
MSc Computer Science

Final Project

Procedural generation and

validation of fixed-viewpoint

digital nature landscapes

Lars van Arkel

Supervisors:
V. Zaytsev
M. Gerhold
M. Gómez Maureira

March, 2025

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Abstract

In the landscape of procedural content generation, there is a large focus on the generation of large-
scale landscapes. As part of a research project into the psychological effect of digital nature, there
is a need for small-scale environments visible from a single point of view on the ground. This
paper proposes a framework to generate a landscape with rivers and vegetation, as well as how
the different parameters in each generation step influence the overall terrain. In addition to this,
multiple methods are defined to analyse certain aspects of the terrain and used to test the system.
These aspects relate to the visibility of different components of the system from the perspective of
the camera, such as the presence of rivers and the obstruction of the view by single large objects.

2

Contents

1 Introduction 5

2 Problem statement 5

3 Research questions 6

4 Background 7

4.1 Generation of terrain . 7
4.1.1 Fractal terrain . 7
4.1.2 Rivers . 7

4.2 Placement of vegetation . 8
4.2.1 Distributed placement . 8

4.3 Connecting components . 9
4.3.1 Level of detail . 9
4.3.2 Probabilities and masking . 9

5 Related work 9

5.1 Terrain generation . 9
5.1.1 Volumetric terrain . 9
5.1.2 Alternate terrain generation methods . 9
5.1.3 Agent-based algorithms . 11

5.2 Vegetation placement . 11
5.2.1 Tiling . 11
5.2.2 Ecosystem simulation . 11

5.3 Connecting components . 11
5.3.1 Agent-based simulation . 11
5.3.2 Frameworks . 11
5.3.3 Commercial products . 12

5.4 Validation . 12
5.4.1 Validating terrain . 12
5.4.2 Search-based Procedural Content generation 13

6 System Architecture 14

6.1 Generating components . 14
6.1.1 Terrain . 14
6.1.2 Rivers . 15
6.1.3 Placing vegetation . 16

6.2 Connecting components . 18
6.2.1 Architecture of the system . 18
6.2.2 Combining terrain and curves . 18
6.2.3 Masking object placement based on curves 18
6.2.4 Combining object placement methods . 19
6.2.5 Finalising terrain . 19

7 Validation 20

7.1 PDD placement and object density . 20
7.2 Object segmentation . 21
7.3 Presence and visibility of rivers . 22

7.3.1 Testing the visibility of rivers . 22
7.3.2 Improving the visibility of rivers . 22

7.4 Single-object occlusion . 23
7.4.1 Improving single-object occlusion . 23

3

8 Discussion 27

8.1 Architecture . 27
8.2 Parameters of the system . 28
8.3 Validating system components . 29

8.3.1 River visibility . 30
8.3.2 Single object occlusion . 30

9 Future work 30

9.1 Improving performance . 30
9.2 Multiple environments . 31
9.3 Generating roads . 31
9.4 Generating from point of view . 31

10 Conclusion 31

10.1 RQ 1: Terrain generation . 31
10.2 RQ 2: Parameters of the system . 32
10.3 RQ 3: Validating terrain . 32

4

1 Introduction

The use of digital natural landscapes is common in a number of different applications. For decades,
video games have created landscapes wherein the player is immersed with varying levels of realism,
but even outside of entertainment digital nature can be used for more serious applications. In
previous research, it has been shown that digital nature has a positive effect on mental and social
wellbeing [36], and can function as a substitute for real natural environments when these are not
accessible. In previous research into the effect of digital nature, most environments have been
hand-crafted by a designer. The process of creating these environments can be time consuming
and has to be done each time a different environment needs to be created.

Instead of manually designing virtual environments, Procedural Content Generation (PCG) can
be used to automatically generate certain aspects of the desired terrain and can reduce or remove
the workload necessary for generating realistic virtual environments. When generating landscapes,
one important aspect is the trade-off between the control the user has over the generated terrain
and the amount of effort required to create the environment. This thesis analyses the parameters
regularly used in the generation of procedural environments and what effect these parameters have
on the system. To accomplish this, we have designed a system capable of generating environments
consisting of a number of terrain features often found in nature environments. This system can
generate digital landscapes that will be viewed from a single point of view. In addition to creating
these environments, we have looked at multiple criteria of the resulting landscape to find qualitative
evaluations of the generated terrain.

