

Abstract

Tabletop role-playing games often rely on human Game Masters to manage complex
narratives and mechanics, but with artificial intelligence, human game masters could
be helped and, in some cases, not even needed anymore.

This project explores how artificial intelligence can address these challenges by
automating game master responsibilities through a speech-to-speech conversational
system. Leveraging a large language model for narrative generation, combined with
speech recognition, text-to-speech, and a custom electronic 20-sided die.

We developed an artificial intelligence game master that is capable of real-time
interactions and has integrated dice throws through the electronic 20 sided die. In-
formed through iterative design and backed by a user experience study with a score
of 83 on the system usability scale, this prototype demonstrated strong engagement,
particularly for novice players.

This work underscores the potential of artificial intelligence to enhance table top
role playing and other board games through adaptive, immersive, and accessible game-
play.

Keywords: Artificial Intelligence, Tabletop RPG, Multi-modal Interaction, Embedded
Systems, Speech-to-Speech, Dungeons and Dragons

Acknowledgement

First and foremost, I would like to express my gratitude to my supervisor, Maro, and my
critical observer, Thérèse, for their guidance, support, and above all, the enthusiasm
they brought to this project. Their insights and encouragement have been instrumental
in shaping this work.

I would also like to extend my heartfelt thanks to my parents and brother for
their unwavering support, guidance, and the values they have instilled in me.
Thank you, Mom, Dad and Job.

Furthermore, I am sincerely grateful to the following individuals for their support,
feedback, and contributions throughout this journey: Thomas Rendon, Nina Kwaks,
Daisy Baars, Andres Mirabel, Maja Lamminga, Bart Oude Voshaar, Emma Sanders,
Onne Iping, Max Vroomans, Femke Stockmann, and Fee Wollseiffen. Your assistance,
encouragement, and belief in my work have been truly invaluable. ”It truly takes a
village.”

Finally, to everyone who has supported me, either directly -through for example
play testing- or indirectly, throughout this process, even if you are not mentioned by
name. I am grateful to you, thank you. This work would not have been possible without
you.

1

Contents

1 Introduction 4

2 Background Research 6
2.1 Multi-Modal Artificial Intelligence Systems 6

2.1.1 Artificial Intelligence (AI) . 6
2.1.2 Early and Late Fusion . 7
2.1.3 AI Modalities and State of the Art Implementations 7

2.2 Web technology and webdevelopment . 8
2.2.1 Website Development Stacks . 8

2.3 Tabletop Role-Playing Games . 9
2.4 AI in Games [22] . 10

2.4.1 What Roles Are AI Currently Fulfilling in Game Development and
Gameplay? . 10

2.4.2 How Does AI Impact the Player Experience and Engagement in
Games? . 11

2.4.3 What Are the Challenges Faced by Implementing AI Systems in
Games? . 12

3 The Design Process 14

4 Specification and Realization 17
4.1 Ideation . 17
4.2 Technology Driven Iterative Design: AI GM Iteration 1 17

4.2.1 Configure Design Criteria . 18
4.2.2 Identifying Similar Implementations 18
4.2.3 Discover how the Implementation is Made and Create a Similar

Implementation . 19
4.2.4 Evaluation . 20

4.3 Technology Driven Iterative Design: AI GM Iteration 2 22
4.3.1 Identifying Similar Implementations 22
4.3.2 Discover how the Implementation is Made 23
4.3.3 Creation of a Similar Implementation 23
4.3.4 Evaluation . 26

4.4 Technology Driven Iterative Design: Dice Iteration 1 27

2

4.4.1 Configuring Design Criteria . 28
4.4.2 Identifying Similar Implementations 29
4.4.3 Discover how the Implementation is Made and Create a Similar

Implementation . 29
4.4.4 Creation of a Similar Implementation 30
4.4.5 Evaluation . 32

4.5 Technology Driven Iterative Design: Dice Iteration 2 34

5 Final Realisation 37

6 User Experience Evaluation 39
6.1 Experimental-Setup . 39

6.1.1 Briefing . 39
6.1.2 Experiment . 41
6.1.3 Questionnaire and data collection 42

6.2 Results . 43
6.2.1 Expert Interviews . 45

7 Discussion 48

8 Conclusion 50

Appendices 56

A AI-notice 57

B Consent Form 58

C Briefing 62

D Programs, Back-end 64

E Data from the Questionnaire 72

F Programs, Front-End 84

G Programs, Token Route 90

H Programs, D20 itself 91

I Programs, D20 base-station receiver 99

J Programs, D20 base-station sender to server 101

3

Chapter 1

Introduction

AI has become an ever-increasing part of people’s everyday lives. With the advent of
open-AI’s ChatGPT and similar services, there’s a large uptick in the number of available
services using artificial intelligence (AI). This increase in interest and the accessibility
of large AI models opens up new possibilities across different domains. One such do-
main is the gaming and entertainment industry. More specifically, tabletop role-playing
games (TTRPGs) such as Dungeons & Dragons might benefit from integrating AI. Usu-
ally the game is played with a group of players and a Game Master (GM). It’s the Game
Master’s duty to create and guide the story alongside their players, interpret dice rolls,
and know all the rules. With current AI technology, it should be possible to aid human
game masters, by allowing the AI to act as a game master, for testing out story ideas
or having the AI GM suggest alternative scenarios.

The role of Game Master is multifaceted. Game Masters need to be able to create
immersive and vast worlds with plenty of adventures, which means they need to spend
a significant amount of time preparing the game world, and they need a vast knowledge
of the game rules. The set of requirements are vast, and present for almost any tabletop
role-playing game that requires someone to be a game master. AI could be utilized to
help human GMs by acting as a GM itself to run scenarios by, to do test runs or to
suggest alternative scenarios. Not only that AI could also be utilised for players that
cannot find a human game master, making the game accessible to a broader audience.

With recent advancements in AI, it has become feasible to develop AI-based Game
Masters. By integrating speech-based interaction, to make communication feel more
natural with the AI, and AI-driven storytelling, an AI GM could assist human game
masters or even serve as a GM for the people that do not have access to one. However,
the effectiveness of such an AI-driven GM remains uncertain, particularly in terms of
how players perceive it.

A big element of what makes the TTPRG a game is the fact that you role dice as an
element of chance to make decision for your characters, to make the AI GM be able
to interpret these dice rolls a 20 sided electronic die is needed, which lets the AI GM
know what has been rolled.

Both requirements of the electronic D20 and the AI GM leads to the following ques-
tion: “How can speech-to-speech AI be used in conjunction with an electronic 20

4

sided dice to serve as a ’Game Master’ for tabletop role-playing games?”
To explore this, this research takes a user-centred approach, evaluating how players

interact and perceive an AI-based GM. The study focuses on UX and usability using the
System Usability Scale (SUS), User Engagement Scale (UES-sf), and qualitative met-
rics to evaluate the immersion of the system, aesthetic appeal, and overall usability.
Through iterative prototyping based on the latest state of accessible AI technologies,
this piece of literature describes the development and UX-based evaluation of an AI-
based GM in real gameplay scenarios. Thus, this thesis investigates the question:

Ultimately, our findings indicated that, it is feasible to create a functioning and
engaging AI GM. The participants found the AI GM highly usable, with SUS scores av-
eraging above 80 and strong engagement ratings from novice and experienced players.
This suggests that speech-to-speech AI can effectively handle much of the traditional
GM workload, though some limitations remain in handling complex rules due to halluci-
nations and ensuring consistent narrative depth. These findings demonstrate that the
AI-driven Game Master is a promising development for TTRPGs, offering an accessible,
immersive experience that could be an GM for people that cannot find a human one,
but there is some work still needed to achieve this.

Chapter 2 outlines, the background research on multi-modal AI systems, AI applica-
tions in gaming, and the technical foundations that enable an AI-driven Game Master.
Chapter 3 outlines our design process, detailing the technology-driven iterative ap-
proach used to develop the system. Presented in chapter 4 is, the specification and
realization of the AI-driven Game Master prototype. The specification and realisation
encompassing both hardware integration and software development for the electronic
D20 and the AI GM. In chapter 5, the final realization of the prototype is described. In
chapter 6 the AI GMs usability and player engagement is detailed through utilisation
of a user experience study. Chapter 7 discusses key findings, limitations, and potential
directions for future work. Finally, in chapter 8, a conclusion about the work is detailed.

Keywords: Artificial Intelligence, Game Master, TableTop RPG, procedural storytelling,
AI-driven narratives, procedurally generated content, interactive storytelling, gaming.

5

Chapter 2

Background Research

Following the ideas introduced in chapter 1, such as the AI GM, and the physical D20,
some relevant background information has been outlined in chapter 2. Things such as,
the basics of multi modal AI, the need for web interfaces to interact with them and the
core elements of TTRPGs are detailed within this chapter. This background knowledge
is necessary for understanding the design choices and technical challenges discussed
in later chapters.

2.1 Multi-Modal Artificial Intelligence Systems

Before multi-modal artificially intelligent systems can be explained, it should be noted
what artificial intelligence is.

2.1.1 Artificial Intelligence (AI)

Artificial intelligence, is a facet of computer science that focuses on making machines
simulate human intelligence [28]. Usually, simulating human intelligence by machines
is done through the usage of large language models (LLMs), which, when given a piece
of text, will create the words after that piece of text by evaluating which word is most
likely to follow. Finding which word should follow next, is done through the use of to-
kenisation, which is done by programs called tokenisers [19]. Tokenisers take the given
input, such as a piece of text or an image and then translate that given input into tokens.
The large language model is given these tokens and predicts the most likely next token.
These predictions are then de-tokenised and returned back into human understandable
output through the use of detokenisers [19].

A multi-modal AI system is when a suite of different AI systems or tokenisers are
combined to make it accept different kinds of inputs or provide different kinds of out-
puts [5, 21]. For example, combining a model that understands and creates text, to-
gether with amodel that understands what is in images, andmakes amodel out of it that
understands both images and text. A common example of such a model is OpenAI’s
chatGPT [9]. Many powerful AI systems exist: image generationmodels, intelligent text

6

models that can understand questions and partake in complex reasoning, and models
that turn speech into text and vice-versa. So, there are plenty of available models that
can be used for speech to text conversion, text to speech conversion and a plethora of
other applications, combining such models into a multi-modal conversational model.

2.1.2 Early and Late Fusion

Pereira et al [34], mention two methods to achieve multi modality when talking about
AI systems, “early fusion” and “late fusion”. In both of these two methods, the term
fusion refers to the end result being a combination of different in- or output modalities,
with the distinct difference between the two methods being whether the fusion happens
early or late in the combination process.

Early fusion is described as combining different features from all the modalities into
a single feature vector, in simpler terms, combining the tokenised version of different
input modalities into the same input [34, 20]. This combining, results in a unified input
that the AI understands and responds to. In contrast, late fusion refers to combining the
outputs of multiple separate models operating on their own modality after the models
are already done processing [34, 20].

2.1.3 AI Modalities and State of the Art Implementations

Currently, there are many popular AI implementations for different modalities,
One such implementation is for translating speech into text. which is done through

the utilisation of automatic speech recognition systems or, as it is also commonly re-
ferred to, speech-to-text (STT) models. STT systems translate speech into text, giving
computers a way to interpret humans’ most common form of communication [8]; STT
systems have historically had many of practical applications such as Voice assistants
like Amazon Alexa and Google Assistant, Tools for people with disabilities and live or
automated transcription services. Currently, these STT systems have found another
use-case in functioning as the additional input modality of AI large language models.
These examples illustrate that text-to-speech AI can utilised for translating audio into
words that computer programs can interpret.

Another implementation that has gained much interest from the general public re-
cently is the large language model (LLM). These models are specialised in processing
and understanding natural language in texts. More so, these models can understand,
generate and interact with texts in natural human language [50]. These abilities make it
so that LLMs lend themselves well to various applications, ranging from conversational
chat-bots to understanding and explaining university-level mathematics. LLMs have
become a central part of AI, so much so that the acronym AI has become synonymous
with mentioning large language models.

Another implementation that has seen considerable advancement similar to the re-
cent LLMs is the Text-To-Speech (TTS) model. These TTSmodels convert, as their name
might suggest, text into speech, which results in a more natural way for computers to

7

communicate with humans [8]. Many practical applications have already been found
for TTS, such as screen readers for visually impaired people and adding human-like
speech to virtual assistants [42].

Lastly, an AI modality that covers another big human sense is image generation
AI. Models like DALL-E, stable diffusion and mid-journey have re-established what an
image generation AI should be capable of. These AI have fundamentally transformed
the ability of AI to create images and visuals from text descriptions. These AI make
use of deep learning -a way to train AI- architectures known as Generative Adversarial
Networks (GANs) and Diffusion Models to create very detailed and accurate images
based on a text prompt [44].

These different AI modalities, and many more, represent powerful tools to make
computers able to help humans. Such tools cover more and more of the different as-
pects of human communication for natural language processing. LLMs excel at natural
language processing, speech-to-text AI helps computers interpret humans’ speech,
and text-to-speech allows the system to respond to natural human speech. Image gen-
eration, on the other hand can be utilised to help translate textual description to visuals,
which leads to the advent of human-like interfacing with computers [8].

2.2 Web technology and webdevelopment

Currently, much of our communication is done through the internet, more specifically
through websites. Adding to that, in the field of AI, many commercial products have
been made accessible through websites, for example large language models and image
generation AI can all be easily accessed through public websites. This abundance of
online access is why many resources for creating AI applications pertain to the integra-
tion of said applications into websites. Therefore, it is important that some concepts
surrounding web design are discussed before delving into the AI application, especially
since this application also utilizes a web interface.

2.2.1 Website Development Stacks

Web development stacks are groups of technology that are often visualised as a layered
hierarchy, which makes a certain website function. These stacks differ from website to
website. Often, a distinction is made somewhere within the stack between two parts of
the application, which is between the front-end component and the back-end compo-
nent [46].

The front-end is the client facing part of the application, to simplify: The front-end is
what the client sees, it encompasses everything from the lay-out, to the design, and the
interactive elements. All of these elements come from programmed rules defined in the
CSS, HTML and JavaScript, to enable developers to create more elaborate applications,
certain so called frameworks have been created and are often preferred over writing
plain JavaScript CSS and HTML. Popular front-end frameworks that are often used to

8

create dynamic layouts are:

1. React: Developed by Facebook, React is a JavaScript library for building user
interfaces. It allows developers to create reusable UI components and effectively
manage the application’s state [36].

2. Angular: Maintained by Google, Angular is a TypeScript-based framework for
building web applications. It offers a complete solution for developing single-
page applications with a robust set of features [3].

3. Vue.js: Vue.js is a progressive JavaScript framework that is approachable, versa-
tile, and performant. It is designed for building user interfaces and single-page
applications but has been expanded to be capable of much more [43].

The back-end is the server-side component of web development, which handles
everything that is needed to keep the application functional, for example, a webshop
needs to handle product inventory and pricing management, payment and more in the
back-end [47]. Traditionally, PHP was created to fulfil this role, but currently, many
popular back-end languages and frameworks exist, each having their own strengths
and specific implementations:

1. Node.js: An open-source, cross-platform JavaScript runtime environment that
executes JavaScript code outside a web browser. When combined with Express.js,
it allows for efficient server-side development [31].

2. Python: A programming languagemade to be readable and simple to understand,
Python is used with frameworks like Django and Flask to build secure and scalable
web applications [17].

(a) Django: A high-level Python Web framework that encourages rapid develop-
ment and clean, pragmatic design [14].

(b) Flask: A micro web framework for Python based on Werkzeug and Jinja2.
It’s lightweight and easy to get started with [45].

3. Ruby on Rails: A server-side web application framework written in Ruby. It fol-
lows the convention over configuration principle, providing a default structure for
databases, web services, and pages [38].

4. PHP: A widely-used open-source scripting language that is especially suited for
web development. Frameworks like Laravel provide expressive, elegant syntax to
ease common tasks [35].

2.3 Tabletop Role-Playing Games

Since the AI GM described in this thesis assumes the role of Game Master in Dungeons
& Dragons, some basic understanding of the TTRPG genre can be useful to provide ad-

9

ditional context on how such a system should function, as such TTRPGs and Dungeons
& Dragons

Tabletop role-playing games are a genre of games where players play as fictional
characters to create or re-enact fictional stories with the help of a set of rules. Un-
like board games, TTRPGs are open-ended stories that develop with the player’s input.
There are many TTRPGs, but one of the most notable examples would be Dungeons &
Dragons (DnD).

In DnD, like most TTRPGs, the game works through a series of interactions between
the players and a game master who, in the case of DnD, is sometimes also referred to
as the Dungeon Master. Players describe what they want their fictional characters to do.
The GM then dictates the result of their actions according to the rules of the game. The
results are often decided through a combination of the fictional characters’ traits, such
as their strength, intelligence, or constitution, and an element of chance. The element
of chance is often provided through dice rolling, making it so that even the strongest
characters can lose. To make the strongest characters lose, a GM can set a difficulty
class, which is a number between 0 and 20, after which the GM asks the player to throw
a 20-sided die, and if the player’s dice throw is higher than that DC they pass the DC
check, the player often also gets bonuses on their rolls depending on the strengths and
weaknesses of the character.

2.4 AI in Games [22]

Many different use cases for AI in games have been discussed in the academic litera-
ture, not much literature discusses the use of AI in TTRPGS particularly, but the things
discussed about AI in games is also relevant to AI in TTRPGs.

2.4.1 What Roles Are AI Currently Fulfilling in Game Development
and Gameplay?

According to Filipović [16], Artificial Intelligence (AI) plays an important role in improv-
ing the behaviour of non-player characters (NPCs). Filipović mentions that AI is utilized
to manage NPC behaviour, which results in engaging NPCs with distinct personalities.
Filipović did this by creating decision-making methods that allow NPCs to change their
actions based on what is happening in the game and how the user is responding to
the AI. Other than that, Karpouzis and Tsatiris [26] also wrote about the use of AI for
planning the NPC’s behaviour. In their version, content generation algorithms choose
NPC actions and dialogues based on digital personalities and the player’s behaviour.
These advancements make NPC interactions more personalized, improving the overall
gaming experience

Additionally, we can state that AI can improve the results of procedural content
generation (PCG). Lara-Cabrera et al. [27] discuss in their research how PCG can
generate game content such as levels, textures, and characters algorithmically, reducing

10

the need for someone to design all these assets manually. They also emphasize that
integrating AI techniques in these PCG algorithms not only improves the process of
creating these assets but also makes it possible to generate a more complex and bigger
variety of assets. This potential in reduction in work needed for a result aligns with the
findings of Karpouzis and Tsatiris [26]; they state that the resulting assets of these
PCG techniques that require minimal input and are widely used in the industry can be
adapted by AI based on the player’s behaviour and preferences, again making games
more personalized. Therefore, AI-enhanced PCG not only simplifies game development
but also helps players have a more personalized gaming experience.

In the same way, AI-driven narrative generation can also improve the depth and
interactivity of gaming narratives. An example showing this, is the work done by Buon-
giorno et al. [7], who developed the PANGeA model, which leverages generative AI to
create stories that change with the user’s input and remember their conversations. the
model by Buongiorno et al, uses a personality framework, which is similar to Karpouzis
and Tsatiris [26] attempt to give NPC’s personality. They use this framework to drive in-
game dialogue between players and NPCs. Beyond the creation of personalities for AI,
Karpouzis and Tsatiris [26] also discuss the success of narrative generation techniques
in role-playing games. They have found that generating adaptive narratives results in
longer-lasting gameplay and helps keep players motivated. Interestingly enough, Avin
et al. [4] have found a practical use for the narrative capabilities of AI, by utilising it to
simulate future scenarios.

Overall, AI stories could make games more engaging by offering players unique and
personalized stories.

2.4.2 How Does AI Impact the Player Experience and Engagement
in Games?

Artificial Intelligence (AI) enhances player immersion in video games by simulating
NPC’s and changing narratives. Research by Jiang [25] discusses how the simulation
of more realistic emotions in NPCs elicits stronger emotional responses from players,
which results in increased player engagement. The simulation of more realistic emo-
tions is also a topic present in research done by Fraser et al. [18]. They researched
the management of emotions in dialogue with spoken conversational AI. They showed
that processing the user’s emotions and having NPCs react to them leads to more re-
alistic interactions with NPCs and increases user engagement. An increase in user
engagement by utilising AI based NPC is a topic in research done by Hernandez et
al. [23]. They focused on creating AI experience managers in interactive storytelling.
Their managers guided players through “emotional trajectories” by adapting the story
based on player decisions. These studies demonstrate that emotionally responsive AI
systems can significantly increase player immersion and satisfaction.

