCraneBuffer method is called.

Method: CurrentScheduling The CurrentScheduling method is executed in two key scenar-
ios. First, when a crane completes its current task, it must determine the next task to process.
Second, when the pipeline size decreases (due to a pallet leaving the system), the method is
called to assess which pallet is next for the corresponding location. The pallets eligible for pro-
cessing based on location or crane availability are then sorted. Workstation pallets receive a
higher prioritization value of 1, while all other pallets are assigned a prioritization value of 50.
In cases where multiple pallets share the same prioritization, the pallet with the earliest request
time is selected. As illustrated in Figure E.5a, a pallet can only be selected if the corresponding
crane is idle and the pipeline size is below a set threshold.

Method: FCFSScheduling As shown in Figure E.5b, the FCFSScheduling method functions
similarly to the CurrentScheduling method, with one key distinction: no prioritization is applied
to specific pallet types or movements. Instead, all pallets are processed based solely on their
system arrival time.

Method: R1Scheduling The R1Scheduling method, illustrated in Figure E.5c, is more com-
plex and involves additional steps. First, the remaining processing time for a pallet is calculated
by accounting for the conveyor spots the pallet must traverse to reach its destination and the
crane’s travel time. Additionally, the waiting time, estimated by the expected arrival time of in-
transit pallets, contributes to the remaining processing time. Furthermore, the pipeline position
indicates the remaining work in the next queue. This is determined by multiplying the number of
pallets in the pipeline by the expected time each pallet spends at its destination. In this method,
a smaller R1-value is preferred, as it indicates that the pallet is closer to its due date and has
fewer pallets already in the pipeline, ensuring it is handled promptly.

The due date for full outbound pallets is aligned with the goal of full outbound pallets reach-
ing their destination within one hour, making the due date one hour. For workstation pallets,
due dates depend on the following criteria:

• If a pallet is the first in an order, it should arrive at the workstation within 20 minutes.

• All other workstation pallets are due at the expected workstation arrival time of the pre-
ceding pallet in the sequence.

Since the specific order to which each pallet belongs is unknown, any pallet with a sequence
number of one or succeeding pallets whose request times exceed the expected workstation
arrival time of their preceding pallet in the sequence are treated as initiating a new order and
are assigned a 20-minute due date. The expected workstation arrival time is calculated by
summing the pallet’s remaining processing time (crane and conveyor) and the remaining work
in the queue.
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Figure E.4: Flowchart Method CraneProcessing: The flowchart represents the CraneProcess-
ing method, which simulates the crane’s travel and retrieval operations, covering both empty
and loaded movements.
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(a) Flowchart Method CurrentPrioritization: The flowchart depicts the CurrentPrioritization method,
which determines the next pallet for the crane to process. This method reflects the scheduling logic
currently applied by Euroma. Generally, pallets are assigned the same priority value, except for
workstation outbound pallets, which are prioritized. Within each priority group, pallets are scheduled
in a FCFS manner.
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E.2 Simulation Dashboard

Figure E.6 presents the dashboard of the developed simulation model. The dashboard is orga-
nized into distinct sections to provide a structured overview and facilitate user interaction with
the simulation.

High-Bay Warehouse The section labeled High-Bay Warehouse contains a frame that rep-
resents the high-bay warehouse, including conveyor modules and crane locations. This frame
allows the user to visually track pallet movements along the conveyors. Additionally, it incorpo-
rates a black-box model of the cranes, as described in Figure 4.2.

Event Control The Event Control section includes all necessary methods managing a simula-
tion run. Before starting a replication, theReset method clears all tables and variables to ensure
consistent initial conditions. The methods Init and FirstTimeInitialization handle the initialization
of the simulation run, while the endSimmethod computes KPIs before terminating a replication.
In contrast to methods, which operate at the beginning or end of a replication, the StartOfDay
method executed daily to update the current date variable within the Settings & Experimental
Factors section.

Warehouse Control TheWarehouse Control section encompasses all parameters and meth-
ods required for pallet movements within the high-bay warehouse. The Schedules frame stores
request schedules and pallet destinations based on historical data, while the SetAttributesMUs
method assigns relevant attributes such as destination and due date to each pallet.

Conveyor modules in the HighBayWarehouse frame generally function without additional meth-
ods. However, at the merge points before an outfeed lane, theMergePointsmethod implements
the required logic, including the possible looping condition. Additionally, this method ensures
that workstation sequences are followed correctly by verifying whether the previous pallet has
entered the workstation. The BufferEntrance method updates the last workstation pallet enter-
ing the buffer.

Pipeline constraints are enforced using several methods. First, method UpdateEnRoute tracks
pallets entering or exiting transit, updating the corresponding pipeline count. The variables un-
der this method show the updated number of in-transit pallets. Second, method CheckEnRoute
determines whether a pallet can begin movement based on the pipeline threshold and, for work-
station pallets, ensures the preceding pallet has already moved.

Method SortCraneBuffer determines which dispatching rule to apply for managing the crane
queue. The methods CurrentPrioritization, FCFSPrioritization, and R1Prioritization implement
the respective scheduling policies, as detailed in Flowcharts E.5a to E.5c. These methods in-
teract with table SortRequests as this table stores all pallet requests in crane queues. Tables
RemSpots and ExpectedDestinationTimes solely support the R1 logic. The first of these tables
records the number of conveyor positions a pallet must pass before reaching its destination,
while the second one stores the estimated arrival times for in-transit pallets.

Performance Measurements The performance data is recorded in two key tables. Table
PalletPerformance stores performance metrics per pallet, including lead-time components and
looping behavior. To reduce computation time, the UpdatePerformance method performs the
necessary calculations only if the singlePalletInfo variable is set to true. Additionally, table
PerformancePerRun stores average KPIs for each experiment per replication.
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Historical Data The tables in section Historical Data contain historical records used to derive
operator and crane processing times.

Settings & Experimental Factors Section Settings & Experimental Factors displays user-
relevant parameters, including

• the current pipeline threshold (variable name in Figure E.6 is enRoute_Threshold),

• the selected prioritization rule

– 0 represents the Baseline Simulation
– 1 represents the FCFS Simulation
– 2 represents the R1 Simulation

• the reloop strategy for full outbound pallets requested for Out1 (MP0)

– if variable reloop_MP0 is true, full outbound pallets are allowed to loop on conveyor
MP0

– otherwise, they must wait until a spot on the outfeed lane becomes available

Experiment Control The StartExperiments method initiates the experiments. It serves as
both a trigger button and a function that populates the ExperimentalSettings table with the speci-
fied experimental configurations. It also calls methods from the Event Control section to initialize
the simulation. Furthermore, the user can modify the parameters nrReplications and totalExp to
define the number of replications and experiments. Additionally, three status variables dynam-
ically update during the simulation to indicate the current replication and experiment progress.
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(b) Flowchart Method FCFSPrioritization: The flowchart illustrates the FCFSPrioritization
method, which determines the next pallet for the crane to process. The method sorts out-
bound requests by request time and prioritizes the pallet with the earliest request time.
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(c) Flowchart Method R1Prioritization: The flowchart visualizes the
R1Prioritization method, which determines the next pallet for the crane to pro-
cess. The method evaluates each outbound request using multiple criteria:
crane processing time, remaining processing time to the destination, due date,
and workload in the next queue.

Figure E.5: Flowcharts Scheduling Methods
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Figure E.6: Simulation Dashboard
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F VERIFICATION

Verification ensures that the implemented simulation model accurately represents the concep-
tual model. We evaluate three simplified test scenarios and one one-hour segment from the
historical dataset to confirm the model’s logic. By using fixed durations, we eliminate variabil-
ity, enabling precise calculations of the expected system behavior. This appendix details the
datasets, verification results, and additional explanations.

The following input parameters remain consistent across all verification experiments:

• crane movement durations

– empty travel time (single command): 45 seconds
– empty travel time (dual command): 15 seconds
– loaded travel time: 45 seconds

• conveyor specifications

– conveyor speed: 0.15 meters per second
– conveyor dimensions: 1.5 meters long and 1.1 meters wide

• lift movement durations

– empty travel time: 25 seconds
– loaded travel time: 35 seconds

• operator duration

– 5 minutes

F.1 Test Scenario 1: Pipeline and Workstation Sequence

The first verification experiment assesses whether the simulationmodel correctly enforces pipeline
and workstation sequence requirements. The pipeline thresholds, as outlined in Table 2.1, en-
sure that the number of pallets moving to an outbound location does not exceed its allowable
capacity. Additionally, workstation pallets must follow their assigned sequence, meaning they
must arrive at the workstations in order. To enforce this, the current outbound control logic per-
mits a crane to retrieve a pallet destined for a workstation only after the preceding pallet in the
sequence has been retrieved.

To validate compliance, we design a controlled test where pallets for each outbound location
are requested on separate days. This setup ensures that pallets bound for different destinations
do not interfere with each other, isolating the behavior of pallets moving to the same location.

The results, presented in Table F.1, confirm adherence to pipeline constraints for the outbound
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locationsOut1 (MP0),Out3 (EP0), andOut2 (EP1). For example, pallet MP0WA1_3 is retrieved
immediately after its request:

• request time: 00:00:27

• empty crane travel time (single command): 45 seconds

• retrieval time: 00:01:12

However, pallet MP0WA1_4 cannot be retrieved immediately after its request because the
pipeline has already reached its maximum capacity of three pallets. Thus, crane 4 retrieves
MP0WA1_4 only after the first pallet is retrieved from the conveyor. The sequence of events is
as follows:

• arrival of the first pallet (MP0WA1_3) at the outbound location: 00:10:03

• operator processing time: 5 minutes

• conveyor retrieval time of pallet MP0WA1_3: 00:15:03

• empty crane travel time (single command): 45 seconds

• retrieval time of pallet MP0WA1_4: 00:15:48

A similar analysis confirms pipeline adherence at Out3 (EP0) and Out2 (EP1).

Pallet ID System Arrival Crane Movement Destination

Location Time Pickup Time Location Time

MP0WA1_1 Crane 1 00:00:25 00:01:10 Out1 (MP0) 00:20:03

MP0WA1_2 Crane 2 00:00:26 00:01:11 Out1 (MP0) 00:15:03

MP0WA1_3 Crane 3 00:00:27 00:01:12 Out1 (MP0) 00:10:03

MP0WA1_4 Crane 4 00:00:28 00:15:48 Out1 (MP0) 00:25:03

MP0WA1_5 Crane 5 00:00:29 00:20:48 Out1 (MP0) 00:30:03

(a) Test Scenario 1: Outbound Data Out1 (MP0).

For workstation-bound pallets, results show that the model correctly enforces sequence con-
straints. As seen in Tables F.1d to F.1j, pallets reach their destinations in the order of their
arrival in the system. If a pallet arrives at a workstation before its designated predecessor, it
loops on the conveyor until its sequence number permits entry.

For instance, pallet MP0K0X_1, enters the workstation before pallet MP0K0X_2, even though
MP0K0X_2 has a shorter travel distance (as seen in Figure 2.2a). Since MP0K0X_2 arrives
before its predecessor, it must loop on the conveyor, delaying its entry.

These observations confirm that the model correctly enforces both pipeline capacity limits and
workstation sequence requirements.

F.2 Test Scenario 2: Prioritization Rules

This experiment verifies whether the simulation model correctly applies prioritization rules. As
described in Section 2.4.1, workstation pallets have higher priority than full outbound pallets.
In Table F.2, full outbound pallets are assigned a prioritization value of 50, ensuring they are

100



Pallet ID System Arrival Crane Movement Destination

Location Time Pickup Time Location Time

EP0WA1_1 Crane 1 00:00:25 00:01:10 Out3 (EP0) 00:14:28

EP0WA1_2 Crane 2 00:00:26 00:01:11 Out3 (EP0) 00:09:28

EP0WA1_3 Crane 3 00:00:27 00:01:12 Out3 (EP0) 00:04:28

EP0WA1_4 Crane 4 00:00:28 00:01:13 Out3 (EP0) 00:44:28

EP0WA1_5 Crane 5 00:00:29 00:01:14 Out3 (EP0) 00:39:28

EP0WA1_6 Crane 6 00:00:30 00:01:15 Out3 (EP0) 00:34:28

EP0WA1_7 Crane 1 00:00:31 00:02:40 Out3 (EP0) 00:29:28

EP0WA1_8 Crane 2 00:00:32 00:02:41 Out3 (EP0) 00:24:28

EP0WA1_9 Crane 3 00:00:33 00:02:42 Out3 (EP0) 00:19:28

EP0WA1_10 Crane 4 00:00:34 00:02:43 Out3 (EP0) 00:49:28

EP0WA1_11 Crane 5 00:00:35 00:10:13 Out3 (EP0) 00:54:28

EP0WA1_12 Crane 6 00:00:36 00:15:13 Out3 (EP0) 00:59:28

(b) Test Scenario 1: Outbound Data Out3 (EP0)

Pallet ID System Arrival Crane Movement Destination

Location Time Pickup Time Location Time

EP1WA1_1 Crane 1 00:00:25 00:01:10 Out2 (EP1) 00:21:56

EP1WA1_2 Crane 2 00:00:26 00:01:11 Out2 (EP1) 00:36:56

EP1WA1_3 Crane 3 00:00:27 00:01:12 Out2 (EP1) 00:26:56

EP1WA1_4 Crane 4 00:00:28 00:01:13 Out2 (EP1) 00:16:56

EP1WA1_5 Crane 5 00:00:29 00:01:14 Out2 (EP1) 00:11:56

EP1WA1_6 Crane 6 00:00:30 00:01:15 Out2 (EP1) 00:06:56

EP1WA1_7 Crane 1 00:00:31 00:02:40 Out2 (EP1) 00:31:56

EP1WA1_8 Crane 2 00:00:32 00:12:41 Out2 (EP1) 01:01:56

EP1WA1_9 Crane 3 00:00:33 00:17:41 Out2 (EP1) 00:51:56

EP1WA1_10 Crane 4 00:00:34 00:22:41 Out2 (EP1) 00:56:56

EP1WA1_11 Crane 5 00:00:35 00:27:41 Out2 (EP1) 00:41:56

EP1WA1_12 Crane 6 00:00:36 00:32:41 Out2 (EP1) 00:56:56

(c) Test Scenario 1: Outbound Data Out2 (EP1)

treated with lower priority.

The results, sorted by the crane pickup time, confirm that the retrieval sequence adheres to
the prioritization rules. Key observations include:

• Crane 1 retrieves pallet MP0WA1_1 first, as it is the earliest request. While the crane is
en route, additional requests are made. The requests of these pallets cannot influence
the retrieval of MP0WA1_1. Despite its earlier request, MP0WA1_2 is retrieved after
MP0K0X_1 and MP0K0X_2 because workstation pallets have priority.

• The behavior of cranes 4 and 6 confirms that prioritization rules are localized and oper-
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Pallet ID System Arrival Crane Movement Destination

Location Time Pickup Time Location Time

MP0K0X_1 Crane 1 00:00:25 00:01:10 F1 (MP0) 00:08:33

MP0K0X_2 Crane 2 00:00:26 00:01:11 F1 (MP0) 00:17:03

MP0K0X_3 Crane 3 00:00:27 00:01:12 F1 (MP0) 00:25:34

MP0K0X_4 Crane 4 00:00:28 00:01:13 F1 (MP0) 00:33:54

MP0K0X_5 Crane 5 00:00:29 00:01:14 F1 (MP0) 00:42:24

MP0K0X_6 Crane 6 00:00:30 00:01:15 F1 (MP0) 00:50:55

MP0K0X_7 Crane 1 00:00:31 00:02:40 F1 (MP0) 00:55:55

MP0K0X_8 Crane 2 00:00:32 00:14:18 F1 (MP0) 01:00:55

MP0K0X_9 Crane 3 00:00:33 00:22:48 F1 (MP0) 01:05:55

MP0K0X_10 Crane 4 00:00:34 00:31:19 F1 (MP0) 01:13:09

MP0K0X_11 Crane 5 00:00:35 00:39:39 F1 (MP0) 01:20:49

MP0K0X_12 Crane 6 00:00:36 00:48:09 F1 (MP0) 01:28:40

(d) Verification Test Scenario 1: Outbound Data Filling 1 (MP0)

Pallet ID System Arrival Crane Movement Destination

Location Time Pickup Time Location Time

MP0K0X_13 Crane 1 00:00:25 00:01:10 F2 (MP0) 00:08:03

MP0K0X_14 Crane 2 00:00:26 00:01:11 F2 (MP0) 00:16:33

MP0K0X_15 Crane 3 00:00:27 00:01:12 F2 (MP0) 00:25:04

MP0K0X_16 Crane 4 00:00:28 00:01:13 F2 (MP0) 00:33:24

MP0K0X_17 Crane 5 00:00:29 00:01:14 F2 (MP0) 00:41:54

MP0K0X_18 Crane 6 00:00:30 00:01:15 F2 (MP0) 00:50:25

MP0K0X_19 Crane 1 00:00:31 00:02:40 F2 (MP0) 00:55:25

MP0K0X_20 Crane 2 00:00:32 00:13:48 F2 (MP0) 01:00:25

MP0K0X_21 Crane 3 00:00:33 00:22:18 F2 (MP0) 01:05:25

MP0K0X_22 Crane 4 00:00:34 00:30:49 F2 (MP0) 01:12:09

MP0K0X_23 Crane 5 00:00:35 00:39:09 F2 (MP0) 01:19:53

MP0K0X_24 Crane 6 00:00:36 00:47:39 F2 (MP0) 01:27:40

(e) Verification Test Scenario 1: Outbound Data Filling 2 (MP0)

ate independently for each crane. For example, pallets EP0WA1_1 and EP1K0X_2 are
retrieved immediately after their respective requests, unaffected by the activities at other
cranes.

• If two pallets share the same priority, the one with the earliest request timestamp is re-
trieved first. This is evident in the retrieval order of pallets MP0WA1_6 and EP0WA1_2.
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Pallet ID System Arrival Crane Movement Destination

Location Time Pickup Time Location Time

MP0K0X_25 Crane 1 00:00:25 00:01:10 F3 (MP0) 00:07:33

MP0K0X_26 Crane 2 00:00:26 00:01:11 F3 (MP0) 00:16:03

MP0K0X_27 Crane 3 00:00:27 00:01:12 F3 (MP0) 00:24:34

MP0K0X_28 Crane 4 00:00:28 00:01:13 F3 (MP0) 00:32:54

MP0K0X_29 Crane 5 00:00:29 00:01:14 F3 (MP0) 00:41:24

MP0K0X_30 Crane 6 00:00:30 00:01:15 F3 (MP0) 00:49:55

MP0K0X_31 Crane 1 00:00:31 00:02:40 F3 (MP0) 00:54:55

MP0K0X_32 Crane 2 00:00:32 00:13:18 F3 (MP0) 00:59:55

MP0K0X_33 Crane 3 00:00:33 00:21:48 F3 (MP0) 01:04:55

MP0K0X_34 Crane 4 00:00:34 00:30:19 F3 (MP0) 01:11:09

MP0K0X_35 Crane 5 00:00:35 00:38:39 F3 (MP0) 01:18:49

MP0K0X_36 Crane 6 00:00:36 00:47:09 F3 (MP0) 01:26:50

(f) Verification Test Scenario 1: Outbound Data Filling 3 (MP0)

Pallet ID System Arrival Crane Movement Destination

Location Time Pickup Time Location Time

MP0K0X_37 Crane 1 00:00:25 00:01:10 F4 (MP0) 00:07:03

MP0K0X_38 Crane 2 00:00:26 00:01:11 F4 (MP0) 00:15:33

MP0K0X_39 Crane 3 00:00:27 00:01:12 F4 (MP0) 00:24:04

MP0K0X_40 Crane 4 00:00:28 00:01:13 F4 (MP0) 00:32:24

MP0K0X_41 Crane 5 00:00:29 00:01:14 F4 (MP0) 00:40:54

MP0K0X_42 Crane 6 00:00:30 00:01:15 F4 (MP0) 00:49:25

MP0K0X_43 Crane 1 00:00:31 00:02:40 F4 (MP0) 00:54:25

MP0K0X_44 Crane 2 00:00:32 00:12:48 F4 (MP0) 00:59:25

MP0K0X_45 Crane 3 00:00:33 00:21:18 F4 (MP0) 01:04:25

MP0K0X_46 Crane 4 00:00:34 00:29:49 F4 (MP0) 01:10:09

MP0K0X_47 Crane 5 00:00:35 00:38:09 F4 (MP0) 01:17:50

MP0K0X_48 Crane 6 00:00:36 00:46:39 F4 (MP0) 01:25:40

(g) Verification Test Scenario 1: Outbound Data Filling 4 (MP0)

F.3 Test Scenario 3: Hybrid Command

The third verification experiment evaluates whether the simulation model correctly executes the
hybrid command logic. As described in Section A.1, cranes operate single command cycles for
outbound tasks until an inbound request appears on the same side as an ongoing outbound
task. At this point, the crane transitions into a dual cycle, handling both inbound and outbound
tasks.