We have created an implementation of the system in the Unity game engine1. Unity is a widely
used game engine for its ease of use, and is already used in other tools and programs designed to
use digital nature environments.

2 Problem statement

The Growing Roots Research project2 was a collaboration between the University of Twente,
Amsterdam University of applied sciences, the serious gaming company TexTown Games and
several health institutions. This research project aimed to reduce loneliness in people who have
limited access to the real world by using the digital world [36]. This research into digital nature
has focused on how different types of environment influence the mood of someone who experiences
digital nature in immersive ways, such as virtual or augmented reality. The project looked at
the difference between dense and sparse environments, or what different mood a user has when
looking at landscapes with a lot or no human influence. To support the integration of digital
nature in people’s lives, TexTown Games has developed a device called the “virtual window"3.
This device consists of a camera and a Kinect sensor that tracks the position of a person in front
of a monitor and projects a view of a digital nature landscape on the screen based on where the
person is standing. This gives a parallax effect that makes the user feel like they are watching
through an actual window. In the research project, only hand-made landscapes were used when
analysing the effect of different kinds of environments on the mood of the user. In the future, more
research on the effect of different types of environment will require additional landscapes that have
visually distinguishable features, such as the density of vegetation or the colour and types of plants
used. Creating different landscapes by hand takes a significant amount of time, so the ability to
automatically generate terrains based on different requirements and parameters is required.

Previous research on procedural landscape generation has focused mainly on generating large-
scale environments. The virtual window shows a small-scale view of the environment, which means
that the camera stays in a single location and shows a small part of the environment. This limits
the size and amount of terrain that needs to be generated, but instead requires a higher level of
detail. This research will focus on the generation of a small-scale environment based on a single
point of view.

1Unity Real-Time Development Platform. From https://unity.com/
2Growing Roots. From https://web.archive.org/web/20240515061910/https://growingroots.nl/, archived

at 15-5-2024
3Design2Connect - TexTown Games. From https://textowngames.nl/portfolio/design2connect/, retrieved

at 10-1-2025

5

As further research into the effects of digital nature will focus on the effect of different terrain
features, the researcher needs control over the terrain they want to create. This control should
allow the user to select broader features of the terrain, such as the kind of ecology the terrain
represents, and finer features, such as the density of vegetation or ruggedness of the ground.

As the system will be used by people who are not necessarily designers or programmers, the
influence of different parameters of the system should be clear. In addition to this, the ability to
validate whether the generated terrain meets certain requirements of the study should be included.
We will therefore look at different ways to test the generated landscape.

With TexTown Games, an initial set of features was created. From this set of features, we
have selected the terrain itself, rivers, and different vegetation that can be placed on the terrain as
initial features of the system, and the scope of the research. Instead of needing to generate tree or
plant models, TexTown Games has provided a Unity asset package that contains a large number
of European vegetation4. This thesis will use these assets in all screenshots showing the textured
terrain or any placement objects.

The virtual window already uses an environment created in Unity, and because of the large
amount of documentation and assets for Unity, the system will also be created in Unity.

3 Research questions

To generate distinct environments that can be used in future research in digital nature, the following
research questions are established. By answering these research questions, we show how a digital
nature landscape can be generated, how a user that generates landscapes can influence the resulting
product, and how different metrics can be created to test the resulting environment.

RQ 1: How can we generate each component in a landscape, and how do these components interact
to create a landscape suited for a single point of view?

RQ 1.1: How can we generate each component required for the landscape?

RQ 1.2: How can we connect all components to create a landscape for a single point of view?

RQ 2: What are the influences of the different parameters on the resulting landscape?

RQ 3: In what ways can we validate the procedurally generated terrain?

RQ 3.1: How can different requirements be translated into rules to validate the terrain?

RQ 3.2: How can the terrain generation be influenced by the validation to create terrain con-
forming to certain rules?