Artificial Intelligence (AI) plays an important role in improving the behaviour of
non-player characters (NPCs). In the research done by Filipović [16], AI is utilized
to manage NPC behaviour, which results in engaging NPCs with distinct personalities.

11

They did this by creating decision-making methods that allow NPCs to change their
actions based on what is happening in the game and how the user is responding to
the AI. Other than that, Karpouzis and Tsatiris [26] also wrote about the use of AI for
planning the NPC’s behaviour. In their version, content generation algorithms choose
NPC actions and dialogues based on digital personalities and the player’s behaviour.

Therefore, AI’s role in personalising NPC behaviour could improve game mechanics
and, in turn, could improve player engagement.

2.4.3 What Are the Challenges Faced by Implementing AI Sys-
tems in Games?

One major challenge faced when implementing AI systems in games is that when im-
plementing AI in PCG, the generation process can become really complex. Karpouzis
and Tsatiris [26] highlight that procedural content generation (PCG) algorithms must
be very intricate to make sure that generated content is meaningful and not too com-
plex. The PCG must be able to change according to many different player behaviors
and preferences, this requirement for robustness leads to an increase in complexity.
De Lima et al. [13] further elaborate that narrative generation needs complex natural
language processing to create coherent and relevant narratives, and it needs to do this
while keeping players engaged, leading to a complex web of requirements. Therefore,
the complexity that is part of AI-driven content generation creates significant develop-
ment and computational challenges.

Another key challenge involves making the NPC act more human-like. Lara-Cabrera
et al. [27] discuss how NPCs need to mimic human decision-making and emotional
responses to make the games more engaging. They faced difficulties making sure that
these NPCs could adapt to different game environments without re-training NPCs for
their specific tasks. A potential solution was proposed as part of the PANGeA framework
by Buongiorno et al. [7]. They use the Big Five Personality model to give NPCs unique
characteristics.

Although the results where impressive it is apparent that it takes much effort to get
engaging results. Consequently, creating engaging NPCs that respond naturally is still
a big challenge in-game AI development.

Decision-making under uncertainty still is a big barrier to implementing good AI in
games. Yin et al. [49] point out that AI in games often have to deal with information
that is far from perfect, which leads to AI having to make split second decisions in un-
predictable environments. This challenge becomes more apparent in complex games
where there is many things happening concurrently, and decisions have to be made
efficiently. According to Riedl and Zook [37], developing such AI that can adapt to
online games that run continuously with non-stop player interactions and the context of
the real world adds such complexity. As a result, helping AI to make informed decisions
when there is much uncertainty is still considered a big challenge in game development.

In conclusion, the basics of multi-modal AI, including how different AI modali-

12

ties such as speech-to-text, text-to-speech, and large language models interact to
create multi modal systems have been outlined. Additionally, the chapter explored the
importance of web-based user interfaces in facilitating seamless interactions with AI,
as well as the core mechanics of tabletop role-playing games such as the role of dice
rolls in determining things that happen in the game. Finally, an overview of AI used
in games showed how AI has been used to improve player engagement, personalize
content, and improve NPC behavior. These topics form the foundation for the following
chapters, where the design, implementation, and evaluation of an AI-driven Game
Master, in conjunction with an electronic D20, will be discussed.

13

Chapter 3

The Design Process

The complex nature of creating an AI GM warrants the creation of a novel design pro-
cess based on the needs for this project. The novel process followed in this project
is based on the Creative Technology design process by Mader and Eggink [30], the
“Technology driven iterative design” (TDID) process and is depicted in figure 3.1. This
variant of the Creative Technology design process has been created to place technology
at the centre of the process.

The design process in Figure 3.1 starts out the same as the Creative Technology
design process [30], where the first ideation phase would lead to a creative idea.
After the initial creative idea is where the TDID process diverges from the Creative
Technology design process. In the TDID process, the next step after the creative idea,
in this case, Creating an AI GM, would be to create design criteria. Creating design
criteria is most easily realized through the utilization of the MoSCoW method, first
developed by Dai Clegg in 1994 [11], where all criteria are split into Must, Should, Could
and Will not. Based on these criteria, similar real-world implementations that apply to
some of the design criteria should be found and discussed. After which, it should be
figured out how their implementations work and how a similar implementation could
be made, from which a similar implementation should be made with the other design
criteria in mind. Then this implementation should be evaluated for its adherence to
the design criteria or leading to the reconfiguration of the design criteria, following
the loop again of finding implementations that meet your design criteria, copying them
and evaluating them until a satisfactory prototype is reached that adheres to all of the
criteria sufficiently.

14

Figure 3.1: Figure depicting the design process used in this project.

15

In the next chapter, the outlined TDID will be used twice separately, once for the
creation and iteration of the AI GM and another time for the creation and iteration
of the electronic D20. For both the electronic D20 and the AI GM separate lists of
design criteria will be configured based on the MoSCoW method after which similar
implementations are detailed, remade and evaluated for their adherence to the
configured design criteria. After multiple separate iterations for both the AI GM and
the D20 a final prototype will be outlined in chapter 5, which will later be evaluated for
its user experience.

In conclusion, The adapted Creative Technology design process, named Technol-
ogy Driven Iterative Design (TDID) created specifically for this project, because of
the complex nature of developing an AI-driven Game Master and an electronic D20.
The TDID method has been detailed to provide a structured framework, prioritizing
technology as the focus for iterative development. Allowing for iterative improvement,
through a set of criteria and evaluations until the final prototype hits the design goals.

16

Chapter 4

Specification and Realization

The application of the TDID outlined in the previous chapter, as part of the specifica-
tion and realisation phase, will be applied to configure the appropriate prototype in an
attempt to answer the research question: “How can speech-to-speech AI be used in
conjunction with an electronic 20 sided dice to serve as a ’Game Master’ for tabletop
role-playing games?” This chapter contains two distinct prototypes being iterated over,
the first distinct prototype is the AI GM itself and the second prototype is the electronic
D20. Both prototypes together form the final system that is presented in Chapter 5.

4.1 Ideation

The first phase of the design process is based on [30]. The design question that needs
answering is the same as the research question, which is “How can speech-to-speech
AI be used in conjunction with an electronic 20 sided dice to serve as a ’Game Mas-
ter’ for tabletop role-playing games?” From this question, several relevant technologies
were identified, such as AI systems like ChatGPT, Arduino-based microcontrollers such
as ESP32s and inertial measurement units to figure out what number is thrown. The
following idea was outlined from the research question and these initial technologies:
Create an interactive AI-based GM that works through speech to speech, to-
gether with a physical input modality in the form of an electronic D20.

4.2 Technology Driven Iterative Design: AI GM Itera-
tion 1

In the TDID process, the ideation phase should result in a creative idea. The identified
idea should then be used to configure design criteria, discover similar implementations
and how they are made, etc., following the rest of the process illustrated in figure 3.1.

17

4.2.1 Configure Design Criteria

After the identification of the initial creative idea, the following set of Design criteria
were outlined through the MoSCoW method [11], as seen in Table 4.1.

Category Criterium

Must The user must be able to talk to the AI GM through voice.
The AI GM must be able to respond through speech.
The user must be able to roll a dice that the AI GM knows the
outcome from.
The AI GM must be able to deal with the input of real users.
The system must handle interruptions correctly, identify that it is
being interrupted, and respond accordingly.
The AI GM must have an interface.
The user must be able to understand what is happening in the
system at all times.

Should The user should be able to write to the AI GM.
The AI GM should be able to respond through text.
The AI GM should be able to generate adaptive narratives based
on the input from the user.
The AI GM should be able to respond in a timely manner.

Could The user could be able to create their own character, and the AI
GM could be aware of this character’s properties.
The AI GM could be able to simulate NPC responses.

Will Not The AI GM will not support all different kinds of dice.
The AI GM will not support multiple campaigns.
The AI GM will not support multiple users in the same campaign
at the same time.

Table 4.1: Table containing MoSCoW criteria for the AI GM sorted by criteria

4.2.2 Identifying Similar Implementations

The next step in the TDID is the identification of similar implementations. Based on
the outlined criteria, There are no current implementations of an AI GM with all outlined
criteria. However, there are implementations that satisfy parts of the criteria.

For the AI, relevant MoSCoW criteria are: “The AI must have an interface.” and
“The user must be able to understand what is happening in the system at all times.” an
example of an application that satisfies this criteria is the ChatGPT web-application, by
OpenAI [9]. They use a complicated tech stack to allow, according to Sam Altman, CEO
of OpenAI 100’s of millions of users to connect to their services [1], but in this case, just

18

the user interfaces were relevant, which is why. Plain HTML, CSS and a simple FLASK
back-end were identified to be a good fit for the implementation of AI GM according
the MoSCoW criteria.

4.2.3 Discover how the Implementation is Made and Create a Sim-
ilar Implementation

The next step in the TDID is creating a similar implementation to, in this case, Chat-
GPT’s web application, that incorporates as many of the design criteria as possible.
First up, as a phase of familiarisation with the technologies, a dashboard was created
through which users could have been able to do various different tasks, such as cre-
ating, managing characters, creating and managing the items for said characters and
other tasks. This dashboard was later discarded, but it was a useful step to get more
familiar with the programming environment and the different technologies utilised. Af-
ter the initial phase of familiarization, the implementation of the AI according to the
MoSCoW criteria and identified relevant third party implementations, this is done by
interfacing with the OpenAI API. Through this API it is possible to access sophisti-
cated TTS, STT, and LLM models, the idea is to utilize these sophisticated models to
create an AI-chat bot implementation off of which, the AI GM can be built. To this end,
a preliminary chatbot was created to start interfacing with the OpenAI API. OpenAI
makes it relatively simple to interface with their API. Only an API-key is needed, this is
an identification number that lets OpenAI know who to charge with the expenditures
related to the usage of their API. The first step is to set up a client through the OpenAI
package in Python in the Flask back-end with the aforementioned API key. Next up, we
tell the flask application to start listening to the /ai-chat route to serve both users and
requests from the website itself. If it is a User that connects to the website, the Flask
backend will send the user to the HTML page. The HTML page consists of a user input
textbox, a chat history box and a submit button, this is depicted in figure 4.1.

19

Figure 4.1: displaying an image taken of the AI-chat in the middle of the first
iteration of the TDID for the AI GM

As described before, the /ai-chat route also handles requests from the website itself,
and if it is a request from the website itself, it is the user using the buttons to post a
message, which means that the AI should respond, this is done through OpenAI by
calling their client chat completions create endpoint and sending the answer received
from OpenAI for that request, back to the website. The responding and requesting
of chats is all done through http post requests, the user sends one of these requests,
and since post inherently waits for the server to answer, the server answers with the
generated response.

4.2.4 Evaluation

Unfortunately, adding the speech-to-text before the LLM and the text-to-speech after-
wards would lead to a dramatic uptick in delays, so much so that it would not even be
considered a conversation anymore, another problem is the complexity involved with
chaining all these different modalities together, dealing with the transmission of audio
data both ways while keeping latency into account is a complex problem. This leads to
the next step in the TDID, which is evaluation of the current prototype against the set
MoSCoW criteria. In the round of evaluation it is imperative to evaluate wether or not
the criteria have been met, the following table describes wether or not a criterium has
been met, met criteria are marked with an “X”, and irrelevant criteria for this implemen-
tation have been marked with a “-”.

Category Criterium X

Must The user must be able to talk to the AI GM through voice.

The AI GM must be able to respond through speech.

20

Category Criterium X

The user must be able to roll a dice that the AI GM knows
the outcome from.

-

The AI GM must be able to deal with the input of real users. X

The system must handle interruptions correctly, identify that
it is being interrupted, and respond accordingly.

The AI GM must have an interface. X

The user must be able to understand what is happening in
the system at all times.

X

Should The AI GM should support multiple users in the same cam-
paign at the same time.

The user should be able to write to the AI GM. X

The AI GM should be able to respond through text. X

The AI GM should be able to generate adaptive narratives
based on the input from the user.

X

The AI GM should be able to respond in a timely manner. X

Could The user could be able to create their own character, and the
AI GM could be aware of this character’s properties.

X

The AI GM could be able to simulate NPC responses.

Will Not The AI GM will not support all different kinds of dice. -

The AI GM will not support multiple campaigns. -

Table 4.2: Table containing MoSCoW criteria the AI GM with implementation
status

Apparent from this is that although the current implementation hits many of the
“must”, “should”, and “could” criteria, almost half of the “must haves” are left unre-
solved, the current implementation does not respond to speech using speech as shown
in figure 4.2, due to the complications mentioned. Seeing as these criteria were con-
sidered to be relevant, another round of the TDID was needed.

21

Figure 4.2: Final prototype of this iteration with check marks showing what was
implemented.

4.3 Technology Driven Iterative Design: AI GM Itera-
tion 2

In the previous section, the first round of TDID was completed, and another round
was deemed necessary in the evaluation step; this means that, in this part, a second
round of TDID will be discussed. The reconfiguration of the design criteria was deemed
unnecessary, so that step will be skipped, and only the steps of finding similar imple-
mentations, discovering how they were made, and evaluation will be discussed. This
iteration will be focused on the must haves failed to be covered by the previous itera-
tion.

4.3.1 Identifying Similar Implementations

The second relevant implementation is related to the AI GM, is OpenAI’s ChatGPT
voice mode [9], in voice mode, “You can now use voice to engage in a back-and-forth
conversation with your assistant.” [9] This is an application that sends back and forth
audio data through the web and gives users the ability to use speech instead of text to
interface with the popular LLM named ChatGPT. This is similar to what is part of our
criterium for an AI, according to our “must haves” a user should be able to interface with
the AI using speech, voice mode is also able to handle interruptions, which is another
one of our must have criteria. LLMs inherently are able to deal with the input of real
users, crossing off yet another must-have criterium, and finally, this application does
it all in a timely manner. OpenAI’s voice mode works through the late fusion method
described in 2.1.2 Early and Late Fusion. There was speculation about how OpenAI
made use of a popular open-source webRTC (web-based Real-Time Communication,
read phone calls and video calls over the web.) platform named LiveKit, this was later
confirmed when OpenAI launched their real-time API [29], but at the time of designing,
this was mere speculation. Based on speculation, LiveKit was identified as the relevant
platform for building the AI part.

22

4.3.2 Discover how the Implementation is Made

LiveKit was originally a webRTC platform, this is apparent in the way things are struc-
tured. Inside of LiveKit there is this concept of rooms and people or systems that can
subscribe to these rooms. These rooms can have a multitude of different functionali-
ties: video, audio, and text chats. Every person that enters the room has a certain set
of rights. This way, some people are allowed to do some things that others can’t. One
person might have the right to publish a video that others can only watch. Based on
this system of rules, automated people can be created, for example, AI chatbots. So,
an automated person in the form of an audio and text chatbot acts as the AI GM, and
the system gives it access to both the audio and text of the room. Another important
part of making the assistant is that it should chain the STT to the LLM to reason and
talk back using the STT. Typically, as outlined in the previous section, this would lead
to a significant sum of delays; there are, however, ways to minimize the delays. The de-
lay to be minimized is the delay between the time that the user has finished speaking
and the time the AI has started talking, which is called “time until the first readout”.
It is a big challenge to minimize this delay when doing late-fusion, but luckily, LiveKit
has a built-in AI assistant class that does all of the before mentioned, including the
minimization of the time until the first readout.

4.3.3 Creation of a Similar Implementation

In the implementation, the user creates/joins a room, this is done through a couple
of steps, firstly the program is set to fetch an identification token from the back-end
dynamically, then it identifies and authenticates itself with LiveKit this allows the user
to join a LiveKit room. The room provides the WebRTC infrastructure (the ability to
share audio and text in real-time), and notifies LiveKit that an AI is needed inside the
room. The AI then joins the room and only responds to the user who joined the room
first. AI can be in a couple of different states, including listening, thinking, speaking,
connecting, and disconnected. These different states are communicated to the user
through the audio visualizer in the user interface. Some are shown in figure 4.3.

23

Figure 4.3: Overview of different states of the AI and the way it communicates
this to the user through the audio visualizer in the UI.

Above this component, there is a chat shown as illustrated in figure 4.4, inside this
chat, both live transcriptions of the user and the AI GM, as well as text messages, are
shown, this way, a user is able to detect an error in transcription while talking, allowing
them to correct the error as early as possible.

24

Figure 4.4: Overview of the UI of the AI GM

The AI is implemented through the LiveKit agents “VoicePipelineAgent”, the way
in which LiveKit implements late fusion is through the STT, LLM, TTS chain, with a
specification to make it also allow inputs directly to the LLM omitting the STT. Another
important part of the voice pipeline agent is voice activity detection (VAD). This is a
separate AI that detects when a human is speaking by returning a voice activity thresh-
old, which can later be used by the voice pipeline agent to decide wether or not the
human is speaking, which allows the AI GM to detect interruptions. For all four of these
components, a plethora of modern choices are available, but for the purposes of this
project, choices have been made based on latency, quality and cost. For the VAD, an
open-source VAD from Silero has been chosen for its high performance and the fact

25

that it is free. For the speech-to-text engine, Deepgram’s most recent STT model has
been selected, mainly because it met the criterium to do streaming-based speech-to-
text. For the LLM, the flagship LLM model of OpenAI is being used, which is, as of the
time of writing, GPT-4o, since the 4o model has extended reasoning capabilities and a
significant token window, which allows it to remember things much longer compared to
the cheaper GPT-4o-mini. For the final step, which is the conversion from the output of
the LLM back to speech, OpenAI’s TTS is being used, OpenAI’s TTS, however, requires
a complete finished sentence before its output can be used, which is why the TTS is
wrapped into a stream converter, which allows the program to bypass this restriction
by cleverly deciding when (parts of) sentences are done, with the result that the AI can
send (parts of) sentences audio earlier. A big advantage of this setup is that we can
extend its reasoning using functions through the LLM. Specific sets of predefined func-
tions can be exposed to the LLM, in this case these functions are utilized to detect what
a user has thrown with a dice, allow the AI to search through a catalog of predefined
monsters, and allow the AI access to the character sheet that the user has predefined.

4.3.4 Evaluation

As outlined in the previous chapter, the missing MoSCoW design criteria, including the
lack of talking to and hearing the AI talk, as well as the delay that becomes too big, are
now solved in this implementation. In table 4.3 is outlined which criteria are solved in
this implementation.

Category Criterium X

Must The user must be able to talk to the AI GM through voice. X

The AI GM must be able to respond through speech. X

The user must be able to roll a dice that the AI GM knows
the outcome from.

-

The AI GM must be able to deal with the input of real users. X

The system must handle interruptions correctly, identify that
it is being interrupted, and respond accordingly.

X

The AI GM must have an interface. X

The user must be able to understand what is happening in
the system at all times.

X

Should The AI GM should support multiple users in the same cam-
paign at the same time.

The user should be able to write to the AI GM. X

The AI GM should be able to respond through text. X

26

Category Criterium X

The AI GM should be able to generate adaptive narratives
based on the input from the user.

X

The AI GM should be able to respond in a timely manner. X

Could The user could be able to create their own character, and the
AI GM could be aware of this character’s properties.

X

The AI GM could be able to simulate NPC responses. X

Will Not The AI GM will not support all different kinds of dice. -

The AI GM will not support multiple campaigns. -

Table 4.3: Table containing MoSCoW criteria the AI GM with final implementa-
tion status

Unfortunately, this implementation does not support multiple users at the same
time, but since this criteria is a “should” and not a must, it can be concluded that this
part of the prototype is successful enough for the final set of evaluations. A system
overview is shown in figure 4.5. A set of criteria that is yet to be solved is the must
criteria where the user must be able to roll a dice that the AI GM knows the outcome
of. This criterium will be solved in the next section through the application of the TDID
on the dice part of this project alone.

Figure 4.5: Final prototype of this iteration with check marks showing what was
implemented.

4.4 Technology Driven Iterative Design: Dice Iteration
1

Currently, the prototype iterations only cover the digital part of the prototype, but the
prototype also includes communicating with some sort of twenty-sided die (D20). This
section of the report will describe how the D20 was developed, including how it com-
municates with the AI GM.