The results in Table F.3, organized by crane pickup time, confirm this behavior:

• If a crane is idle when an inbound request arrives at the I/O-point, it immediately retrieves

103



Pallet ID System Arrival Crane Movement Destination

Location Time Pickup Time Location Time

MP0K0X_49 Crane 1 00:00:25 00:01:10 F5 (MP0) 00:09:51

MP0K0X_50 Crane 2 00:00:26 00:01:11 F5 (MP0) 00:18:21

MP0K0X_51 Crane 3 00:00:27 00:01:12 F5 (MP0) 00:26:52

MP0K0X_52 Crane 4 00:00:28 00:01:13 F5 (MP0) 00:35:12

MP0K0X_53 Crane 5 00:00:29 00:01:14 F5 (MP0) 00:43:42

MP0K0X_54 Crane 6 00:00:30 00:15:36 F5 (MP0) 00:48:42

MP0K0X_55 Crane 1 00:00:31 00:24:06 F5 (MP0) 00:53:42

MP0K0X_56 Crane 2 00:00:32 00:32:37 F5 (MP0) 00:59:08

MP0K0X_57 Crane 3 00:00:33 00:40:57 F5 (MP0) 01:06:52

MP0K0X_58 Crane 4 00:00:34 00:49:27 F5 (MP0) 01:14:17

MP0K0X_59 Crane 5 00:00:35 00:54:27 F5 (MP0) 01:19:17

MP0K0X_10 Crane 6 00:00:36 00:49:27 F5 (MP0) 01:24:17

(h) Verification Test Scenario 1: Outbound Data Filling 5 (MP0)

Pallet ID System Arrival Crane Movement Destination

Location Time Pickup Time Location Time

EP1K0X_1 Crane 1 00:00:25 00:01:10 P1 (EP1) 00:09:50

EP1K0X_2 Crane 2 00:00:26 00:01:11 P1 (EP1) 00:17:31

EP1K0X_3 Crane 3 00:00:27 00:01:12 P1 (EP1) 00:24:51

EP1K0X_4 Crane 4 00:00:28 00:01:13 P1 (EP1) 00:32:36

EP1K0X_5 Crane 5 00:00:29 00:01:14 P1 (EP1) 00:39:52

EP1K0X_6 Crane 6 00:00:30 00:01:15 P1 (EP1) 00:47:32

EP1K0X_7 Crane 1 00:00:31 00:02:40 P1 (EP1) 00:52:32

EP1K0X_8 Crane 2 00:00:32 00:15:35 P1 (EP1) 00:57:32

EP1K0X_9 Crane 3 00:00:33 00:23:16 P1 (EP1) 01:03:22

EP1K0X_10 Crane 4 00:00:34 00:30:36 P1 (EP1) 01:09:54

EP1K0X_11 Crane 5 00:00:35 00:38:21 P1 (EP1) 01:16:59

EP1K0X_12 Crane 6 00:00:36 00:45:37 P1 (EP1) 01:23:34

(i) Verification Test Scenario 1: Outbound Data Picking 1 (EP1)

the inbound pallet. For instance, when MP0WE1_1 arrives at the I/O-point of crane 1, the
crane promptly retrieves it, as shown in the following timeline:

– I/O-point arrival time: 00:01:56
– empty crane travel time (single command): 45 seconds
– retrieval time: 00:02:41

• If a crane is occupied, inbound pallets must wait until the crane either completes its current
task or a dual command cycle is possible. For example, MP0WE1_2 arrives at the I/O-
point while crane 1 is handling the outbound request MP0WA1_1. Since the outbound
location is on the same side, the crane performs a dual command:
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Pallet ID System Arrival Crane Movement Destination

Location Time Pickup Time Location Time

EP1K0X_13 Crane 1 00:00:25 00:01:10 P2 (EP1) 00:08:03

EP1K0X_14 Crane 2 00:00:26 00:01:11 P2 (EP1) 00:16:33

EP1K0X_15 Crane 3 00:00:27 00:01:12 P2 (EP1) 00:25:04

EP1K0X_16 Crane 4 00:00:28 00:01:13 P2 (EP1) 00:33:24

EP1K0X_17 Crane 5 00:00:29 00:01:14 P2 (EP1) 00:41:54

EP1K0X_18 Crane 6 00:00:30 00:01:15 P2 (EP1) 00:50:25

EP1K0X_19 Crane 1 00:00:31 00:02:40 P2 (EP1) 00:55:25

EP1K0X_20 Crane 2 00:00:32 00:14:55 P2 (EP1) 01:00:25

EP1K0X_21 Crane 3 00:00:33 00:22:26 P2 (EP1) 01:05:25

EP1K0X_22 Crane 4 00:00:34 00:30:05 P2 (EP1) 01:12:09

EP1K0X_23 Crane 5 00:00:35 00:38:21 P2 (EP1) 01:19:53

EP1K0X_24 Crane 6 00:00:36 00:45:37 P2 (EP1) 01:27:40

(j) Verification Test Scenario 1: Outbound Data Picking 2 (EP1)

Table F.1: Verification: Test Scenario 1. The tables present the timestamps for key events in
the simulation: system arrival time, crane retrieval time, and destination arrival time. These
timestamps align with the calculated values for each respective event.

– I/O-point arrival time (MP0WE1_2): 00:02:47
– retrieval time (MP0WA1_1): 00:04:11
– loaded crane travel time (single command): 45 seconds
– empty crane travel time (dual command): 15 seconds
– retrieval time: 00:05:11

F.4 Test Scenario 4: Comprehensive Testing

The final verification experiment evaluates a one-hour segment from the historical dataset. The
results in Table F.4 confirm that the previously verified logic is maintained in a real-world sce-
nario.

• Workstation pallets loop if they arrive before their predecessor, as seen with the longer
conveyor movement time of palletMP0K0X_26701. Similarly, full outbound pallets unable
to enter their designated outbound buffer areas due to occupied buffer spots also loop on
the conveyor.

• Minor discrepancies between expected and simulated lead times result from rounding
in calculations. Additionally, most pallets with an identical flow path through the high-bay
warehouse presented similar errors (e.g., 0.01 minute differences for inbound pallets from
In2 (EP1)).

• Larger differences arise from pallet interactions on the conveyor, which were not explic-
itly factored into expected lead times. For instance, pallet MP0WE1_27560 experienced
delays due to other pallets traversing the conveyor while moving from the inbound area
at MP0 to the main conveyor.
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Pallet ID System Arrival Crane Movement Destination
Prioritization

Location Time Pickup Dropoff Location

MP0WA1_1 Crane 1 00:00:25 00:01:10 00:01:55 Out1 (MP0) 50

MP0K0X_1 Crane 1 00:00:27 00:02:40 00:03:25 F1 (MP0) 1

MP0K0X_2 Crane 1 00:00:35 00:04:10 00:04:55 F2 (MP0) 1

MP0WA1_2 Crane 1 00:00:26 00:05:40 00:06:25 Out1 (MP0) 50

EP1K0X_1 Crane 3 00:16:40 00:17:25 00:18:10 P1 (EP1) 1

EP1K0X_2 Crane 4 00:16:45 00:17:30 00:18:15 P2 (EP1) 1

EP0WA1_1 Crane 6 00:16:55 00:17:40 00:18:25 Out3 (EP0) 50

MP0K0X_3 Crane 5 00:17:20 00:18:05 00:18:50 F3 (MP0) 1

EP1K0X_3 Crane 3 00:17:10 00:18:55 00:19:40 P1 (EP1) 1

MP0WA1_5 Crane 5 00:17:40 00:19:35 00:20:20 Out1 (MP0) 50

EP1WA1_1 Crane 3 00:16:50 00:20:25 00:21:10 Out2 (EP1) 50

EP1WA1_2 Crane 5 00:33:35 00:34:20 00:35:05 Out2 (EP1) 50

MP0K0X_4 Crane 5 00:33:50 00:35:50 00:36:35 F4 (MP0) 1

EP1K0X_4 Crane 5 00:33:55 00:38:20 00:39:05 P2 (EP1) 1

MP0K0X_5 Crane 5 00:34:00 00:39:50 00:40:35 F5 (MP0) 1

MP0WA1_6 Crane 5 00:33:40 00:41:20 00:42:05 Out1 (MP0) 50

EP0WA1_2 Crane 5 00:33:45 00:42:50 00:43:35 Out3 (EP0) 50

Table F.2: Verification: Test Scenario 2. The table presents the timestamps for key events in the
simulation: system arrival time, crane retrieval time, start of the conveyor movement time, and
destination arrival time. These timestamps align with the calculated values for each respective
event. Additionally, the priority value is provided, with 1 representing a higher priority than 50.

While Table F.4 presents the calculated expectation for the full lead time duration alongside the
simulation results, the expected durations of the lead time components are not explicitly shown.
However, these divided parts were compared to the corresponding simulation results during the
verification process. This comparison helped explain discrepancies between the expected and
simulated lead times.
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Pallet ID System Arrival Crane Movement Destination

Location Time Pickup I/O-point Location Time

MP0WE1_1 In1 (MP0) 00:00:25 00:02:41 00:01:56 Crane 1 00:03:26

MP0WA1_1 Crane 1 00:02:00 00:04:11 00:04:56 Out3 (MP0) 00:14:22

MP0WE1_2 In1 (MP0) 00:00:40 00:05:11 00:02:47 Crane 1 00:05:56

EP1WA1_1 Crane 1 00:02:10 00:06:41 00:07:26 Out2 (EP1) 00:15:42

EP0WA1_1 Crane 1 00:02:20 00:08:11 00:08:56 Out3 (EP0) 00:12:47

MP0WA1_2 Crane 1 00:02:30 00:09:41 00:10:26 Out3 (MP0) 00:19:52

EP1WA1_2 Crane 2 00:18:40 00:19:25 00:20:10 Out EP0 00:27:46

MP0WA1_3 Crane 2 00:19:00 00:20:55 00:21:40 Out3 (MP0) 00:30:26

MP0WA1_4 Crane 2 00:21:30 00:22:25 00:23:10 Out3 (MP0) 00:35:26

EP0WA1_2 Crane 2 00:22:30 00:23:55 00:24:40 Out3 (EP0) 00:27:51

EP1WE1_2 In2 (EP1) 00:18:40 00:24:55 00:21:17 Crane 2 00:25:40

MP0K0X_1 Crane 4 00:30:50 00:31:35 00:32:20 F3 (MP0) 00:35:48

MP0K0X_2 Crane 4 00:43:20 00:44:05 00:44:50 F4 (MP0) 00:47:48

EP1K0X_1 Crane 4 00:44:10 00:45:35 00:46:20 P1 (EP1) 00:52:15

EP0WE1_1 In3 (EP0) 00:33:20 00:46:35 00:43:24 Crane 4 00:47:20

MP0K0X_3 Crane 4 00:45:50 00:48:05 00:48:50 F2 (MP0) 00:52:48

MP0K0X_1 F3 (MP0) 00:40:48 00:49:05 00:48:06 Crane 4 00:49:50

EP1WA1_3 Crane 4 00:46:40 00:50:35 00:51:20 Out2 (EP1) 00:57:36

EP0WE1_2 In3 (EP0) 00:33:40 00:51:35 00:46:42 Crane 4 00:52:50

MP0K0X_2 F4 (MP0) 00:52:48 01:01:21 01:00:36 Crane 4 01:02:06

EP1K0X_1 P1 (EP1) 00:57:15 01:03:22 01:02:37 Crane 4 01:04:07

MP0K0X_3 F2 (MP0) 00:57:48 01:05:21 01:04:36 Crane 4 01:06:06

Table F.3: Verification: Test Scenario 3. The table presents the timestamps for key events in the
simulation: system arrival time, crane retrieval time, start of the conveyor movement time, and
destination arrival time. These timestamps align with the calculated values for each respective
event.
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Pallet ID System Arrival Destination Duration (in minutes)

Simulation Expectation

Location Time Location Queue-
ing

Crane Con-
veyor

Work-
sta-
tion

Lead
Time

Lead
Time

EP0WE1_16977 In3 (EP0) 08:01:35 Crane 5 1.18 0.75 2.58 4.52 4.52

MP0WE1_27662 In1 (MP0) 08:04:16 Crane 6 0.75 0.75 5.17 6.67 6.52

EP0WE1_18972 In3 (EP0) 08:02:42 Crane 1 0.75 0.75 8.07 9.57 9.58

MP0K0X_26878 Crane 1 08:03:05 F4 (MP0) 0.75 0.75 5.13 5 11.63 11.63

MP0K0X_26905 Crane 2 08:05:57 F1 (MP0) 0.92 0.75 5.97 5 12.63 12.63

MP0K0X_26701 Crane 5 08:03:06 F4 (MP0) 0.75 0.75 11.46 5 17.96 17.95

MP0K0X_26905 F1 (MP0) 08:18:35 Rej1 (MP0) 3.57 3.57

MP0K0X_26719 Crane 2 08:03:07 F4 (MP0) 0.75 0.75 16.44 5 22.94 22.94

MP0K0X_26701 F4 (MP0) 08:21:03 Crane 1 0.75 0.75 5.63 7.13 7.14

MP0K0X_26818 Crane 2 08:03:08 F4 (MP0) 2.23 0.75 19.94 5 27.92 27.92

EP1WE1_10115 In2 (EP1) 08:27:47 Crane 3 0.75 0.75 3.29 4.79 4.80

EP1WA1_12391 Crane 4 08:25:25 Out2 (EP1) 0.75 0.75 6.27 7.77 7.77

MP0K0X_26719 F4 (MP0) 08:26:03 Crane 2 0.45 0.75 6.3 7.50 7.50

EP1WE1_10189 In2 (EP1) 08:28:56 Crane 4 0.75 0.75 3.96 5.46 5.47

EP1K0X_6013 Crane 2 08:22:03 P1 (EP1) 0.75 0.75 7.26 5 13.76 13.75

MP0K0X_26704 Crane 4 08:03:09 F4 (MP0) 2.97 0.75 24.19 5 32.91 32.90

EP1WE1_10111 In2 (EP1) 08:32:11 Crane 3 0.75 0.75 3.29 4.79 4.80

EP1WE1_10114 In2 (EP1) 08:34:22 Crane 1 0.75 0.75 1.96 3.46 3.47

EP1K0X_6013 P1 (EP1) 08:35:48 Out2 (EP1) 2.72 2.72

EP1WE1_10116 In2 (EP1) 08:36:10 Crane 2 0.75 0.75 2.62 4.12 4.13

MP0K0X_26818 F4 (MP0) 08:31:03 Crane 4 0.75 0.75 7.80 9.30 9.31

EP1K0X_6012 Crane 1 08:22:05 P1 (EP1) 1.22 0.75 11.75 5 18.72 18.72

MP0WA1_6034 Crane 6 08:32:58 Out1 (MP0) 1.27 0.75 5.93 7.95 7.95

MP0K0X_26690 Crane 3 08:03:10 F4 (MP0) 3.7 0.75 28.44 5 37.89 37.89

MP0K0X_26704 F4 (MP0) 08:36:03 Rej1 (MP0) 5.37 5.07

MP0K0X_26855 Crane 6 08:31:59 F1 (MP0) 0.75 0.75 3.13 5 9.63 9.63

EP1K0X_6012 P1 (EP1) 08:40:48 Rej EP1 2.72 2.72

EP1WE1_10112 In2 (EP1) 08:40:21 Crane 2 0.75 0.75 2.62 4.12 4.13

EP1K0X_6020 Crane 1 08:31:21 P2 (EP1) 0.75 0.75 7.26 5 13.76 13.75

MP0K0X_26855 F1 (MP0) 08:41:37 Rej1 (MP0) 3.57 3.57

EP1K0X_6028 Crane 1 08:22:06 P1 (EP1) 2.71 0.75 15.25 5 23.71 23.70

MP0K0X_26717 Crane 5 08:03:10 F4 (MP0) 4.45 0.75 32.69 5 42.89 42.89

MP0WE1_27487 In1 (MP0) 08:41:57 Crane 3 0.75 0.75 2.84 4.34 4.36

MP0K0X_26868 Crane 1 08:32:00 F1 (MP0) 1.6 0.75 7.27 5 14.62 14.62

MP0WE1_27560 In1 (MP0) 08:40:36 Crane 6 0.25 0.75 5.15 6.15 6.02

Table F.4: Verification: Test Scenario 4. The table presents the timestamps for key events in
the simulation and the expected lead time based on calculations.
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G VALIDATION

The simulation model, like the real-world system it replicates, is a complex construct with multi-
ple interdependent components. The behavior of each component impacts and is influenced by
the others. The process is divided into several targeted experiments to ensure a comprehen-
sive validation. The methodology and outcomes of these validation experiments are detailed in
the following sections.

Most experiments are conducted using data from 01.12.2023 to 04.12.2023. This specific time-
frame is selected because it contains the fewest outliers across consecutive days, thereby min-
imizing the impact of influences on subsequent pallets. A shift in pallet behavior can influence
other pallets in the system. For instance, if a workstation pallet finishes processing earlier than
expected, even if only by a few seconds, it clears space in the conveyor pipeline sooner. This
allows the next workstation pallet to move forward earlier, prioritizing it over other pallets as-
signed to the same crane.

As a result, an outbound pallet might be delayed by the time the crane spends moving loaded
and empty to retrieve the workstation pallet. If the pipeline for the outbound pallet drops below
its threshold while the crane is occupied, the delay can be even longer. In such cases, the
next pallet destined for the outbound location is processed first. This sequence increases the
queueing time of the initially delayed outbound pallet by the time needed to reduce the pipeline
again. Meanwhile, the advanced outbound pallet benefits from a reduced queueing time due to
the adjusted behavior of the workstation pallet.

To mitigate these effects, exact historical durations are incorporated as input data for the sim-
ulation in specific experiments. The input data used for each experiment is provided in their
respective sections.

In addition, experiments are conducted with a larger dataset spanning two months (15.08.2023
to 15.10.2023). This extended dataset allows for a more reliable evaluation of pallet behavior
over a longer period. It confirms that the patterns observed in the smaller dataset hold under
broader operational conditions. These additional experiments further validate the observations
from the smaller dataset, ensuring consistency across varying timeframes. We run the experi-
ments of both datasets over 10 replications.

G.1 Initial Validation (4-Day Dataset)

Workstation Outbound Logic In collaboration with domain experts, the logic governing out-
bound flows for workstation requests was established. The first validation experiment evaluats
this logic, presented in Table G.1b. According to the implemented rules, cranes retrieve pallets
only after the preceding pallet in the sequence has been retrieved. This logic primarily affects
the queueing time of workstation pallets, making queueing time a key metric for evaluation. The
results shown in Table G.1b are based on the settings and operator behavior distributions out-
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lined in Table G.1a.

The initial validation reveals significant discrepancies between the simulation and historical
data. Specifically, the MAPE for queueing times is 74.50% for workstations on the MP0 side
and 64.24% for those on the EP1 side. Analysis of the historical data reveals instances where
workstation-bound pallets experience longer queueing times than the logic in Experiment 1
would predict. Significantly, this behavior could not be attributed solely to crane unavailability,
as workstation pallets are prioritized over full outbound pallets. Despite an extensive analysis,
no clear pattern emerged to explain the delays.

To address this, Experiments 2 through 6 tested alternative logics, where a pallet could be
retrieved when the pallet with a sequence number (n − X) – with X ranging from 1 to 5 –
reached the entrance of the workstation buffer. For example, if X = 1, retrieval occurs when
the pallet two positions earlier in the sequence reaches the buffer entrance (see Experiment 2
in Table G.1b).

Experiments 7 through 11 explore a different approach: retrieval is permitted once the pallet
with sequence number (n − X) reaches the last spot on the crane’s outbound conveyor. For
instance, as depicted in Figure 2.2a, a pallet retrieved by crane five occupies this position as
the third spot after O5.1.

Outbound Location Distribution Distribution Parameters (time in minutes)

µ σ Lower Bound Upper Bound

Operator Distributions

Out1 (MP0) lognormal 3.50 2.67 0.17 15

Out3 (EP0) normal 0.33 1.33 0.17 5

Out2 (EP1) lognormal 29.08 624.97 0.17 8

F1-F5 (MP0) exact historical durations

P1, P2 (EP1) exact historical durations

Crane Distributions

empty, single command normal 37.26 8.74 13 63

+ uniform 0 15

empty, dual command uniform 20 25

loaded, inbound normal 37.26 8.74 13 63

loaded, outbound exact historical durations

(a) Validation Workstation Outbound Logic: Experimental Settings. The table presents the distributions
used to model operator times at each outbound destination and workstation across the experiments
conducted to validate the workstation outbound logic.

Despite testing these alternative logics, the high error values persist across all eleven experi-
ments, indicating that the simulation does not closely replicate the historical data per-pallet ba-
sis. Consequently, an additional evaluation is conducted to assess the system’s overall behav-
ior. This second approach compares summary statistics and histograms, rather than individual
pallet queueing times, to validate whether the simulation captures broader trends and variability.

Table G.2 and Figure G.1 summarize and visualize the results of this approach, comparing
the queueing times observed in the historical data with those predicted by the simulation. Ta-
ble G.2 provides the summary statistics for both datasets, including the average, median, stan-

110



Exp. Workstation Logic Description Workstation Queueing Error

MAE (minutes) MAPE

Exp 1
Next workstation pallet can be retrieved as soon
as the crane picks up the previous pallet in the
sequence.

F1-F5 (MP0) 39.88 74.50%

P1, P2 (EP1) 11.21 64.24%

Exp 2
Next workstation pallet can be retrieved once the
previous pallet two sequence positions earlier
reaches the workstation buffer.

F1-F5 (MP0) 38.56 104.10%

P1, P2 (EP1) 12.39 118.95%

Exp 3
Next workstation pallet can be retrieved once the
previous pallet three sequence positions earlier
reaches the workstation buffer.