4European Vegetation Pack Two, from https://assetstore.unity.com/packages/3d/vegetation/

european-vegetation-pack-two-151939, retrieved at 3-3-2025

6

Figure 1: A height map generated by fractal Perlin noise.

4 Background

The generation of a virtual landscape can be split up into multiple components that are connected
to create a complete landscape. Firstly, the terrain itself needs to be created, after which the other
components are generated and interact with the terrain to create the complete environment. The
following sections describe previous research and techniques for generating individual components,
as well as different ways that are used to connect these components.

4.1 Generation of terrain

The topic of procedural terrain generation has been researched for several decades. A 2-dimensional
height map, represented as a greyscale image, is the most common technique for generating terrain.
When converting this height map to a 3-dimensional terrain, a grid of vertices uses the height map
to scale each vertex of the terrain to a specified height. This approach is widely used due to
its simplicity but has some downsides. Because the height map is projected onto the plane, the
terrain cannot have multiple sections of terrain that overlap each other, such as overhangs or
caves. Although some solutions support overhangs [11], they usually require solutions tailored to
the desired terrain.

4.1.1 Fractal terrain

A popular approach to generate procedural terrain is to use fractal algorithms. In this approach, the
height of a terrain is evaluated using multiple noise functions with different frequencies to generate
a terrain that contains large-scale differences, as well as small-scale ruggedness [30]. An example
of a commonly used noise function is Perlin noise [24]. Because noise functions only depend on the
input coordinates, these algorithms can be easily parallelised on GPU-based implementations [29].
An example of a height map generated by fractal noise is shown in Figure 1. The dark colours
represent low elevations, and bright colours represent higher parts of the terrain.

4.1.2 Rivers

The generation of rivers is directly related to the terrain itself. Rivers have the requirement to
be placed in a landscape, such as that the direction of the river should move along a flat part of
terrain or go downwards.

One way of generating rivers is to generate the rivers and elevation at the same time. Belhadj
and Audibert [1] generate a network of rivers and ridges and use this network combined with a

7

(a) Random distribution (b) PDD distribution

Figure 2: Comparison of Random and Poisson Disk Distributions for 200 samples

modified midpoint displacement algorithm to generate the rest of the terrain. After ridges are
randomly generated, points are placed on ridges and simulate gravity to roll down the slope. With
this approach, rivers show realistic behaviour connected to the elevation of the ridges.

If the terrain consists of both mountains and coastlines, a river can also be generated by finding
a random point on the coast and a random point on the mountain, and generating a random path
between these points [10] [27].

Alternatively, rivers can be generated by placing several control points on the map and inter-
polating between these control points to generate a path [32]. To place the river path onto the
terrain, a 2D cross section can be used to extrapolate a shape for the entire path [14]. In this
paper, the cross section is also used to add vegetation and textures to the river.

4.2 Placement of vegetation

When generating a landscape representing nature, an important step is placing vegetation in ways
that are realistic and visually appealing. Adding vegetation to a landscape consists of different
kinds of elements, from small vegetation such as grass and small bushes to large structures such
as trees. The following sections describe multiple ways of placing and distributing vegetation.

4.2.1 Distributed placement

An easy way to place vegetation is by planting each plant randomly. As each plant or tree is a
physical object, trees cannot be placed too close to each other or they would overlap.

One way to solve this is to specify a boundary radius and place vegetation randomly in locations
where the closest plant is further away than that distance. Although this works, Casey Muratori
showed in a blog post that this naive approach is inefficient when the density of plants increases [23].
A more efficient way to generate random positions is to use Poisson Distribution Disks (PDDs). A
Poisson distribution disk allows patterns to be generated where each point has a minimal distance
to another point, as shown in Figure 2. Efficient algorithms use Voronoi diagrams to create these
patterns with a time complexity of O(N logN) [16], while another algorithm generates points
randomly around already generated points to create the same effect, but with a time complexity
of O(N) [3]. Another algorithms, based on fluid simulations, uses a smoothing kernel which moves
an initial set of points so that the standard deviation of the distances between points is lowered
[15].

Another way of distributing points is to have an initial set of points, for instance, points on a
grid, and to randomly move each point around its initial location. Although simple, this technique
has been used to create points that look seemingly random [13] [37].