27

4.4.1 Configuring Design Criteria

According to the TDID explained in section 3.1, after outlining the initial idea, the design
criteria should be configured, which is done once more through the MoSCoW method.
The initial concept, in this case, is to have a dice with embedded electronics to mea-
sure which way the dice is facing and have the dice transmit this data wirelessly to the
AI. This idea has several challenging constraints, with the two biggest being size and
battery power, since the D20 needs to be thrown, it should be wireless, and as such,
an embedded battery is required, which increases complexity somewhat since now the
dice should be able to be charged, have an embedded rechargeable battery, which is
big and conserve energy wherever possible, so the user doesn’t have to recharge it of-
ten. Another problem that then comes into play is size, batteries can become big and
with the criterium of wireless transmission built in battery management system (BMS),
the size needed becomes bigger and bigger. Another functional criterium is that the
delay between the dice being thrown and the results being visible to the user should
be no more than 4 seconds, according to a study done by Peng et al. in 2020 on user
perceptions of delays in robots’ responses and GUI interactions [33]. To be comfort-
ably under that boundary, even under poor conditions, such as with slow internet, we
will be aiming for a delay of less than 3 seconds. From all these conflicting criteria, the
MoSCoW set emerges as outlined in table 4.4.

Category Criterium

Must The dice must have embedded sensors to detect which face is up.
The dice must wirelessly transmit data to the AI GM.
The dice must have a rechargeable battery.
The dice must use power efficiently to maximize battery life.
The dice should have a time between thrown and data received of
3 seconds or less. The dice must be sturdy enough to withstand
being thrown many times.

Should The dice should have an embedded battery management system
(BMS) to handle charging and power delivery.
The dice should be small enough to be thrown and held comfort-
ably.

Could The dice could be small enough to resemble the size of a standard
D20 as closely as possible.
The dice could include customization options for LED colours or
patterns for immediate feedback on the state of the AI.

28

Category Criterium

Will Not The dice will not be the exact size of a standard dice.
There will not be multiple different types of dice, E.G., a 10-sided
die or an 8-sided die.
The dice will not be a fair dice
The dice will not operate without a battery (i.e., no wired opera-
tion).

Table 4.4: Table containing MoSCoW criteria for the electronic dice sorted by
criteria

4.4.2 Identifying Similar Implementations

The next step after the configuration of the design criteria is the identification of similar
implementations and the technology used in them. For these dice that know what face
is thrown, Pixels come to mind [10]. These are open-source dice that use inertial
measurement units to detect which face is up, combined with embedded LEDs on each
face to make the dice light up based on what was thrown. Some parts of these dice
can be utilized for this implementation of an electronic D20 which can identify and
communicate which face has been thrown to the AI GM.

4.4.3 Discover how the Implementation is Made and Create a Sim-
ilar Implementation

According to a video by Jean Simonet posted in 2017 [24]. The early prototype of the
Pixels was made using a flexible printed circuit board (PCB) with a multitude of LEDs,
an ESP-32-based microcontroller, and an inertial measurement unit (IMU) to measure
the way the dice are handled. Now the ESP-32 is a suitable candidate for this use-case,
it has builtin Bluetooth, WiFi and a proprietary communications protocol that is more
efficient [15], it draws really low currents for the type of performance it has and the
tasks it does, it also has a sleep and deep sleep mode which means that when the
ESP-32 is not in use, the amount electricity it uses it drastically reduced. All of these
advantages lead to the employment of an ESP-32 for this project as well.

For the communication, the Pixels dice and the prototype published in 2017 Jean
Simonet [24], Bluetooth is used, which is a great option for their use-case of local
applications running on devices near the dice itself, however since this dice needs to
communicate with the world wide web, to the AI server living somewhere else in the
world, some form of internet connectivity is required. As such, the Bluetooth function-
ality will be replaced by internet connectivity through the use of WIFI for this prototype.

Another point of interest is the way they handled the IMU, they used an LIS2DE12TR
as detailed in [12] by the project linked through the resources in the description of the

29

video [24]. This is a great choice for an IMU if the goal is to create a circuit board
since it is a surface-mounted device (SMD), a type of component made to be on top
of printed circuit boards. An alternative with much support for Do-It-Yourself or DIY
electronics using the Arduino platform would be the MPU6050, an accelerometer and
gyroscope combination. So, for this prototype, the MPU6050 IMU will be used due
to its abundant support and high availability. The covering shell of the dice is made
using three-dimensional (3D) modelling software such as Blender and Fusion360 and
fabricated through the utilization of FDM-style 3D printing.

4.4.4 Creation of a Similar Implementation

To create the electronic die following the implementation outlined above, first a suitable
ESP-32 variant should be selected. This should be done through the exploration of
development boards, although these will add to the size of the project a bit, it means
that the actual process of implementation and iteration is significantly sped up by the
development platform boards. The criteria for said development board are:

1. Built in BMS, which is needed for reduced sizing, if the BMS is on the develop-
ment board itself it will be way smaller.

2. ESP-32C3 or newer, which is the smallest platform of ESP-32 since it has a built-
in programmer in the chip set. Thus, the USB programming logic does not require
more circuitry.

3. Small footprint, The ESP-32 should be as small as possible due to the size con-
straint of the D20 detailed in the MoSCoW 4.4.

A development board that fits these criteria is the Seeed Studio XIAO ESP-32C3 de-
velopment board [48]. It has built-in BMS, is ESP-32C3 based and measures 21mm
by 17.5mm, according to Kiwii electronics [41]. The next pick is the relevant MPU6050
development board, a common one is the GY-521, which is the one that was readily
available, similarly sized as the ESP-32 development board we picked, so it was se-
lected aswell. Lastly, a battery was selected, a folded lithium-ion, relatively small, no
name, no brand, 300Mah battery was chosen as a suitable candidate, this battery was
then soldered to the battery pads exposed to the bottom of the ESP-32, it is advisable
to put a switch in between the lithium-ion battery and the contact for turning on and
off the power to the ESP32-C3 and the MPU was soldered to the top of the ESP-32C3
following the schematic outlined in figure 4.6. It is important to note that the interrupt
pin of the MPU6050 is tied to an analogue pin of the ESP32-C3, which is required for
the so called deepsleep mechanism described later in this section.

30

Figure 4.6: ESP32C3 wiring diagram with an MPU6050 left and image of the
wired prototype right

After the prototype is assembled, as can be seen in 4.6 , a program can be made
to make the prototype detect dice throws and send them over WIFI to the AI, and then
go to sleep, the program should wake up again once the dice is moved, and this cycle
should be repeated until the battery is empty or the device is turned off. The plan is
to have the ESP32 only be on if it has to send its die face, which can be done through
interrupts. If the ESP32 is in deepsleep, a certain pin, or sets of pins, can be designated
as wake up pins, which means that if the pin is set to high or low, the ESP32 will wake
up and perform its duties. We can utilize this by sending interrupts from the MPU6050
to the ESP32 if the MPU detects sufficient movement. Then, the ESP32 keeps track of
said interrupts, and if it has not detected any interrupts within a certain time period,
the ESP32 should send the current die face to the server.

To determine which face of the die is oriented upwards, we utilize vector geometry by
comparing the measured gravitational acceleration with predefined reference vectors
for each face.

1. Measure Acceleration:
Obtain the raw acceleration vector from the MPU6050 sensor:

a = ⟨ax, ay, az⟩

2. Normalize the Vector:
Convert the acceleration vector to a unit vector to represent the direction of
gravity:

â =
a
∥a∥

, where ∥a∥ =
√

a2x + a2y + a2z

3. Define Reference Vectors:
For each die face i, define a reference unit vector f̂i that indicates the expected
direction of gravity when that face is downward.

31

Key Step: Determine Active Face

Determine the upward-facing face:
Compute the dot product between the measured gravity direction and each refer-
ence vector:

â · f̂i = axfix + ayfiy + azfiz

Identify the face k with the highest dot product:

k = argmax
i

(â · f̂i)

The face corresponding to f̂k is the one currently facing downward. After identifying
the correct face, the ESP32 ensures a wireless connection and sends the value to the
AI GM.

The AI GM creates a dedicated HTTP server to receive said sent values from the
electronic die after the die has decided the face value rolled through the algorithm.
This happens through the following steps:

Step 1: Spin up an HTTP-based webserver at port 8081 as soon as the room is
created. This implementation assumes only one room at a time is possible.

Step 2: A dice roll gets transmitted from the electronic die to the AI GM.

Step 3: Process the dice roll:

3A: If the AI GM is actively requesting a roll, process the result and an-
swer the request with the result, which makes the AI GM immediately
respond.

3B: If the dice roll is unsolicited, store the result as a hidden systemmes-
sage, whichmeans that if the user prompts the AI GMwith something
to make it speak again, the AI GM will be aware of what was rolled,
since the roll is stored in the system context.

4.4.5 Evaluation

The next step of the TDID is the evaluation phase. In the evaluation phase of the TDID
process, the criteria for the electronic dice are evaluated against the outlined MoSCoW.
Met criteria are marked with an “X” while irrelevant criteria for this implementation are
marked with a “-”. The table 4.5, details the evaluation:

32

Category Criterium X

Must The dice must have embedded sensors to detect which face
is up.

X

The dice must wirelessly transmit data to the AI GM. X

The dice must have a rechargeable battery. X

The dice must use power efficiently to maximize battery life. X

The dice should have a time between thrown and data re-
ceived of 3 seconds or less.

The dice must be sturdy enough to withstand being thrown
many times.

X

Should The dice should have an embedded battery management
system (BMS) to handle charging and power delivery.

X

The dice should be small enough to be thrown and held com-
fortably.

X

Could The dice could be small enough to resemble the size of a
standard D20 as closely as possible.

X

The dice could include customization options for LED
colours or patterns for immediate feedback on the state of
the AI.

Will Not The dice will not be the exact size of a standard dice. -

There will not be multiple different types of dice, E.G. a 10-
sided die or an 8-sided die.

-

The dice will not be a fair dice -

The dice will not operate without a battery (no wired dice
throwing).

-

Table 4.5: Table containing MoSCoW criteria with implementation status for the
electronic dice

As shown in table 4.5 all of the “must” and “should haves” are covered except for the
delay, the current implementation has to follow many steps before the data is recieved.

Step 1: Wake up from deepsleep (≈200 ms)

Step 2: Connection to WiFi (≈2-5 seconds)

Step 3: Post request to the server (≈0-3 seconds)

33

From the outlined steps, it becomes apparent that connecting to WiFi when awoken
from deepsleep, even with the credentials already stored, can take up much precious
time. The most important delay to minimize is the time between when the dice stop
rolling and when the rolled face is received. As such, an interesting way to mitigate
some of the delays is to start connecting to the WiFi as soon as the die has been
moved and awoken from deepsleep, but even with this adjustment in implementation,
it is not feasible to hit the three-second mark.

4.5 Technology Driven Iterative Design: Dice Iteration
2

To make the dice follow the three-second delay criterium, another round of TDID is
needed, however from the preliminary search in the previous iteration, the fact that the
ESP32 has a protocol for sending data quickly to other ESP32’s was briefly mentioned,
based on this and the fact that connecting to WIFI takes a long time, the following idea
was formed: Create a “base station” that is always connected to WIFI and have the
ESP32 based electronic die send the thrown face data to the other ESP32 over ESP-
now (the proprietary communications layer between two ESP’s). Then have this base
station ESP-32 handle communications with the server, this setup is displayed in figure
4.7

Figure 4.7: Communication diagram between the D20, base station and the AI
GM

This setup theoretically should be able to send data in time, however writing the
program to handle both WIFI and ESP-NOW simultaneously proved difficult, which is
why in the final implementation, the base station consists of two ESP-32s, displayed in

34

figure 4.8

Figure 4.8: Updated communication diagram between the D20, base station
and the AI GM

This setup shows a base station consisting of two ESP32s, where the first is respon-
sible for maintaining communications with the D20, and the second ESP is responsible
for maintaining WIFI connectivity. The information is being exchanged through serial
between the two ESP32s; the final wiring diagram for both the die and the base station
is displayed in figure 4.9.

Figure 4.9: Updated ESP32C3 wiring diagram with an MPU6050, and the base-
station for serial communication on the left and picture of the prototype on the

right

After the addition of the base station, the approximate 2-5 seconds delay now no
longer applies, instead being replaced with a couple of milliseconds of delay. This

35

marks the completion of the final MoSCoW “must haves” of a time between throw and
data received of 3 seconds or less.

To conclude, through the application of the TDID an AI GM has been created,
which through the fusion of different AI models, produces speech-to-speech AI GM
experience, together with this AI GM an electronic D20 has been created to allow the
AI GM to know which face has been thrown.

Initially the AI GM faced several difficult challenges related to delays of different
modalities added up, however by leveraging the Live kits agents system, a real time
storytelling AI GM was created. Similarly the electronic D20 underwent multiple iter-
ations through the TDID. The primary challenge during development of the electronic
D20 was balancing size, power efficiency and minimisation of delays.

While some “could have” criteria remain unexplored, the current implementations
satisfies the core “must have” criteria it set out to satisfy.

36

Chapter 5

Final Realisation

The final realization as used during the experiment contains two main parts, the first
part is the AI GM and how it will be presented to the participant and the second part
will be about the electronic dice and how it will be utilized in the final realization.

The AI GM described in further detail in 4.3 Technology Driven Iterative Design:
AI GM Iteration 2, is an agentic AI that, through late-fusion, can combine a speech-
to-text model with VAD, a large language model and a text-to-speech model to create
a speech-to-speech AI that is instructed to play the TTRPG Dungeons and Dragons
together with the participant through speech. It is connected through Livekit’s webRTC
services to the participant and uses the APIs of multiple commercial vendors, it works
through the web, so any browser could use the AI. This whole setup is illustrated in
figure 5.1 below.

Figure 5.1: Final prototype with check marks showing what was implemented.

The AI is programmed to obey the participants’ instruction through prompt engi-
neering, this is a relatively new field of research, where you “program” a large language
model through natural language, this way you can instruct the LLM to be pretend to be
various things. In this case, this programming was done through the addition of nu-
merous examples and normal instructions, as you would instruct a person to complete
the task.

The second part of the final realization is the electronic die. The die, described in
further detail in the “Technology Driven Iterative Design: AI GM Iteration 2” chapter, is
made out of a three-dimensional printed light grey PLA shell with 20 faces resembling

37

the D20 shape. It consists of two halves with grooves and matching teeth on both
halves so they can be twisted together to form the final D20. As shown in figure 5.2, the
light grey D20 contains slots in one half of the print to house the electronics needed,
this includes the MPU6050, the chosen inertial measurement unit, the ESP32 and the
battery, cutouts have been made to give access to the USB-C port on the esp32 for
charging the battery and a switch for powering on and off the D20. Battery life lasts up
to a full day of continuous use without the base station present and even longer with the
base station present, depending on the frequency at which the dice is thrown. Because
of the setup and the slotted placement of the internal components inside the shell, the
D20 is not a fair die. It does, however, still function as a die.

Figure 5.2: Image of the final 3D printed prototype of the dice

To conclude, the AI GM together with the electronic D20 form the final prototype
that will tested as detailed in Chapter 6. This prototype is an AI GM that uses an elec-
tronic D20 as its input modality to know what a participant has thrown, it communicates
through speech and understands speech from the participant and uses this to play D&D
with them.

38

Chapter 6

User Experience Evaluation

The final realization, as discussed in Chapter 5, will be evaluated through an exper-
imental setup. First, this experimental setup will be described, and the experiment
conducted will be discussed.

6.1 Experimental-Setup

In the Final Realisation Chapter the final prototype has been discussed, including the
dice and the final functionality of the web interface, an experiment to evaluate the pro-
totype has been conducted and will be described in this chapter of the report. This
experiment aims to understand the user experience (UX) and usability of this prototype,
an AI-based GM for TTRPGs. The experimental setup contains three distinct stages,
namely the:

1. Introduction and briefing stage.

2. The experiment.

3. The post-experiment questionnaire/interview.

These stages are designed so that the user experience can be evaluated constructively,
which leads to consistent, quantifiable results from every participant.

6.1.1 Briefing

Firstly, participants are brought to a room to sign a consent form, which is found in
appendix B. This form details the measures taken to protect the participants’ privacy,
that the study is voluntary, and more rights and information for the participants. After
this, the participants will get a verbal briefing, found in appendix C, that contains the
following text spoken out loud by the researcher present in the room:

“Next, you will play a Tabletop Role-Playing Game, TTRPG, called Dungeons &
Dragons in a session managed by an AI Game Master. You will be playing as a

39

pre-made character provided to you, and during the game, you will use a 20-sided
dice, D20, to interact with the game and resolve actions. Your role will involve making
decisions for your character, responding to game scenarios, and rolling the die as
needed. The session is designed to replicate a standard TTRPG experience and will
last up to 20–30 minutes but can be cut short if you feel like you have had enough.
Following the session, you will complete a short questionnaire to share your thoughts
and feedback on the experience. Please remember that your participation is voluntary,
and you may withdraw at any time. Let us know if you have any questions before we
begin!”

A verbal instruction is chosen as this project focuses on the audio capabilities
of this prototype, and this primes the participant to communicate through speech and
will hopefully counteract the feeling of working in silence as people are used to doing
when they are being placed in front of a laptop. The spoken briefing text is meant
to inform participants of the experiment that they are about to participate in. To this
end, a couple of important points have to be mentioned about the experimental setup
to the participants, this is done through the briefing text. The points that should be
mentioned and why they should be mentioned are the following :

• AI GM, the fact that the participant will speak to, and with, an AI.

• Pre-made characters, to inform participants they will be playing as a fictional
character and that this character is already configured for them.

• 20-sided dice, D20, both 20-sided and D20 are mentioned to hopefully famil-
iarize the participant with both terms in the case that they have not yet played a
TTRPG or seen a dice with more than 6 sides. This is important since the AI will
most likely mention the term D20 during the experiment.

• Participant role, it is important to mention what participants are supposed to do
to supply them with confidence and agency in the experiment.

• Session duration, to iterate that there is a set cut-off time.

• Reminder that their participation is voluntary and that there is a question-
naire at the end.

After the verbal briefing, the participant is placed inside of a room, The player is set in
front of the laptop and D20, after which the participant is informed that the experiment
has been started and that they should say something to the AI to start the session. After
this, the participant is left alone with them and the AI, with the researcher remaining
in the room to monitor the interactions the participant has with the AI GM. At the con-
clusion of the session, which is when either the time runs out, or the participant and AI
GM have logically come to a conclusion to their story together, the participant will be
asked to fill out a questionnaire.

40

6.1.2 Experiment

For this experiment participants were selected through the method of convenience
sampling. through convenience sampling fellow students at the University of Twente
will be requested to partake in the experiment. A criterion for participation in this
experiment is that participants have to be able-bodied enough to use a laptop, speak,
see, and have a method of rolling a D20. Except for these criteria, there are no exclusion
criteria other than those outlined by the ethical committee CIS at the University of
Twente regarding the ability to consent.

The experiment uses the hardware and software outlined in Chapter 5. The web-
interface, will be shown through a laptop, and a D20 will be present that has electronics
to connect to the AI. The AI is instructed to follow a single preset scenario, after which
the AI will be left in charge with the agency of where the story goes, similar to an
unstructured D&D sandbox experience [2], with the key difference being that this is
done by an AI.

The preset scenario that will be used in the AI is an open ended dungeon entrance,
this is chosen to have a semi-neutral starting point which the participant can use to
familiarize themselves with the system, while being right at the edge of adventure,
nudging the participant to partake in discovery in the dungeon. The full scenario can
be found as part of the code in appendix D. The participant will be made aware by
the AI, that there is another person in the party that is being managed by the AI, for
this, an NPC named Finn has been designed. He is a trickster wizard who vehemently
believes that anything that the player does to him is an attestment to their friendship.
The AI is also informed of the following text detailing the details of the dungeon. This
is done to give the AI a clear goal to work towards.

You are playing a small session in the world of Karathun. You are at the entrance of
the ruins currently. Here is the lore:

• Quest Giver: A sage has hired you to find the Staff of Verdant Whispers, hidden
deep within these ruins centuries ago by druids.

• Ruins Description:

– Cracked mosaic floors depict scenes of ancient rituals.