F1-F5 (MP0) 39.19 85.43%

P1, P2 (EP1) 10.35 76.62%

Exp 4
Next workstation pallet can be retrieved once the
previous pallet four sequence positions earlier
reaches the workstation buffer.

F1-F5 (MP0) 39.28 77.33%

P1, P2 (EP1) 10.11 61.10%

Exp 5
Next workstation pallet can be retrieved once the
previous pallet five sequence positions earlier
reaches the workstation buffer.

F1-F5 (MP0) 39.59 74.44%

P1, P2 (EP1) 10.64 61.95%

Exp 6
Next workstation pallet can be retrieved once the
previous pallet six sequence positions earlier
reaches the workstation buffer.

F1-F5 (MP0) 39.88 74.39%

P1, P2 (EP1) 10.93 61.33%

Exp 7
Next workstation pallet can be retrieved once the
previous pallet two sequence positions earlier
reaches the last crane spot.

F1-F5 (MP0) 39.34 82.04%

P1, P2 (EP1) 10.48 70.55%

Exp 8
Next workstation pallet can be retrieved once the
previous pallet three sequence positions earlier
reaches the last crane spot.

F1-F5 (MP0) 39.45 73.06%

P1, P2 (EP1) 10.86 66.42%

Exp 9
Next workstation pallet can be retrieved once the
previous pallet four sequence positions earlier
reaches the last crane spot.

F1-F5 (MP0) 39.78 73.69%

P1, P2 (EP1) 11.02 62.87%

Exp 10
Next workstation pallet can be retrieved once the
previous pallet five sequence positions earlier
reaches the last crane spot.

F1-F5 (MP0) 39.83 74.13%

P1, P2 (EP1) 11.10 64.64%

Exp 11
Next workstation pallet can be retrieved once the
previous pallet six sequence positions earlier
reaches the last crane spot.

F1-F5 (MP0) 39.89 74.54%

P1, P2 (EP1) 11.21 63.95%

(b) Validation Workstation Outbound Logic: Results. The table presents the MAE and MAPE for the
workstations at MP0 and EP1 across eleven experiments conducted to validate the workstation outbound
logic. Queueing time is used as the key performance measure.

Table G.1: Validation Workstation Outbound Logic

dard deviation, minimum, and maximum queueing times for the workstations in MP0 and EP1.
Figure G.1 illustrates the distribution of queueing times as histograms, comparing the historical
data with the simulation results for the first experiment. Separate comparisons are shown for
workstations on MP0 and EP1, highlighting differences in frequency across time bins.

The findings suggest that the overall trends are captured to a reasonable extent. Both datasets
display a high frequency of pallets experiencing shorter queueing times (represented by the first
bin) and a long tail for extended queueing times. However, some discrepancies are evident:

• The minimum queueing times of the simulation align closely with the historical data, with
differences ranging from 0.2 to 3.85 seconds for workstations at MP0 and 0.28 to 4.85
seconds for EP1 workstations. This alignment suggests that the simulation captures the
lower bounds of queueing times. The maximum queueing times show more variations,
particularly for MP0, where differences extend to 106 minutes. This discrepancy points
to the simulation’s limitations in replicating extreme cases, likely due to differences in the
applied workstation logic in the simulation compared to the real system’s logic.
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• The simulation’s average and median queueing times are consistently lower than the his-
torical data for both F1 - F5 (MP0)and P1, P2 (EP1) – the histogram comparisons further
support this underestimation. At F1 - F5 (MP0), for example, Figure G.1a reveals that the
simulation predicts a higher frequency of pallets in the first bin than the historical data.
Similar trends are evident for the workstations at EP1(Figure G.1b).

Exp. Workstation
Locations

Queueing Time (in minutes)

Average Median Standard Deviation Minimum Maximum

Historical Data

F1-F5 (MP0) 45.57 18.67 54.78 0.23 239.10

P1, P2 (EP1) 16.36 7.28 22.59 0.33 116.25

Simulation Results

Exp. 1 F1-F5 (MP0) 5.77 1.47 12.85 0.30 133.63

P1, P2 (EP1) 6.48 1.97 15.19 0.30 88.32

Exp. 2 F1-F5 (MP0) 12.49 5.95 15.99 0.24 133.33

P1, P2 (EP1) 16.76 10.98 19.72 0.25 101.96

Exp. 3 F1-F5 (MP0) 9.07 1.99 14.42 0.29 133.38

P1, P2 (EP1) 10.88 3.30 16.50 0.28 99.44

Exp. 4 F1-F5 (MP0) 7.71 1.65 14.00 0.26 148.99

P1, P2 (EP1) 8.74 2.62 15.55 0.34 94.32

Exp. 5 F1-F5 (MP0) 6.59 1.53 13.39 0.24 147.62

P1, P2 (EP1) 7.53 2.26 15.16 0.27 89.40

Exp. 6 F1-F5 (MP0) 5.94 1.42 12.78 0.23 133.25

P1, P2 (EP1) 6.65 2.08 14.51 0.33 94.79

Exp. 7 F1-F5 (MP0) 8.38 2.41 13.57 0.26 147.18

P1, P2 (EP1) 7.93 2.78 15.15 0.32 97.60

Exp. 8 F1-F5 (MP0) 6.62 2.68 13.08 0.22 134.16

P1, P2 (EP1) 6.50 2.12 13.91 0.26 89.11

Exp. 9 F1-F5 (MP0) 5.96 1.48 12.70 0.26 133.15

P1, P2 (EP1) 6.51 2.07 14.82 0.35 97.93

Exp. 10 F1-F5 (MP0) 5.81 1.45 12.87 0.25 133.01

P1, P2 (EP1) 6.34 2.02 14.42 0.30 91.84

Exp. 11 F1-F5 (MP0) 5.76 1.47 12.83 0.30 133.63

P1, P2 (EP1) 6.47 1.97 15.20 0.30 88.32

Table G.2: Validation Workstation Outbound Logic: Summary Statistics. The table presents
summary statistics for the workstations at MP0 and EP1 across eleven experiments conducted
to validate the workstation outbound logic. Queueing time is used as the key performance
measure.

Despite these efforts, neither approach demonstrates consistent improvements for all worksta-
tions. As a result, it remains unclear whether the high MAPE and MAE values are inherently due
to the workstation logic tested or other factors, such as limitations in the assumed distributions
for durations not covered by historical data.

112



(a) Validation Workstation Outbound Logic:
Queueing Time Workstations at MP0

(b) Validation Workstation Outbound Logic:
Queueing Time Workstations at EP1

Figure G.1: Histogram of Queueing Times for Workstation Outbound Pallets. Each figure com-
pares the queueing times of workstation outbound pallets with historical data (red) as a reference
and simulation results (green) based on the settings from Experiment 1. The x-axis represents
time bins in minutes, while the y-axis indicates the frequency.

Given that the logic tested in Experiment 1 was developed in consultation with domain ex-
perts and reflects their understanding of the system, this logic will be used as the baseline
for subsequent validation experiments. Future efforts will focus on refining the assumed input
distributions and incorporating additional real-world data to improve model accuracy further.

Conveyor Specifications The conveyor dimensions and speeds are determined based on
real-world observations, measurements at specific conveyor spots, and technical documenta-
tion of the conveyor system. Most conveyor spots have dimensions of 1.5 meters in length and
1.1 meters in width. However, some places have longer lengths, between 1.7 meters and 3
meters. The general conveyor speed is assumed to be 0.2 meters per second. Specific spots
where pallets can move in different directions have a reduced speed of 0.15 meters per second
due to the need for pallet scanning. Additionally, conveyor spots where the pallet’s position
is adjusted or its direction of movement changes require special handling, reducing the speed
further to 0.12 meters per second.

The conveyor specifications are validated using the experimental setup described in Table G.1.
Since historical data reliably captures conveyor durations only for full outbound pallets, these
durations are used for validation. Conveyor times for workstation pallets and inbound pallets
are excluded because their measurements are directly influenced by operator and crane ac-
tivities. For workstation pallets, the conveyor time includes queueing time on the workstation
buffer, while for inbound pallets, the conveyor time encompasses crane movement and waiting
time.

For full outbound pallets destined for MP0, the MAPE across all 12 experimental setups is
approximately 5%. For pallets destined for EP0 and EP1, the MAPE is about 11% and 7%,
respectively. The higher errors for EP0 and EP1 compared to MP0 can be attributed to the
potential for looping behavior on these conveyors. When the outbound buffer is occupied, pal-
lets at EP0 and EP1 may loop, waiting 25 seconds before continuing. This can cause small
jams on the conveyor. Furthermore, pallets for EP0 are frequently requested in large numbers
simultaneously, increasing the likelihood of interaction between pallets.

An additional experiment is conducted to minimize the influence of interactions between pallets,

113



operators, and cranes. This experiment only considers pallets requested for their respective out-
bound location without any other requests for that side within the same hour. For example, for
MP0, the full outbound pallet has to be the only request for MP0 (excluding other full outbound
or workstation pallets) within that hour. Due to the limited number of applicable data points, the
dataset is extended to include data from 15.08.2023 to 02.10.2023. Even with the extended
dataset, insufficient data points are found for EP0, as these pallets are often requested simul-
taneously in large quantities.

This experiment yields a notable reduction in MAPE. For MP0 and EP1, the error is reduced to
below 2%, demonstrating improved accuracy under controlled conditions.

Operator Behavior Historical data provides information on pallets’ arrival and departure times
at their respective workstations, which serve as input for the simulation model. For pallets
identified as outliers, the operator behavior at workstations follows the distribution fitted to the
durations at each workstation, as shown in Table G.3a. Additionally, Figure G.2 illustrates the fit
of the distribution compared to the historical durations. As shown, the green line, representing
the fitted distribution, closely follows the shape of the histogram of historical durations. Plotted
as percentages, these graphs show how often each value occurs within each bin. The good fit
is further validated by comparing the simulation results to historical durations, where the MAPE
and MAE are close to zero.

Outbound Location Distribution Distribution Parameters (time in minutes)

µ σ Lower Bound Upper Bound

F1 (MP0) lognormal 11.27 25.40 0.25 60

F2 (MP0) lognormal 10.03 19.73 0.25 60

F3 (MP0) lognormal 9.60 18.52 0.25 60

F4 (MP0) lognormal 9.48 20.07 0.25 60

F5 (MP0) lognormal 7.87 13.22 0.25 60

P1 (EP1) lognormal 4.68 8.45 0.25 30

P2 (EP1) lognormal 4.80 9.52 0.25 30

(a) Validation Operator Behavior: Workstation Distributions. The table presents the distributions used
to model operator times at each workstation across the experiments conducted to validate the operator
behavior. These distributions apply to pallets identified as outliers, while non-outlier pallets follow their
historical duration.

For full outbound pallets, the last recorded timestamp corresponds to their arrival at the desti-
nation, with no timestamp available for their retrieval from the conveyor. As a result, estimat-
ing operator processing times directly is not feasible. Instead, the destination arrival time of
the succeeding pallet is considered. However, not all pallets are retrieved from the conveyor
directly before the succeeding pallet reaches its destination, requiring the exclusion of certain
data points. Specifically, pallets that take more than 30 seconds to traverse the outbound buffer
area are included, as this delay likely indicates that the pallet waited for a preceding pallet to
clear the subsequent conveyor spot.

The filtered data points are plotted as a histogram and outliers are removed. The upper bound
for the retained data, shown in Table G.4, serves as the cutoff for excessively long durations.
A distribution is fitted to the remaining data and Table G.4 summarizes the obtained parameter
values.
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(a) Distribution of Operator Behavior at Worksta-
tions at MP0

(b) Distribution of Operator Behavior at Worksta-
tions at EP1

Figure G.2: Distributions of Operator Behavior at the Workstations. Each figure compares the
historical operator time distributions (red) with the fitted distributions used for outlier pallets
(green). The x-axis represents time bins in minutes, while the y-axis indicates the frequency

Additionally, simulation results are evaluated for distributions similar to the fitted ones, with
adjustments of two intervals of 20 seconds to account for the assumptions underlying the fitted
distribution. However, these adjusted distributions do not produce a good fit. Specifically, the
operator behavior at the outbound locations EP0 and EP1 show significant deviations, as mea-
sured by the histogram-based absolute error. This metric is calculated by dividing the duration
range into discrete bins and summing the absolute differences between the frequency distri-
butions of historical and simulated durations for each bin. The minimum errors for the original
fitted and adjusted distributions are 1.02 and 0.46, respectively.

Another estimation approach involves calculating the time pallets traverse the last three con-
veyor spots before reaching their destination and subtracting the minimal duration for the first
two spots. The parameters of the fitted distribution for this approach are provided in Table G.4.

The expected behavior based on expert opinions is tested as a further validation option. Ex-
perts suggested two scenarios outlined in Table G.4. The primary difference between these
scenarios lies in the underlying distributions: the first uses a lognormal distribution consistent
with the options based on historical data. In contrast, the second employs a normal distribution.

The distributions fitted from historical data or based on expert opinion are tested alongside sim-
ilar distributions. The additional tests included variations of the original distributions, ranging
from two minutes less to two minutes more than the parameters provided in Table G.4.

Despite these efforts, high error values persist across all experiments, indicating that the simu-
lation does not closely replicate historical data on a per-pallet basis. Consequently, the overall
system behavior is evaluated. This assessment suggested that distributions based on expert
opinion generally best represent operator behavior. However, the operator behavior for retriev-
ing full outbound pallets from the conveyor at EP1 is more accurately captured by the distribution
derived from the traversal durations of the last three conveyor spots.

Figure G.3 displays histograms of simulation results based on the best-fitted distribution (shown
in green) alongside the historical data (orange). Table G.5 provides the exact parameters of
these distributions.

From a system-wide perspective, the retrieval durations for full outbound pallets at MP0 and
EP1 are well-represented, with histogram-based absolute errors of 0.13 and 0.24, respectively.
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Outbound Location Distribution Distribution Parameters (time in minutes)

µ σ Lower Bound Upper Bound

based arrival time of succeeding pallet

Out1 (MP0) lognormal 8.10 14.50 0.17 45

Out3 (EP0) lognormal 2.33 2.45 0.17 15

Out2 (EP1) lognormal 7.40 18.97 0.17 60

based on traversal duration of last three spots

Out1 (MP0) lognormal 6.18 110.90 0.17 15

Out3 (EP0) lognormal 2.07 2.48 0.17 5

Out2 (EP1) lognormal 28.58 624.47 0.17 8

based on expert opinion

Out1 (MP0) lognormal 3.00 1.67 0.17 15

Out3 (EP0) lognormal 0.67 0.83 0.17 5

Out2 (EP1) lognormal 0.67 1.17 0.17 8

based on expert opinion

Out1 (MP0) normal 6.50 4.33 0.17 15

Out3 (EP0) normal 1.50 1.33 0.17 5

Out2 (EP1) normal 3.00 2.17 0.17 8

Table G.4: Validation Operator Behavior: Experimental Settings. The table presents four sce-
narios and their corresponding initial distributions for each outbound location. These scenarios
serve as the basis for experiments aimed at identifying the most representative distributions of
operator behavior for full outbound pallets.

Outbound Location Distribution Distribution Parameters (time in minutes)

µ σ Lower Bound Upper Bound

Out1 (MP0) lognormal 3.50 2.67 0.17 15

Out3 (EP0) normal 0.33 1.33 0.17 5

Out2 (EP1) lognormal 29.08 624.97 0.17 8

Table G.5: Validation Operator Behavior: Best Distribution. Based on the conducted experi-
ments, the table presents the distribution identified as best fitted for modeling operator behavior
for full outbound pallets at each outbound location.

However, operator behavior at outbound location EP0 is less accurate, with a histogram-based
absolute error of 0.97. These pallets must traverse the EP1 conveyor before entering the lift
and reaching the EP0 conveyor, making them more affected by interactions with other system
components.

Additional experiments are conducted for full outbound pallets destined for EP0 to address the
significant deviations. These experiments refine the current best distributions and test similar
distributions around the identified parameters. Despite these efforts, only marginal improve-
ments are achieved, reducing the absolute error to 0.967.

116



(a) Operator Behavior Out1 (MP0) (b) Operator Behavior Out3 (EP0)

(c) Operator Behavior Out2 (EP1)

Figure G.3: Histogram of Operator Behavior for Full Outbound Pallets. Each figure compares
the retrieval times (operator behavior) of full outbound pallets, with the historical data repre-
sented in orange and the simulation results in green

Crane Processing Times The analysis of the historical data reveals distinct durations for the
loaded crane movement times; however, it lacks the durations for the empty crane processing
times. Additionally, the historical data reliably captures crane movement times only for outgoing
pallets because the durations for inbound pallets encompass the queueing times. Therefore,
we use only the outbound crane processing times as input for the simulation.

We validate the crane processing times using the experimental setup described in Table G.1
and the operator behavior as described in Table G.3a and Table G.5. As shown in Figure G.4,
the simulation’s outbound crane processing times follow the same pattern as the historical data.
Also, on a per-pallet basis, the correct use of the historical processing times in the simulation
is validated, represented by an MAE and MAPE of close to zero. This is expected as the direct
measurements from the historical data are given as input.

In contrast to the loaded movement time, the historical data lacks timestamps for the empty
crane travel time, making precise estimation of its distribution challenging. Additionally, the
historical data combines the queuing and crane travel time for inbound movements, further
complicating an accurate estimation. Nevertheless, we assume that the crane typically covers
a similar distance for both inbound and outbound movements, whether loaded or empty, except
for dual commands. In these cases, the crane travels a shorter distance. To address these
assumptions:

• We model the empty single-command crane travel time and the loaded inbound crane
travel time using the same distribution derived from historical durations for the loaded
outbound crane travel times.
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(a) Validation Crane Processing Time: Full Out-
bound MP0

(b) Validation Crane Processing Time: Full Out-
bound EP0

(c) Validation Crane Processing Time: Full Out-
bound EP1

(d) Validation Crane Processing Time: Workstation
Outbound MP0

(e) Validation Crane Processing Time: Workstation
Outbound EP1

Figure G.4: Validation Crane Processing Time: Outbound Pallets. The histograms compare
the loaded crane movement time for outbound pallets based on historical data (red) and simu-
lation results (green). The x-axis represents time bins in seconds, while the y-axis shows the
frequency of occurrences.

• The empty crane travel time is combined with a uniform distribution to account for the
additional processing time observed before the crane initiates its next task, which varies
between zero and ten seconds.

• The dual-command empty crane travel time follows a uniform distribution ranging from 15
to 25 seconds based on the crane’s observed physical behavior and its known speed in
the z-direction when unloaded and loaded.
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Table G.6 summarizes these assumed distributions. To account for underlying assumptions,
experiments are conducted with similar distributions varying by ±10 seconds from the originally
assumed values. Given the lack of detailed historical durations for empty and loaded inbound
crane movements, these distributions are compared to the combined queuing and crane pro-
cessing time for inbound pallets.

Crane Specifications Distribution Distribution Parameters (time in minutes)

µ σ Lower Bound Upper Bound

empty, single command normal 42.26 8.74 13 63

+ uniform 0 10

empty, dual command uniform 15 25

loaded, inbound normal 42.26 8.74 13 63

Table G.6: Validation of Crane Processing Time: Experimental Settings. The table summarizes
the initial distributions for empty crane travel time and loaded inbound crane travel time, derived
from historical data on outbound loaded crane travel time. These distributions serve as the
baseline for experiments aimed at identifying the best-fitting distributions for empty and loaded
inbound crane travel times.

The best settings, as outlined in Table G.7, result in a mean absolute error of 0.2 across all full
inbound and workstation locations based on histogram comparisons. This low mean absolute
error indicates that the histograms exhibit similar patterns for both the simulation results (green)
and the historical durations (red), as illustrated in Figure G.5.

Crane Specifications Distribution Distribution Parameters (time in minutes)

µ σ Lower Bound Upper Bound

empty, single command normal 37.26 8.74 13 63

+ uniform 0 15

empty, dual command uniform 20 25

loaded, inbound normal 37.26 8.74 13 63

Table G.7: Validation of Crane Processing Time: Best Settings. The table provides the dis-
tributions identified as the best-fitting representations for empty crane travel time and loaded
inbound crane travel time based on experimental results.

Lead Time The lead time encompasses the previously discussed time components. Errors
and comparisons are based on the best distributions determined through the experiments for
each sub-component of the lead time.

Table G.8 presents the MAPEs for inbound and outbound movements at each location. As
shown, inbound movements generally exhibit lower MAPEs than outbound movements. For
outbound movements, the queuing and operator times display particularly high MAPEs. This
aligns with the findings summarized in Table G.1b, where the queuing time for workstation out-
bound pallets shows significant errors during per-pallet comparisons. Similarly, the queuing
time for full outbound pallets also demonstrates high MAPEs.

However, not only do queuing and operator times exhibit high MAPEs, but other durations also
show substantial errors, indicating that the simulation struggles to accurately model pallet flow
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(a) Crane Validation In1 (MP0) (b) Crane Validation In3 (EP0)

(c) Crane Validation In2 (EP1) (d) Crane Validation F1-F5 (MP0)

(e) Crane Validation P1, P2 (EP1)

Figure G.5: Validation Crane Processing Time: Inbound Pallets. The histograms compare the
loaded crane movement time for inbound pallets based on historical data (red) and simula-
tion results (green). Since the historical data does not separately record crane travel time for
inbound pallets, the measured time includes both queueing and crane processing time. The
x-axis represents time bins in seconds, while the y-axis shows the frequency of occurrences.

on a per-pallet basis when durations rely on distributions. When durations are primarily based
on historical data, the MAPE is nearly zero.