8

4.3 Connecting components

The previous sections have elaborated on different components used in procedural terrain gener-
ation. To generate terrain that resembles a landscape, these features must be combined. The
following section describes different ways that these components can be connected, and how the
requirements of each component interact with other components.

4.3.1 Level of detail

When placing vegetation, there is a difference between placing large trees and smaller bushes and
grass. Trees are larger and the branches prevent other trees from being placed too close to each
other. For bushes and grass, the minimum distance is much smaller, as they can also grow under
the branches. In their paper, Hammes defines eight different layers that each cover a different
type of vegetation on a different scale [13]. For a large scene, this can be used to reduce the
complexity of areas that are further away and increase the detail for closer sections of terrain. To
resolve placement conflicts between layers, do Nascimento added a function to calculate the zone
of influence of objects on a higher layer, which acts as a filter for objects on a lower layer [9].

4.3.2 Probabilities and masking

When placing vegetation on a terrain, objects cannot be placed on certain areas. For instance in
water, or on slopes that are too steep. There have been multiple ways proposed to resolve these
issues. When categorising the terrain into ecotypes, as done by Hammes [13], parts of the terrain
that are unsuited for vegetation simply will not include any vegetation at all. Alternatively, Olsen
assigns placement scores based on flatness and connected areas that allows placing buildings aimed
at an Real-Time Strategy (RTS) game [26]. Larger structures can therefore only be placed on
areas where the slope is similar for all tiles under the structure.

Alternatively, when the terrain is generated using a 2D height map, other 2D maps can be used
to mask the placement of vegetation. In the video game Horizon Zero Dawn maps that represent
water, roads and trees are combined to provide masks that can be used to generate other types of
vegetation [37]. Instead of using height maps, combining different probability functions can yield
a similar result [39].

5 Related work

5.1 Terrain generation

5.1.1 Volumetric terrain

Instead of representing the terrain as a 2-dimensional height map, it can be generated using a
volumetric data structure, such as a 3-dimensional grid [8]. With this approach, the generated
terrain depends on whether the volumes of each location in the grid are filled. This technique is
popularly referred to as voxels, with most famous example that uses a voxel-based terrain being the
video game Minecraft 5, which uses voxels to create a crude, blocky terrain. Voxel-based terrains
can also be transformed into smooth terrain using techniques such as the surface nets method
[12]. Although volumetric data structures allow for complex structures including caves [5] and
overhangs, the limitation of this approach is the larger storage size of terrain data.

5.1.2 Alternate terrain generation methods

In section 4.1 the method of using fractal noise to generate terrains. Instead of noise functions,
a midpoint displacement algorithm is another way to generate terrain. With this algorithm, a
grid gets subdivided into smaller primitives, and the height of each midpoint is updated with a
random value. This value grows smaller with each iteration, resulting in small changes in local
areas, and large changes in global areas [28]. One type of midpoint displacement algorithm, the

5Minecraft. From https://minecraft.net, retrieved on 17-2-2025

9

Figure 3: Two iterations of the diamond-square algorithm. The yellow dots represent
the vertices manipulated in each operation, and the black dots represent the values used in
interpolation6.

Figure 4: An example of water transport in a hydraulic erosion simulation, from [26].

diamond-square algorithm recursively subdivides a grid of points to approximate Fractal Brownian
motion [22]. This algorithm is visualised in Figure 3

Instead of using a single approach, the combination of multiple functions, such as adding
Voronoi noise to a midpoint displacement map, can also result in different types of terrains [26].

Although fractal methods work well to generate a landscape, the self-similar nature of these
techniques do not result in realistic terrains. Because of this, a physical simulation is often used to
approximate more realistic terrain. Most techniques follow processes that resemble erosion, which
are divided into hydraulic erosion and thermal weathering [24]. These types of simulation are
mainly used to enhance the quality of a terrain generated by fractal Brownian motion, instead of
being used to fully generate a terrain.