– Natural roots have burst through stone, weaving a strange tapestry of life
reclaiming this underground space.

• Challenges:

– Magical wards and living plants animated by old nature magic bar the way.

– Puzzles that require knowledge of druidic lore must be solved.

– Half-collapsed corridors, swarming kobold minions, and unstable magical
crystals that hum ominously.

41

• Objective: Recover the Staff of Verdant Whispers.

• Potential Reward: A handsome payment and possibly a boon from a nature deity
if handled respectfully.

This sandbox-style approach over a more structured experience is chosen since it more
accurately shows what this AI GM is capable of. A linear story does not lend itself well
to the AI GM, but the sandbox does. It also tests the AI’s adaptability and narrative
generation better. The experiment lasts roughly 20-40 minutes depending on the in-
teractions between the participant and the AI GM, The AI GM itself is leading the story
together with the player and will natural conclude the story in a logical manner.

6.1.3 Questionnaire and data collection

The purpose of the questionnaire is to evaluate the UX and usability of the prototype,
to this end both quantitative and qualitative data is required. The questionnaire along
with answers can be found in Appendix E. The questionnaire consists of four parts.

Firstly the questionnaire contains some baseline questions to gauge the prior ex-
perience with TTRPGs of the participant. Since it is a variable that is outside of the
study’s control, but will be used to determine which participants are eligible for the ex-
pert interviews, it could also have effects on the experience of a participant during the
execution of the experiment.

Next, the participant is asked to fill in a System Usability Scale (SUS) [6]. The
SUS evaluates a systems user experience, on its usability, it does so through a set of
questions which are on the Likert-scale. The SUS was chosen since it is an academic
and industry standard that has been used for decades. Advantages include its simplicity
and widespread adoption, as well as the fact that the SUS gives clear numeric results,
which can be easily interpreted through direct comparisons with benchmark thresholds.
This widespread adoption allows for the objective determination of whether the AI GM
system meets the usability standards, which is a big advantage it has over for example,
heuristic evaluation, which is a method that also assesses UX but is focused on expert-
based evaluations instead.

The section that follows after the SUS is the User Engagement Scale (UES-sf) [32].
This is a similar measuring scheme also using the Likert-scale, but instead of evaluating
the experience, this is a way to measure engagement. The UES compliments the SUS,
since the SUS is a benchmark and does not give insight as to what can be improved
on the prototype, on the contrary the UES does give insights to what can be improved,
but is used less frequently. The short format version of the UES, aptly named UES-sf
(sf for short form), is the one being used in this experiment since the UES is a long list
of questions, and the short form version is an version with only 10 questions making
it more manageable for a participant to fill in in conjunction with the SUS. The UES-sf
has four distinct categories of questions with two or three questions each. The cat-
egories are “Reward Factor”, “Aesthetic Appeal”, “Perceived Usability”, and “Focused

42

Attention”. Giving scores for each category allows for fine-grained insight into the pro-
totype’s performance from a UX standpoint. Both the SUS and the UES are Likert scale
questions and, as such, have resulting quantitative values.

Finally open ended questions are needed to provide a collection of qualitative data,
for more nuanced insights in user experiences, the responses to these questions will
be read and re-occurring themes will be discussed, but no formal coding will be done
to evaluate the responses from these questions.

Some people that self report as expert dungeon masters themselves in the ques-
tionnaire will be asked for a short follow up unstructured interview, in the form of a
casual conversation about the prototype, combining insights from this interview with
the open ended questions will give rise to a discussion in the results section.

6.2 Results

In this section the results of the experiment will be discussed, both the results from
the SUS and UES-sf are going to be discussed, after which the findings from the ques-
tionnaire together with the interview will be represented. The results can be found in
Appendix E.

In total 20 people partook in the experiment, most of the participants reported be-
ing slightly familiar with DND (35%), with some being not experienced at al (30%),
some being expertly experienced (10%) and one participant reporting as very expe-
rienced. The majority has played DND at least once (60%), but a significant portion
had limited exposure, having never played before (40%). Of the twelve people who
reported having played D&D, only five people reported having played more than five
sessions. This spread of players shows the importance of the system being catered
towards less experienced players since they make up the majority of the group whilst
remaining sufficiently robust for more experienced players.

From the quantifiable data with Likert scales, the following figures could be calcu-
lated. Firstly, the System Usability Scale returns a value of 83 out of 100. The rest can
be extrapolated from the box plot in figure 6.1. To interpret these results, a curved grad-
ing scale can be applied, as detailed by Jeff Sauro and James R. Lewis in their book
published in 2016 [40] and shown in table 6.1. According to the table, the prototype
sits comfortably within the 90-95th percentile range, and as such, is considered an
excellent prototype. This agrees with remarks from the qualitative data, highlighting the
system’s ease of use. They state things such as: “I liked how it gave me the freedom
to change stuff” by participant 3 and “It guided me nicely through everything.” by the
novice, participant 10, displaying that the system was intuitive even for less experienced
players.

SUS Score Percentile Range Grade Rank

84.1 - 100 96 –100 A+ Best imaginable

43

SUS Score Percentile Range Grade Rank

80.8 - 84.0 90 –95 A

78.9 - 80.7 85 –89 A−

77.2 –78.8 80 –84 B+ Excellent

74.1 –77.1 70 –79 B

72.6 –74.0 65 –69 B−

71.1 –72.5 60 –64 C+ Good

65.0 –71.0 41 –59 C

62.7 –64.9 35 –40 C−

51.7 –62.6 15 –34 D Okay

0 –51.6 0 –14 F Poor

Table 6.1: SUS Score grading table with percentile ranges, grades, and ranks

Figure 6.1: SUS and UES-sf grading scores, represented as boxplots

There is still room for improvement however, this becomes apparent from the eval-
uation of the UES-sf scores. The UES-sf asses a prototype based on four categories:
Reward Factor (RW), Aesthetic Appeal (AE), Perceived Usability (PU), and Focused
Attention (FA). It gives numerical grades from one to five for each category, to simplify
our understanding, an extra column is added to give the grades a similar range as the
SUS score. This column has changed them to be out of 100 by simply multiplying the
scores by 20. The resulting scores are shown below in table 6.2

44

Metric Original Out of 100

RW (Reward Factor) 4.43 88.50

AE (Aesthetic Appeal) 3.53 70.67

PU (Perceived Usability) 4.48 89.67

FA (Focused Attention) 3.68 73.50

Original UES Score: 4.03

Out of 100: 80.50

Table 6.2: Table for UES-sf metrics, containing both original scores, and out of
100 scores

The overall score of 4.03 indicates a strong prototype, similar to how the SUS indi-
cates an excellent prototype. The SUS score is further supported by the high Perceived
Usability score (4.48/5). Another thing that hindered the enjoyment and could be used
to explain the low FA score, is what participant 13 noted: “I got sidetracked and the GM
didn’t remind me of the original quest”. This happened when one participant was never
reminded of the original goal of their journey, this might be one of these immersion
breaking moments that make a generated narrative feel thin. The low score in the AE
category can be combatted by carefully redesigning the User Interface (UI). Multiple
participants indicated the need for visuals during the narration of the adventures by
the AI GM. This is supported by the answer of several participants who indicated that
visuals of the characters, enemies or scenery would enhance their enjoyment, in the
question about what they would improve about the experience. There was a noticeable
difference between participant segments. Novice players reported that the system’s
guidance helped them understand what to do. Statements like: “It guided me nicely
through everything and gaveme options and inspiration.” Matches the high SUS and PU
scores for them. Experienced players, on the other hand, appreciated the open nature
but wanted more structure around dice mechanics, which required further balancing of
the spell, suggesting the need for more structured handling of such tasks. This might
have led to reduced FA for them if they felt like the AI GM was allowing them to do
things the experienced participants felt like they should not be able to do. One partici-
pant noted the AI GM allowed them to do actions that “should not be possible with my
character class.” expert 1.

6.2.1 Expert Interviews

In this section, the contents of two expert interviews conducted after the experiment are
detailed. These interviews were in the form of open discussion and will be processed
as such, including insights about them.

45

During the two interviews with two DnD experts, some things became apparent. One
key observation was that the AI was very much a “Yes man,” stating that the AI did not
give adequate “pushback” against their wishes. This resulted in an experience where
everything was allowed, leading to a break in immersion.

Expert 1, for example, did not work together with the AI but rather played against
the AI, resulting in Expert 1’s ability to manipulate the AI’s decision-making process
into agreeing with whatever they wanted to do, even going as far as making it so that
the AI did not require this individual to roll the D20 for their choices, and ascending
to “godhood” in the story. On the one hand, being able to overpower the AI in such a
way is a known issue that is present in LLM-based applications in general and should
be resolved. On the other hand, the second expert noted that if they were the GM and
a player tried to overpower them, they would most likely not be invited to play DnD
again with them next time. Expert 1’s experience did, however, diverge significantly
from the mean participant experience. This statement is further supported by the fact
that Expert 1 gave the second to least high SUS score out of all participants. Being able
to overpower the AI GM is a pressing problem that should not be ignored, especially
since both experts agreed that the AI GM is a yes man, with even Expert 2 stating that
“It is a good simulation of DnD if you play with a people pleaser as a Game Master”.
Another point of friction Expert 1 noted was the longwindedness of the explanations
of current events during gameplay, especially during combat, this would be annoying.
But they did say that they viewed this as a fun experience. Expert 2 agreed mostly with
Expert 1’s views, but while both noted the same issues, Expert 2 was less convinced
about the level of impact the issues had on the experience, compared to Expert 1.

The experts did, however, have differing opinions on whether or not this would be
a good onboarding experience for novice players. Expert 2 stated that this would be a
very good introductory tool, while Expert 1 said this would give a “very weird view” of how
DnD usually goes. Expert 2’s opinion is more in line with the feedback received from
the novice players, being that they enjoyed the game and found the system compelling.
The feedback from Expert 1 largely makes sense regarding their experience, but due
to the nature of AI, their experience was very different from the average experience
with the AI GM, this becomes apparent from their individually SUS and UES-sf scores
compared to the mean scores as well, as can be found in Table 6.3 and 6.4.

Participant SUS Score

Overall Average 83.4

Expert 1 67.5

Expert 2 87.5

Table 6.3: Comparison of System Usability Scale (SUS) Scores

46

FA PU AE RW Final Score

Overall Avg. 3.68 4.48 3.53 4.43 4.03

Expert 1 3.5 4.33 3.67 4.5 4.0

Expert 2 5.0 5.00 4.33 5.0 4.8

Table 6.4: Comparison of UES-sf Scores (Overall vs. Experts)

Another problem that needs addressing, on which both experts agreed, is that
the AI was too lenient towards the players, expert 2 noted that: “The AI GM should
be based on the rules for soft magic systems, which state that if something is not
previously explained in a story, it should not solve a newly presented problem for the
protagonist.” This aligns with a broader statement about story writing proposed by
Brandon Sanderson [39] “An author’s ability to solve conflicts with magic is directly
proportional to how well the reader understands said magic.” In a broader sense: If
a solution is introduced suddenly without prior explanation, it weakens the story’s
internal logic. The AI GM violated this rule by allowing players to create new items
or abilities without justification, reducing the challenge and immersion of gameplay.
There were times when the participant could say something along the lines of I
grabbed this wand of solving the problem I am currently facing out of my pocket and
used it to solve the current problem, to which the AI would go, okay, roll a D20 instead
of stating that the participant had no such item in their possession.

Overall, both experts enjoyed the experience, with Expert 1 being more negative
about the AI-GM, which could perhaps be attributed to their anomalous story expe-
rience with the AI-GM GM and Expert 2, who had a more typical story experience,
being more positive about the AI-GM. Both experts highlighted that the AI-GM was
too permissive and that it was immersion-breaking that the AI-GM allowed players to
create items that they did not have before.

47

Chapter 7

Discussion

Overall, participants were generally positive about the AI GM, with an average SUS
score of 83. There was, however, a clear difference between novice and experienced
participants. Novice participants reported that they felt like they were guided properly,
while experienced players appreciated the AI’s strong narrative capabilities but found
that the amount of freedom and openness lacked challenge and hardship, with some
experienced participants explicitly requesting stricter rule adherence when asked if
they wanted to change anything about the AI GM. Showing that the level of TTRPG
experience is an influence on how the AI GM is perceived.

Based on both the qualitative data gathered from the questionnaire and the expert
interviews, the most frequently cited critique on the AI GM was its eagerness to agree
with the participants, with one expert even going as far as calling the AI GM a “people
pleaser”. The people pleasing, could be a part of the reason behind the relatively low
immersion score found in the UES-sf part of the questionnaire. From a more technical
standpoint, this issue likely stems from the origins of this AI. It illustrates a larger issue
regarding the difficulty LLMs face in general when enforcing negative constraints. In
contrast, most people also cited the AI GM’s freedom as the part they enjoyed the
most. There must be a design trade-off between avoiding player frustration by providing
creative freedom and enforcing negative constraints. A balance which this prototype
has not been able to find yet.

However, despite the lack of balance, another big issue was presented during the
expert interviews, which the novice players never brought up in their feedback, which
was the lack of firm rule enforcement. Participants exploited the AI GM by creating
items or powers not previously defined, effectively bypassing normal game mechanics.
Drawing on Sanderson’s First Law of Magic, Expert 2 said that introducing unexpected
solutions makes for poor storytelling, this resonates with prior research on procedu-
ral generation and narrative design, highlighting the need for a robust rule system to
make sure that the AI GM does not undermine its own challenges. Creating such a
system could be interesting future research avenue, however since no novice players
reported the lack of rule enforcement anywhere in their qualitative answers, partly due
to their unfamiliarity with the rules, this issue could therefore be more prominent for
more experienced players.

48

Another point of interest for many participants was the physical electronic D20,
participants generally strongly enjoyed engaging with the AI through rolling the D20,
despite this large set of positive feedback, some participants raised the concern that
due to the distribution of the weight in the D20, the D20 might not role fairly. During
the UX study no such flaw became apparent, however this must be the case since no
effort was made to balance the D20. This could be an interesting avenue for future
research. However, it had little impact on the narratives experienced by the players
when interacting with the AI GM.

While the AI GM’s speech-based interactions were well received and praised, many
participants felt that the user interface lacked a certain appeal, the UES-sf scores in the
Aesthetic Appeal category indicated that many participants wanted more visuals, some
participants reported that they would like to see for example imagery of their characters,
surroundings or enemies they encountered. This form of multimodal feedback could
help increase the low immersion score found in the UES-sf as well, especially during
character interactions and fights.

Although great efforts were made to reduce latency at every point in the interac-
tions possible, unfortunately, participants still noted occasional delays, for example, in
speech recognition or responses. Though overall latency was mostly negligible, through
improvements like the base station for dice interactions, there were still noticeable de-
lays during both speech play-out and dice-throw recognitions. Most of these can be
explained by the testing location and circumstances. The whole system was running off
a mobile hot spot, 10 stories high, during poor weather conditions. It was surprising
that the system held up so well under those conditions, in the future this system could
be improved to not be reliant on a mobile hot spot, which should mitigate most if not
all these issues.

The current implementation of the AI GM can only handle a single participant and
a single GM. This is largely due to the inability of the speech-to-text AI to distinguish
speech from multiple people in a room; in the future, if the speech-to-text AI is able to
track who said what, this would be completely feasible with little to no changes to the
logic of the rest of the AI GM.

Overall, the results show that the AI GM, despite its flaws, is a promising avenue
for creating more accessible TTRPG experiences that all participants reportedly found
pleasant. At the same time, it shows how complex the task of a GM can be and how
much effort is needed to juggle both the complexity of maintaining tension, spinning
up a creative narrative, delivering engaging gameplay and doing so while maintaining
the rules of the game.

49

Chapter 8

Conclusion

Recent advancements in AI open up new opportunities for TTRPGs. This project set out
to answer: How can speech-to-speech AI be used in conjunction with an electronic
20 sided dice to serve as a ’Game Master’ for tabletop role-playing games?
The Technology-Driven Iterative Design process led to the development of a speech-
to-speech AI GM. This system uses late fusion to combine text-to-speech with voice
activity detection, a large language model for natural language processing, and speech-
to-text. This resulted in an AI GM that could be used with a single participant alongside
an electronic D20 to play a simplified version of Dungeons and Dragons. The system
was then evaluated against a small group of convenience-sampled participants (20
participants). The results from this experiment displayed a positive user experience
for most test subjects, with a SUS score of 83, which is in the 90th to 95th percentile
range and a UES-sf score of 4.03 out of 5. The UX study showed that particularly novice
players without a concept of what D&D is and how it works were greatly supported by the
system. The main criticism here being, mostly from more experienced players is that
the AI GM does not keep track of what spells or items a player had and was allowed to
use. Another obstacle for more experienced players was, that the AI GM easily agreed
to suggestions by the players and not really pushed back, this was however also seen
as a big strength of the system, with multiple participants citing the freedom of the AI
GM as one of its enjoyable qualities.

Further research could focus on making the AI GM follow the rules more closely,
as well as finding a more scalable version of the system. Another future avenue of
research could be to make the AI GM allow for multiple players concurrently or add
visuals since many participants said adaptive visual generation could greatly improve
their enjoyment of the game. Ultimately, this project demonstrated that multi-modal AI
can provide a novel foundation for creating adaptive story games that allow participants
to pick their own destinies.

50

Bibliography

[1] (26) ChatGPT hits 100M weekly users | LinkedIn. url: https://www.linkedin.
com/news/story/chatgpt- hits- 100m- weekly- users- 5808204/ (visited on
11/21/2024).

[2] AdornThemes. How to Create a Sandbox Game in D&D. en. Apr. 2024. url: https:
//thedmlair.com/blogs/news/how- to- create- a- sandbox- game- in- d- d
(visited on 01/23/2025).

[3] Angular - What is Angular? url: https://v17.angular.io/guide/what- is-
angular (visited on 01/18/2025).

[4] Shahar Avin, Ross Gruetzemacher, and James Fox. “Exploring AI Futures Through
Role Play”. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and So-
ciety. AIES ’20. New York, NY, USA: Association for Computing Machinery, Feb.
2020, pp. 8–14. isbn: 978-1-4503-7110-0. doi: 10.1145/3375627.3375817. url:
https://dl.acm.org/doi/10.1145/3375627.3375817 (visited on 10/09/2024).

[5] Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency. “Multimodal
Machine Learning: A Survey and Taxonomy”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 41.2 (Feb. 2019), pp. 423–443. issn: 0162-
8828, 2160-9292, 1939-3539. doi: 10.1109/TPAMI.2018.2798607. url: https:
//ieeexplore.ieee.org/document/8269806/ (visited on 09/21/2024).

[6] john Brooke. “SUS: A ’Quick and Dirty’ Usability Scale”. In: Usability Evaluation
In Industry. Num Pages: 6. CRC Press, 1996. isbn: 978-0-429-15701-1.

[7] Steph Buongiorno et al. PANGeA: Procedural Artificial Narrative using Genera-
tive AI for Turn-Based Video Games. arXiv:2404.19721 [cs]. July 2024. doi: 10.
48550/arXiv.2404.19721. url: http://arxiv.org/abs/2404.19721 (visited on
09/21/2024).

[8] Charles B. Callaway and K. Sima’an. “Wired for Speech: How Voice Acti-
vates and Advances the Human-Computer Relationship”. In: July 2005.
url: https : / / www . semanticscholar . org / paper / Wired - for - Speech %
3A - How - Voice - Activates - and - Advances - Callaway - Sima ' an /
09d9e89983b07c589e35196f4a0c161987042670 (visited on 01/18/2025).

[9] ChatGPT can now see, hear, and speak. en-US. url: https://openai.com/index/
chatgpt-can-now-see-hear-and-speak/ (visited on 11/21/2024).