A different perspective emerges when considering system-wide comparisons. Inbound lead
times are better captured than outbound lead times; however, the lead times are generally
well-represented, as illustrated in Figure G.6 and Figure G.7. Notable deviations occur at EP0
and the workstations. Comparing the frequency distributions of historical data with simulation
results, the absolute error is 0.62 for full outbound pallets at EP0 (Figure G.7b), 1.38 for work-
station pallets on the MP0 side (Figure G.7d), and 0.61 for workstation pallets on the EP1 side
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Location MAPE

Crane Processing Queueing Conveyor Operator Lead Time

Inbound Movement

In1 (MP0) 26.40% 12.55%

In3 (EP0) 35.41% 21.97%

In2 (EP1) 32.44% 14.70%

F1-F5 (MP0) 32.64% 15.57%

P1, P2 (EP0) 38.75% 14.17%

Outbound Movement

Out1 (MP0) 0.06% 123.44% 4.86% 135.25% 29.51%

Out3 (EP0) 0.08% 68.12% 8.57% 89.49% 43.64%

Out2 (EP1) 0.00% 82.40% 5.88% 223.88% 53.64%

F1-F5 (MP0) 0.00% 74.50% 0.00% 65.86%

P1, P2 (EP1) 0.00% 64.24% 0.14% 37.95%

Table G.8: Validation Lead Time: MAPE. The table presents the MAPE for each component
contributing to the lead time, along with the overall MAPE for the lead time. Each MAPE value
is provided separately for each inbound and outbound movement type.

(Figure G.7e).
These findings reflect earlier observations. Deviations in workstation lead times primarily re-
sult from discrepancies in queuing times, likely attributable to the workstation outbound logic.
Meanwhile, deviations for full outbound pallets at EP0 mirror inaccuracies in modeling operator
behavior, which tend to underestimate durations.

G.2 Expanded Validation (2-Month Dataset)

The expanded validation, covering two months (15.08.2023 – 15.10.2023), generally confirms
the findings of the four-day validation.

Inbound movement durations exhibit lower MAPEs than outbound movements, as summarized
in Table G.9. Additionally, crane processing times and conveyor movements show consistently
low MAPEs. These results reinforce the conclusion from the four-day validation that deviations
primarily stem from the outbound logic and missing data on operator behavior for handling full
outbound pallets.

The histograms of the two-month validation (Figure G.8 and Figure G.9) align with the trends
observed in the four-day validation (Figure G.6 and Figure G.7). Inbound movements are again
better represented than outbound movements. Notably, workstation pallet outbound move-
ments diverge the most from historical data, which is expected given the significant deviations
in queueing time.

Overall, the two-month validation supports the results of the four-day validation, indicating that
the conclusions remain valid over a longer time frame.
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(a) Lead Time Validation In1 (MP0) (b) Lead Time Validation In3 (EP0)

(c) Lead Time Validation In2 (EP1) (d) Lead Time Validation F1 - F5 (MP0)

(e) Lead Time Validation P1, P2 (EP1)

Figure G.6: Validation Lead Time: Inbound Pallets. The histograms compare the lead time
for inbound pallets based on historical data (red) and simulation results (green). The x-axis
represents time bins in seconds, while the y-axis shows the frequency of occurrences.
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(a) Lead Time Validation Out1 (MP0) (b) Lead Time Validation Out3 (EP0)

(c) Lead Time Validation Out2 (EP1) (d) Lead Time Validation F1 - F5 (MP0)

(e) Lead Time Validation P1, P2 (EP1)

Figure G.7: Validation Lead Time: Outbound Pallets. The histograms compare the lead time
for outbound pallets based on historical data (red) and simulation results (green). The x-axis
represents time bins in seconds, while the y-axis shows the frequency of occurrences.
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Location MAPE

Crane Processing Queueing Conveyor Operator Lead Time

Inbound Movement

In1 (MP0) 25.73% 12.47%

In3 (EP0) 31.38% 21.94%

In2 (EP1) 30.04% 12.75%

F1-F5 (MP0) 33.80% 17.64%

P1, P2 (EP0) 37.67% 15.68%

Outbound Movement

Out1 (MP0) 0.06% 104.83% 4.56% 155.79% 37.12%

Out3 (EP0) 0.07% 73.53% 10.03% 68.18% 41.37%

Out2 (EP1) 0.00% 76.48% 6.32% 172.94% 45.18%

F1-F5 (MP0) 0.00% 72.83% 0.16% 59.12%

P1, P2 (EP1) 0.00% 73.53% 1.19% 56.25%

Table G.9: Expanded Validation: MAPE. The table presents the MAPE for each component
contributing to the lead time, along with the overall MAPE for the lead time. Each MAPE value
is provided separately for each inbound and outbound movement type.
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(a) Lead Time Expanded Validation In1 (MP0) (b) Lead Time Expanded Validation In3 (EP0)

(c) Lead Time Expanded Validation In2 (EP1) (d) Lead Time Expanded Validation F1 - F5 (MP0)

(e) Lead Time Expanded Validation P1, P2 (EP1)

Figure G.8: Expanded Validation Lead Time: Inbound Pallets. The histograms compare the
lead time for inbound pallets based on historical data (red) and simulation results (green) over
a period of two months. The x-axis represents time bins in seconds, while the y-axis shows the
frequency of occurrences.
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(a) Lead Time Expanded Validation Out1 (MP0) (b) Lead Time Expanded Validation Out3 (EP0)

(c) Lead Time Expanded Validation Out2 (EP1) (d) Lead Time Expanded Validation F1 - F5 (MP0)

(e) Lead Time Expanded Validation P1, P2 (EP1)

Figure G.9: Expanded Validation Lead Time: Outbound Pallets. The histograms compare the
lead time for outbound pallets based on historical data (red) and simulation results (green) over
a period of two months. The x-axis represents time bins in seconds, while the y-axis shows the
frequency of occurrences.
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H EXPERIMENTAL VALIDATION

Obtaining reliable data on model performance is crucial. Therefore, key experimental factors
are carefully considered to capture system variability, minimize initialization bias, and ensure
sufficient output data collection. This appendix details the determination of these factors, in-
cluding the warm-up period, number of replications, and simulation run length.

H.1 Warm-Up Period

Welch’s method identifies the necessary warm-up period in a simulation by calculating moving
averages over the observed data. For this study, the simulation is run for a two-month time-
frame with ten replications. The lead times of the pallets from these runs are used to calculate
moving averages with varying window sizes ranging from 50 to 500. The results for different
window sizes are shown in Figure H.1, with each window size represented by a distinct color.

The moving averages are calculated using the formula below (Robinson, 2014):

Y i(w) =


∑i−1

s=−(i−1)
Y i+s

2i−1 , if i = 1, · · · , w,∑w
s=−w Y i+s

2w+1 , if i = w + 1, · · · ,m− w.
(H.1)

where Yi(w) is the moving average of window size w, Yi is the mean of the lead times of the
replications, i is the period number, and m is the number of periods in the simulation run.

The results in Figure H.1 show that even with a window size of w = 250, fluctuations remain
due to the inherent variability in pallet flow. Additionally, pallets primarily influence one another
when their request times are close. Consequently, lead times vary throughout the day, and
moments when the system is empty occur naturally but inconsistently.

The analysis reveals that considering the first 2800 observations with larger window size (w =
500) is sufficient to detect a warm-up length of approximately 480 pallets. After 480 observa-
tions, the graph levels off, showing minimal fluctuations.

The number of pallets processed daily varies depending on the day of the week. On aver-
age, weekdays (excluding Thursdays due to planned maintenance) process 1426 pallets, while
Thursdays handle 1126 pallets. Weekends see approximately half the weekday average, with
781 pallets per day. For simplicity, and since the warm-up length aligns with the daily average
of weekend pallet flow, the warm-up period is set to one day.

H.2 Number of Replications

The number of replications and the run length together ensure that enough outbound data is
obtained for reliable simulation results. According to a general rule of thumb, the run length
should be at least ten times longer than the warm-up period (Robinson, 2014), suggesting a run
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Figure H.1: Warm-Up Period Identification: Welch’s Method. The figure illustrates the moving
averages of lead times for various window sizes (w = 50 to 500), with each window size repre-
sented by a different color. The x-axis denotes the number of pallets, while the y-axis shows the
corresponding moving average of lead times. A dashed line marks the point where the moving
average for w = 500 stabilizes, indicating the end of the warm-up period.

length of ten days. However, due to fluctuating pallet flow caused by variations in production
demand, a run length of two weeks is chosen to better capture the system’s variability over the
different weekdays.

To determine the minimum number of replications required for achieving the desired level of
confidence in the simulation results, we use a sequential approach. In this approach, the aver-
age lead time for each of the ten replications is collected, and moving averages and variances
are calculated to assess the convergence of results as more replications were performed. The
error is then computed using the t-value from the Student’s t-distribution. Table H.1 summarizes
the calculation results for the first five replications.

Replication Average Lead Time Moving Average Moving Variance T-Value Error

1 1036.57

2 1048.27 1042.42 68.44 12.71 0.07

3 1065.09 1049.97 205.51 4.30 0.03

4 1025.30 1043.81 289.24 3.18 0.03

5 1037.87 1042.62 223.96 2.78 0.02

Table H.1: Number of Replications

The minimum number of replications is determined when the error meets the desired tolerance
level. This is achieved after three replications, where the error value (0.03) is smaller than the
threshold of γ′ = γ/(1 + γ) = 0.05/(1 + 0.05) = 0.05. However, performing at least five replica-
tions is recommended to ensure sufficient accuracy. Therefore, five replications are chosen for
this simulation.
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I PIPELINE CALCULATIONS

Pipeline thresholds influence the outbound flow simulated in this thesis. Experiments 4a to 4c
in Chapter 5.3.4 analyze the impact of different pipeline threshold configurations. In Chapter
3.3, we introduced a formula (Equation 3.5) proposed by Haneyah et al. (2013) to determine
the appropriate threshold. This chapter details the calculation of the pipeline threshold based
on Equation 3.5 and the specifications of Euroma’s high-bay warehouse.

Capacity Calculations The buffer capacity is expressed in pallets per minute. Therefore,
we divide the available buffer spots by the average operator processing time. The resulting
capacities for each outfeed lane are as follows:

• Out1 (MP0): capi = 3/3.35 = 0.89

• Out2 (EP1): capi = 3/2.15 = 1.40

• Out3 (EP0): capi = 5/1.29 = 3.87

Average Travel Time Calculations We calculate the travel time from each crane to each
outfeed lane based on the cumulative processing time of the conveyor spots along the route.
Next, we average the travel time from each crane location for all three outfeed lanes. The
resulting average travel times are:

• Out1 (MP0): ti = 7.16

• Out2 (EP1): ti = 6.23

• Out3 (EP0): ti = 6.09

Time Allowance Calculations We incorporate a time allowance into the calculation to ac-
count for realistic delays. Therefore, we subtract the average travel time ti from the correspond-
ing historical average. The historical data reflects real-world variations due to interactions with
other pallets. The resulting time allowances are:

• Out1 (MP0): ta = 0.87

• Out2 (EP1): ta = 1.06

• Out3 (EP0): ta = 1.07

Pipeline Size Finally, the pipeline size is calculated based on Equation 3.5:

psi = capi ∗ (ti + ta)

Since fractional pipeline sizes are not feasible, we round up to the nearest integer. As Haneyah
et al. (2013) do not provide a definitive method for determining the time allowance, relying
instead on experimental adjustments, we also calculate pipeline thresholds for additional time
allowances ranging from zero to one minute. Table I.1 presents the pipeline thresholds based
on these varying allowances.
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Time Allowance Pipeline Threshold

Out1 (MP0) Out2 (EP1) Out3 (EP0)

0.87, 1.06, 1.07 8 28 11

0 7 24 9

0.2 7 25 9

0.4 7 26 10

0.6 7 26 10

0.8 8 27 10

1 8 28 11

Table I.1: Configurations of the Calculated Pipeline Thresholds
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J INCREASING DEMAND

The simulation model used in this thesis relies on historical data as input for pallet requests.
As Euroma aims for long-term growth, testing solution approaches under increased demand
patterns is essential to ensure their applicability for future needs. This appendix outlines the
method for generating input data for experiments based on historical records when higher de-
mand scenarios are required.

To simulate increased demand, we compress the time intervals between pallet requests. This
ensures that interdependencies between orders and pallet requests remain intact, as their rela-
tive timing is maintained. The increased demand pattern is implemented through the following
steps:

1. Select a reference time, for example the starting time of the simulation.

2. Calculate the difference from each request’s original time to the reference time:
∆ = request time− reference time

3. Compress the time interval by determining an adjusted delta (∆adj) by reducing∆ with the
desired factor (0 ≤ α ≤ 1):
∆adj = ∆ ∗ (1− α)

4. Update each request’s request time based on the adjusted delta: new request time =
reference time+∆adj

For illustration purposes, we provide an example calculation in Table J.1. The two full outbound
pallet requests for MP0 and EP0 were originally scheduled for August 14th at 06:25:24 and
06:41:03, respectively. With an α value of 0.2, indicating a 20% increase in demand, the new
pallet request times are adjusted to 05:08:24 and 05:20:50, respectively.

Original Data Increasing Demand Data

Pallet ID Request Time Delta (∆) adjusted Delta (∆adj) New Request Time

MP0WA1_377 14-08-2023 06:25:42 0.2678 0.2143 14-08-2023 05:08:34

EP1WA1_698 14-08-2023 06:41:03 0.2785 0.2228 14-08-2023 05:20:50

Table J.1: Example for Generation of Increased Demand
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K RESULTS OF IMPROVEMENT EXPERIMENTS

This appendix presents the detailed experimental results. The appendix is organized based on
the conducted experiments in Chapter 5.3. The tables summarize the results for the on-time
delivery and tardiness related KPIs and the movement and queueing times for each experiment.
Each dispatching rule presents the result in a separate table.
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Operator Behavior (±µ) On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

-10 91.65% 80.19% 19.35 2.00 0.90 0.04 3.32 0.14

-5 91.80% 79.93% 19.16 2.05 0.91 0.04 3.37 0.15

0 91.87% 80.35% 20.92 2.01 1.00 0.04 3.72 0.14

5 91.39% 80.13% 21.13 2.05 0.95 0.04 3.72 0.14

10 91.45% 79.72% 21.35 2.10 0.97 0.04 3.86 0.15

15 91.44% 79.96% 20.91 2.05 0.95 0.04 3.53 0.14

20 91.62% 80.51% 21.40 2.01 0.99 0.04 3.74 0.14

25 91.33% 80.08% 22.86 2.05 1.03 0.04 3.81 0.15

30 91.52% 79.96% 22.31 2.03 1.02 0.04 3.68 0.14

35 91.15% 80.23% 23.04 2.01 1.01 0.04 3.85 0.14

40 91.18% 80.80% 23.36 1.96 1.03 0.04 3.97 0.14

45 91.33% 80.72% 22.70 1.98 1.02 0.04 3.91 0.14

50 90.97% 80.10% 25.01 2.02 1.08 0.04 4.08 0.14

55 90.85% 80.20% 23.74 2.05 1.01 0.04 3.92 0.14

60 90.67% 80.17% 25.40 2.01 1.06 0.04 4.23 0.14

65 90.76% 79.98% 25.16 2.05 1.06 0.04 4.05 0.14

70 90.39% 79.69% 25.80 2.10 1.05 0.04 4.18 0.14

75 90.04% 80.34% 26.11 1.97 1.02 0.04 4.14 0.14

80 90.03% 80.02% 25.80 2.01 1.01 0.04 4.49 0.14

85 89.48% 80.06% 27.77 2.06 1.03 0.04 4.40 0.15

90 88.98% 79.96% 28.50 2.06 1.01 0.04 4.45 0.15

95 88.48% 79.99% 28.68 1.99 0.97 0.04 4.33 0.14

100 87.24% 80.23% 30.59 1.99 0.94 0.04 4.54 0.14

(a) Results Experiment 3: Baseline Simulation
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Operator Behavior (±µ) On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

105 86.61% 80.16% 30.98 2.01 0.90 0.04 4.52 0.14

110 85.98% 80.58% 31.77 1.94 0.88 0.04 4.76 0.14

115 85.58% 80.40% 33.17 2.04 0.90 0.04 4.74 0.14

120 83.86% 80.04% 34.84 2.01 0.84 0.04 4.50 0.15

125 83.05% 80.45% 35.15 1.99 0.81 0.04 4.63 0.15

130 81.67% 80.22% 38.05 2.00 0.81 0.04 4.87 0.14

135 80.25% 79.55% 39.59 2.07 0.78 0.04 4.86 0.15

140 78.98% 79.93% 42.48 2.04 0.79 0.04 4.97 0.14

145 77.46% 80.28% 45.42 2.04 0.79 0.04 5.01 0.15

150 76.35% 79.97% 48.67 2.00 0.80 0.04 5.01 0.14

155 75.17% 80.57% 50.96 1.98 0.80 0.04 5.04 0.15

160 73.83% 80.36% 55.46 2.01 0.83 0.04 5.17 0.15

165 72.89% 79.65% 57.99 2.06 0.84 0.04 5.25 0.14

170 71.62% 80.22% 63.18 2.02 0.87 0.04 5.44 0.14

175 70.67% 79.97% 66.70 2.07 0.89 0.04 5.51 0.15

180 69.39% 80.39% 72.61 1.99 0.93 0.04 5.46 0.15

185 68.63% 80.42% 76.46 1.96 0.96 0.04 5.77 0.14

190 67.65% 80.50% 78.82 1.99 0.96 0.04 5.47 0.14

195 67.04% 80.05% 84.63 2.05 1.01 0.04 5.81 0.14

200 66.15% 79.90% 89.22 2.06 1.04 0.04 5.94 0.14

(b) Results Experiment 3: Baseline Simulation (continued)
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Operator Behavior (±µ) On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

205 65.35% 80.04% 93.02 2.08 1.06 0.04 5.87 0.14

210 64.87% 80.61% 98.20 1.97 1.10 0.04 6.03 0.15

215 64.16% 79.94% 104.78 2.02 1.15 0.04 5.80 0.14

220 63.17% 80.53% 110.05 1.99 1.18 0.04 6.10 0.15

225 63.01% 80.72% 114.21 1.98 1.22 0.04 5.91 0.14

230 62.70% 80.51% 119.76 2.01 1.27 0.04 6.02 0.15

235 61.95% 80.37% 125.70 1.98 1.31 0.04 6.25 0.15

240 61.43% 79.92% 129.86 2.04 1.33 0.04 6.34 0.14

245 61.60% 80.37% 135.35 1.96 1.40 0.04 6.47 0.14

250 60.87% 80.24% 141.35 2.02 1.43 0.04 6.48 0.15

255 60.73% 80.37% 146.15 2.01 1.48 0.04 6.56 0.16

260 60.49% 80.28% 150.61 2.01 1.51 0.04 6.57 0.14

265 60.12% 80.31% 154.93 1.99 1.54 0.04 6.64 0.14

270 60.06% 80.04% 160.29 1.99 1.59 0.04 6.62 0.14

275 60.00% 79.88% 164.48 2.05 1.63 0.04 6.64 0.14

280 59.82% 80.31% 165.71 2.04 1.64 0.04 6.64 0.14

285 59.52% 80.09% 173.22 2.05 1.70 0.04 6.67 0.14

290 59.42% 80.01% 176.13 2.08 1.73 0.04 6.64 0.15

295 59.40% 79.81% 179.99 2.01 1.77 0.04 6.58 0.14

300 59.09% 79.91% 183.14 2.05 1.78 0.04 6.60 0.14

(c) Results Experiment 3: Baseline Simulation (continued)

135



Operator Behavior (±µ) On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

-10 91.64% 80.33% 19.01 2.01 0.89 0.04 3.34 0.15

-5 91.61% 80.17% 20.50 2.05 0.95 0.04 3.57 0.15

0 91.54% 80.52% 21.08 2.02 0.97 0.04 3.69 0.15

5 91.42% 80.27% 20.69 2.04 0.94 0.04 3.50 0.14

10 91.64% 80.15% 20.79 2.03 0.97 0.04 3.65 0.15

15 91.58% 80.05% 21.55 2.06 1.00 0.04 3.68 0.15

20 91.11% 79.81% 21.47 2.06 0.94 0.04 3.59 0.15

25 91.17% 80.63% 22.29 1.98 0.98 0.04 3.56 0.16

30 91.10% 80.58% 23.99 1.99 1.05 0.04 3.84 0.14

35 91.18% 80.54% 23.00 1.97 1.01 0.04 3.72 0.14

40 91.23% 80.83% 23.50 1.92 1.04 0.04 3.75 0.14

45 91.13% 80.39% 23.69 1.99 1.04 0.04 3.89 0.15

50 91.02% 81.00% 23.86 1.96 1.03 0.04 3.83 0.14

55 90.78% 79.61% 24.72 2.09 1.04 0.04 3.87 0.14

60 90.59% 80.34% 25.27 2.02 1.05 0.04 4.10 0.16

65 90.20% 80.32% 24.75 2.01 0.98 0.04 3.86 0.15

70 90.31% 80.52% 25.62 2.01 1.03 0.04 4.29 0.14

75 90.02% 80.51% 25.76 1.99 1.01 0.04 4.19 0.15

80 89.76% 80.41% 26.35 2.01 1.00 0.04 4.26 0.14

85 89.99% 80.62% 26.96 1.98 1.05 0.04 4.35 0.15

90 88.48% 80.15% 27.88 1.99 0.95 0.04 4.64 0.15

95 88.19% 80.14% 28.32 2.04 0.94 0.04 4.33 0.14

100 87.78% 80.61% 29.40 1.99 0.94 0.04 4.59 0.14

(d) Results Experiment 3: FCFS Simulation
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Operator Behavior (±µ) On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