Hydraulic erosion models the use of water to transport sediment from higher elevations to
lower locations. This can be used in conjunction with rivers, or by simulating rainfall and water
transport. There are several techniques for this simulation, implemented on both the CPU and
GPU [2] [40]. Hydraulic erosion works by discretizing the surface, where each chunk contains the
height of the terrain, as well as the amount of water contained in the chunk. Updating the state
of the simulation is done using Cellular automata, with each iteration interchanging water and
sediment between neighbours [6]. An example of a step in this algorithm can be seen in Figure 4.

Thermal erosion describes the way that material is eroded by several processes that break
down the terrain, from which the material moves down a slope to accumulate at the bottom [24].
Similar to hydraulic erosion, it works by using cellular automata to transport soil to neighbouring
locations. Instead of using water, the difference in height of neighbours is compared, and if it
exceeds a threshold a portion of the terrain is moved to the lower level.

6By Christopher Ewin - Own work. Retrieved from https://commons.wikimedia.org/w/index.php?curid=

42510593

10

5.1.3 Agent-based algorithms

The previous algorithms manipulate the terrain globally. Another option would be to use software
agents to manipulate the terrain on a local scale. In their paper [10], Doran and Parberry have used
multiple types of software agents that create coastlines, mountains, and rivers. Each agent has a
location on the map and perceives their direct environment. They can modify the terrain using a
single objective, such as generating a coastline that connects two randomly generated points, or
creating a river connecting the top of a mountain and the coast. In more recent work, software
agents were expanded to offer more control to the designer [31]. In other work, software agents
were used to generate a road network and place buildings to form a city [21].

5.2 Vegetation placement

5.2.1 Tiling

Instead of randomly generating positions for the entire terrain, we can place vegetation on smaller
tiles, and repeat these tiles on the terrain. To reduce repetitions between tiles, Wang tiles can be
used [4]. Wang tiles use adjacency rules to result in an aperiodic layout, which allows the same
distribution to be used multiple times without looking like the same repetition.

5.2.2 Ecosystem simulation

Another way to place vegetation is to perform an ecosystem simulation. This technique simulates
the growth of plants, as well as the competition for resources. It uses L-systems to grow plants
based on the self-thinning phenomenon [7] [20]. This suggests that when the density of plants
is low, all plants grow without competition. When the population has reached a certain density,
plants need to compete for resources, and larger plants dominate smaller, weaker plants. This type
of simulation can be done on a single type of plant or on multiple different kinds of vegetation of
a similar type, such as different kinds of trees or grass.

5.3 Connecting components

5.3.1 Agent-based simulation

In a previous section, the use of software agents has been used to create certain parts of the terrain.
Software agents work by manipulating the terrain locally, and they can be used to work with the
terrain generated by previous agents [10]. For instance, the location that a mountain agent visited
to create a mountain can be used by a river agent as a starting location for a river that travels down
the mountain. Because agents are executed in sequence, the order of agents allows any constraints
from agents to be solved linearly, such as vegetation agents being executed after river agents to
avoid placing vegetation in the water.

5.3.2 Frameworks

There have been multiple attempts at combining different generation features in a single framework.
These frameworks combine different types of terrain generation.

To create landscapes for strategy games, Olsen combined height map generation using noise
functions and fractal terrain with an erosion simulation [26]. The system uses an improved al-
gorithm for erosion to improve the execution speed and validates the terrain to check whether it
is applicable for use in the strategy game. Some metrics that are used are the presence of flat
areas where buildings can be placed, and the connectedness of areas where units can move around.
Another framework that generates terrain is the one created by Kahoun [17]. This framework
provides a library that creates landscapes with oceans and rivers. This library can generate worlds
on a flat plane, or complete planets on a sphere. The world generation contains different kinds of
fractal noise generators, as well as a large number of parameters directly influencing the generator.

In another paper, Newlands and Zauner have created a framework that generates terrain with
forests [25]. The framework generates vegetation dynamically based on L-systems for trees and
2D billboards for grass. The terrain is generated using 2D simplex noise. Placing the vegetation

11

in the environment uses an ecosystem simulation, as mentioned in section 5.2.2. The amount of
simulation steps and properties of each tree can be configured as a system parameter.