51

https://www.linkedin.com/news/story/chatgpt-hits-100m-weekly-users-5808204/
https://www.linkedin.com/news/story/chatgpt-hits-100m-weekly-users-5808204/
https://thedmlair.com/blogs/news/how-to-create-a-sandbox-game-in-d-d
https://thedmlair.com/blogs/news/how-to-create-a-sandbox-game-in-d-d
https://v17.angular.io/guide/what-is-angular
https://v17.angular.io/guide/what-is-angular
https://doi.org/10.1145/3375627.3375817
https://dl.acm.org/doi/10.1145/3375627.3375817
https://doi.org/10.1109/TPAMI.2018.2798607
https://ieeexplore.ieee.org/document/8269806/
https://ieeexplore.ieee.org/document/8269806/
https://doi.org/10.48550/arXiv.2404.19721
https://doi.org/10.48550/arXiv.2404.19721
http://arxiv.org/abs/2404.19721
https://www.semanticscholar.org/paper/Wired-for-Speech%3A-How-Voice-Activates-and-Advances-Callaway-Sima'an/09d9e89983b07c589e35196f4a0c161987042670
https://www.semanticscholar.org/paper/Wired-for-Speech%3A-How-Voice-Activates-and-Advances-Callaway-Sima'an/09d9e89983b07c589e35196f4a0c161987042670
https://www.semanticscholar.org/paper/Wired-for-Speech%3A-How-Voice-Activates-and-Advances-Callaway-Sima'an/09d9e89983b07c589e35196f4a0c161987042670
https://openai.com/index/chatgpt-can-now-see-hear-and-speak/
https://openai.com/index/chatgpt-can-now-see-hear-and-speak/

[10] Circuit Board - Game With Pixels. url: https://gamewithpixels.com/features/
circuit-board/ (visited on 12/09/2024).

[11] Dai Clegg and Richard Barker. CASE method fast track: a RAD approach. eng. 1.
pr. Computer aided systems engineering. Wokingham, England Reading, Mass:
Addison-Wesley Pub. Co, 1994. isbn: 978-0-201-62432-8.

[12] Components | Pixels | Hackaday.io. url: https://hackaday.io/project/28377/
components (visited on 12/09/2024).

[13] Edirlei Soares De Lima et al. “ChatGeppetto - an AI-powered Storyteller”. en. In:
Proceedings of the 22nd Brazilian Symposium on Games and Digital Entertain-
ment. Rio Grande (RS) Brazil: ACM, Nov. 2023, pp. 28–37. isbn: 9798400716270.
doi: 10.1145/3631085.3631302. url: https://dl.acm.org/doi/10.1145/
3631085.3631302 (visited on 09/21/2024).

[14] Django documentation | Django documentation. en. url: https : / / docs .
djangoproject.com/en/5.1/ (visited on 01/18/2025).

[15] ESP32. en. Page Version ID: 1261606949. Dec. 2024. url: https : / / en .
wikipedia.org/w/index.php?title=ESP32&oldid=1261606949 (visited on
12/09/2024).

[16] Aleksandar Filipović. “THE ROLE OF ARTIFICIAL INTELLIGENCE IN VIDEO
GAME DEVELOPMENT”. English. In: Kultura Polisa 20.3 (2023). Publisher:
�������� „�������–�����“ ���� ���, pp. 50–67. issn: 1820-4589, 2812-9466.
url: https://www.ceeol.com/search/article-detail?id=1201751 (visited on
10/09/2024).

[17] Flask vs Django in 2025: Which One to Choose and When? url: https://www.
netsolutions.com/insights/flask-vs-django (visited on 01/18/2025).

[18] Jamie Fraser, Ioannis Papaioannou, and Oliver Lemon. “Spoken Conversational
AI in Video Games-Emotional Dialogue Management Increases User Engage-
ment”. In: Oct. 2018. doi: 10.1145/3267851.3267896.

[19] Robert Friedman. “Tokenization in the Theory of Knowledge”. en. In: En-
cyclopedia 3.1 (Mar. 2023), pp. 380–386. issn: 2673-8392. doi: 10 . 3390 /
encyclopedia3010024. url: https://www.mdpi.com/2673-8392/3/1/24 (visited
on 01/18/2025).

[20] Konrad Gadzicki, Razieh Khamsehashari, and Christoph Zetzsche. “Early vs Late
Fusion in Multimodal Convolutional Neural Networks”. In: 2020 IEEE 23rd Inter-
national Conference on Information Fusion (FUSION). July 2020, pp. 1–6. doi:
10.23919/FUSION45008.2020.9190246. url: https://ieeexplore.ieee.org/
document/9190246/?arnumber=9190246 (visited on 10/14/2024).

52

https://gamewithpixels.com/features/circuit-board/
https://gamewithpixels.com/features/circuit-board/
https://hackaday.io/project/28377/components
https://hackaday.io/project/28377/components
https://doi.org/10.1145/3631085.3631302
https://dl.acm.org/doi/10.1145/3631085.3631302
https://dl.acm.org/doi/10.1145/3631085.3631302
https://docs.djangoproject.com/en/5.1/
https://docs.djangoproject.com/en/5.1/
https://en.wikipedia.org/w/index.php?title=ESP32&oldid=1261606949
https://en.wikipedia.org/w/index.php?title=ESP32&oldid=1261606949
https://www.ceeol.com/search/article-detail?id=1201751
https://www.netsolutions.com/insights/flask-vs-django
https://www.netsolutions.com/insights/flask-vs-django
https://doi.org/10.1145/3267851.3267896
https://doi.org/10.3390/encyclopedia3010024
https://doi.org/10.3390/encyclopedia3010024
https://www.mdpi.com/2673-8392/3/1/24
https://doi.org/10.23919/FUSION45008.2020.9190246
https://ieeexplore.ieee.org/document/9190246/?arnumber=9190246
https://ieeexplore.ieee.org/document/9190246/?arnumber=9190246

[21] Sushant Gautam. “Bridging Multimedia Modalities: Enhanced Multimodal AI Un-
derstanding and Intelligent Agents”. en. In: INTERNATIONAL CONFERENCE ON
MULTIMODAL INTERACTION. Paris France: ACM, Oct. 2023, pp. 695–699. isbn:
9798400700552. doi: 10.1145/3577190.3614225. url: https://dl.acm.org/
doi/10.1145/3577190.3614225 (visited on 09/21/2024).

[22] Matt Hassing. Final version Literature Review - Own Work. Oct. 2024.

[23] Sergio Poo Hernandez, Vadim Bulitko, and Marcia Spetch. “Keeping the Player
on an Emotional Trajectory in Interactive Storytelling”. en. In: Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
11.1 (2015). Number: 1, pp. 65–71. issn: 2334-0924. doi: https://doi.org/10.
1609/aiide.v11i1.12783. url: https://ojs.aaai.org/index.php/AIIDE/
article/view/12783 (visited on 09/21/2024).

[24] Jean Simonet. In-depth look at My Awesome Electronic Dice :) Dec. 2017. url:
https://www.youtube.com/watch?v=5uRe2gKeFX4 (visited on 12/09/2024).

[25] Zixuan Jiang. “Emotional Simulation in Game AI and Its Impact on Player Ex-
perience”. en. In: International Journal of Education and Humanities 13.2 (Apr.
2024). Number: 2, pp. 11–13. issn: 2770-6702. doi: 10 . 54097 / pbhsqy34. url:
https://drpress.org/ojs/index.php/ijeh/article/view/19621 (visited
on 10/09/2024).

[26] Kostas Karpouzis and George Tsatiris. “AI in (and for) Games”. In: Jan. 2022,
pp. 27–43. isbn: 978-3-030-76793-8. doi: 10.1007/978-3-030-76794-5_3.

[27] Raul Lara-Cabrera et al. “Game artificial intelligence: Challenges for the scientific
community”. In: CEUR Workshop Proceedings 1394 (Jan. 2015), pp. 1–12.

[28] David B. Leake. “Artiicial Intelligence”. In: 2001. url: https : / / www .
semanticscholar.org/paper/Artiicial-Intelligence-Leake/86d763790bb7da53d8ad69c01623c7bff57e1e97
(visited on 09/21/2024).

[29] LiveKit. en. url: https://livekit.io (visited on 11/21/2024).

[30] Angelika H. Mader and Wouter Eggink. “A Design Process for Creative Technol-
ogy”. Undefined. In: Proceedings of the 16th International conference on En-
gineering and Product Design, E&PDE 2014. The Design Society, Sept. 2014,
pp. 568–573. url: https://research.utwente.nl/en/publications/a-design-
process-for-creative-technology (visited on 11/04/2024).

[31] Node.js - MDN Web Docs Glossary: Definitions of Web-related terms | MDN. en-
US. Aug. 2024. url: https://developer.mozilla.org/en-US/docs/Glossary/
Node.js (visited on 01/18/2025).

53

https://doi.org/10.1145/3577190.3614225
https://dl.acm.org/doi/10.1145/3577190.3614225
https://dl.acm.org/doi/10.1145/3577190.3614225
https://doi.org/https://doi.org/10.1609/aiide.v11i1.12783
https://doi.org/https://doi.org/10.1609/aiide.v11i1.12783
https://ojs.aaai.org/index.php/AIIDE/article/view/12783
https://ojs.aaai.org/index.php/AIIDE/article/view/12783
https://www.youtube.com/watch?v=5uRe2gKeFX4
https://doi.org/10.54097/pbhsqy34
https://drpress.org/ojs/index.php/ijeh/article/view/19621
https://doi.org/10.1007/978-3-030-76794-5_3
https://www.semanticscholar.org/paper/Artiicial-Intelligence-Leake/86d763790bb7da53d8ad69c01623c7bff57e1e97
https://www.semanticscholar.org/paper/Artiicial-Intelligence-Leake/86d763790bb7da53d8ad69c01623c7bff57e1e97
https://livekit.io
https://research.utwente.nl/en/publications/a-design-process-for-creative-technology
https://research.utwente.nl/en/publications/a-design-process-for-creative-technology
https://developer.mozilla.org/en-US/docs/Glossary/Node.js
https://developer.mozilla.org/en-US/docs/Glossary/Node.js

[32] Heather L. O’Brien, Paul Cairns, and Mark Hall. “A practical approach to mea-
suring user engagement with the refined user engagement scale (UES) and new
UES short form”. In: International Journal of Human-Computer Studies 112 (Apr.
2018), pp. 28–39. issn: 1071-5819. doi: 10.1016/j.ijhcs.2018.01.004. url:
https://www.sciencedirect.com/science/article/pii/S1071581918300041
(visited on 01/18/2025).

[33] Zhenhui Peng et al. “Understanding User Perceptions of Robot’s Delay, Voice
Quality-Speed Trade-off and GUI during Conversation”. en. In: Extended Ab-
stracts of the 2020 CHI Conference on Human Factors in Computing Systems.
Honolulu HI USA: ACM, Apr. 2020, pp. 1–8. isbn: 978-1-4503-6819-3. doi: 10.
1145/3334480.3382792. url: https://dl.acm.org/doi/10.1145/3334480.
3382792 (visited on 01/23/2025).

[34] Luis Manuel Pereira, Addisson Salazar, and Luis Vergara. “A Comparative Anal-
ysis of Early and Late Fusion for the Multimodal Two-Class Problem”. In: IEEE
Access 11 (2023), pp. 84283–84300. issn: 2169-3536. doi: 10.1109/ACCESS.
2023.3296098. url: https://ieeexplore.ieee.org/document/10185035/ (vis-
ited on 10/14/2024).

[35] PHP: Documentation. en. url: https : / / www . php . net / docs . php (visited on
01/18/2025).

[36] React. en. url: https://react.dev/ (visited on 01/18/2025).

[37] Mark Owen Riedl and Alexander Zook. “AI for game production”. In: 2013 IEEE
Conference on Computational Inteligence in Games (CIG). ISSN: 2325-4289.
Aug. 2013, pp. 1–8. doi: 10.1109/CIG.2013.6633663. url: https://ieeexplore.
ieee.org/document/6633663 (visited on 10/09/2024).

[38] Ruby on Rails. en. url: https://rubyonrails.org/ (visited on 01/18/2025).

[39] Brandon Sanderson. Arcanum Unbounded: the Cosmere Collection. eng. OCLC:
962850091. London, England: Gollancz, 2016. isbn: 978-1-4732-1804-8.

[40] Jeff Sauro and James R. Lewis.Quantifying the User Experience: Practical Statis-
tics for User Research. en. Google-Books-ID: USPfCQAAQBAJ. Morgan Kauf-
mann, July 2016. isbn: 978-0-12-802548-2.

[41] Seeed Studio XIAO ESP32C3. en. url: https://www.kiwi-electronics.com/
en/seeed-studio-xiao-esp32c3-11039 (visited on 12/09/2024).

[42] Akshay Sharma, Abhishek Srivastava, and Adhar Vashishth. “An Assistive Reading
System for Visually Impaired using OCR and TTS”. In: International Journal of
Computer Applications 95.2 (June 2014), pp. 13–18. issn: 09758887. doi: 10.
5120/16566-6231. url: http://research.ijcaonline.org/volume95/number2/
pxc3896231.pdf (visited on 01/18/2025).

[43] Vue.js. en-US. url: https://vuejs.org/ (visited on 01/18/2025).

54

https://doi.org/10.1016/j.ijhcs.2018.01.004
https://www.sciencedirect.com/science/article/pii/S1071581918300041
https://doi.org/10.1145/3334480.3382792
https://doi.org/10.1145/3334480.3382792
https://dl.acm.org/doi/10.1145/3334480.3382792
https://dl.acm.org/doi/10.1145/3334480.3382792
https://doi.org/10.1109/ACCESS.2023.3296098
https://doi.org/10.1109/ACCESS.2023.3296098
https://ieeexplore.ieee.org/document/10185035/
https://www.php.net/docs.php
https://react.dev/
https://doi.org/10.1109/CIG.2013.6633663
https://ieeexplore.ieee.org/document/6633663
https://ieeexplore.ieee.org/document/6633663
https://rubyonrails.org/
https://www.kiwi-electronics.com/en/seeed-studio-xiao-esp32c3-11039
https://www.kiwi-electronics.com/en/seeed-studio-xiao-esp32c3-11039
https://doi.org/10.5120/16566-6231
https://doi.org/10.5120/16566-6231
http://research.ijcaonline.org/volume95/number2/pxc3896231.pdf
http://research.ijcaonline.org/volume95/number2/pxc3896231.pdf
https://vuejs.org/

[44] Ruixi Wang. “Review of Generative Models”. In: Applied and Computational
Engineering 8.1 (Aug. 2023), pp. 524–529. issn: 2755-2721, 2755-273X. doi:
10 . 54254 / 2755 - 2721 / 8 / 20230269. url: https : / / www . ewadirect . com /
proceedings/ace/article/view/2488 (visited on 01/18/2025).

[45] Welcome to Flask — Flask Documentation (3.1.x). url: https : / / flask .
palletsprojects.com/en/stable/ (visited on 01/18/2025).

[46] What is Full Stack Development? - Full Stack Development Explained - AWS. en-
US. url: https://aws.amazon.com/what-is/full-stack-development/ (visited
on 01/18/2025).

[47] What is Full Stack Development? - Full Stack Development Explained - AWS. url:
https://aws.amazon.com/what- is/full- stack- development/ (visited on
01/18/2025).

[48] XIAO ESP32C3. en. url: https://docs.nordicsemi.com/bundle/ncs-latest/
page / zephyr / boards / seeed / xiao _ esp32c3 / doc / index . html (visited on
12/09/2024).

[49] Qi-Yue Yin et al. “AI in Human-computer Gaming: Techniques, Challenges and
Opportunities”. In:Machine Intelligence Research 20 (Jan. 2023). doi: 10.1007/
s11633-022-1384-6.

[50] Wayne Xin Zhao et al. A Survey of Large Language Models. Version Number: 15.
2023. doi: 10.48550/ARXIV.2303.18223. url: https://arxiv.org/abs/2303.
18223 (visited on 01/18/2025).

55

https://doi.org/10.54254/2755-2721/8/20230269
https://www.ewadirect.com/proceedings/ace/article/view/2488
https://www.ewadirect.com/proceedings/ace/article/view/2488
https://flask.palletsprojects.com/en/stable/
https://flask.palletsprojects.com/en/stable/
https://aws.amazon.com/what-is/full-stack-development/
https://aws.amazon.com/what-is/full-stack-development/
https://docs.nordicsemi.com/bundle/ncs-latest/page/zephyr/boards/seeed/xiao_esp32c3/doc/index.html
https://docs.nordicsemi.com/bundle/ncs-latest/page/zephyr/boards/seeed/xiao_esp32c3/doc/index.html
https://doi.org/10.1007/s11633-022-1384-6
https://doi.org/10.1007/s11633-022-1384-6
https://doi.org/10.48550/ARXIV.2303.18223
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

Appendices

56

Appendix A

AI-notice

During the preparation of this work, I used ChatGPT, Elicit, litmaps and paperdigest
to help structure content, aid in programming and find academic sources. After using
these tools and services, I thoroughly reviewed and edited the content as needed, taking
full responsibility for the final outcome.

57

Appendix B

Consent Form

The ethical consent form participants had to sign to enter the research

58

Consent form 1

Consent form
Project Title: Dicey DM'ing: Developing an AI-based Physical Roleplaying
Artifact

Researcher: Matt Hassing, B-CREA, University of Twente

Contact Information: m.hassing@student.utwente.nl

Purpose of the Study:
This study aims to explore the integration of AI into tabletop role-playing games
(TTRPGs) like Dungeons & Dragons. Specifically, we will test an AI Game
Master system compared to traditional human Game Masters. Participants will
engage with the AI system or human GM during a playtest and complete a
questionnaire afterward.

Study Procedures:
1. You will be introduced to the research and sign this consent form.

2. You will play a session with either the AI Game Master or a traditional Game
Master.

3. Following the session, you will fill out a questionnaire to evaluate their
experiences.

Consent form 2

Please note that the AI system we are using is developed by OpenAI and
is thus created by a third-party, commercial entity. While OpenAI has
implemented safeguards to minimize risks, the AI may still produce
outputs that reflect biases or stray into topics that could be considered
harmful or inappropriate. We do not have control over these biases.

To ensure your safety, the session will be monitored in real time by the
researcher, who will intervene or stop the interaction if biased or unsafe
content appears.

Voluntary Participation:
Your participation in this research is completely voluntary. You may withdraw at
any time without providing a reason, this will lead to the destruction of all
information gathered within the research, including transcripts and consent
forms.

Data Protection and Confidentiality:
The only personally identifiable information collected is the signed consent
form.

Responses to the questionnaire will be anonymized.

We will use only the transcript of your conversation with the AI from your
session, any other information used by the AI during the session will be
permanently deleted within 5 minutes of the session's conclusion

All data will be used exclusively for this research project and destroyed
after its conclusion anticipated to be January 31, 2025.

Participant Rights:
You may refuse to answer any question or terminate your participation at
any time.

Consent form 3

Anonymized data may be included in published research but will not be
linked to your identity.

Contact for Questions or Concerns:
If you have any questions about the study, please contact the researcher at
m.hassing@student.utwente.nl. For concerns about your rights as a participant
or to report a problem, you may contact the Ethics Committee at
ethicscommittee-cis@utwente.nl.

Consent Declaration:
By signing this form, you agree to the following:

 I have read and understood the provided information.

 I agree to participate in this study voluntarily.

 I understand that I can withdraw at any time without explanation.

 I consent to the collection and anonymization of my questionnaire
responses.

 I understand that all data used by the AI during the session (except
transcripts) will be deleted within 5 minutes of the session's conclusion.

 I understand that the AI may produce outputs that reflect biases or stray
into topics that could be considered harmful or inappropriate.

 I understand that the session will be monitored by the researcher remotely

Signature:

Participant Name: ___________________________

Participant Signature: _______________________

Date: _______________________

62

Appendix C

Briefing

Debriefing at the Start of the Experiment 1

Debriefing at the Start of the
Experiment

Following will be read to each participant
Next, you will play a Tabletop Role-Playing Game (TTRPG) called Dungeons &
Dragons in a session managed by an AI Game Master. You will be playing as a
pre-made character provided to you, and during the game, you will use a 20-
sided die (D20) to interact with the game and resolve actions. Your role, will
involve making decisions for your character, responding to game scenarios,
and rolling the die as needed. The session is designed to replicate a standard
TTRPG experience and will last approximately 20–30 minutes. Following the
session, you will complete a short questionnaire to share your thoughts and
feedback on the experience. Please remember that your participation is
voluntary, and you may withdraw at any time. Let us know if you have any
questions before we begin!