105 86.80% 80.46% 30.70 1.98 0.91 0.04 4.51 0.15

110 86.01% 80.63% 31.94 1.96 0.89 0.04 4.57 0.14

115 84.92% 80.60% 33.26 1.95 0.86 0.04 4.71 0.15

120 84.42% 80.28% 34.55 1.99 0.87 0.04 4.78 0.15

125 82.72% 80.45% 36.75 1.95 0.83 0.04 4.62 0.14

130 81.38% 80.67% 38.52 1.96 0.81 0.04 4.76 0.15

135 80.53% 80.56% 39.24 1.97 0.79 0.04 5.02 0.14

140 79.29% 80.38% 42.69 1.97 0.81 0.04 4.86 0.14

145 77.30% 79.88% 45.65 2.01 0.79 0.04 4.94 0.16

150 76.63% 80.62% 48.04 1.97 0.80 0.04 5.05 0.14

155 75.45% 80.21% 51.00 2.05 0.81 0.04 5.15 0.15

160 74.31% 80.61% 54.48 1.95 0.83 0.04 5.19 0.16

165 72.77% 80.53% 58.88 1.96 0.85 0.04 5.10 0.14

170 71.86% 80.53% 62.36 2.02 0.87 0.04 5.39 0.15

175 70.80% 80.52% 66.01 2.01 0.88 0.04 5.32 0.15

180 70.01% 80.50% 68.38 2.03 0.89 0.04 5.52 0.14

185 68.59% 80.18% 75.20 2.04 0.94 0.04 5.49 0.15

190 67.55% 80.54% 79.83 1.97 0.97 0.04 5.83 0.15

195 67.29% 80.47% 82.43 2.01 0.99 0.04 6.13 0.16

200 66.52% 80.48% 88.06 1.99 1.03 0.04 5.68 0.15

(e) Results Experiment 3: FCFS Simulation (continued)
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Operator Behavior (±µ) On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

205 65.38% 80.34% 94.01 1.97 1.07 0.04 5.89 0.14

210 64.83% 80.52% 98.33 1.99 1.10 0.04 5.93 0.15

215 63.92% 80.52% 103.71 1.97 1.13 0.04 5.89 0.14

220 63.61% 80.50% 109.67 2.00 1.19 0.04 6.00 0.14

225 62.92% 80.21% 115.50 1.99 1.23 0.04 6.03 0.15

230 62.08% 80.05% 120.41 2.01 1.25 0.04 6.23 0.15

235 62.09% 80.36% 123.90 2.01 1.29 0.04 6.21 0.15

240 61.21% 80.41% 129.99 2.02 1.33 0.04 6.34 0.15

245 61.26% 80.36% 135.05 1.97 1.38 0.04 6.31 0.14

250 60.71% 80.06% 143.04 2.06 1.44 0.04 6.34 0.15

255 60.73% 80.40% 145.37 1.95 1.47 0.04 6.45 0.15

260 60.43% 80.49% 151.22 1.97 1.52 0.04 6.62 0.14

265 60.54% 80.46% 154.83 1.99 1.56 0.04 6.55 0.15

270 59.93% 80.01% 159.27 2.04 1.58 0.04 6.61 0.14

275 59.92% 80.50% 165.56 1.97 1.64 0.04 6.64 0.14

280 59.66% 80.35% 167.58 1.99 1.65 0.04 6.62 0.15

285 59.73% 79.96% 172.84 2.01 1.71 0.04 6.65 0.15

290 59.47% 80.67% 175.51 1.96 1.72 0.04 6.61 0.15

295 59.27% 80.48% 180.47 2.00 1.77 0.04 6.62 0.14

300 58.93% 80.10% 182.53 2.03 1.77 0.04 6.65 0.14

(f) Results Experiment 3: FCFS Simulation (continued)
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Operator Behavior (±µ) On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

-10 91.94% 81.42% 20.59 1.95 0.99 0.04 6.23 0.56

-5 91.92% 81.64% 21.57 1.92 1.04 0.04 6.64 0.51

0 91.88% 81.68% 21.92 1.94 1.05 0.05 6.50 0.56

5 91.24% 81.74% 22.77 1.96 1.01 0.05 6.64 0.51

10 91.46% 81.70% 22.22 1.92 1.01 0.04 6.60 0.53

15 91.54% 81.05% 22.89 1.99 1.05 0.04 6.57 0.54

20 91.45% 81.27% 22.30 1.92 1.01 0.04 6.69 0.52

25 91.89% 81.33% 21.99 1.97 1.06 0.05 6.76 0.57

30 91.51% 81.72% 22.77 1.93 1.04 0.05 6.68 0.57

35 91.32% 81.76% 22.80 1.93 1.02 0.05 6.57 0.55

40 91.33% 81.48% 23.54 1.94 1.06 0.04 6.70 0.55

45 91.14% 81.99% 23.80 1.92 1.05 0.05 6.67 0.56

50 91.00% 81.15% 24.24 1.97 1.05 0.04 6.71 0.49

55 91.10% 81.98% 24.64 1.93 1.08 0.05 6.74 0.55

60 90.78% 81.92% 23.77 1.89 1.00 0.04 6.66 0.52

65 90.46% 81.47% 25.15 1.92 1.03 0.04 6.73 0.52

70 90.76% 82.27% 24.08 1.86 1.02 0.04 6.65 0.58

75 90.34% 81.45% 24.99 1.99 1.01 0.05 6.62 0.56

80 89.98% 81.42% 25.56 1.95 0.99 0.04 6.71 0.56

85 89.58% 81.51% 26.10 1.94 0.98 0.05 6.69 0.52

90 88.95% 81.82% 28.24 1.89 1.00 0.04 6.66 0.57

95 88.46% 81.66% 27.83 1.93 0.94 0.05 6.71 0.51

100 87.77% 81.28% 28.92 1.98 0.92 0.05 6.69 0.56

(g) Results Experiment 3: R1 Simulation
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Operator Behavior (±µ) On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

105 86.92% 81.80% 29.96 1.91 0.89 0.05 6.67 0.55

110 85.95% 81.65% 31.63 1.88 0.88 0.04 6.65 0.52

115 85.39% 81.53% 33.10 1.95 0.88 0.05 6.68 0.55

120 84.28% 81.70% 34.38 1.96 0.85 0.05 6.75 0.56

125 83.30% 81.93% 35.69 1.93 0.84 0.05 6.53 0.55

130 82.43% 81.57% 38.34 1.96 0.85 0.05 6.74 0.52

135 81.72% 81.62% 39.83 1.94 0.85 0.05 6.67 0.52

140 80.47% 81.32% 44.67 1.93 0.89 0.04 6.72 0.52

145 79.94% 81.96% 45.56 1.90 0.89 0.05 6.72 0.57

150 78.52% 81.37% 49.15 2.00 0.90 0.05 6.60 0.56

155 78.01% 81.91% 53.40 1.92 0.95 0.05 6.65 0.56

160 77.06% 81.67% 56.48 1.92 0.96 0.04 6.71 0.56

165 76.43% 81.90% 59.87 1.91 0.99 0.05 6.69 0.56

170 75.51% 82.05% 64.86 1.93 1.04 0.05 6.65 0.57

175 74.51% 81.53% 68.81 1.89 1.06 0.04 6.62 0.52

180 73.95% 81.17% 71.84 1.98 1.08 0.05 6.52 0.52

185 73.42% 81.78% 75.68 1.95 1.12 0.05 6.61 0.55

190 72.71% 81.50% 79.96 1.94 1.15 0.04 6.61 0.55

195 72.30% 81.60% 82.96 1.96 1.18 0.05 6.65 0.57

200 71.73% 81.81% 86.89 1.95 1.21 0.05 6.66 0.57

(h) Results Experiment 3: R1 Simulation (continued)

140



Operator Behavior (±µ) On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

205 70.94% 81.75% 93.84 1.91 1.27 0.05 6.69 0.55

210 70.70% 81.98% 95.52 1.89 1.29 0.05 6.71 0.55

215 70.06% 81.68% 101.80 1.91 1.34 0.05 9.55 0.55

220 69.23% 81.60% 110.31 1.91 1.42 0.04 10.36 0.56

225 68.94% 81.87% 111.09 1.88 1.41 0.04 10.84 0.55

230 68.86% 81.94% 115.80 1.89 1.47 0.05 12.23 0.55

235 68.07% 81.94% 124.71 1.91 1.54 0.05 12.31 0.56

240 67.85% 81.31% 127.01 1.97 1.56 0.05 12.80 0.55

245 67.11% 81.24% 132.71 1.96 1.60 0.05 13.13 0.53

250 67.17% 81.70% 137.00 1.93 1.65 0.05 13.16 0.55

255 67.06% 81.38% 139.79 1.96 1.68 0.05 13.27 0.55

260 66.47% 81.14% 146.10 1.97 1.73 0.05 13.62 0.55

265 65.72% 81.42% 152.52 1.96 1.77 0.05 13.93 0.56

270 65.75% 81.66% 154.51 1.92 1.79 0.05 13.95 0.55

275 65.72% 81.61% 160.26 1.93 1.86 0.05 14.16 0.55

280 65.40% 81.44% 162.64 1.96 1.87 0.05 14.14 0.52

285 65.36% 81.14% 166.02 1.99 1.91 0.05 14.39 0.57

290 64.80% 81.19% 170.35 1.97 1.93 0.05 14.50 0.55

295 64.40% 81.42% 175.63 1.95 1.97 0.05 14.72 0.58

300 64.49% 81.89% 180.05 1.95 2.02 0.05 14.78 0.52

(i) Results Experiment 3: R1 Simulation (continued)

Table K.1: Results Experiment 3: Comparison of Tardiness and On-Time Delivery Performance Metrics Under Different Operator Behaviors
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Operator Behavior (±µ) Lead Time (min) Queueing Time (min) Conveyor Duration

Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

-10 6.62 27.39 40.43 0.89 17.02 6.21 17.27

-5 6.61 27.24 40.66 0.89 16.86 6.29 17.34

0 6.62 27.77 40.51 0.90 17.24 6.15 17.40

5 6.61 28.05 40.40 0.89 17.43 6.24 17.38

10 6.61 27.77 40.50 0.89 17.18 6.21 17.41

15 6.61 28.44 40.32 0.89 17.68 6.18 17.44

20 6.61 28.70 40.68 0.89 17.78 6.31 17.62

25 6.61 28.97 40.72 0.89 17.98 6.34 17.64

30 6.61 29.43 40.58 0.89 18.40 6.24 17.67

35 6.62 29.75 40.76 0.89 18.58 6.35 17.76

40 6.61 30.08 40.60 0.89 18.83 6.30 17.76

45 6.62 30.16 40.89 0.89 18.79 6.42 17.88

50 6.61 31.08 40.67 0.89 19.41 6.27 18.02

55 6.61 31.41 40.71 0.89 19.66 6.32 18.06

60 6.62 31.22 40.38 0.89 19.45 6.27 17.96

65 6.62 32.41 40.70 0.89 20.39 6.37 18.17

70 6.62 32.44 40.69 0.90 20.36 6.31 18.24

75 6.62 33.20 40.75 0.89 20.84 6.38 18.38

80 6.62 33.67 40.61 0.89 21.11 6.17 18.49

85 6.62 34.52 40.63 0.89 21.78 6.32 18.55

90 6.62 34.68 40.73 0.89 21.84 6.25 18.67

95 6.61 35.92 40.46 0.89 22.79 6.15 18.77

100 6.61 36.12 40.64 0.89 22.81 6.27 18.88

(a) Results Experiment 3: Baseline Simulation
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Operator Behavior (±µ) Lead Time (min) Queueing Time (min) Conveyor Duration

Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

105 6.61 37.12 40.64 0.89 23.57 6.33 18.97

110 6.60 37.76 40.74 0.89 23.97 6.27 19.17

115 6.61 38.33 40.42 0.89 24.37 6.19 19.14

120 6.61 39.37 40.59 0.89 25.15 6.31 19.31

125 6.61 40.25 40.78 0.89 25.96 6.31 19.42

130 6.60 41.15 40.61 0.89 26.51 6.28 19.55

135 6.61 41.56 40.86 0.89 26.89 6.29 19.66

140 6.60 43.04 40.68 0.89 28.08 6.34 19.74

145 6.60 44.04 40.41 0.89 28.74 6.24 19.84

150 6.61 45.26 40.67 0.89 29.77 6.34 19.99

155 6.62 45.90 40.61 0.89 30.21 6.26 20.12

160 6.61 46.94 40.73 0.89 31.12 6.29 20.21

165 6.61 48.16 40.83 0.89 32.02 6.30 20.43

170 6.61 48.75 40.75 0.89 32.43 6.30 20.48

175 6.61 50.04 40.59 0.89 33.48 6.31 20.52

180 6.61 51.07 40.92 0.89 34.30 6.30 20.76

185 6.60 51.72 40.61 0.89 34.91 6.25 20.71

190 6.61 53.47 40.91 0.89 36.22 6.36 21.01

195 6.60 53.83 40.45 0.89 36.51 6.25 20.91

200 6.61 55.36 40.64 0.89 37.73 6.27 21.13

(b) Results Experiment 3: Baseline Simulation (continued)
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Operator Behavior (±µ) Lead Time (min) Queueing Time (min) Conveyor Duration

Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

205 6.60 57.32 40.53 0.88 39.39 6.23 21.26

210 6.61 58.27 40.56 0.89 40.16 6.33 21.34

215 6.60 59.21 40.66 0.89 40.90 6.33 21.49

220 6.60 60.13 40.57 0.88 41.70 6.19 21.56

225 6.60 61.67 40.52 0.89 43.03 6.32 21.61

230 6.60 63.76 40.52 0.88 44.83 6.28 21.79

235 6.60 64.31 40.72 0.88 45.32 6.31 21.88

240 6.60 64.99 40.49 0.89 45.90 6.27 21.87

245 6.60 66.08 40.67 0.89 46.89 6.30 21.97

250 6.60 67.14 40.53 0.88 47.74 6.25 22.03

255 6.60 68.73 40.40 0.88 49.18 6.23 22.08

260 6.60 68.93 40.64 0.88 49.16 6.30 22.26

265 6.60 70.93 40.81 0.88 51.03 6.36 22.38

270 6.60 70.99 40.71 0.88 50.95 6.25 22.43

275 6.59 71.97 40.56 0.88 51.87 6.34 22.38

280 6.60 72.95 40.44 0.88 52.64 6.29 22.46

285 6.59 73.92 40.34 0.88 53.50 6.25 22.50

290 6.60 75.32 40.71 0.88 54.75 6.38 22.68

295 6.60 75.13 40.81 0.88 54.51 6.43 22.73

300 6.59 76.91 40.46 0.88 56.10 6.23 22.76

(c) Results Experiment 3: Baseline Simulation
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Operator Behavior (±µ) Lead Time (min) Queueing Time (min) Conveyor Duration

Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

-10 6.63 27.23 40.74 0.90 16.86 6.28 17.36

-5 6.63 27.58 40.54 0.90 17.16 6.28 17.31

0 6.62 27.62 40.61 0.90 17.17 6.38 17.30

5 6.62 27.96 40.51 0.90 17.38 6.19 17.40

10 6.61 28.38 40.62 0.89 17.74 6.15 17.50

15 6.62 28.84 40.57 0.90 17.99 6.29 17.54

20 6.62 28.51 40.45 0.90 17.69 6.08 17.55

25 6.62 29.13 40.87 0.90 18.16 6.40 17.68

30 6.62 29.17 40.52 0.90 18.17 6.23 17.63

35 6.62 29.46 40.94 0.89 18.33 6.32 17.83

40 6.62 29.99 40.81 0.90 18.67 6.35 17.87

45 6.62 30.33 40.73 0.90 19.01 6.34 17.84

50 6.62 30.83 40.56 0.90 19.26 6.27 17.94

55 6.62 31.34 40.73 0.90 19.65 6.32 18.04

60 6.62 31.52 40.48 0.90 19.74 6.25 18.01

65 6.62 31.97 40.86 0.90 20.00 6.37 18.21

70 6.62 32.46 40.79 0.90 20.32 6.26 18.34

75 6.62 32.83 40.66 0.90 20.53 6.30 18.32

80 6.63 33.72 40.73 0.90 21.17 6.24 18.50

85 6.62 34.63 40.37 0.89 21.84 6.19 18.53

90 6.62 34.77 40.76 0.90 21.89 6.22 18.71

95 6.62 35.62 40.73 0.90 22.49 6.28 18.81

100 6.61 36.07 40.68 0.89 22.76 6.22 18.90

(d) Results Experiment 3: FCFS Simulation
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Operator Behavior (±µ) Lead Time (min) Queueing Time (min) Conveyor Duration

Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

105 6.61 36.27 40.78 0.89 22.88 6.25 18.97

110 6.62 37.14 40.45 0.90 23.53 6.23 18.97

115 6.61 38.56 40.81 0.89 24.63 6.34 19.23

120 6.61 39.16 40.56 0.89 25.05 6.26 19.26

125 6.61 40.21 40.45 0.89 25.81 6.30 19.35

130 6.61 41.36 40.70 0.89 26.66 6.37 19.59

135 6.61 41.99 40.50 0.89 27.16 6.24 19.60

140 6.61 43.17 40.70 0.89 28.11 6.26 19.81

145 6.61 44.20 40.46 0.89 28.92 6.18 19.88

150 6.61 44.50 40.70 0.89 29.19 6.35 19.91

155 6.62 45.89 40.89 0.89 30.25 6.41 20.15

160 6.62 46.75 40.55 0.89 30.91 6.19 20.18

165 6.62 47.87 40.57 0.89 31.70 6.25 20.36

170 6.61 48.74 40.87 0.89 32.48 6.28 20.51

175 6.61 50.00 41.08 0.89 33.42 6.25 20.77

180 6.62 51.14 40.56 0.89 34.31 6.29 20.68

185 6.61 52.62 40.58 0.89 35.58 6.26 20.81

190 6.61 53.81 40.45 0.89 36.55 6.14 20.92

195 6.60 54.48 40.61 0.89 37.06 6.24 21.04

200 6.61 56.53 40.64 0.89 38.74 6.19 21.27

(e) Results Experiment 3: FCFS Simulation (continued)
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Operator Behavior (±µ) Lead Time (min) Queueing Time (min) Conveyor Duration

Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

205 6.61 57.11 40.70 0.89 39.24 6.24 21.30

210 6.61 57.21 40.44 0.89 39.24 6.15 21.28

215 6.61 59.05 40.52 0.89 40.81 6.26 21.44

220 6.60 60.28 40.59 0.89 41.83 6.23 21.56

225 6.60 61.33 40.55 0.89 42.35 6.23 21.68

230 6.60 62.99 40.58 0.89 43.52 6.20 21.80

235 6.60 63.94 40.42 0.89 44.23 6.31 21.97

240 6.60 64.76 40.52 0.89 44.70 6.26 22.07

245 6.60 66.41 40.81 0.89 47.14 6.32 22.05

250 6.61 66.80 41.07 0.89 47.39 6.40 22.18

255 6.60 68.30 40.25 0.89 48.77 6.23 22.01

260 6.61 68.88 40.72 0.89 49.19 6.28 22.26

265 6.60 70.39 40.90 0.88 50.57 6.34 22.38

270 6.60 70.47 40.60 0.89 50.51 6.38 22.32

275 6.60 72.37 40.59 0.88 52.18 6.32 22.45

280 6.61 72.81 40.57 0.89 52.54 6.29 22.51

285 6.61 73.57 40.73 0.88 53.20 6.41 22.58

290 6.60 75.09 40.59 0.88 54.48 6.25 22.69

295 6.60 76.15 40.72 0.89 55.42 6.32 22.76

300 6.61 75.88 40.36 0.89 55.15 6.16 22.71

(f) Results Experiment 3: FCFS Simulation (continued)

147



Operator Behavior (±µ) Lead Time (min) Queueing Time (min) Conveyor Duration

Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

-10 6.63 27.23 40.69 0.90 16.80 6.42 17.30

-5 6.63 27.66 40.67 0.90 17.22 6.32 17.36

0 6.62 27.66 40.48 0.90 17.24 6.25 17.30

5 6.62 28.26 40.47 0.90 17.58 6.22 17.43

10 6.62 28.51 40.81 0.90 17.86 6.38 17.50

15 6.62 28.43 40.77 0.90 17.76 6.31 17.51

20 6.62 28.96 40.47 0.90 18.10 6.35 17.48

25 6.62 29.28 40.46 0.90 18.24 6.28 17.60

30 6.62 29.35 40.48 0.90 18.27 6.20 17.66

35 6.63 29.38 41.05 0.90 18.18 6.55 17.82

40 6.62 29.53 40.70 0.90 18.28 6.33 17.79

45 6.62 30.22 40.75 0.90 18.77 6.30 17.92

50 6.62 30.73 40.54 0.90 19.25 6.29 17.86

55 6.62 30.63 40.89 0.90 19.02 6.31 18.04

60 6.62 31.24 40.73 0.90 19.37 6.36 18.11

65 6.61 31.83 40.56 0.90 19.80 6.23 18.17

70 6.61 31.91 40.62 0.90 19.89 6.26 18.18

75 6.62 32.38 40.28 0.90 20.13 6.17 18.21

80 6.62 32.74 40.42 0.90 20.35 6.27 18.30

85 6.62 33.79 40.75 0.90 21.02 6.29 18.62

90 6.61 34.09 40.70 0.89 21.26 6.27 18.64

95 6.61 35.10 40.48 0.90 22.04 6.23 18.70

100 6.62 35.76 40.65 0.90 22.49 6.30 18.85

(g) Results Experiment 3: R1 Simulation
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Operator Behavior (±µ) Lead Time (min) Queueing Time (min) Conveyor Duration

Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

105 6.61 36.32 40.90 0.89 22.88 6.35 19.01

110 6.61 37.09 40.55 0.89 23.44 6.24 19.04

115 6.61 38.17 40.63 0.89 24.18 6.25 19.24

120 6.61 38.83 40.70 0.89 24.72 6.33 19.30

125 6.61 39.14 41.00 0.89 24.86 6.33 19.50

130 6.61 40.98 40.55 0.89 26.35 6.27 19.53

135 6.62 40.54 40.76 0.90 25.82 6.36 19.63

140 6.61 41.79 40.75 0.89 26.85 6.27 19.77

145 6.60 43.41 40.54 0.89 28.13 6.20 19.89

150 6.62 43.51 40.62 0.89 28.15 6.17 19.98

155 6.60 45.23 40.43 0.88 29.55 6.20 20.06

160 6.61 45.85 40.55 0.89 30.05 6.36 20.11

165 6.61 46.41 40.60 0.89 30.40 6.28 20.26

170 6.60 48.29 40.77 0.89 31.93 6.24 20.54

175 6.61 49.64 40.87 0.89 33.02 6.33 20.68

180 6.61 50.40 40.63 0.89 33.57 6.16 20.75

185 6.60 51.24 40.82 0.89 34.20 6.32 20.88

190 6.61 52.84 40.67 0.89 35.54 6.34 20.95

195 6.60 53.01 40.61 0.88 35.65 6.20 21.01

200 6.61 53.91 40.64 0.89 36.35 6.26 21.09

(h) Results Experiment 3: R1 Simulation (continued)
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Operator Behavior (±µ) Lead Time (min) Queueing Time (min) Conveyor Duration

Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

205 6.59 55.08 40.32 0.88 37.21 6.14 21.19

210 6.60 56.45 40.40 0.89 38.39 6.18 21.31

215 6.60 57.90 40.45 0.89 39.56 6.17 21.46

220 6.60 59.96 40.84 0.88 41.40 6.34 21.70

225 6.60 59.60 40.60 0.89 41.02 6.24 21.64

230 6.60 61.37 40.49 0.89 42.63 6.16 21.71

235 6.61 62.19 40.48 0.89 43.29 6.29 21.75

240 6.60 62.33 40.64 0.88 43.22 6.30 21.93

245 6.61 64.91 40.54 0.89 45.61 6.25 22.01

250 6.60 65.46 40.92 0.88 46.05 6.33 22.16

255 6.60 65.97 40.88 0.89 46.41 6.35 22.22

260 6.60 67.52 40.78 0.88 47.78 6.36 22.27

265 6.60 68.61 40.66 0.88 48.64 6.24 22.39

270 6.60 69.22 40.83 0.88 49.21 6.27 22.47

275 6.60 69.87 40.54 0.88 49.78 6.25 22.41

280 6.60 70.74 40.41 0.88 50.46 6.19 22.48

285 6.60 71.26 40.47 0.88 50.88 6.20 22.56

290 6.60 72.88 40.80 0.88 52.30 6.32 22.74

295 6.60 73.41 40.42 0.88 52.75 6.14 22.70

300 6.60 74.29 40.60 0.88 53.54 6.16 22.81

(i) Results Experiment 3: R1 Simulation (continued)

Table K.2: Results Experiment 3: Comparison of Queuing and Movement Performance Metrics Under Different Operator Behaviors
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Pipeline Threshold On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

[Out1,Out2, Out3] Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

3;5;10 90.50% 80.95% 22.92 1.97 0.94 0.04 3.65 0.55

3;6;10 90.64% 81.06% 22.73 1.97 0.94 0.04 3.79 0.55

3;7;10 90.78% 81.34% 21.73 1.93 0.92 0.04 3.72 0.52

3;5;11 90.47% 80.91% 23.27 2.00 0.95 0.04 3.90 0.52

3;6;11 90.93% 81.55% 22.10 1.98 0.95 0.05 3.92 0.53

3;7;11 91.10% 81.86% 21.17 1.88 0.93 0.04 3.54 0.53

3;5;12 90.65% 81.56% 23.43 1.90 0.98 0.04 3.66 0.48

3;6;12 90.76% 81.37% 22.29 1.94 0.94 0.04 3.64 0.52

3;7;12 91.00% 81.51% 22.98 1.97 0.99 0.05 3.91 0.52

4;5;10 91.31% 81.45% 16.44 1.97 0.74 0.05 2.92 0.55

4;6;10 91.94% 81.13% 14.91 1.96 0.72 0.04 2.94 0.58

4;7;10 92.25% 81.84% 14.44 1.93 0.72 0.05 2.77 0.54

4;5;11 91.57% 81.53% 15.70 1.97 0.72 0.05 2.90 0.57

4;6;11 91.79% 81.51% 15.56 1.96 0.74 0.05 2.88 0.56

4;7;11 91.97% 81.34% 14.65 1.91 0.71 0.04 2.92 0.56

4;5;12 91.65% 81.39% 16.04 1.99 0.75 0.05 2.92 0.58

4;6;12 91.68% 81.70% 16.03 1.93 0.75 0.05 2.86 0.56

4;7;12 91.95% 81.66% 16.18 1.91 0.78 0.04 2.93 0.56

(a) Results Experiment 4a: Baseline Simulation
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Pipeline Threshold On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

[Out1,Out2, Out3] Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

5;5;10 92.15% 81.81% 14.72 1.90 0.73 0.04 2.87 0.53

5;6;10 91.99% 81.49% 13.99 1.96 0.63 0.05 2.73 0.52

5;7;10 92.29% 80.77% 13.85 2.03 0.70 0.05 2.76 0.55

5;5;11 92.15% 81.08% 14.20 2.02 0.70 0.05 2.85 0.56

5;6;11 92.19% 81.15% 13.63 1.99 0.68 0.05 2.76 0.55

5;7;11 92.37% 81.22% 13.06 1.98 0.67 0.05 2.66 0.56

5;5;12 92.23% 81.86% 13.94 1.90 0.70 0.05 2.74 0.52

5;6;12 92.22% 81.61% 13.41 2.00 0.67 0.05 2.65 0.57

5;7;12 92.60% 81.62% 13.15 1.99 0.69 0.05 2.76 0.56

(b) Results Experiment 4a: Baseline Simulation (continued)
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Pipeline Threshold On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

[Out1,Out2, Out3] Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

3;5;10 90.37% 80.93% 23.13 2.02 0.94 0.05 3.59 0.52

3;6;10 91.19% 80.82% 22.74 2.01 1.00 0.04 3.80 0.52

3;7;10 90.90% 81.45% 21.78 1.93 0.93 0.04 3.72 0.56

3;5;11 90.33% 81.37% 22.63 1.98 0.91 0.05 3.47 0.56

3;6;11 90.89% 81.85% 22.30 1.91 0.95 0.05 3.80 0.54

3;7;11 91.32% 81.51% 21.21 1.97 0.95 0.05 3.65 0.53

3;5;12 90.26% 81.50% 23.48 1.92 0.94 0.04 3.57 0.56

3;6;12 90.87% 81.29% 22.38 2.02 0.95 0.05 3.74 0.58

3;7;12 91.19% 81.28% 21.58 1.97 0.95 0.04 3.68 0.55

4;5;10 91.23% 81.55% 17.18 1.93 0.76 0.04 2.82 0.52

4;6;10 91.84% 81.41% 16.19 1.99 0.77 0.05 2.87 0.57

4;7;10 92.10% 81.30% 15.12 1.92 0.75 0.04 2.74 0.56

4;5;11 91.38% 81.33% 16.73 2.00 0.75 0.05 2.75 0.52

4;6;11 92.04% 81.59% 15.15 1.92 0.74 0.04 2.70 0.56

4;7;11 92.12% 81.54% 14.35 1.93 0.71 0.05 2.64 0.53

4;5;12 91.65% 81.10% 16.04 2.01 0.75 0.05 2.74 0.56

4;6;12 91.83% 80.88% 15.73 2.01 0.75 0.05 2.86 0.59

4;7;12 92.36% 81.57% 15.27 1.92 0.78 0.04 2.82 0.54

(c) Results Experiment 4a: FCFS Simulation
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Pipeline Threshold On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

[Out1,Out2, Out3] Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

5;5;10 91.99% 81.17% 14.01 1.99 0.68 0.05 2.43 0.56

5;6;10 92.46% 81.02% 13.13 1.97 0.68 0.04 2.60 0.56

5;7;10 92.55% 80.98% 12.82 2.01 0.67 0.05 2.57 0.53

5;5;11 92.21% 81.33% 14.23 1.96 0.71 0.05 2.65 0.56

5;6;11 92.46% 81.24% 13.59 1.97 0.70 0.05 2.60 0.57

5;7;11 92.68% 81.33% 13.01 1.97 0.69 0.05 2.67 0.55

5;5;12 92.31% 81.50% 13.94 1.97 0.70 0.05 2.53 0.57

5;6;12 92.31% 81.21% 12.85 2.03 0.65 0.05 2.54 0.57

5;7;12 92.59% 80.92% 12.46 2.05 0.65 0.05 2.48 0.55

(d) Results Experiment 4a: FCFS Simulation (continued)
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Pipeline Threshold On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

[Out1,Out2, Out3] Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

3;10;5 90.41% 81.46% 23.13 1.96 0.94 0.05 6.56 0.53

3;10;6 91.08% 81.26% 22.80 2.01 0.99 0.05 6.47 0.51

3;10;7 91.35% 81.53% 22.22 1.97 1.00 0.05 6.60 0.55

3;11;5 90.88% 81.06% 23.13 1.99 0.99 0.05 6.56 0.54

3;11;6 91.11% 81.45% 22.04 1.93 0.97 0.04 6.43 0.53

3;11;7 91.45% 81.57% 21.65 1.92 0.99 0.04 6.36 0.55

3;12;5 90.84% 81.29% 22.89 1.97 0.97 0.05 6.26 0.55

3;12;6 91.20% 81.44% 22.21 1.94 0.98 0.05 6.51 0.53

3;12;7 91.17% 81.20% 23.18 1.96 1.02 0.05 6.63 0.55

4;10;5 91.60% 81.54% 17.17 1.97 0.79 0.05 4.96 0.56

4;10;6 92.31% 81.46% 16.57 1.94 0.84 0.05 5.06 0.52

4;10;7 92.15% 81.26% 15.69 1.98 0.78 0.05 5.03 0.55

4;11;5 91.81% 81.58% 16.42 1.94 0.78 0.05 4.82 0.49

4;11;6 92.03% 81.22% 16.25 1.99 0.79 0.05 5.03 0.54

4;11;7 92.36% 81.17% 15.57 1.96 0.79 0.04 4.97 0.55

4;12;5 91.80% 81.33% 16.61 1.98 0.79 0.05 5.02 0.55

4;12;6 92.20% 81.53% 16.09 1.90 0.80 0.04 5.15 0.48

4;12;7 92.24% 81.67% 17.09 1.92 0.86 0.05 5.09 0.51

(e) Results Experiment 4a: R1 Simulation
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Pipeline Threshold On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

[Out1,Out2, Out3] Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

5;5;10 92.22% 81.34% 14.40 1.98 0.72 0.05 4.36 0.55

5;6;10 92.33% 81.04% 15.24 2.01 0.77 0.05 4.41 0.51

5;7;10 93.02% 81.41% 13.60 1.98 0.76 0.05 4.48 0.55

5;5;11 92.22% 81.54% 13.89 1.96 0.70 0.05 4.40 0.56

5;6;11 92.77% 81.65% 13.37 1.95 0.72 0.05 4.38 0.55

5;7;11 92.95% 81.97% 13.57 1.92 0.75 0.05 4.63 0.57

5;5;12 92.04% 81.29% 14.64 2.03 0.71 0.05 4.52 0.55

5;6;12 92.69% 81.56% 14.36 1.97 0.76 0.05 4.56 0.57

5;7;12 92.93% 80.83% 12.49 2.02 0.69 0.05 4.46 0.54

(f) Results Experiment 4a: R1 Simulation (continued)

Table K.3: Results Experiment 4a: Comparison of Tardiness and On-Time Performance Metrics Under Different Pipeline Threshold Configurations
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Pipeline Threshold Lead Time (min) Queueing Time (min) Conveyor Duration

[Out1,Out2, Out3] Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

3;5;10 6.60 28.30 40.41 0.89 18.27 6.25 17.07

3;5;6 6.61 28.14 40.54 0.89 17.85 6.32 17.23

3;5;7 6.62 27.77 40.51 0.90 17.24 6.15 17.40

3;6;5 6.61 28.36 40.37 0.89 18.03 6.21 17.22

3;6;11 6.61 27.77 40.48 0.89 17.21 6.17 17.40

3;7;5 6.62 27.37 40.49 0.90 16.56 6.24 17.51

3;7;6 6.61 28.14 40.44 0.89 17.56 6.13 17.41

3;8;5 6.62 27.80 40.57 0.89 16.96 6.18 17.57

3;9;7 6.62 27.69 40.65 0.90 16.63 6.22 17.71

4;5;10 6.62 26.46 40.74 0.90 16.23 6.23 17.31

4;5;6 6.62 25.74 40.70 0.89 15.29 6.27 17.40

4;5;7 6.63 25.38 40.53 0.90 14.73 6.23 17.44

4;6;10 6.62 26.12 40.82 0.90 15.60 6.38 17.43

4;6;7 6.63 25.70 40.61 0.89 14.96 6.25 17.52

4;7;10 6.63 25.51 40.70 0.90 14.47 6.25 17.72

4;7;5 6.62 26.18 40.78 0.89 15.32 6.40 17.58

4;8;5 6.63 25.85 40.85 0.90 14.77 6.32 17.74

4;9;7 6.62 25.81 40.58 0.89 14.45 6.29 17.81

(a) Results Experiment 4a: Baseline Simulation
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Pipeline Threshold Lead Time (min) Queueing Time (min) Conveyor Duration

[Out1,Out2, Out3] Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

5;5;10 6.66 25.55 40.62 0.89 15.16 6.16 17.35

5;6;10 6.65 25.25 40.75 0.89 14.50 6.26 17.57

5;7;10 6.66 25.24 40.52 0.89 14.26 6.21 17.62

5;5;11 6.65 25.40 40.78 0.89 14.64 6.24 17.59

5;6;11 6.66 25.13 40.31 0.90 14.13 6.13 17.59

5;7;11 6.67 24.72 40.26 0.90 13.49 6.19 17.67

5;5;12 6.66 25.26 40.81 0.89 14.25 6.30 17.71

5;6;12 6.66 24.97 40.49 0.90 13.69 6.24 17.74

5;7;12 6.66 24.86 40.54 0.90 13.30 6.30 17.89

(b) Results Experiment 4a: Baseline Simulation (continued)
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Pipeline Threshold Lead Time (min) Queueing Time (min) Conveyor Duration

[Out1,Out2, Out3] Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

3;5;10 6.61 28.48 40.57 0.89 18.42 6.23 17.15

3;6;10 6.62 27.81 40.34 0.90 17.53 6.24 17.18

3;7;10 6.62 27.62 40.61 0.90 17.17 6.38 17.30

3;5;11 6.62 28.22 40.56 0.90 17.91 6.22 17.27

3;6;11 6.63 27.86 40.91 0.90 17.27 6.38 17.51

3;7;11 6.62 27.35 40.89 0.89 16.56 6.34 17.61

3;5;12 6.63 28.31 40.66 0.90 17.80 6.22 17.42

3;6;12 6.62 27.81 40.73 0.90 16.98 6.31 17.59

3;7;12 6.63 27.32 40.35 0.90 16.28 6.19 17.59

4;5;10 6.63 26.68 40.92 0.90 16.46 6.24 17.36

4;6;10 6.63 26.02 40.59 0.90 15.56 6.26 17.36

4;7;10 6.63 25.57 40.36 0.90 14.87 6.21 17.43

4;5;11 6.64 26.23 40.63 0.90 15.70 6.22 17.42

4;6;11 6.63 25.66 40.53 0.90 14.93 6.35 17.44

4;7;11 6.63 25.32 40.84 0.90 14.36 6.45 17.63

4;5;12 6.63 25.98 40.36 0.90 15.25 6.26 17.41

4;6;12 6.63 25.72 40.48 0.90 14.68 6.18 17.63

4;7;12 6.63 25.31 40.79 0.90 14.10 6.38 17.76

(c) Results Experiment 4a: FCFS Simulation
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Pipeline Threshold Lead Time (min) Queueing Time (min) Conveyor Duration

[Out1,Out2, Out3] Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

5;5;10 6.66 25.66 40.78 0.90 15.15 6.33 17.41

5;6;10 6.65 25.02 40.45 0.90 14.36 6.24 17.42

5;7;10 6.67 25.00 40.89 0.90 13.99 6.28 17.75

5;5;11 6.68 25.56 40.62 0.91 14.77 6.36 17.50

5;6;11 6.67 25.12 40.51 0.90 14.09 6.31 17.59

5;7;11 6.68 24.77 40.61 0.90 13.46 6.28 17.79

5;5;12 6.66 25.34 40.70 0.90 14.34 6.36 17.65

5;6;12 6.67 24.90 40.86 0.90 13.59 6.34 17.88

5;7;12 6.68 24.59 40.44 0.90 13.06 6.25 17.87

(d) Results Experiment 4a: FCFS Simulation (continued)
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Pipeline Threshold Lead Time (min) Queueing Time (min) Conveyor Duration

[Out1,Out2, Out3] Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

3;5;10 6.62 28.57 40.67 0.90 18.54 6.29 17.14

3;6;10 6.62 28.13 40.54 0.90 17.86 6.22 17.25

3;7;10 6.62 27.66 40.48 0.90 17.24 6.25 17.30

3;5;11 6.61 28.27 40.62 0.90 17.93 6.27 17.29

3;6;11 6.61 27.91 40.60 0.90 17.30 6.37 17.39

3;7;11 6.63 27.42 40.67 0.90 16.64 6.40 17.50

3;5;12 6.63 28.15 40.53 0.90 17.54 6.29 17.39

3;6;12 6.63 27.78 40.70 0.90 16.91 6.20 17.63

3;7;12 6.63 27.95 40.69 0.90 16.81 6.32 17.73

4;5;10 6.64 26.68 40.64 0.90 16.40 6.31 17.26

4;6;10 6.63 26.24 40.29 0.90 15.69 6.26 17.28

4;7;10 6.63 25.86 40.60 0.90 15.13 6.30 17.48

4;5;11 6.63 26.38 40.91 0.90 15.81 6.41 17.48

4;6;11 6.63 25.98 41.02 0.90 15.22 6.52 17.59

4;7;11 6.64 25.75 40.55 0.90 14.66 6.34 17.65

4;5;12 6.63 26.33 40.61 0.90 15.49 6.31 17.54

4;6;12 6.63 25.71 40.58 0.90 14.69 6.25 17.65

4;7;12 6.64 26.03 40.94 0.90 14.70 6.49 17.84

(e) Results Experiment 4a: R1 Simulation
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Pipeline Threshold Lead Time (min) Queueing Time (min) Conveyor Duration

[Out1,Out2, Out3] Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

5;5;10 6.67 25.75 40.56 0.90 15.27 6.29 17.35

6;5;10 6.66 25.69 40.67 0.90 14.89 6.28 17.56

7;5;10 6.66 25.01 40.65 0.90 14.01 6.34 17.63

5;5;11 6.66 25.45 40.64 0.90 14.71 6.31 17.49

6;5;11 6.66 24.96 40.48 0.90 13.92 6.27 17.61

7;5;11 6.66 24.87 40.74 0.90 13.63 6.40 17.76

5;5;12 6.67 25.59 40.78 0.91 14.54 6.49 17.64

6;5;12 6.67 25.11 40.54 0.90 13.79 6.30 17.77

7;5;12 6.67 24.50 40.39 0.90 13.02 6.33 17.80

(f) Results Experiment 4a: R1 Simulation

Table K.4: Results Experiment 4a: Comparison of Queuing and Movement Performance Metrics Under Different Pipeline Threshold Configurations
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Pipeline Threshold On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