The system of do Nascimento combines terrain, rivers and vegetation [9]. The terrain is gener-
ated by providing height and river maps. From these maps, certain features such as the slope and
moisture of the ground are calculated. These maps act as a probability distribution for selecting
the vegetation to be placed in the area, with each plant having a preference for elevation, slope
and moisture. The plants themselves are placed by using a PDD which uses the distribution maps
to filter which plants can be added. To place different kinds of vegetation, different levels of detail
are used. To prevent overlapping plants of different layers, each layer adds a zone of influence to
the distribution maps, lowering the chance of plants being placed too close to other plants.

5.3.3 Commercial products

Procedural generation of virtual worlds has been widely used in the video game industry. In large
open-world games, the semi-automated generation of environments is necessary for developers to
create massive environments. Because of this, there are several commercial products that generate
environments that can be used in video games. These tools offer a lot of support for developers to
create any environment they want.

One of these tools is World Machine. World Machine is a popular tool for generating large
procedural terrains. Users can create environments using a flow chart, by selecting and combining
different nodes that modify the height maps of the terrain. These nodes range from nodes that
use noise functions to nodes that use erosion simulations. World Machine also allows for specific
control of the terrain. Users can draw features such as rivers, mountains, or ridges.

While World Machine only generates terrain and rivers, there are also tools that procedurally
place vegetation on the terrain. One of these tools is developed by Guerilla Games and is used
in the video game Horizon Zero Dawn[37]. This tool allows artists to combine different feature
maps, such as elevation and rivers, to paint a distribution of vegetation on the terrain. With this
distribution, pre-made models of vegetation are placed onto the terrain.

5.4 Validation

5.4.1 Validating terrain

When generating terrain, the combination of different features can have constraints. Some con-
straints have been mentioned before, such as the overlap between different components, but other
constraints, such as the availability of flatness in the terrain, can be a demand of the system as
well.

The terrain generation method from Olsen [26] contains several criteria for creating maps usable
in RTS games. The two main criteria are areas where units can move around should largely be
connected, while the other is that the terrain should be flat enough for buildings to be placed. The
model checks this by analysing the slope of the terrain and giving a score for different features of
the terrain. The system does not modify the terrain to get a better score, but is only used to verify
the quality of a specific terrain.

In the framework created by Smelik e.a. [32], the landscape is created by combining different
layers. Each layer represents a different part of the system, such as the vegetation layer containing
all plants and trees, and the water layer consists of rivers and lakes. To resolve any conflicts in
the constraints of each layer, each feature interacts with the system by either claiming a piece of
terrain to use exclusively, or by requesting to modify part of the landscape to solve its constraint.
Conflicts arise when multiple features try to claim the same area. When this happens, the system
can combine the different claims into a connecting structure, such as creating a bridge when a river
and a road attempt to claim the same location. When a connecting structure is not possible, each
feature has different priorities with which the system can decide to give the claim to one of the
features.

12

5.4.2 Search-based Procedural Content generation

A category of procedural content generation, Search-based procedural content generation (SBPCG),
takes a special approach to the generation and validation of terrain. While regular PCG usually
contains a test to validate whether the generated content adheres to some properties, SBPCG rates
the quality based on a fitness function [34]. To improve the generation, the result of the evaluation
is used to improve further iterations, which is usually done using an evolutionary algorithm. This
requires a piece of content to be generated multiple times, but it allows designers to provide a
qualitative way of validating the generation process.

13

6 System Architecture

To create digital landscapes, we have created a framework that can generate small-scale procedural
natural environments that can be used in further research of digital nature. This system currently
generates environments with rivers and vegetation. To generate these environments, it can be
configured with a number of parameters and pre-generated assets, such as textures for the terrain
and models for vegetation. The system therefore does not generate any models for trees or plants,
but instead relies on already generated models.

The framework, named Magrathea, is named after the fictional planet-building planet from the
novel The Hitchhiker’s Guide to the Galaxy, and is implemented in the Unity game engine. It
consists of a number of different scripts that create separate components of the environment or
combine multiple parts. The system has been created from scratch, without using Unity’s Terrain
system. The code of the system and a sample scene with all features is available on Github7.

For each component of the system, different parameters are used to influence the components
such that a desired environment is generated. Magrathea is designed to be modular when generat-
ing the different components, and is configurable to skip the generation of some components when
it is not necessary to generate.