Figure C.1: Briefing read verbally to a participant during the experiment

63

Appendix D

Programs, Back-end

The back-end python program keeping the LiveKit AI GM running

1 import asyncio
2 from typing import Annotated
3 from livekit import agents, rtc
4 from livekit.agents import JobContext, WorkerOptions, cli, tokenize, tts,

stt, llm↪→

5 from livekit.agents.llm import ChatContext, ChatMessage
6 from livekit.agents.voice_assistant import VoicePipelineAgent
7 from livekit.plugins import deepgram, openai, silero
8 import logging
9 from dotenv import load_dotenv
10 import os
11 from aiohttp import web
12

13 # Load environment variables
14 load_dotenv()
15

16 # Access your environment variables
17 openai_api_key = os.getenv('OPENAI_API_KEY')
18 deepgram_api_key = os.getenv('DEEPGRAM_API_KEY')
19 livekit_url = os.getenv('LIVEKIT_URL')
20 livekit_api_key = os.getenv('LIVEKIT_API_KEY')
21 livekit_api_secret = os.getenv('LIVEKIT_API_SECRET')
22

23 logger = logging.getLogger("Assistant")
24 logger.setLevel(logging.INFO)
25

26 # Initialize an asynchronous queue for dice rolls
27 dice_roll_future = None # Future to manage active waiting for dice rolls
28

29 async def run_http_server(chat_context, answer_fnc):

64

30 app = web.Application()
31 # Store references in app's state
32 app['chat_context'] = chat_context
33 app['answer_fnc'] = answer_fnc
34

35 app.add_routes([web.post('/dice_roll', handle_dice_roll)])
36

37 runner = web.AppRunner(app)
38 await runner.setup()
39 site = web.TCPSite(runner, '0.0.0.0', 8081)
40 await site.start()
41 logger.info("HTTP server started on port 8081 for dice roll

submissions.")↪→

42

43 # Keep the server running indefinitely until this task is canceled
44 await asyncio.Future()
45

46 async def handle_dice_roll(request):
47 global dice_roll_future
48 raw_body = await request.text() # Log raw body for debugging
49 logger.info(f"Raw request body: {raw_body}")
50

51 data = await request.json()
52 dice_result = data.get("roll")
53

54 if dice_result is None:
55 logger.warning("No 'roll' field in received data.")
56 return web.Response(text="Invalid data format.", status=400)
57

58 logger.info(f"Dice roll received: {dice_result}")
59

60 # # If let_player_roll_dice is waiting, fulfill its future;
otherwise, _answer with "rolled <dice_result>"↪→

61 # if dice_roll_future and not dice_roll_future.done():
62 # dice_roll_future.set_result(dice_result)
63 # logger.info("Dice roll delivered to waiting function.")
64 # else:
65 # Instead of adding a message to the chat_context, call _answer
66 answer_fnc = request.app['answer_fnc']
67

68 chat_context = request.app['chat_context']
69 chat_context.messages.append(
70 ChatMessage(role="system", content=f"Dice roll result:

{dice_result}")↪→

71)

65

72

73 asyncio.create_task(answer_fnc(f"rolled {dice_result}"))
74

75 return web.Response(text="Dice roll received.")
76

77

78 class AssistantFnc(llm.FunctionContext):
79 @llm.ai_callable(
80 description="Called to retrieve character data from the database.",
81)
82 async def get_character_info(
83 self,
84 character_name: Annotated[str, llm.TypeInfo(description="The name

of the character to search for, or leave empty for
all_summaries")] = None,

↪→

↪→

85):
86

87 return "A big burly minotaur"
88

89

90 async def entrypoint(ctx: JobContext):
91 await ctx.connect()
92 print(f"Room name: {ctx.room.name}")
93 global chat_context
94 chat_context = ChatContext(
95 messages=[
96 ChatMessage(
97 role="system",
98 content=(
99 """ You are an GM for a dnd 5e campaign, you also have

a bunch of functions to your disposal to help you
with your campaign.

↪→

↪→

100 if you CAN you NEED to call a function.
101 You need to ask the user to roll the D20 similar to

how its done in DND↪→

102

103 You are playing a small session in the world of
Karathun, you are at the entrance of the runes
currently. here is the lore:

↪→

↪→

104 'A sage has hired you to find the Staff of Verdant
Whispers, hidden deep within these ruins centuries
ago by druids.'

↪→

↪→

66

105 'Cracked mosaic floors depict scenes of ancient
rituals. Natural roots have burst through stone,
weaving a strange tapestry of life reclaiming this
underground space.'

↪→

↪→

↪→

106 'Magical wards and living plants animated by old
nature magic bar the way. Puzzles that require
knowledge of druidic lore must be solved.
Half-collapsed corridors, swarming kobold minions,
and unstable magical crystals that hum ominously.'

↪→

↪→

↪→

↪→

107 'Recover the Staff of Verdant Whispers. Potential
reward: a handsome payment and possibly a boon
from a nature deity if handled respectfully.'

↪→

↪→

108

109 you have a party of 2, one player and one NPC, the
player is the one you are interacting with
currently and the NPC you have to play yourself.

↪→

↪→

110 the npc you play is a wizard named "Finn" (chaotic
good personality) who is a bit of a trickster but
has a good heart.

↪→

↪→

111 adhere strictly to the DND 5e rules! but more
importantly make the player have fun.↪→

112 as part of the adhering to the rules be sure to stick
to the game loop including combat and exploration.↪→

113 make a user roll the dice, if they do not want to do
not progress the game.↪→

114 ask the player which character they want to play then
look it up using the function calls.↪→

115

116 remember to act out scenarios and describe the world
to the player also keep encounters interesting and
challenging.

↪→

↪→

117 strictly adhere to the game loops of DND 5e, and
remember to have fun!↪→

118

119 keep it short and sweet, and remember to have fun!
Good luck!↪→

120 keep responses short, no one has a long attention
span.↪→

121 Do not use unprenounce-able markup, you're words are
being spoken not read.↪→

122 be direct and a little bit abbrasive, take inspiration
from famous dnd GM's such as mathew mercer in the
way he sets up scenarios and plays with the
players.

↪→

↪→

↪→

123 KEEP IT SHORT!

67

124

125 example message:
126 (user rolls poorly on an attack roll):
127 "You attack the goblin with your sword, Finn screams

'WATCH OUT FOR THE ROCK!' as you swing your sword,
but you miss the goblin and get hit in the head
with a rock, you take 2 damage"

↪→

↪→

↪→

128 finn then goes in for the counter attack and rolls a
15, he hits the goblin and deals 5 damage, the
goblin is looking pretty rough now.

↪→

↪→

129

130 another example:
131 (user rolls for initiative and gave instructions to

attack the goblin with a pastry in towards its
face)

↪→

↪→

132 "You rolled a nat 20! way to go, with an epic launch
you throw a pastry directly into the goblins face,
it's neck snaps back and it falls to the ground,
dead."

↪→

↪→

↪→

133 "Finn looks at you and says 'I wanted to eat that!'
while taking advantage of the situation and
casting a firebolt at the other goblin, he rolls a
<make up a good number> and hits the goblin for
<make up a better number> damage."

↪→

↪→

↪→

↪→

134 "The goblin is looking rough and charges in for an
attack, he rolls a <number> for <number> damage.
The goblin heaves a sigh of relief as he lifts up
his club and smashes the shit out of you."

↪→

↪→

↪→

135 <give a summary of the current state of the world make
it snappy>↪→

136

137 another example
138 "You tiptoe carefully, but your foot catches on a

loose cobblestone, sending you tumbling to the
ground with a loud crash. The guard's eyes snap to
you, and he shouts, 'Halt! Who goes there?' as he
draws his sword. You take 3 damage as you scrape
your knee on the rough stone."

↪→

↪→

↪→

↪→

↪→

139 "Finn, seeing the situation go sideways, whispers a
spell and fires a bolt of ice at the guard. He
rolls a 17, and it strikes true, freezing the
guard's arm. The guard takes 6 damage and is
slowed. He's now stumbling, struggling to break
free from the ice."

↪→

↪→

↪→

↪→

↪→

68

140 "The street is tense; shadows flicker from torches,
and the sound of distant footsteps suggests more
guards are on the way."

↪→

↪→

141

142 DO NOT OFFER THE PLAYER THE OPTION TO PLAY AS FINN THE
TRICKSTER WIZARD THAT IS AN NPC: NON PLAYABLE.↪→

143 KEEP IT SHORT,
144

145 """
146)
147),
148 # ChatMessage(
149 # role="system",
150 # content="You are in development mode, aid the

development of you by helping the user as much as
possible. This includes saying exactly what you are doing"

↪→

↪→

151 #),
152 ChatMessage(
153 role="assistant",
154 content="Ah, Another band of heroes thinking they can

handle the ruines Karathun. Lets see what adventures
await them... note to self: do not to laugh when they
trip over their own sword.",

↪→

↪→

↪→

155),
156

157]
158)
159 # gpt = openai.LLM(model="gpt-4o-mini")
160 gpt = openai.LLM(model="gpt-4o")
161

162

163 # Since OpenAI does not support streaming TTS, we'll use it with a
StreamAdapter↪→

164 # to make it compatible with the VoiceAssistant
165 openai_tts = tts.StreamAdapter(
166 tts=openai.TTS(voice="echo", speed=1),
167 sentence_tokenizer=tokenize.basic.SentenceTokenizer(),
168)
169

170 assistant = VoicePipelineAgent(
171 stt=deepgram.STT(), # We'll use Deepgram's Speech To Text (STT)
172 llm=gpt,
173 tts=openai_tts, # We'll use OpenAI's Text To Speech (TTS)
174 fnc_ctx=AssistantFnc(),
175 chat_ctx=chat_context,

69

176 allow_interruptions=True,
177 vad=silero.VAD.load(
178 min_speech_duration=0.1,
179 min_silence_duration=0.5,
180)
181)
182

183

184 chat = rtc.ChatManager(ctx.room)
185

186 async def _answer(text: str):
187 """Answer the user's message with the given text."""
188 chat_context.messages.append(ChatMessage(role="user",

content=text))↪→

189

190 stream = gpt.chat(chat_ctx=chat_context)
191 assistant._interrupt_if_possible()
192 await assistant.say(stream, allow_interruptions=True)
193

194 @chat.on("message_received")
195 def on_message_received(msg: rtc.ChatMessage):
196 """This event triggers whenever we get a new message from the

user."""↪→

197 if msg.message:
198 asyncio.create_task(_answer(msg.message))
199

200 @assistant.on("function_calls_finished")
201 def on_function_calls_finished(called_functions:

list[agents.llm.CalledFunction]):↪→

202 """This event triggers when an assistant's function call
completes."""↪→

203 if len(called_functions) == 0:
204 return
205

206 logger.info(f"Function call completed:result:
{called_functions[0].result}")↪→

207

208 user_msg = called_functions[0].call_info.arguments.get("user_msg")
209 if user_msg:
210 asyncio.create_task(_answer(user_msg))
211

212 assistant.start(ctx.room)
213

214 # Start the HTTP server in its own background task

70

215 server_task = asyncio.create_task(run_http_server(chat_context,
_answer))↪→

216

217 try:
218 # Main loop: This will run while the connection is active
219 while ctx.room.connection_state ==

rtc.ConnectionState.CONN_CONNECTED:↪→

220 await asyncio.sleep(1)
221 finally:
222 # Optional: If you want to shut down the server once the room is

disconnected↪→

223 server_task.cancel()
224 with contextlib.suppress(asyncio.CancelledError):
225 await server_task
226

227

228 if __name__ == "__main__":
229 cli.run_app(WorkerOptions(entrypoint_fnc=entrypoint))

71

Appendix E

Data from the Questionnaire

72

ID

How familiar are

you with TTRPGs

Have you ever

played Dungeons

and Dragons before?

amount of

sessions of

D&D

Have you

ever acted

as a GM?

I think that I would

like to use this

system frequently.

1 Not at all No No Strongly disagree

2 Slightly No No Agree

3 Slightly Yes 1-5 No Agree

4 - Expert 1 expert Yes 20+ Yes Disagree

5 Not at all No No Agree

6 Slightly No No Agree

7 Slightly Yes 1-5 No

Neither agree nor

disagree

8 Slightly Yes 1-5 No Agree

9 Very Yes 1-5 No Agree

10 Slightly Yes 1-5 No Agree

11 Moderately Yes 1-5 No Agree

12 Slightly Yes 6-10 No Agree

13-E2 expert Yes 20+ Yes Agree

14 Not at all No No Agree

15 Not at all No No

Neither agree nor

disagree

16 Not at all No No Agree

17 Not at all No No Agree

18 Moderately Yes 1-5 No Agree

19 Moderately Yes 11-20 Yes Agree

20 Moderately Yes 11-20 Yes

Neither agree nor

disagree

I found the system

unnecessarily

complex.

I thought the

system was easy

to use.

I think that I would

need the support of a

technical person to be

able to use this system.

I found the various

functions in this system

were well-integrated.

Disagree Strongly agree Strongly disagree Neither agree nor disagree

Strongly disagree Strongly agree Strongly disagree Agree

Disagree Agree Disagree Agree

Strongly disagree Disagree Disagree Agree

Strongly disagree Strongly agree Strongly disagree Agree

Disagree

Neither agree nor

disagree Agree Agree

Strongly disagree Strongly agree Strongly disagree Strongly agree

Strongly disagree Strongly agree Strongly disagree Strongly agree

Strongly disagree Agree Neither agree nor disagree Strongly agree

Disagree Strongly agree Disagree Agree

Strongly disagree Agree Disagree Strongly agree

Strongly disagree Strongly agree Strongly disagree Agree

Strongly disagree Strongly agree Strongly disagree Agree

Strongly disagree Strongly agree Disagree Agree

Disagree Strongly agree Strongly disagree Agree

Strongly disagree Strongly agree Strongly disagree Strongly agree

Strongly disagree Agree Disagree Strongly agree

Disagree Strongly agree Disagree Strongly agree

Disagree Strongly agree Strongly disagree Agree

Strongly disagree Strongly agree Disagree Agree

I thought there was too

much inconsistency in

this system.

I would imagine that

most people would

learn to use this system

very quickly.

I found the system very

cumbersome to use.

I felt very confident

using the system.

Disagree Agree Disagree Strongly agree

Strongly disagree Strongly agree Strongly disagree Strongly agree

Neither agree nor disagree Strongly agree Strongly disagree Agree

Disagree Agree Disagree Neither agree nor disagree

Strongly disagree Strongly agree Disagree Agree

Neither agree nor disagree Agree Neither agree nor disagree Agree

Disagree Agree Strongly disagree Agree

Strongly disagree Strongly agree Strongly disagree Strongly agree

Disagree Strongly agree Strongly disagree Agree

Disagree Disagree Disagree Disagree

Strongly disagree Strongly agree Strongly disagree Agree

Disagree Strongly agree Strongly disagree Strongly agree

Disagree Agree Strongly disagree Strongly agree

Strongly disagree Strongly agree Disagree Neither agree nor disagree

Disagree Strongly agree Disagree Agree

Strongly disagree Agree Strongly disagree Agree

Disagree Strongly agree Agree Agree

Strongly disagree Agree Strongly disagree Agree

Neither agree nor disagree Strongly agree Strongly disagree Strongly agree

Strongly disagree Strongly agree Strongly disagree Disagree

I needed to learn a lot

of things before I could

get going with this

system.

I lost myself in this

experience.

The time I spent using

the AI GM just slipped

away.

I felt frustrated while

using the AI GM.

Neither agree nor disagree Agree Disagree Strongly Disagree

Strongly disagree Strongly Agree Strongly Agree Strongly Disagree

Strongly disagree Disagree Strongly Agree Neither agree nor disagree

Strongly disagree Neither agree nor disagree Agree Disagree

Strongly disagree Disagree Agree Disagree

Disagree Neither agree nor disagree Neither agree nor disagree Agree

Strongly disagree Agree Agree Disagree

Strongly disagree Agree Strongly Agree Disagree

Strongly disagree Agree Agree Disagree

Disagree Agree Neither agree nor disagree Strongly Disagree

Strongly disagree Agree Agree Disagree

Strongly disagree Agree Neither agree nor disagree Disagree

Disagree Strongly Agree Strongly Agree Strongly Disagree

Disagree Disagree Disagree Strongly Disagree

Strongly disagree Neither agree nor disagree Agree Strongly Disagree

Strongly disagree Agree Agree Strongly Disagree

Strongly disagree Strongly Disagree Neither agree nor disagree Strongly Disagree

Strongly disagree Strongly Agree Agree Strongly Disagree

Strongly disagree Strongly Agree Strongly Agree Disagree

Strongly disagree Disagree Agree Neither agree nor disagree

I found this the AI

GM confusing to use.

Using the AI GM was

taxing

This the AI GM was

attractive

This the AI GM was

aesthetically appealing

Strongly Disagree Disagree Agree Disagree

Strongly Disagree Strongly Disagree Agree Agree

Disagree Disagree Agree Strongly Agree

Disagree Strongly Disagree Agree Neither agree nor disagree

Strongly Disagree Disagree Agree Neither agree nor disagree

Neither agree nor disagree Disagree Agree Neither agree nor disagree

Strongly Disagree Strongly Disagree Agree Agree

Strongly Disagree Strongly Disagree Strongly Agree Agree

Strongly Disagree Disagree Strongly Agree Neither agree nor disagree

Disagree Disagree Neither agree nor disagree Disagree

Disagree Strongly Disagree Agree Agree

Strongly Disagree Strongly Disagree Neither agree nor disagree Neither agree nor disagree

Strongly Disagree Strongly Disagree Agree Strongly Agree

Strongly Disagree Strongly Disagree Neither agree nor disagree Neither agree nor disagree

Strongly Disagree Disagree Agree Agree

Strongly Disagree Strongly Disagree Strongly Agree Neither agree nor disagree

Strongly Disagree Strongly Disagree Agree Agree

Strongly Disagree Strongly Disagree Agree Neither agree nor disagree

Strongly Disagree Strongly Disagree Strongly Agree Neither agree nor disagree

Strongly Disagree Agree Agree Neither agree nor disagree

The AI GM appealed to

be visual senses.

Using the AI GM was

worthwhile

My experience was

rewarding.

Strongly Disagree Strongly Agree Agree

Agree Agree Strongly Agree

Agree Agree Agree

Agree Agree Strongly Agree

Neither agree nor disagree Strongly Agree Agree

Neither agree nor disagree Agree Agree

Agree Strongly Agree Strongly Agree

Neither agree nor disagree Strongly Agree Strongly Agree

Disagree Agree Agree

Disagree Agree Strongly Agree

Neither agree nor disagree Agree Agree

Agree Agree Strongly Agree

Agree Strongly Agree Strongly Agree

Neither agree nor disagree Agree Agree

Agree Strongly Agree Agree

Neither agree nor disagree Strongly Agree Strongly Agree

Disagree Agree Agree

Neither agree nor disagree Agree Agree

Neither agree nor disagree Strongly Agree Strongly Agree

Agree Agree Agree

What did you like most about using the system?

I could say anything and it would give me an elaborate answer. I could ask for more explanation without feeling

like a burden. I liked the answers it gave, it was magical and surprising and it gave me a lot of encouragement. I

liked that you could both chose for listening and reading, which makes it accessible for more people

I liked how it gave me the freedom to change something, if I did not like it.

It worked pretty well, and the story is nicely given

Absolute freedom to do all sorts of stupid shit

It was easy to use for beginners that have never played DandD and it guided you nicely

It provided a nice, interesting story I could interact with

The GM responded quickly, and was able to react to even some more random and obscure inputs.

that i could speak and did not have to type. it added a lot to the experience.

The way it created a story was very cool and the way it could incorporate randomness like the random spell I

came up with.

I have not much experience playing DnD so I wasn't sure what I could do, but the system guided me nicely

through everything and gave me options and inspiration for actions I could do. It was relatively easy to use and it

was fun to play.

I enjoyed the interaction with the ai, being able to speak to it gives a similar experience as with regular DnD. I like

the fact that the AI has a smooth voice and is consistent.

That I didn't have to type anything and I could physically throw a die

I loved my little goblin (kobold) squad, I also really like how responsive the AI GM was to my inputs

Although i did not fully understand my character and its purposes i was able to get a story which was to my

liking. Adapted to what I told the AI what I wanted instead of adapted to the designated character.

That it read aloud while I could read the text.

The fact that it felt unique, and not like it was scripted. The AI actually used my input and made it feel like I had a

lot of influence on the storyline. The dice was also a nice addition.

It has so much room for creativity and you could play for hours and create your own world where you could even

progress without your friends(As id real life D&D)

The fact that the AI GM could come up with new adventures, side missions, puzzles and enemies on the go so its

basically a endless game.