[Workstations, F5, Out3] Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

6;4;10 92.46% 80.19% 12.61 2.08 0.65 0.04 2.68 0.56

6;3;10 92.35% 78.62% 13.18 2.27 0.67 0.05 2.66 0.56

5;4;10 92.23% 79.29% 13.77 2.14 0.69 0.04 2.76 0.58

5;3;10 92.15% 77.66% 14.92 2.41 0.74 0.05 2.87 0.58

4;4;10 92.20% 77.38% 14.34 2.40 0.71 0.05 2.81 0.49

4;3;10 92.92% 76.56% 11.13 2.51 0.61 0.05 2.52 0.53

3;4;10 92.42% 73.62% 13.03 2.96 0.67 0.05 2.69 0.56

3;3;10 92.46% 71.43% 13.59 3.12 0.70 0.05 2.91 0.56

6;4;11 92.45% 80.22% 13.64 2.04 0.70 0.04 2.66 0.56

6;3;11 92.45% 78.90% 13.77 2.27 0.71 0.05 2.76 0.52

5;4;11 92.57% 79.57% 12.21 2.11 0.64 0.04 2.64 0.49

5;3;11 92.58% 77.92% 13.41 2.29 0.70 0.04 2.58 0.57

4;4;11 92.54% 78.10% 13.78 2.33 0.72 0.05 2.68 0.56

4;3;11 92.49% 75.99% 13.13 2.63 0.68 0.05 2.78 0.56

3;4;11 92.32% 73.71% 14.55 2.85 0.74 0.05 2.89 0.52

3;3;11 92.21% 71.49% 14.94 3.10 0.75 0.05 2.87 0.52

6;4;12 92.56% 80.26% 13.32 2.08 0.70 0.04 2.67 0.51

6;3;12 92.60% 78.63% 13.43 2.29 0.71 0.05 2.70 0.56

5;4;12 92.24% 79.82% 14.34 2.15 0.72 0.05 2.91 0.58

5;3;12 92.45% 77.71% 13.47 2.37 0.70 0.05 2.80 0.56

4;4;12 92.34% 77.72% 13.57 2.34 0.69 0.04 2.76 0.54

4;3;12 92.61% 75.92% 12.41 2.56 0.65 0.05 2.62 0.55

3;4;12 92.22% 73.71% 13.14 2.87 0.66 0.05 2.71 0.56

3;3;12 92.80% 71.69% 13.22 3.10 0.71 0.05 2.69 0.52

(a) Results Experiment 4b: Baseline Simulation
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Pipeline Threshold On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

[Workstations, F5, Out3] Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

6;4;10 92.20% 80.49% 13.53 2.04 0.68 0.04 2.66 0.56

6;3;10 92.49% 78.67% 12.90 2.27 0.67 0.05 2.48 0.52

5;4;10 92.30% 79.88% 13.36 2.09 0.67 0.04 2.51 0.57

5;3;10 92.54% 78.03% 12.69 2.31 0.66 0.05 2.54 0.53

4;4;10 92.59% 77.84% 12.99 2.37 0.68 0.05 2.53 0.56

4;3;10 92.55% 76.25% 12.91 2.56 0.67 0.05 2.41 0.56

3;4;10 92.45% 73.78% 13.69 2.87 0.71 0.05 2.59 0.57

3;3;10 92.56% 71.45% 13.54 3.11 0.71 0.05 2.62 0.56

6;4;11 92.62% 80.46% 12.88 2.00 0.68 0.04 2.38 0.56

6;3;11 92.61% 78.63% 14.11 2.26 0.74 0.05 2.65 0.56

5;4;11 92.16% 79.30% 14.27 2.19 0.71 0.05 2.65 0.51

5;3;11 92.48% 77.86% 13.43 2.38 0.69 0.05 2.57 0.57

4;4;11 92.49% 78.09% 13.57 2.35 0.70 0.05 2.69 0.55

4;3;11 92.31% 76.71% 12.36 2.53 0.63 0.05 2.37 0.50

3;4;11 92.53% 73.54% 13.51 2.94 0.70 0.05 2.65 0.56

3;3;11 92.49% 71.34% 13.25 3.14 0.69 0.05 2.50 0.56

6;4;12 92.43% 80.42% 13.80 2.03 0.71 0.04 2.77 0.59

6;3;12 92.51% 78.54% 14.96 2.27 0.78 0.05 2.88 0.52

5;4;12 92.37% 79.57% 13.31 2.17 0.68 0.05 2.54 0.49

5;3;12 92.48% 78.05% 11.51 2.36 0.59 0.05 2.30 0.56

4;4;12 92.75% 77.96% 12.70 2.37 0.68 0.05 2.48 0.56

4;3;12 92.54% 75.94% 13.84 2.57 0.72 0.05 2.73 0.52

3;4;12 92.60% 74.12% 12.81 2.85 0.67 0.05 2.60 0.56

3;3;12 92.99% 71.45% 12.93 3.14 0.72 0.05 2.68 0.57

(b) Results Experiment 4b: FCFS Simulation
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Pipeline Threshold On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

[Workstations, F5, Out3] Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

6;4;10 92.46% 80.33% 13.94 2.07 0.72 0.04 4.69 0.55

6;3;10 92.55% 78.54% 14.35 2.29 0.75 0.05 4.55 0.57

5;4;10 92.45% 79.56% 13.45 2.18 0.69 0.05 4.57 0.58

5;3;10 92.63% 77.21% 14.03 2.41 0.74 0.05 4.74 0.53

4;4;10 92.58% 78.00% 15.01 2.34 0.79 0.05 4.75 0.55

4;3;10 92.78% 76.60% 13.58 2.51 0.73 0.05 4.40 0.56

3;4;10 92.91% 73.25% 13.80 2.93 0.76 0.05 4.65 0.57

3;3;10 92.65% 71.68% 14.41 3.15 0.76 0.05 4.68 0.55

6;4;11 92.95% 80.20% 13.48 2.06 0.74 0.04 4.51 0.52

6;3;11 93.11% 78.72% 13.91 2.24 0.78 0.05 4.68 0.52

5;4;11 92.47% 79.89% 13.90 2.11 0.72 0.05 4.52 0.56

5;3;11 92.72% 77.75% 14.65 2.40 0.78 0.05 4.67 0.54

4;4;11 92.64% 77.82% 14.29 2.37 0.75 0.05 4.70 0.55

4;3;11 92.94% 76.03% 13.77 2.57 0.76 0.05 4.54 0.55

3;4;11 92.95% 73.11% 14.19 2.93 0.77 0.05 4.81 0.55

3;3;11 92.72% 71.17% 14.19 3.18 0.76 0.05 4.86 0.55

6;4;12 92.47% 80.58% 14.90 2.05 0.77 0.05 4.63 0.55

6;3;12 92.52% 78.84% 14.55 2.26 0.76 0.05 4.80 0.55

5;4;12 92.66% 79.56% 13.97 2.15 0.74 0.05 4.65 0.56

5;3;12 92.58% 78.15% 13.73 2.32 0.72 0.05 4.78 0.57

4;4;12 92.73% 77.41% 13.80 2.38 0.74 0.05 4.60 0.55

4;3;12 92.43% 76.26% 14.84 2.54 0.76 0.05 4.79 0.52

3;4;12 92.85% 73.81% 14.01 2.86 0.76 0.05 4.60 0.56

3;3;12 92.75% 71.21% 14.28 3.20 0.77 0.05 4.80 0.56

(c) Results Experiment 4b: R1 Simulation

Table K.5: Results Experiment 4b: Comparison of Tardiness and On-Time Delivery Performance Metrics Under Different Pipeline Threshold Con-
figurations
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Pipeline Threshold Lead Time (min) Queueing Time (min) Conveyor Duration

[Workstations, F5, Out3] Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

6;4;10 0.90 13.95 8.57 6.62 24.86 40.94 16.63

6;3;10 0.90 14.14 9.89 6.62 25.18 41.18 16.22

5;4;10 0.89 14.14 10.83 6.61 25.19 41.08 15.72

5;3;10 0.90 14.48 12.02 6.61 25.54 41.57 15.36

4;4;10 0.89 14.29 13.70 6.61 25.32 41.31 14.45

4;3;10 0.89 13.43 15.20 6.61 24.32 42.00 13.98

3;4;10 0.89 14.02 17.79 6.60 24.99 42.08 12.84

3;3;10 0.89 14.10 19.18 6.60 25.14 42.50 12.42

6;4;11 0.90 13.69 8.46 6.62 24.94 40.68 16.75

6;3;11 0.90 13.80 10.12 6.63 25.14 41.39 16.36

5;4;11 0.89 13.43 10.63 6.62 24.63 40.91 15.80

5;3;11 0.89 13.65 11.95 6.61 25.00 41.22 15.41

4;4;11 0.89 13.85 13.76 6.61 25.25 41.47 14.67

4;3;11 0.89 13.58 15.48 6.61 24.85 42.28 14.18

3;4;11 0.89 14.03 17.71 6.61 25.36 42.05 13.02

3;3;11 0.89 14.01 19.25 6.60 25.33 42.70 12.60

6;4;12 0.90 13.34 8.60 6.63 24.91 41.01 17.00

6;3;12 0.90 13.31 9.84 6.62 24.86 41.11 16.47

5;4;12 0.90 13.58 10.84 6.62 25.17 41.12 16.03

5;3;12 0.90 13.32 12.18 6.62 24.86 41.67 15.60

4;4;12 0.89 13.38 13.70 6.61 24.88 41.44 14.74

4;3;12 0.89 13.11 15.00 6.61 24.72 41.71 14.34

3;4;12 0.89 13.27 17.60 6.61 24.87 41.86 13.14

3;3;12 0.89 13.10 18.96 6.60 24.60 42.29 12.66

(a) Results Experiment 4b: Baseline Simulation
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Pipeline Threshold Lead Time (min) Queueing Time (min) Conveyor Duration

[Workstations, F5, Out3] Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

6;4;10 0.90 14.30 8.69 6.63 25.36 40.82 16.62

6;3;10 0.90 14.01 9.96 6.63 25.04 41.18 16.18

5;4;10 0.90 14.05 10.59 6.62 25.03 40.64 15.62

5;3;10 0.90 13.84 12.04 6.62 24.79 41.49 15.25

4;4;10 0.90 13.92 13.81 6.62 24.87 41.42 14.40

4;3;10 0.89 13.89 15.06 6.61 24.86 41.67 13.97

3;4;10 0.89 14.18 17.90 6.60 25.19 42.28 12.87

3;3;10 0.90 14.07 18.96 6.61 25.05 42.29 12.38

6;4;11 0.90 13.50 8.62 6.63 24.78 40.96 16.82

6;3;11 0.90 13.78 10.06 6.62 25.13 41.09 16.27

5;4;11 0.90 13.83 10.78 6.62 25.09 41.18 15.86

5;3;11 0.90 13.62 12.13 6.62 24.89 41.66 15.46

4;4;11 0.90 13.74 13.74 6.62 25.04 41.51 14.63

4;3;11 0.89 13.47 15.11 6.62 24.75 41.90 14.18

3;4;11 0.89 13.69 17.72 6.61 24.97 41.87 12.96

3;3;11 0.89 13.62 19.32 6.61 24.87 42.80 12.57

6;4;12 0.90 13.40 8.61 6.64 24.97 40.88 16.95

6;3;12 0.91 13.63 10.22 6.64 25.16 41.61 16.52

5;4;12 0.90 13.33 10.92 6.62 24.86 41.06 15.93

5;3;12 0.90 12.86 12.25 6.63 24.41 41.75 15.60

4;4;12 0.90 13.12 13.90 6.62 24.68 41.59 14.75

4;3;12 0.89 13.47 15.33 6.62 25.02 42.12 14.32

3;4;12 0.90 13.14 17.83 6.61 24.68 42.23 13.16

3;3;12 0.89 13.00 19.19 6.61 24.50 42.68 12.70

(b) Results Experiment 4b: FCFS Simulation
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Pipeline Threshold Lead Time (min) Queueing Time (min) Conveyor Duration

[Workstations, F5, Out3] Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

6;4;10 0.90 14.28 8.59 6.63 25.33 40.79 16.65

6;3;10 0.90 14.28 10.19 6.63 25.29 41.46 16.17

5;4;10 0.90 14.21 10.67 6.62 25.20 40.79 15.64

5;3;10 0.90 14.29 11.90 6.62 25.34 41.07 15.22

4;4;10 0.90 14.51 13.78 6.62 25.56 41.32 14.43

4;3;10 0.90 14.11 15.14 6.62 25.09 41.94 14.03

3;4;10 0.89 14.19 17.97 6.60 25.18 42.37 12.87

3;3;10 0.89 14.31 18.95 6.60 25.38 42.23 12.42

6;4;11 0.90 13.65 8.58 6.63 24.88 40.87 16.77

6;3;11 0.90 13.64 10.16 6.63 24.91 41.43 16.31

5;4;11 0.90 13.83 10.59 6.62 25.14 40.84 15.85

5;3;11 0.90 13.94 12.10 6.62 25.30 41.49 15.47

4;4;11 0.90 13.92 13.63 6.61 25.24 41.16 14.59

4;3;11 0.90 13.76 15.12 6.62 25.09 41.81 14.18

3;4;11 0.90 13.75 17.67 6.62 24.97 41.92 12.94

3;3;11 0.90 13.76 19.06 6.61 25.00 42.33 12.52

6;4;12 0.90 13.62 8.55 6.63 25.28 40.77 16.97

6;3;12 0.91 13.59 9.82 6.64 25.19 41.09 16.49

5;4;12 0.90 13.47 10.65 6.63 25.05 40.82 15.96

5;3;12 0.90 13.33 12.13 6.64 24.91 41.50 15.56

4;4;12 0.90 13.44 13.76 6.63 25.13 41.36 14.80

4;3;12 0.90 13.75 15.20 6.62 25.46 42.03 14.42

3;4;12 0.90 13.36 17.87 6.61 24.95 42.32 13.19

3;3;12 0.90 13.49 19.19 6.61 24.98 42.73 12.71

(c) Results Experiment 4b: R1 Simulation

Table K.6: Results Experiment 4b: Comparison of Queuing and Movement Performance Metrics Under Different Pipeline Threshold Configurations
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Pipeline Threshold On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

[Out1,Out2, Out3] Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

7;9;24 92.99% 81.33% 10.65 1.98 0.59 0.05 2.62 0.52

7;10;24 92.71% 81.42% 13.34 1.98 0.71 0.05 2.84 0.57

7;11;24 93.04% 80.87% 11.50 2.05 0.64 0.05 2.83 0.52

7;9;25 92.50% 81.24% 11.92 2.04 0.62 0.05 2.70 0.56

7;10;25 92.82% 81.15% 11.80 2.00 0.64 0.05 2.70 0.56

7;11;25 93.12% 81.47% 11.31 1.96 0.64 0.05 2.58 0.56

7;9;26 92.40% 80.97% 12.24 2.04 0.63 0.05 2.64 0.57

7;10;26 93.07% 81.16% 11.78 2.03 0.66 0.05 2.65 0.56

7;11;26 92.73% 80.95% 11.73 2.01 0.63 0.05 2.69 0.56

7;9;27 92.97% 81.17% 11.48 2.02 0.63 0.05 2.79 0.56

7;10;27 93.03% 81.32% 12.09 2.00 0.67 0.05 2.79 0.54

7;11;27 92.71% 81.20% 12.12 2.00 0.65 0.05 2.60 0.52

7;9;28 92.87% 81.48% 11.62 1.98 0.64 0.05 2.82 0.56

7;10;28 92.85% 81.36% 13.55 2.02 0.74 0.05 3.01 0.50

7;11;28 93.04% 81.38% 11.06 1.95 0.62 0.04 2.58 0.53

(a) Results Experiment 4c: Baseline Simulation
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Pipeline Threshold On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

[Out1,Out2, Out3] Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

8;9;24 92.50% 80.95% 11.99 2.04 0.62 0.05 2.70 0.56

8;10;24 92.84% 80.95% 12.62 2.03 0.69 0.05 3.23 0.51

8;11;24 93.06% 81.60% 11.57 1.97 0.65 0.05 2.80 0.57

8;9;25 92.97% 81.46% 10.95 1.99 0.61 0.05 2.70 0.56

8;10;25 92.87% 81.09% 11.50 1.99 0.63 0.04 2.52 0.54

8;11;25 93.01% 81.58% 11.62 1.95 0.65 0.05 2.90 0.54

8;9;26 92.48% 81.37% 13.05 1.98 0.67 0.05 2.86 0.56

8;10;26 92.57% 81.10% 11.96 2.00 0.63 0.05 2.80 0.56

8;11;26 92.81% 81.24% 11.21 2.00 0.61 0.05 2.71 0.56

8;9;27 92.79% 81.50% 11.86 1.99 0.64 0.05 2.90 0.55

8;10;27 92.70% 80.90% 11.81 2.04 0.63 0.05 2.88 0.57

8;11;27 92.68% 81.14% 11.04 1.98 0.59 0.04 2.91 0.57

(b) Results Experiment 4c: Baseline Simulation (continued)
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Pipeline Threshold On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

[Out1,Out2, Out3] Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

7;9;24 93.01% 81.33% 12.27 2.01 0.68 0.05 2.64 0.46

7;10;24 92.57% 81.42% 12.23 2.02 0.64 0.05 2.63 0.53

7;11;24 93.04% 81.35% 11.90 2.00 0.67 0.05 2.59 0.53

7;9;25 92.95% 81.76% 11.82 1.95 0.65 0.05 2.50 0.51

7;10;25 92.91% 81.88% 12.07 1.93 0.66 0.05 2.71 0.52

7;11;25 93.18% 81.52% 11.57 2.02 0.66 0.05 2.65 0.56

7;9;26 92.73% 80.50% 12.21 2.09 0.65 0.05 2.49 0.52

7;10;26 93.13% 81.60% 11.88 1.98 0.67 0.05 2.87 0.54

7;11;26 92.59% 81.56% 11.48 2.01 0.60 0.05 2.66 0.56

7;9;27 92.91% 80.94% 11.18 2.06 0.61 0.05 2.48 0.55

7;10;27 92.90% 81.20% 11.51 2.03 0.63 0.05 2.56 0.52

7;11;27 92.83% 81.71% 12.15 1.99 0.66 0.05 2.70 0.57

7;9;28 92.96% 80.89% 11.83 2.01 0.65 0.05 2.48 0.49

7;10;28 92.96% 81.65% 11.15 2.02 0.62 0.05 2.44 0.56

7;11;28 93.07% 81.26% 10.88 2.03 0.61 0.05 2.60 0.52

(c) Results Experiment 4c: FCFS Simulation
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Pipeline Threshold On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

[Out1,Out2, Out3] Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

8;9;24 92.79% 81.28% 11.97 2.04 0.65 0.05 2.64 0.53

8;10;24 92.73% 81.33% 13.19 1.99 0.70 0.05 2.77 0.52

8;11;24 92.90% 81.42% 12.57 2.01 0.69 0.05 2.59 0.55

8;9;25 92.91% 81.22% 12.02 2.02 0.66 0.05 2.57 0.52

8;10;25 92.90% 81.14% 11.90 2.01 0.66 0.05 2.61 0.52

8;11;25 92.83% 81.73% 11.89 2.02 0.64 0.05 2.64 0.56

8;9;26 92.68% 81.62% 11.67 2.05 0.62 0.05 2.69 0.56

8;10;26 93.20% 81.62% 10.29 2.03 0.59 0.05 2.38 0.56

8;11;26 93.09% 81.25% 11.56 2.05 0.65 0.05 2.53 0.53

8;9;27 92.69% 81.30% 12.59 2.04 0.67 0.05 2.75 0.56

8;10;27 92.84% 81.33% 11.64 2.05 0.63 0.05 2.42 0.55

8;11;27 92.67% 81.36% 12.58 2.01 0.67 0.05 2.60 0.56

(d) Results Experiment 4c: FCFS Simulation (continued)
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Pipeline Threshold On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

[Out1,Out2, Out3] Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

7;9;24 93.27% 81.00% 12.43 1.97 0.72 0.04 4.29 0.57

7;10;24 93.27% 81.39% 12.40 1.99 0.72 0.05 4.36 0.54

7;11;24 93.53% 81.32% 11.30 2.02 0.68 0.05 4.00 0.57

7;9;25 93.44% 81.50% 11.18 2.00 0.66 0.05 4.16 0.56

7;10;25 93.54% 81.54% 11.72 1.96 0.71 0.05 4.33 0.56

7;11;25 93.62% 81.12% 11.10 2.03 0.67 0.05 4.21 0.52

7;9;26 93.53% 81.37% 11.11 2.02 0.67 0.05 4.14 0.56

7;10;26 92.87% 81.26% 13.48 2.02 0.74 0.05 4.63 0.56

7;11;26 93.40% 81.53% 12.28 2.00 0.73 0.05 4.38 0.56

7;9;27 93.44% 81.34% 11.08 2.04 0.66 0.05 4.01 0.57

7;10;27 92.95% 81.09% 12.83 2.03 0.71 0.05 4.48 0.57

7;11;27 93.62% 81.64% 11.42 2.00 0.69 0.05 4.08 0.52

7;9;28 93.52% 81.25% 10.54 2.02 0.63 0.05 4.01 0.56

7;10;28 93.24% 80.87% 12.40 2.03 0.71 0.05 4.45 0.56

7;11;28 93.42% 81.20% 12.28 1.99 0.73 0.05 4.38 0.52

(e) Results Experiment 4c: R1 Simulation
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Pipeline Threshold On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