The following sections describe how the system will generate each of the components and how
they are combined to create a complete landscape.

6.1 Generating components

The proposed system consists of three different components. The first is the terrain. This terrain
forms the basis of the landscape on which different features can be placed. The second component
consists of rivers that are generated based on a number of control points which are planned onto
the terrain. Thirdly, the last component of the system is the placement of vegetation. Vegetation
consists of different types of plants, ranging from small bushes to large trees. The generation of
each component can be described with a number of parameters. While some parameters would be
dependent on the initial settings of the terrain, others can wildly influence the type of landscape
created.

In this section, the generation of the different components is described in isolation from each
other, and the parameters required for each component. For each parameter, a description is given
what the parameter does in the generation of the component and how the system can interact with
the parameter.

In the set of parameters for each component, we make a distinction between parameters that
are set by the system because they are either constant or implicit based on other systems, and
parameters that can be influenced by a designer. In the tables containing all parameters, these
are separated by a horizontal line, with the top section containing constant parameters while
the bottom section contain parameters that a designer can change to create different types of
environment.

6.1.1 Terrain

In our design, we have chosen to generate terrain using fractal Perlin noise [24]. The advantage of
using noise functions is that the calculation of each separate point can be performed in parallel.
Each chunk can be generated independent of other chunks and in any order. The terrain is
generated on a two dimensional grid of vertices. For each octave, a separate random 2D offset is
generated, and scaled and translated by the scale and position of the vertex in the grid. These
coordinates are evaluated using Perlin noise and scaled by the amplitude. The sum of these values
is the resulting value in the height map. The terrain is split into different chunks. Each chunk
is a smaller piece of the total terrain and has its own height map and mesh. To properly overlap
different chunks, the last value of each heightmap uses the same coordinates as the first value of
the neighbouring chunk. The result of the generated height maps are shown in Figure 5.

The parameters that influence the algorithm are shown in Table 1. The width and depth of the
system are fixed since the resolution of the vertices in a chunk is deemed to be constant. The offset

7Magrathea, repository available at https://github.com/LvanArkel/Magrathea

14

Figure 5: Result of the terrain generation as a heightmap (left) and mesh (right)

Name Type Bounds Description
Width Int ≥ 1 The width of the heightmap in vertices
Depth Int ≥ 1 The depth of the heightmap in vertices
Coordinates Vec2Int Z

2 The coordinates of the generated chunk in the grid
Scale Float > 0 The initial frequency of the noise on the terrain
Octaves Int ≥ 1 How many iterations of the fractal function is applied
Persistance Float > 0 How much the amplitude of the noise is reduced multiplica-

tively each octave
Lacunarity Float > 0 How much the frequency of the noise is increased multiplica-

tively each octave

Table 1: The parameters used in the fractal noise algorithm.

and seed are implicit in the execution of the program, since the offset is defined by which chunk
will be generated and the seed is constant per generation of the system, to provide the same base
noise offsets for all chunks. The current set of parameters is very technical and is based on the
mathematical noise functions. These parameters are therefore not intuitive for users not familiar
with these noise functions.

6.1.2 Rivers

The generation of rivers consist of 2 separate tasks. The first step is to plan the shape of the river.
After that, the shape can be combined with a profile to generate the water. To plan the river,
we use the same system as used by Teoh [33]. In this approach, a random point is selected as a
starting point, and another point on a different side of the terrain gives the initial direction. We
then plan a route by placing points a certain distance in a direction that is randomly changed each
point. To create a curving, meandering shape for the river, an additional point is placed between
each two points, such that the river meanders along the route. To generate the shape of the river,
we transform the curve into a fat curve as shown in the system proposed by Huijser [14]. For each
point of the curve, the width of the river is used to construct a line perpendicular to the shape
of the curve. Connecting the lines between the points of the curve, we create a triangle mesh
between the curve points. To create a smoother curve, we interpolate the points using a bézier
curve through the curve points. With the fat curve, we can check whether a point is inside the
curve, and by using the barycentric coordinates of a point, we can calculate at what position along
the cross section of the curve a point belongs. An example of a planned river with its fat curve is
shown in Figure 6. The red points are points placed by the random offsets and the cyan points are
placed between each regular river point to create the meandering shape. The fat curve follows the
width of each control point, which are represented as a dark blue line perpendicular to the curve.