I like that I can really come up with things to do, and the AI will be able to structure DMing around it properly. It

really felt like I was free to do anything, which traditional digital versions of TTRPGs lack (I.e. Divinity 2 original

sin, text adventures, boldurs gate, etc.)

I was surprised at the flexibility of the AI GM and the amount of things it remembered from previous actions.

Trying different weird actions to see how the AI responded was the most fun thing to do in my opinion.

What were the challenges you faced while using the system?

The audio lagged a bit, sometimes it was faster than the text wat could be irritating.

Sometimes the words were complex.

Sometimes the voice was a robot and therefore was behind the text, so I had to wait for the voice to be done

Didn't ask for any dice rolls after a while

i was confused about what exactly i needed to do at some points , maybe a short explanation on whats going on would be nice for

those who have never played the game

The dice broke, and it briefly stopped at one point.

The die gave the wrong output once, but you are able to manually input the die roll by telling the AI GM

one time i misspoke or the master misheard me and then i tried typing but was too slow and it caused a bit of confusion and skipping

in the storyline.

Rolling the dice as it sometimes did not know what I threw. And I could not talk during the dialogue since it would stop talking to

interpret what I said.

I could not always remember all the information I got, so I had to go back. And this might be a lack of experience, but at times that

there was no guidance I didn't know what the boundaries were. Could I ask anything? But everything I asked was smoothly resolved

during this sessions. Also I felt I had no context on who I was and what I had or could do, but maybe I should have asked that to the

system.

I did not experience any challenges during the game

It had a little trouble understanding the word orc and related words.

I got sidetracked and the GM didnt remind me of the orignal purpose of the quest

I also spoke when the AI was not supposed to hear me, which seemed to confuse it which in turn confused me.

Sometimes the speaking was before the text and then it was more difficult to use (I also watch series with subtitles and without I just

get more lost)

The AI didn't catch my name correctly at the start, but this was okay because he changed it into a pretty sick name anyways.

Not being sure when to roll exactly, it wasn't always 100% clear that i should

None, It just worked and i didnt find any big glitches. The only glitch i found was when I said lets het back to the entrance and the

voice to text heared lets head back to Claire Meyers, but the AI just took this name and named the quest giver Claire Meyers. I love

how the AI could just take what I say and adapt the story accordingly

Minor challenge: it would be nice to know when it is registering a dice roll; Sometimes it took long to notice that it had in fact

registered what I just rolled (no roll was registered incorrectly though, so it still worked flawlessly).

I felt like I had to be very quiet as to not disrupt the GM, which meant that I also was not really sure if laughing would also cause a

disruption which was a bit of a shame.

If you could improve one thing about the system what would it be?

I would like to just see an (maybe AI generated) picture of my character, that way I feel more connected with the role I am

playing. I would make it a bit prettier, but I am not sure that I am the right user group but maybe in the same style as DND?

Simpler words.

Fix the voice thingy

General information about the characters being played and limits on what they can do

maybe a short explanation on whats going on would be nice for those who have never played the game

A more consistent dice

Visuals of the characters or environment in the display

i would like the AI not to pick up my giggles

Add visuals to the story.

Maybe something visual. Now it is just text, and I can imagine something like a map would give inspiration and insight into what

is possible. And at the moment I felt like the dice was very fragile, like i had to handle it with care. This stopped me from really

rolling the dice like I would normally do.

The voice occasionally glitched out but aside from that it all went well

I feel like I skipped out or missed some puzzles or story steps. So maybe a bit more restriction on the AI that certain tasks need

be fulfilled

Maybe have Fin every now an then get you to go to the right side of the system

Maybe more integration if the dice as i only rolled it twice. Some choices seemed to need the addition of a roll but instead were

just accepted.

Make sure the text and the speaking is at the same tempo.

Maybe adding AI generated images based on the story to make it more aesthetically pleasing.

Maybe they ai could talk a bit less, some stuff were extra to add a bit of depthness into the story which i get, but some times the

AI went on for a while

Sound effect and background sounds. This is would be a hard feature to add but just having a pool of 20 generic background

tracks like forest, snow storm, cave, etc. and the AI pick on of those to play based on what is going on would add so much

immersion

The AI should keep balancing in mind more. I was able to use very very very late game spells to "cheese" the puzzles just by

rolling a high number. It might help if the AI is instructed to only allow the player to use spells/ items that Wth level character of

class and race X and Y would have.

Because I'm annoying, a second thing to improve: I answered neutral for the aesthetic questions because I feel that it could

maybe have a little bit more of a "DnD" feel (i.e. the text is all written on a burned paper background, a more RPG-like font, etc.)

In the DnD I am used to the GM usually states a problem without a solution since that is up to the players to solve, I felt like the

GM AI would push me toward certain actions more then perhaps necessary.

Any other remarks?

The emoji do add something, but I would prefer them to be incorporated into a DND style as well, but I understand that for

the user testing it can be a bit out of scope.

 Visual of the characters might be cool and even sceneries. AMAZING WORK!

Nope

The AI stories were too long in my opinion

No! :)

i really liked the experience and it was fun to go through the story. Also the AI only said the number i rolled once, it would

be cool if it had like a reaction so it would be like: oof a two, you try to listen to bla bla bla. Or like: Wow a natural 20! bla

bla bla

I like the product and would buy a more refined verions of such a system.

It was fun:) And I'm not even a fan of games.

I really enjoyed the experience, it is a great way to experience DnD

Was fun!

Loved my kobold squad

very cool!

It was very nice. Eventhough I do not know D&D I did like it.

Really fun experience, I'm impressed!

Nope, I loved it!

Really fun to play with! I really saw myself trying stupid things as I would in a real game of DnD and laughing along with it. If

it was more balanced, I could really see myself playing with this for several hours on end.

This was a very cool experience!

SUS score

FA (Focused

Attention)

PU (Percieved

Usability)

AE (Aesthetic

Appeal)

RW

(Reward

Factor)

Final

Score

70 3 4.666666667 2.333333333 4.5 3.6

95 5 5 4 4.5 4.6

80 3.5 3.666666667 4.333333333 4 3.9

67.5 3.5 4.333333333 3.666666667 4.5 4

90 3 4.333333333 3.333333333 4.5 3.8

62.5 3 3 3.333333333 4 3.3

87.5 4 4.666666667 4 5 4.4

97.5 4.5 4.666666667 4 5 4.5

85 4 4.333333333 3.333333333 4 3.9

67.5 3.5 4.333333333 2.333333333 4.5 3.6

90 4 4.333333333 3.666666667 4 4

92.5 3.5 4.666666667 3.333333333 4.5 4

87.5 5 5 4.333333333 5 4.8

82.5 2 5 3 4 3.6

82.5 3.5 4.666666667 4 4.5 4.2

92.5 4 5 3.666666667 5 4.4

80 2 5 3.333333333 4 3.7

87.5 4.5 5 3.333333333 4 4.2

87.5 5 4.666666667 3.666666667 5 4.5

82.5 3 3.333333333 3.666666667 4 3.5

Appendix F

Programs, Front-End

The front-end program for the web based UI that shows the AI GM

1 // src/app/page.tsx
2 "use client";
3 import React, { useState, useEffect, useMemo, useRef } from "react";
4 import {
5 LiveKitRoom,
6 RoomAudioRenderer,
7 BarVisualizer,
8 ControlBar,
9 ControlBarControls,
10 useVoiceAssistant,
11 useMaybeRoomContext,
12 useChat,
13 } from "@livekit/components-react";
14 import "@livekit/components-styles";
15 import { RoomEvent, TranscriptionSegment } from "livekit-client";
16

17 export default function HomePage() {
18 const [token, setToken] = useState<string | null>(null);
19 const [url, setUrl] = useState<string | null>(null);
20

21 const connectToRoom = async () => {
22 const response = await fetch("/api/token");
23 if (!response.ok) {
24 console.error("Failed to fetch token");
25 return;
26 }
27 const { accessToken, url } = await response.json();
28 setToken(accessToken);
29 setUrl(url);
30 };

84

31

32 return (
33 <>
34 <main className="w-full h-full flex items-center justify-center">
35 {token === null ? (
36 <button
37 onClick={connectToRoom}
38 className="bg-gradient-to-r from-blue-500 to-blue-700

hover:from-blue-700 hover:to-blue-500 text-white font-bold
py-2 px-4 rounded-full shadow transition-colors
duration-300"

↪→

↪→

↪→

39 >
40 Connect
41 </button>
42) : (
43 <LiveKitRoom
44 token={token}
45 serverUrl={url}
46 connectOptions={{ autoSubscribe: true }}
47 data-lk-theme="default"
48 className="h-full grid place-items-center"
49 >
50 <ActiveRoom />
51 </LiveKitRoom>
52)}
53 </main>
54 </>
55);
56 }
57

58 const ActiveRoom = () => {
59 const controlBarOptions: ControlBarControls = {
60 microphone: true,
61 camera: false,
62 chat: false,
63 screenShare: false,
64 leave: true,
65 settings: false,
66 };
67

68 const { state, audioTrack } = useVoiceAssistant();
69

70 const room = useMaybeRoomContext();
71

72 const { chatMessages, send } = useChat();

85

73

74 const [draft, setDraft] = useState("");
75 const [messagesMap, setMessagesMap] = useState<
76 Map<string, { sender: string; text: string; timestamp: number }>
77 >(new Map());
78

79 // Handle transcription events and update messages
80 useEffect(() => {
81 if (!room) {
82 return;
83 }
84

85 const updateTranscriptions = (
86 segments: TranscriptionSegment[],
87 participant: any,
88 publication: any
89) => {
90 const participantName = participant.name || participant.identity;
91

92 segments.forEach((segment) => {
93 const messageId =

`transcription-${participant.identity}-${segment.id}`;↪→

94

95 setMessagesMap((prev) => {
96 const newMap = new Map(prev);
97

98 const timestamp = (segment.startTime || Date.now() / 1000) *
1000; // Convert to ms↪→

99

100 newMap.set(messageId, {
101 sender: participantName,
102 text: segment.text,
103 timestamp,
104 });
105

106 return newMap;
107 });
108 });
109 };
110

111 room.on(RoomEvent.TranscriptionReceived, updateTranscriptions);
112

113 return () => {
114 room.off(RoomEvent.TranscriptionReceived, updateTranscriptions);
115 };

86

116 }, [room]);
117

118 // Handle chat messages and add them to messagesMap
119 useEffect(() => {
120 setMessagesMap((prev) => {
121 const newMap = new Map(prev);
122 chatMessages.forEach((msg) => {
123 const messageId = `chat-${msg.timestamp}-${msg.from?.identity}`;
124 if (!newMap.has(messageId)) {
125 newMap.set(messageId, {
126 sender: msg.from?.identity || "Unknown",
127 text: msg.message,
128 timestamp: msg.timestamp,
129 });
130 }
131 });
132 return newMap;
133 });
134 }, [chatMessages]);
135

136 const messages = useMemo(() => {
137 return Array.from(messagesMap.values()).sort(
138 (a, b) => a.timestamp - b.timestamp
139);
140 }, [messagesMap]);
141

142 const onSend = async () => {
143 if (draft.trim().length && send) {
144 await send(draft);
145 setDraft("");
146 }
147 };
148

149 // Function to determine if the username should be displayed
150 // Function to determine if the username should be displayed
151 const shouldDisplayUsername = (
152 currentMsg: { sender: any; timestamp: string | number | Date },
153 previousMsg: { sender: any; timestamp: string | number | Date }
154) => {
155 // Always show if there's no previous message
156 if (!previousMsg) return true;
157

158 // Check if the current message is from a different sender than the
previous message↪→

159 if (currentMsg.sender !== previousMsg.sender) return true;

87

160

161 // Check if messages are spaced more than a minute apart
162 const currentTime = new Date(currentMsg.timestamp).getTime();
163 const previousTime = new Date(previousMsg.timestamp).getTime();
164 return currentTime - previousTime > 60000; // 60000 ms = 1 minute
165 };
166 const messagesEndRef = useRef<HTMLDivElement | null>(null); // For

automatic scrolling↪→

167

168 // Auto-scroll to the latest message
169 useEffect(() => {
170 messagesEndRef.current?.scrollIntoView({ behavior: "smooth" });
171 }, [messages]);
172

173 return (
174 <>
175 <RoomAudioRenderer />
176 <div className="flex flex-col w-full max-w-2xl min-w-[300px] mx-auto

h-[80vh] border p-4 bg-stone-950 shadow-lg">↪→

177 <div className="flex-1 overflow-y-auto mt-2 p-2 space-y-1
scrollbar-thin">↪→

178 {messages.map((msg, index) => (
179 <div
180 key={index}
181 className={`flex flex-col \${
182 msg.sender === room?.localParticipant?.identity
183 ? "items-end"
184 : "items-start"
185 }`}
186 >
187 {shouldDisplayUsername(msg, messages[index - 1]) && (
188 <div className="text-sm text-gray-600">
189 {msg.sender === room?.localParticipant?.identity
190 ? "you"
191 : "AI - GM"}
192 </div>
193)}
194 <div
195 className={`max-w-[75%] p-2.5 rounded-lg text-white ${
196 msg.sender === room?.localParticipant?.identity
197 ? "bg-blue-600" // Your messages color
198 : "bg-gray-700" // Other people's messages color
199 }`}
200 >
201 {msg.text}

88

202 </div>
203 </div>
204))}
205 <div ref={messagesEndRef} />
206 </div>
207 <div className="flex border-t pt-2 mt-2">
208 <input
209 type="text"
210 placeholder="Type a message..."
211 value={draft}
212 onChange={(e) => setDraft(e.target.value)}
213 onKeyUp={(e) => {
214 if (e.key === "Enter") {
215 e.preventDefault();
216 onSend();
217 }
218 }}
219 className="flex-1 p-2 border-gray-300 focus:outline-none"
220 />
221 <button
222 onClick={onSend}
223 disabled={!draft.trim()}
224 className="bg-blue-500 hover:bg-blue-700 text-white font-bold

py-2 px-4 rounded disabled:opacity-50"↪→

225 >
226 Send
227 </button>
228 </div>
229 </div>
230 <div style={{ width: "100%", height: "60px" }}>
231 <BarVisualizer
232 state={state}
233 trackRef={audioTrack}
234 barCount={5}
235 data-lk-theme="default"
236 />
237 </div>
238 <ControlBar controls={controlBarOptions} saveUserChoices={true} />
239 </>
240);
241 };

89

Appendix G

Programs, Token Route

The route for retriving the token to connect the LiveKit AI to the LiveKit room.

1 import { AccessToken } from "livekit-server-sdk";
2

3 export async function GET(request: Request) {
4 const roomName = Math.random().toString(36).substring(7);
5 const apiKey = process.env.LIVEKIT_API_KEY;
6 const apiSecret = process.env.LIVEKIT_API_SECRET;
7 const at = new AccessToken(apiKey, apiSecret, {
8 identity: "human_user",
9 });
10 at.addGrant({
11 room: roomName,
12 roomJoin: true,
13 canPublish: true,
14 canPublishData: true,
15 canSubscribe: true,
16 });
17 return Response.json({
18 accessToken: await at.toJwt(),
19 url: process.env.LIVEKIT_URL,
20 });
21 }

90

Appendix H

Programs, D20 itself

Arduino program that runs the esp32

1 #include <Wire.h>
2 #include "esp_sleep.h" // Include the ESP32 sleep library
3 #include <esp_now.h>
4 #include <WiFi.h>
5

6 // ----------------- Define MPU6050 Registers -----------------
7 #define SIGNAL_PATH_RESET 0x68
8 #define I2C_SLV0_ADDR 0x37
9 #define ACCEL_CONFIG 0x1C
10 #define MOT_THR 0x1F
11 #define MOT_DUR 0x20
12 #define MOT_DETECT_CTRL 0x69
13 #define INT_ENABLE 0x38
14 #define INT_STATUS 0x3A
15 #define WHO_AM_I_MPU6050 0x75 // WHO_AM_I register address
16 #define MPU6050_ADDRESS 0x68
17

18

19 // ---------------------- dice settings -----------------------
20 #define SLEEP_DELAY 2000 // Time in milliseconds to wait before going to

sleep↪→

21

22 #define INTERRUPT_PIN 3
23

24 unsigned long lastMotionTime = 0;
25

26 struct Vector3 {
27 float x;
28 float y;
29 float z;

91

30 };
31

32 const int numFaces = 20;
33

34 // Define vectors representing each face of the dice
35 Vector3 diceFaces[20] = {
36 { -0.02, 1, 0.32 }, // Face 1 (Z-axis up)
37 { 0.61, -0.69, -0.22 }, // Face 2 (Y-axis up)
38 { -0.41, 0.21, 1.07 }, // Face 3 (Y-axis up)
39 { -0.30, -0.20, -0.76 }, // Face 4 (Y-axis up)
40 { 0.62, 0.43, -0.50 }, // Face 5 (Y-axis up)
41 { -0.94, -0.34, 0.20 }, // Face 6 (Y-axis up)
42 { 0.56, 0.70, 0.63 }, // Face 7 (Y-axis up)
43 { -0.02, -0.82, 0.74 }, // Face 8 (Y-axis up)
44 { -0.94, 0.39, 0.09 }, // Face 9 (Y-axis up)
45 { 0.55, -0.45, 0.87 }, // Face 10 (Y-axis up)
46 { -0.57, 0.45, -0.54 }, // Face 11 (Y-axis up)
47 { 0.93, -0.35, 0.27 }, // Face 12 (Y-axis up)
48 { 0.03, 0.86, -0.37 }, // Face 13 (Y-axis up)
49 { -0.58, -0.66, -0.30 }, // Face 14 (Y-axis up)
50 { 0.93, 0.38, 0.13 }, // Face 15 (Y-axis up)
51 { -0.61, -0.42, 0.85 }, // Face 16 (Y-axis up)
52 { 0.35, 0.23, 1.08 }, // Face 17 (Y-axis up)
53 { 0.41, -0.17, -0.75 }, // Face 18 (Y-axis up)
54 { -0.58, 0.72, 0.58 }, // Face 19 (Y-axis up)
55 { 0, -0.98, 0 }, // Face 20 (Y-axis up)
56 };
57

58 // -------------------------ESP_NOW------------------------
59 // Define the broadcast address (FF:FF:FF:FF:FF:FF) to send to all ESP-NOW

devices↪→

60 // adress 08:3a:f2:b8:11:24
61 uint8_t broadcastAddress[] = { 0x08, 0x3a, 0xf2, 0xb8, 0x11, 0x24 };
62

63 // Structure to hold dice data
64 typedef struct struct_message {
65 uint8_t diceID;
66 uint8_t roll;
67 uint8_t maxNumber;
68 } struct_message;
69

70 struct_message diceData = { 1, 0, 20 }; // Initialize with default values
71

72 // Peer info structure
73 esp_now_peer_info_t peerInfo;

92

74

75 void setup() {
76 Serial.begin(115200);
77 analogReadResolution(12); // Set the resolution to 12 bits (0-4095)
78

79 setupEspNow(); //Setup ESP_NOW
80

81 configMPU(); //setup and configure the MPU6050
82 Serial.println();
83 Serial.println("MPU6050 initialized!");
84

85 // Initialize the last motion time
86 lastMotionTime = millis();
87 }
88

89 void setupEspNow() {
90 // Set device as a Wi-Fi Station
91 WiFi.mode(WIFI_STA);
92

93 // Initialize ESP-NOW
94 if (esp_now_init() != ESP_OK) {
95 Serial.println("Error initializing ESP-NOW");
96 return;
97 }
98

99 memcpy(peerInfo.peer_addr, broadcastAddress, 6);
100 peerInfo.channel = 0;
101 peerInfo.encrypt = false;
102

103 if (esp_now_add_peer(&peerInfo) != ESP_OK) {
104 Serial.println("Failed to add peer");
105 return;
106 }
107

108 esp_now_register_send_cb(OnDataSent);
109 }
110

111 void loop() {
112

113 // Read the INT_STATUS register to check and clear the interrupt flag
114 uint8_t intStatus = readByte(MPU6050_ADDRESS, INT_STATUS);
115

116 // Check if the motion detection interrupt bit (bit 6) is set
117 if (intStatus & 0x40) { // Bit 6 corresponds to motion detection

interrupt↪→

93

118 lastMotionTime = millis(); // Reset the timer if motion was detected
119 Serial.println("Motion detected, timer reset.");
120 }
121