[Out1,Out2, Out3] Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

8;9;24 92.95% 81.07% 11.88 2.06 0.66 0.05 4.19 0.52

8;10;24 93.23% 81.24% 12.99 1.98 0.75 0.05 4.66 0.53

8;11;24 92.90% 81.47% 13.54 1.99 0.74 0.05 4.60 0.56

8;9;25 93.37% 81.38% 11.44 2.02 0.67 0.05 4.17 0.56

8;10;25 93.32% 81.17% 12.46 2.02 0.73 0.05 4.23 0.57

8;11;25 93.01% 81.20% 12.29 2.06 0.68 0.05 4.42 0.57

8;9;26 93.17% 81.61% 12.31 1.97 0.70 0.05 4.50 0.56

8;10;26 93.29% 81.26% 12.68 2.01 0.73 0.05 4.37 0.53

8;11;26 93.11% 81.11% 13.55 2.02 0.76 0.05 4.68 0.58

8;9;27 93.16% 81.48% 12.10 1.99 0.69 0.05 4.37 0.56

8;10;27 93.09% 81.09% 13.14 2.05 0.74 0.05 4.64 0.56

8;11;27 93.33% 81.53% 11.92 1.96 0.70 0.05 4.33 0.56

(f) Results Experiment 4c: R1 Simulation (continued)

Table K.7: Results Experiment 4c: Comparison of Tardiness and On-Time Delivery Performance Metrics Under Different Pipeline Threshold Con-
figurations
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Pipeline Threshold Lead Time (min) Queueing Time (min) Conveyor Duration

[Out1,Out2, Out3] Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

7;9;24 0.92 9.15 6.27 6.71 24.02 40.53 19.65

7;10;24 0.92 9.50 6.32 6.72 24.52 40.88 19.84

7;11;24 0.92 8.86 6.30 6.72 23.93 40.75 19.82

7;9;25 0.92 9.39 6.28 6.73 24.43 40.74 19.81

7;10;25 0.92 9.06 6.30 6.72 24.07 40.62 19.73

7;11;25 0.92 8.78 6.25 6.73 24.02 40.62 19.88

7;9;26 0.92 9.36 6.19 6.72 24.41 40.57 19.78

7;10;26 0.92 8.89 6.38 6.72 23.99 40.95 19.87

7;11;26 0.93 8.82 6.29 6.74 24.11 40.63 19.89

7;9;27 0.92 9.03 6.17 6.73 24.08 40.31 19.69

7;10;27 0.93 8.95 6.30 6.74 24.06 40.68 19.82

7;11;27 0.93 8.78 6.24 6.75 24.34 40.63 20.05

7;9;28 0.92 9.09 6.16 6.74 24.24 40.47 19.81

7;10;28 0.92 9.27 6.29 6.74 24.51 40.61 19.86

7;11;28 0.93 8.51 6.32 6.75 24.07 40.83 20.09

(a) Results Experiment 4c: Baseline Simulation
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Pipeline Threshold Lead Time (min) Queueing Time (min) Conveyor Duration

[Out1,Out2, Out3] Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

8;9;24 0.92 9.11 6.24 6.71 24.12 40.31 19.64

8;10;24 0.92 8.99 6.18 6.73 24.29 40.34 19.83

8;11;24 0.92 8.62 6.13 6.73 24.04 40.47 19.95

8;9;25 0.92 8.80 6.23 6.73 23.93 40.47 19.76

8;10;25 0.92 8.73 6.16 6.72 24.05 40.45 19.88

8;11;25 0.92 8.53 6.21 6.73 24.13 40.50 20.02

8;9;26 0.92 9.17 6.24 6.73 24.37 40.62 19.86

8;10;26 0.92 8.87 6.24 6.73 24.37 40.57 20.00

8;11;26 0.93 8.42 6.17 6.75 24.14 40.57 20.13

8;9;27 0.92 8.86 6.25 6.74 24.23 40.53 19.90

8;10;27 0.93 8.73 6.16 6.74 24.34 40.50 20.05

8;11;27 0.93 8.31 6.19 6.75 24.06 40.49 20.11

8;9;28 0.92 9.17 6.23 6.75 24.55 40.39 19.87

8;10;28 0.93 8.35 6.24 6.74 23.79 40.71 20.02

8;11;28 0.93 8.55 6.28 6.75 24.35 40.60 20.15

(b) Results Experiment 4c: Baseline Simulation (continued)
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Pipeline Threshold Lead Time (min) Queueing Time (min) Conveyor Duration

[Out1,Out2, Out3] Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

7;9;24 0.93 9.37 6.22 6.72 24.21 40.58 19.66

7;10;24 0.92 9.30 6.31 6.73 24.49 40.69 19.85

7;11;24 0.92 8.87 6.33 6.73 24.13 40.83 19.93

7;9;25 0.93 9.15 6.29 6.73 23.99 40.74 19.68

7;10;25 0.93 9.11 6.43 6.74 24.16 40.86 19.79

7;11;25 0.93 8.76 6.27 6.74 24.01 40.60 19.86

7;9;26 0.93 9.38 6.32 6.75 24.41 40.70 19.76

7;10;26 0.93 8.91 6.36 6.75 24.05 40.67 19.80

7;11;26 0.93 8.74 6.35 6.74 24.17 40.94 20.06

7;9;27 0.93 8.99 6.34 6.74 23.93 40.59 19.66

7;10;27 0.93 8.87 6.35 6.75 24.07 40.66 19.83

7;11;27 0.93 8.82 6.37 6.76 24.30 40.83 20.03

7;9;28 0.93 9.04 6.29 6.76 24.25 40.63 19.84

7;10;28 0.93 8.70 6.31 6.75 23.95 40.59 19.86

7;11;28 0.93 8.51 6.29 6.76 23.94 40.77 20.01

(c) Results Experiment 4c: FCFS Simulation
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Pipeline Threshold Lead Time (min) Queueing Time (min) Conveyor Duration

[Out1,Out2, Out3] Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

8;9;24 0.93 9.08 6.24 6.73 24.24 40.57 19.83

8;10;24 0.93 9.13 6.30 6.73 24.40 40.63 19.87

8;11;24 0.93 8.69 6.37 6.74 24.15 40.82 20.03

8;9;25 0.92 8.96 6.26 6.73 24.25 40.56 19.87

8;10;25 0.93 8.75 6.43 6.74 24.13 40.93 20.00

8;11;25 0.93 8.63 6.40 6.75 24.22 41.05 20.17

8;9;26 0.93 8.95 6.42 6.74 24.42 40.90 20.03

8;10;26 0.93 8.29 6.38 6.74 23.62 40.86 19.96

8;11;26 0.93 8.41 6.47 6.75 23.97 40.89 20.06

8;9;27 0.93 9.01 6.41 6.75 24.61 40.77 20.06

8;10;27 0.93 8.57 6.36 6.75 24.12 40.62 19.99

8;11;27 0.93 8.56 6.35 6.76 24.37 40.89 20.24

8;9;28 0.93 8.89 6.37 6.76 24.48 40.89 20.11

8;10;28 0.94 8.55 6.40 6.77 24.25 40.66 20.08

8;11;28 0.93 8.35 6.53 6.76 24.17 41.21 20.32

(d) Results Experiment 4c: FCFS Simulation (continued)
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Pipeline Threshold Lead Time (min) Queueing Time (min) Conveyor Duration

[Out1,Out2, Out3] Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

7;9;24 0.92 9.32 6.21 6.71 24.00 40.58 19.58

7;10;24 0.92 9.10 6.37 6.72 24.13 40.97 19.84

7;11;24 0.92 8.72 6.32 6.73 23.89 40.67 19.85

7;9;25 0.93 8.98 6.29 6.73 23.83 40.68 19.68

7;10;25 0.92 8.82 6.26 6.72 23.84 40.48 19.71

7;11;25 0.92 8.47 6.30 6.73 23.54 40.51 19.73

7;9;26 0.92 8.83 6.27 6.72 23.72 40.67 19.69

7;10;26 0.92 9.22 6.41 6.72 24.41 40.72 19.83

7;11;26 0.93 8.74 6.37 6.73 24.01 40.71 19.88

7;9;27 0.92 8.77 6.26 6.73 23.71 40.52 19.67

7;10;27 0.93 9.09 6.43 6.74 24.31 41.00 19.95

7;11;27 0.92 8.43 6.37 6.74 23.80 40.83 19.97

7;9;28 0.92 8.53 6.31 6.74 23.52 40.64 19.72

7;10;28 0.93 8.97 6.37 6.74 24.20 40.81 19.90

7;11;28 0.93 8.64 6.32 6.75 24.05 40.85 20.02

(e) Results Experiment 4c: R1 Simulation
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Pipeline Threshold Lead Time (min) Queueing Time (min) Conveyor Duration

[Out1,Out2, Out3] Inbound Full Outbound Workstation Inbound Full Outbound Workstation Full Outbound

8;9;24 0.92 9.04 6.23 6.71 24.15 40.62 19.83

8;10;24 0.92 8.98 6.23 6.72 24.32 40.46 19.86

8;11;24 0.93 8.88 6.35 6.73 24.47 40.85 20.10

8;9;25 0.92 8.74 6.31 6.73 23.99 40.67 19.89

8;10;25 0.93 8.80 6.25 6.73 24.18 40.65 19.96

8;11;25 0.93 8.58 6.43 6.74 24.18 40.68 20.02

8;9;26 0.92 8.91 6.19 6.73 24.15 40.33 19.79

8;10;26 0.92 8.78 6.33 6.73 24.25 40.64 19.97

8;11;26 0.92 8.75 6.35 6.74 24.47 40.88 20.18

8;9;27 0.92 8.85 6.24 6.73 24.11 40.55 19.86

8;10;27 0.93 8.85 6.22 6.74 24.38 40.34 19.93

8;11;27 0.93 8.36 6.26 6.74 24.04 40.55 20.06

8;9;28 0.93 8.94 6.29 6.74 24.27 40.58 19.88

8;10;28 0.93 8.56 6.25 6.74 24.01 40.29 19.87

8;11;28 0.93 8.37 6.24 6.75 24.24 40.63 20.22

(f) Results Experiment 4c: R1 Simulation (continued)

Table K.8: Results Experiment 4c: Comparison of Queuing and Movement Performance Metrics Under Different Pipeline Threshold Configurations
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Demand ∆ On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

Pipeline Threshold Configurations: [3, 7, 10]

5% 90.23% 82.15% 25.88 1.99 0.95 0.04 3.83 0.57

10% 89.57% 81.56% 29.82 2.18 0.98 0.04 4.05 0.55

15% 89.78% 81.65% 31.90 2.26 1.00 0.05 3.82 0.57

20% 89.32% 81.63% 35.89 2.39 0.97 0.05 4.20 0.56

25% 89.04% 81.37% 35.39 2.55 0.94 0.05 4.18 0.60

30% 88.79% 82.14% 39.03 2.58 0.99 0.04 4.45 0.60

Pipeline Threshold Configurations: [5, 7, 11]

5% 92.08% 82.06% 15.59 2.01 0.70 0.05 2.90 0.57

10% 91.27% 81.89% 18.76 2.19 0.74 0.05 2.80 0.56

15% 91.07% 81.58% 21.76 2.25 0.78 0.04 2.91 0.58

20% 91.02% 81.76% 23.72 2.36 0.76 0.04 3.09 0.56

25% 90.81% 81.61% 22.18 2.51 0.70 0.04 2.98 0.60

30% 90.40% 82.30% 26.52 2.56 0.78 0.04 3.10 0.60

Pipeline Threshold Configurations: [7, 11, 27]

5% 92.15% 81.79% 15.83 2.05 0.72 0.05 2.88 0.56

10% 91.58% 81.45% 16.78 2.25 0.68 0.05 2.64 0.59

15% 91.82% 80.94% 18.48 2.45 0.72 0.05 2.58 0.58

20% 91.83% 80.92% 19.92 2.61 0.70 0.05 2.70 0.57

25% 91.15% 80.87% 21.58 2.72 0.71 0.05 2.95 0.59

30% 90.73% 82.04% 24.58 2.76 0.75 0.05 3.03 0.60

(a) Results Experiment 5: Baseline Simulation
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Demand ∆ On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

Pipeline Threshold Configurations: [3, 7, 10]

5% 90.13% 81.65% 25.63 2.00 0.93 0.04 3.80 0.53

10% 89.75% 82.31% 27.76 2.18 0.93 0.05 3.83 0.59

15% 89.88% 81.31% 32.17 2.38 1.02 0.05 4.09 0.56

20% 89.54% 81.64% 34.69 2.42 0.96 0.05 4.06 0.57

25% 89.29% 81.23% 34.57 2.58 0.94 0.05 4.13 0.60

30% 88.79% 82.55% 39.03 2.52 0.99 0.04 4.60 0.59

Pipeline Threshold Configurations: [5, 7, 11]

5% 91.81% 82.02% 15.46 2.01 0.68 0.05 2.60 0.57

10% 91.41% 82.41% 18.77 2.10 0.75 0.05 2.71 0.54

15% 91.10% 81.77% 20.88 2.30 0.75 0.05 2.55 0.57

20% 90.83% 81.43% 23.99 2.49 0.75 0.05 2.86 0.58

25% 90.82% 81.22% 23.47 2.54 0.74 0.04 3.07 0.59

30% 90.25% 82.47% 29.28 2.55 0.85 0.04 3.00 0.61

Pipeline Threshold Configurations: [7, 11, 27]

5% 92.26% 81.74% 13.06 2.07 0.60 0.05 2.35 0.54

10% 91.86% 81.68% 17.11 2.21 0.72 0.05 2.68 0.55

15% 91.72% 81.10% 18.48 2.41 0.71 0.05 2.73 0.58

20% 91.80% 81.52% 19.93 2.54 0.70 0.05 2.73 0.55

25% 91.32% 81.45% 21.82 2.68 0.73 0.05 2.86 0.61

30% 91.36% 81.81% 21.24 2.77 0.70 0.05 2.62 0.60

(b) Results Experiment 5: FCFS Simulation
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Demand ∆ On-Time Delivery Percentage Average Daily Tardiness (h) Average Pallet Tardiness (h) Maximum Pallet Tardiness (h)

Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation Full Outbound Workstation

Pipeline Threshold Configurations: [3, 7, 10]

5% 90.54% 81.74% 26.82 2.06 1.02 0.05 6.81 0.57

10% 90.03% 81.96% 28.54 2.12 0.98 0.04 6.44 0.58

15% 89.80% 81.52% 32.16 2.32 1.01 0.05 6.98 0.57

20% 89.43% 81.82% 37.15 2.41 1.01 0.05 7.21 0.56

25% 89.20% 81.56% 36.90 2.49 1.00 0.04 7.00 0.59

30% 88.99% 82.39% 39.40 2.62 1.01 0.05 6.98 0.60

Pipeline Threshold Configurations: [5, 7, 11]

5% 91.98% 81.86% 17.34 2.02 0.77 0.04 4.76 0.56

10% 91.19% 81.90% 20.05 2.18 0.78 0.05 4.42 0.59

15% 91.30% 81.52% 21.65 2.28 0.80 0.05 4.87 0.55

20% 90.94% 81.47% 25.20 2.47 0.80 0.05 4.89 0.57

25% 91.23% 81.26% 23.78 2.53 0.79 0.04 5.00 0.59

30% 90.56% 82.17% 27.26 2.67 0.82 0.05 4.73 0.60

Pipeline Threshold Configurations: [7, 11, 27]

5% 92.61% 82.39% 16.03 1.94 0.77 0.04 4.52 0.56

10% 91.91% 82.25% 17.52 2.15 0.74 0.05 4.52 0.60

15% 91.96% 81.13% 19.68 2.36 0.78 0.05 4.39 0.56

20% 91.95% 81.21% 21.27 2.60 0.76 0.05 4.62 0.57

25% 91.72% 81.13% 22.09 2.71 0.78 0.05 4.79 0.59

30% 91.38% 81.56% 24.77 2.82 0.82 0.05 5.08 0.61

(c) Results Experiment 5: R1 Simulation

Table K.9: Results Experiment 5: Comparison of Tardiness and On-Time Delivery Performance Metrics Under Different Demand Patterns and
Pipeline Threshold Configurations
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Demand ∆ Lead Time (min) Queueing Time (min) Conveyor Duration (min)

Full Outbound Workstation Inbound Full Outbound Workstation Inbound Full Outbound

Pipeline Threshold Configurations: [3, 7, 10]

0% 27.77 40.51 6.62 17.24 6.15 0.90 17.40

5% 28.77 41.29 6.66 17.90 6.48 0.92 17.66

10% 29.53 41.92 6.71 18.69 6.93 0.94 17.82

15% 29.97 42.64 6.84 18.88 7.37 0.96 17.99

20% 30.64 43.89 6.95 19.38 7.89 0.98 18.18

25% 30.57 45.01 7.03 19.26 8.70 1.00 18.62

Pipeline Threshold Configurations: [5, 7, 11]

0% 24.72 40.26 6.67 13.49 6.19 0.90 17.67

5% 25.58 41.58 6.67 14.13 6.57 0.92 18.02

10% 26.54 42.30 6.72 14.91 6.94 0.94 18.37

15% 27.33 42.95 6.85 15.46 7.52 0.96 18.46

20% 27.60 43.84 6.96 15.66 8.00 0.98 18.48

25% 27.42 45.74 7.03 15.39 9.00 1.00 19.16

Pipeline Threshold Configurations: [7, 11, 27]

0% 24.34 40.63 6.75 8.78 6.24 0.93 20.05

5% 25.36 41.39 6.81 9.62 6.50 0.95 20.25

10% 25.59 42.05 6.86 9.71 6.94 0.97 20.52

15% 25.98 42.70 7.03 9.84 7.36 0.99 20.73

20% 26.47 43.56 7.13 10.10 7.75 1.01 20.90

25% 26.75 45.08 7.22 10.34 8.61 1.03 21.40

30% 27.17 47.72 7.32 10.68 10.12 1.04 22.10

(a) Results Experiment 5: Baseline Simulation
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Demand ∆ Lead Time (min) Queueing Time (min) Conveyor Duration (min)

Full Outbound Workstation Inbound Full Outbound Workstation Inbound Full Outbound

Pipeline Threshold Configurations: [3, 7, 10]

0% 27.62 40.61 6.62 17.17 6.38 0.90 17.30

5% 28.70 40.97 6.67 17.93 6.47 0.92 17.50

10% 29.23 42.47 6.72 18.41 7.14 0.94 17.94

15% 29.93 42.62 6.86 18.90 7.32 0.96 17.98

20% 30.35 44.00 6.96 19.13 7.91 0.99 18.19

25% 30.43 45.31 7.03 19.12 8.74 1.00 18.72

Pipeline Threshold Configurations: [5, 7, 11]

0% 24.77 40.61 6.68 13.46 6.28 0.90 17.79

5% 25.79 41.05 6.67 14.27 6.41 0.92 17.92

10% 26.39 42.43 6.72 14.91 7.04 0.94 18.29

15% 27.22 42.58 6.86 15.35 7.31 0.97 18.41

20% 27.58 43.30 6.97 15.75 7.75 0.99 18.33

25% 27.62 45.16 7.05 15.57 8.89 1.01 19.00

Pipeline Threshold Configurations: [7, 11, 27]

0% 24.30 40.83 6.76 8.82 6.37 0.93 20.03

5% 24.60 41.46 6.82 8.93 6.59 0.95 20.22

10% 25.61 42.33 6.89 9.74 7.06 0.98 20.58

15% 26.08 42.88 7.03 9.90 7.56 1.00 20.75

20% 26.47 43.35 7.14 10.06 8.15 1.02 21.07

25% 26.84 45.47 7.23 10.39 8.90 1.03 21.45

30% 27.17 47.35 7.32 10.27 9.94 1.05 22.03

(a) Results Experiment 5: FCFS Simulation
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Demand ∆ Lead Time (min) Queueing Time (min) Conveyor Duration (min)

Full Outbound Workstation Inbound Full Outbound Workstation Inbound Full Outbound

Pipeline Threshold Configurations: [3, 7, 10]

0% 27.66 40.48 6.62 17.24 6.25 0.90 17.30

5% 29.13 40.93 6.67 18.29 6.42 0.92 17.52

10% 29.41 42.48 6.73 18.51 7.08 0.95 17.99

15% 30.12 42.87 6.86 19.09 7.51 0.97 18.00

20% 30.91 44.02 6.96 19.63 7.93 0.99 18.21

25% 30.95 44.97 7.03 19.63 8.62 1.01 18.63

Pipeline Threshold Configurations: [5, 7, 11]

0% 24.87 40.74 6.66 13.63 6.40 0.90 17.76

5% 26.11 41.04 6.68 14.52 6.46 0.93 17.95

10% 26.85 42.44 6.73 15.21 7.15 0.94 18.35

15% 27.30 42.29 6.86 15.44 7.26 0.97 18.31

20% 27.92 44.14 6.98 15.92 8.25 0.99 18.54

25% 27.54 45.31 7.03 15.55 8.82 1.01 19.04

Pipeline Threshold Configurations: [7, 11, 27]

0% 23.80 40.83 6.74 8.43 6.37 0.92 19.97

5% 25.22 41.12 6.81 9.44 6.53 0.96 20.16

10% 25.64 42.67 6.88 9.69 7.22 0.98 20.67

15% 25.98 42.92 7.02 9.93 7.35 0.99 20.85

20% 26.47 43.93 7.14 10.06 8.04 1.01 20.96

25% 26.67 45.40 7.23 10.24 8.95 1.03 21.40

30% 27.17 47.71 7.32 10.68 10.12 1.04 22.10

(a) Results Experiment 5: R1 Simulation

Table K.12: Results Experiment 5: Comparison of Queuing and Movement Performance Metrics Under Different Demand Patterns and Pipeline
Threshold Configurations
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