122 // If no motion has been detected for the SLEEP_DELAY period, go to
sleep↪→

123 if (millis() - lastMotionTime > SLEEP_DELAY) {
124 HandleAccelAndComms();
125 }
126

127 delay(100); // Small delay for loop stability
128 }
129

130 void HandleAccelAndComms() {
131 // Get accelerometer vector
132 Serial.print("Accel Vector: ");
133 Vector3 accelVector = getAccelerometerVector();
134 logVector(accelVector);
135

136 // Determine the face
137 int face = getDieFace(accelVector);
138 Serial.print("Detected Die Face: ");
139 Serial.println(face);
140 sendFace(face);
141 }
142

143 void sendFace(int face) {
144 diceData.roll = face;
145 Serial.println("Start sending...");
146

147 esp_now_send(broadcastAddress, (uint8_t *)&diceData, sizeof(diceData));
148 // callback when data is sent
149 }
150

151 void OnDataSent(const uint8_t *mac_addr, esp_now_send_status_t status) {
152 Serial.print("\r\nLast Packet Send Status:\t");
153 Serial.println(status == ESP_NOW_SEND_SUCCESS ? "Succesfull" :

"Unsuccesfull");↪→

154 Serial.print("MAC Address: ");
155 if (mac_addr != NULL) {
156 for (int i = 0; i < 6; i++) {
157 Serial.printf("%02X", mac_addr[i]);
158 if (i < 5) {
159 Serial.print(":");
160 }

94

161 }
162 Serial.println();
163 } else {
164 Serial.println("MAC Address not available");
165 }
166

167 if (status == ESP_NOW_SEND_SUCCESS) {
168 goToSleep();
169 } else{
170 delay(200);
171 esp_now_send(broadcastAddress, (uint8_t *)&diceData,

sizeof(diceData));↪→

172 }
173 }
174

175

176 // Function to read the accelerometer data and return it as a vector
177 Vector3 getAccelerometerVector() {
178 int16_t accelX = (readByte(MPU6050_ADDRESS, 0x3B) << 8) |

readByte(MPU6050_ADDRESS, 0x3C);↪→

179 int16_t accelY = (readByte(MPU6050_ADDRESS, 0x3D) << 8) |
readByte(MPU6050_ADDRESS, 0x3E);↪→

180 int16_t accelZ = (readByte(MPU6050_ADDRESS, 0x3F) << 8) |
readByte(MPU6050_ADDRESS, 0x40);↪→

181

182 // Convert raw values to g's (gravity units) based on the accelerometer
sensitivity↪→

183 const float accelScale = 16384.0; // Assuming the sensitivity is set to
+/- 2g (scale factor is 16384 LSB/g)↪→

184 Vector3 accelVector;
185 accelVector.x = (float)accelX / accelScale;
186 accelVector.y = (float)accelY / accelScale;
187 accelVector.z = (float)accelZ / accelScale;
188

189 return accelVector;
190 }
191

192 // Function to determine which face of the die is facing up
193 int getDieFace(Vector3 accelVector) {
194 int closestFace = 0;
195 float maxDotProduct = -1.0;
196

197 // Normalize the accelerometer vector (make its length 1)
198 float magnitude = sqrt(accelVector.x * accelVector.x + accelVector.y *

accelVector.y + accelVector.z * accelVector.z);↪→

95

199 accelVector.x /= magnitude;
200 accelVector.y /= magnitude;
201 accelVector.z /= magnitude;
202

203 for (int i = 0; i < numFaces; i++) {
204 // Calculate dot product between accelVector and each face vector
205 float dotProduct = accelVector.x * diceFaces[i].x + accelVector.y *

diceFaces[i].y + accelVector.z * diceFaces[i].z;↪→

206 if (dotProduct > maxDotProduct) {
207 maxDotProduct = dotProduct;
208 closestFace = i + 1; // Face numbers are 1-indexed
209 }
210 }
211

212 return closestFace;
213 }
214

215 void logVector(Vector3 vector) {
216 Serial.print("X=");
217 Serial.print(vector.x);
218 Serial.print(", Y=");
219 Serial.print(vector.y);
220 Serial.print(", Z=");
221 Serial.println(vector.z);
222 }
223

224 void goToSleep() {
225 esp_deep_sleep_enable_gpio_wakeup(1 << INTERRUPT_PIN,

ESP_GPIO_WAKEUP_GPIO_HIGH);↪→

226 esp_deep_sleep_start();
227 }
228

229 // Function to write a byte to an MPU6050 register
230 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) {
231 Wire.beginTransmission(address);
232 Wire.write(subAddress);
233 Wire.write(data);
234 Wire.endTransmission();
235 }
236

237 // Function to read a byte from an MPU6050 register
238 uint8_t readByte(uint8_t address, uint8_t subAddress) {
239 uint8_t data;
240 Wire.beginTransmission(address);
241 Wire.write(subAddress);

96

242 Wire.endTransmission(false);
243 Wire.requestFrom(address, (uint8_t)1);
244 if (Wire.available()) {
245 data = Wire.read();
246 }
247 return data;
248 }
249

250 void configMPU() {
251 Wire.begin(6, 7); //

Initialize I2C on GPIO 6 (SDA) and GPIO 7 (SCL)↪→

252 writeByte(MPU6050_ADDRESS, 0x6B, 0x80); // Reset
device↪→

253 delay(100); // Wait
for the reset to take effect↪→

254 writeByte(MPU6050_ADDRESS, 0x6B, 0x00); // Wake
up MPU6050↪→

255 delay(10); // Give
the MPU6050 time to wake up↪→

256 uint8_t whoAmI = readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050); // Check
WHO_AM_I register to verify connection↪→

257

258 Serial.print("WHO_AM_I register: 0x");
259 Serial.println(whoAmI, HEX);
260 if (whoAmI != 0x68) {
261 Serial.println("MPU6050 not detected! Check your wiring.");
262 // THIS IS NOT GOOD, MAKE IT WAIT AND RETRY!
263 while (1)
264 ; // Halt the program if MPU6050 is not detected
265 }
266

267 writeByte(MPU6050_ADDRESS, SIGNAL_PATH_RESET, 0x07); // Reset signal
paths↪→

268 delay(10);
269 // Set accelerometer config (Digital High Pass Filter)
270 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x01);
271 delay(10);
272 uint8_t accelConfig = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
273 Serial.print("ACCEL_CONFIG register: 0x");
274 Serial.println(accelConfig, HEX);
275

276 // Set motion detection threshold
277 writeByte(MPU6050_ADDRESS, MOT_THR, 5);
278 delay(10);
279 uint8_t motThr = readByte(MPU6050_ADDRESS, MOT_THR);

97

280 Serial.print("MOT_THR register: 0x");
281 Serial.println(motThr, HEX);
282

283 // Set motion detection duration
284 writeByte(MPU6050_ADDRESS, MOT_DUR, 20);
285 delay(10);
286 uint8_t motDur = readByte(MPU6050_ADDRESS, MOT_DUR);
287 Serial.print("MOT_DUR register: 0x");
288 Serial.println(motDur, HEX);
289

290 // Motion detect control
291 writeByte(MPU6050_ADDRESS, MOT_DETECT_CTRL, 0x15);
292 delay(10);
293 uint8_t motDetectCtrl = readByte(MPU6050_ADDRESS, MOT_DETECT_CTRL);
294 Serial.print("MOT_DETECT_CTRL register: 0x");
295 Serial.println(motDetectCtrl, HEX);
296

297 // Enable motion interrupt
298 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40);
299 delay(10);
300 uint8_t intEnable = readByte(MPU6050_ADDRESS, INT_ENABLE);
301 Serial.print("INT_ENABLE register: 0x");
302 Serial.println(intEnable, HEX);
303

304 // Configure INT pin as active high
305 writeByte(MPU6050_ADDRESS, 0x37, 0x20);
306 delay(10);
307 uint8_t intPinCfg = readByte(MPU6050_ADDRESS, 0x37);
308 Serial.print("INT_PIN_CFG register: 0x");
309 Serial.println(intPinCfg, HEX);
310 }
311

98

Appendix I

Programs, D20 base-station receiver

Arduino program that runs on the receiver processor of the base station

1 #include <esp_now.h>
2 #include <WiFi.h>
3

4 // Define the data structure to receive
5 // Must match the sender's structure exactly
6 typedef struct struct_message {
7 uint8_t diceID; // Dice ID (0-100)
8 uint8_t roll; // Roll result (0-100)
9 uint8_t maxNumber; // Maximum possible number (0-100)
10 } struct_message;
11

12 struct_message receivedData;
13

14 void setup() {
15 // Initialize Serial Monitor
16 Serial.begin(115200);
17

18 // Set device as a Wi-Fi Station
19 WiFi.mode(WIFI_STA);
20

21 // Initialize ESP-NOW
22 if (esp_now_init() != ESP_OK) {
23 Serial.println("Error initializing ESP-NOW");
24 return;
25 }
26

27 // Register the broadcast peer (FF:FF:FF:FF:FF:FF)
28 esp_now_peer_info_t peerInfo = {};
29 memset(peerInfo.peer_addr, 0xFF, 6); // Set peer address to broadcast
30 peerInfo.channel = 0; // Use default channel

99

31 peerInfo.encrypt = false;
32

33 // Add the broadcast peer
34 if (esp_now_add_peer(&peerInfo) != ESP_OK) {
35 Serial.println("Failed to add broadcast peer");
36 return;
37 }
38

39 // Register for a callback function that will be called when data is
received↪→

40 esp_now_register_recv_cb(esp_now_recv_cb_t(OnDataRecv));
41 }
42

43 void loop() {
44 // Nothing to do here
45 }
46

47

48 void OnDataRecv(const uint8_t *mac_addr, const uint8_t *incomingData, int
len) {↪→

49 // Copy the received data into our structure
50 memcpy(&receivedData, incomingData, sizeof(receivedData));
51

52 // Print to Serial to send the data to the other ESP32
53 Serial.print("{\"roll\": ");
54 Serial.print(receivedData.roll);
55 Serial.println("}");
56 }

100

Appendix J

Programs, D20 base-station sender to
server

Arduino program that sends dice data to the server

1 #include <WiFiManager.h> // Ensure this library is correctly installed
2 #include <HTTPClient.h>
3 #include <Preferences.h>
4

5 // Initialize WiFiManager with your desired AP name
6 WiFiManager wifiManager("Serial-Sender");
7

8 // Buffer to store incoming serial data
9 String serialBuffer = "";
10

11 // Initialize HardwareSerial object for UART2 (since UART0 is used by
Serial)↪→

12 HardwareSerial SerialArduino(2); // Use UART2
13

14 // Define the pins for UART2
15 const int RXD2 = 16; // ESP32 RX pin (connect to Arduino TX pin)
16 const int TXD2 = 17; // ESP32 TX pin (connect to Arduino RX pin)
17

18 // Define the server URL where data will be sent
19 const char* serverUrl = "http://172.20.10.3:8081/dice_roll"; // Replace

with your server address↪→

20

21 void setup() {
22 // Initialize Serial for debugging
23 Serial.begin(115200);
24 delay(1000); // Allow time for Serial to initialize
25 Serial.println("ESP32 Serial Sender Started");
26

101

27 // Initialize SerialArduino on specified RX and TX pins
28 SerialArduino.begin(115200, SERIAL_8N1, RXD2, TXD2);
29 Serial.println("SerialArduino initialized on pins:");
30 Serial.print("RX (ESP32 GPIO");
31 Serial.print(RXD2);
32 Serial.println(") <-- TX (Arduino)");
33

34 Serial.print("TX (ESP32 GPIO");
35 Serial.print(TXD2);
36 Serial.println(") --> RX (Arduino)");
37

38 // Start WiFiManager to connect to Wi-Fi
39 wifiManager.begin();
40 Serial.println("Wi-Fi connected, awaiting serial data to send...");
41 }
42

43 void loop() {
44 // Let WiFiManager handle its tasks
45 wifiManager.loop();
46

47 // Read incoming serial data from Arduino and store it in the buffer
48 while (SerialArduino.available() > 0) {
49 char incomingChar = SerialArduino.read();
50 serialBuffer += incomingChar;
51

52 // Check for newline to indicate end of line
53 if (incomingChar == '\n') {
54 // Remove the newline character before sending
55 serialBuffer.trim();
56

57 // Send the buffer data if there's new data in serialBuffer
58 if (serialBuffer.length() > 0) {
59 sendData(serialBuffer);
60 serialBuffer = ""; // Clear buffer after sending
61 }
62 }
63 }
64 }
65

66 // Function to send serial data to the server
67 void sendData(const String& jsonData) {
68 if (WiFi.status() == WL_CONNECTED) {
69 HTTPClient http;
70 http.begin(serverUrl); // Initialize HTTP client with server URL
71

102

72 http.addHeader("Content-Type", "application/json"); // Set content
type to JSON↪→

73

74 int httpResponseCode = http.POST(jsonData); // Send JSON data via
POST↪→

75

76 if (httpResponseCode > 0) {
77 Serial.print("Data sent successfully. Response code: ");
78 Serial.println(httpResponseCode);
79 } else if (httpResponseCode < 0) {
80 Serial.print("HTTP Error: ");
81 Serial.println(http.errorToString(httpResponseCode).c_str());
82 } else {
83 Serial.print("Error sending data. HTTP response code: ");
84 Serial.println(httpResponseCode);
85 }
86

87 http.end(); // Close HTTP connection
88 } else {
89 Serial.println("Wi-Fi not connected. Cannot send data. Restarting");
90 ESP.restart();
91 }
92 }

wifimanager.h

1 #ifndef WIFIMANAGER_H
2 #define WIFIMANAGER_H
3

4 #include <WiFi.h>
5 #include <WebServer.h>
6 #include <DNSServer.h>
7 #include <Preferences.h>
8

9 class WiFiManager {
10 public:
11 WiFiManager(const char* ap_ssid = "ESP32_AP");
12 void begin();
13 void loop();
14

15 private:
16 Preferences preferences;
17 const char* ap_ssid;
18 WebServer server;
19 DNSServer dnsServer;

103

20 bool isAPMode;
21 const byte DNS_PORT = 53;
22

23 void setupAPMode();
24 void setupCaptivePortal();
25 void handleRoot();
26 void handleSaveCredentials();
27 };
28

29 #endif // WIFIMANAGER_H

wifimanager.cpp

1 #include "WiFiManager.h"
2

3 WiFiManager::WiFiManager(const char* ap_ssid)
4 : ap_ssid(ap_ssid), server(80), isAPMode(false) {}
5

6 void WiFiManager::begin() {
7 Serial.begin(115200);
8 delay(1000);
9

10 preferences.begin("wifiCreds", false); // Open Preferences in RW mode
11

12 String stored_ssid = preferences.getString("ssid", "");
13 String stored_password = preferences.getString("password", "");
14

15 if (stored_ssid != "") {
16 // Try to connect to stored Wi-Fi network
17 WiFi.mode(WIFI_STA);
18 WiFi.begin(stored_ssid.c_str(), stored_password.c_str());
19 Serial.println("Attempting to connect to WiFi network...");
20 unsigned long startAttemptTime = millis();
21

22 // Keep trying to connect for 10 seconds
23 while (WiFi.status() != WL_CONNECTED && millis() - startAttemptTime <

15000) {↪→

24 delay(100);
25 }
26

27 if (WiFi.status() == WL_CONNECTED) {
28 Serial.println("Connected to WiFi network");
29 Serial.print("IP Address: ");
30 Serial.println(WiFi.localIP());
31 // Proceed with your application logic

104

32 } else {
33 Serial.println("Failed to connect to WiFi network");
34 setupAPMode(); // Start captive portal
35 }
36 } else {
37 // No stored credentials, start AP mode
38 setupAPMode();
39 }
40 }
41

42 void WiFiManager::loop() {
43 if (isAPMode) {
44 dnsServer.processNextRequest(); // Process DNS requests
45 server.handleClient(); // Handle incoming client requests
46 } else {
47 // Place your code here to run when connected to Wi-Fi
48 }
49 }
50

51 void WiFiManager::setupAPMode() {
52 isAPMode = true;
53 WiFi.mode(WIFI_AP);
54 WiFi.softAP(ap_ssid);
55

56 IPAddress IP = WiFi.softAPIP();
57 Serial.print("Access Point IP address: ");
58 Serial.println(IP);
59

60 dnsServer.start(DNS_PORT, "*", IP);
61

62 setupCaptivePortal();
63 }
64

65 void WiFiManager::setupCaptivePortal() {
66 server.on("/", std::bind(&WiFiManager::handleRoot, this));

// Handle root URL↪→

67 server.on("/save", HTTP_POST,
std::bind(&WiFiManager::handleSaveCredentials, this)); // Handle
form submission

↪→

↪→

68 server.onNotFound(std::bind(&WiFiManager::handleRoot, this));
// Redirect all other URLs↪→

69 server.begin();
70 Serial.println("Web server started with captive portal");
71 }
72

105

73 void WiFiManager::handleRoot() {
74 String stored_ssid = preferences.getString("ssid", "");
75 String stored_password = preferences.getString("password", "");
76

77 String webpage = R"=====(
78 <!DOCTYPE html>
79 <html>
80 <head>
81 <title>Configure Wi-Fi</title>
82 <meta name="viewport" content="width=device-width,

initial-scale=1.0">↪→

83 </head>
84 <body style="font-family: Arial; text-align: center;

background-color: #f0f0f0; color: #333;">↪→

85 <h1>Configure Wi-Fi</h1>
86 <form action="/save" method="post">
87 <label for="ssid">Wi-Fi Name (SSID):</label>

88 <input type="text" id="ssid" name="ssid" value=")=====";
89 webpage += stored_ssid;
90 webpage += R"=====(">

91 <label for="password">Password:</label>

92 <input type="text" id="password" name="password"

value=")=====";↪→

93 webpage += stored_password;
94 webpage += R"=====(">

95 <input type="submit" value="Save and Restart">
96 </form>
97 </body>
98 </html>
99)=====";
100

101 server.send(200, "text/html", webpage);
102 }
103

104 void WiFiManager::handleSaveCredentials() {
105 String ssid = server.arg("ssid");
106 String password = server.arg("password");
107

108 // Save to preferences
109 preferences.putString("ssid", ssid);
110 preferences.putString("password", password);
111

112 Serial.println("Credentials saved, restarting...");
113 server.send(200, "text/html", "<html><body><h1>Credentials saved,

restarting...</h1></body></html>");↪→

106

114 delay(1000);
115 ESP.restart();
116 }
117

107

	Introduction
	Background Research
	Multi-Modal Artificial Intelligence Systems
	Artificial Intelligence (AI)
	Early and Late Fusion
	AI Modalities and State of the Art Implementations

	Web technology and webdevelopment
	Website Development Stacks

	Tabletop Role-Playing Games
	AI in Games hassingfinal2024
	What Roles Are AI Currently Fulfilling in Game Development and Gameplay?
	How Does AI Impact the Player Experience and Engagement in Games?
	What Are the Challenges Faced by Implementing AI Systems in Games?

	The Design Process
	Specification and Realization
	Ideation
	Technology Driven Iterative Design: AI GM Iteration 1
	Configure Design Criteria
	Identifying Similar Implementations
	Discover how the Implementation is Made and Create a Similar Implementation
	Evaluation

	Technology Driven Iterative Design: AI GM Iteration 2
	Identifying Similar Implementations
	Discover how the Implementation is Made
	Creation of a Similar Implementation
	Evaluation

	Technology Driven Iterative Design: Dice Iteration 1
	Configuring Design Criteria
	Identifying Similar Implementations
	Discover how the Implementation is Made and Create a Similar Implementation
	Creation of a Similar Implementation
	Evaluation

	Technology Driven Iterative Design: Dice Iteration 2

	Final Realisation
	User Experience Evaluation
	Experimental-Setup
	Briefing
	Experiment
	Questionnaire and data collection

	Results
	Expert Interviews

	Discussion
	Conclusion
	Appendices
	AI-notice
	Consent Form
	Briefing
	Programs, Back-end
	Data from the Questionnaire
	Programs, Front-End
	Programs, Token Route
	Programs, D20 itself
	Programs, D20 base-station receiver
	Programs, D20 base-station sender to server