The parameters used to plan the path of the curve are shown in Table 2. The parameters used
to create the fat curve are shown in Table 3. The parameters to plan the river can all be modified,
while the parameters to create the fat curve can all be kept constant.

15

Figure 6: Wireframe view of the fat curve of a generated river.

Name Type Bounds Description
count int ≥ 0 The amount of rivers to plan.
width float > 0 The width of the river.
segment length float > 0 The distance between each river point.
max segment rotation float ≥ 0 The maximum angle that the river curves at each

point.
meander amplitude float ≥ 0 The offset of the meandering points.

Table 2: The parameters used for river planning.

6.1.3 Placing vegetation

In the system, we introduce two different algorithms of placing vegetation. The first algorithm
ensures that any two points are always placed a minimum distance from each other. The second
algorithm allows different kind of probability distributions to place objects, but does not always
ensure that objects are placed with a minimum distance.

The first method uses the Poisson Disk Distribution (PDD) to generate points that have a
minimum distance from each other. To generate the points, the method of Bridson [3] is used.
In this algorithm, new points are generated by randomly picking locations around existing points.
Points are rejected if another point already exists within a certain distance. We have expanded
this initial algorithm so that it can be used with different types of vegetation, where each type has
a different minimal distance to objects of another type. This approach can be used to generate
multiple different types of vegetation. An example of objects placed using the PDD algorithm is
shown in Figure 2b.

To generate different types of vegetation, we separate the types of vegetation into different
layers. Similar to the solution provided by do Nascimento et al. [9], each layer represent different
types of vegetation, such as trees, bushes or grass. These layers have different rules for how far
objects can be placed from another, or to objects in a different layer. For each separate layer,
points are randomly generated. Based on the paper of Bridson, we use a 2 dimensional grid to
store the points, with the size of each grid cell being equal to d/

√
2, where d is the minimum

distance of two points, which is twice the radius of the object on the layer. Using this grid, we can
check the existence of nearby points by looking at the neighbours of a cell in the grid. Given an
area where the points should be generated, the algorithm places points around already generated
points until there is no point that can be placed.

To combine multiple layers generated by the PDD, we generate all layers from large to small,

Name Type Bounds Description
tangentLength float > 0 The size of the tangents of the bezier curve.
interpolationPoints int ≥ 0 The amount of interpolation points on the curve.

Table 3: The parameters used for generating a fat curve

16

Name Type Bounds Description
retries int > 0 The amount of attempts to place a point.
layer radius float > 0 The PDD radius used for objects in the same layer.

Defined for each layer

inner layer radius float
0 < r ≤

layer radius The PDD radius used for objects in lower layers.
Defined for each layer.

Table 4: The parameters used for generating multiple PDD layers

Figure 7: Examples of kernels that can be used in the deformation kernel algorithm, from
[20].

and when each layer is generated the points are filtered by checking if there is overlap with a higher
layer. When placing trees in an environment, their canopies cannot overlap but smaller objects,
such as bushes, can be placed within the radius of the canopy. These plants are still blocked by
the size of the trunk. Because of this, we can assign a different radius for objects in the same layer
as objects in a lower layer. The parameters used in the Multi-layer PDD algorithm are shown in
Table 4.

Our second approach follows the method proposed by Lane et al. [20], which uses a probability
density function to randomly place objects. Each object placed modifies the probability function
with a kernel, which updates an area of the probability function around the placed location.
Examples of kernels are shown in Figure 7. The first kernel has no influence on the function, but
kernel B increases the probability that another object is placed near the point. Kernel C decreases
the chance of points placed near each other, but kernel D has a more complex behaviour. Points
placed with this kernel have a low likelihood of being placed close to other points, but have a
higher chance of appearing a bit further away. The deformation grid which is a result of generating
50 samples using kernel C is shown in Figure 8. The parameters used in the deformation kernel
algorithm are found in Table 5. The bounds and size of the field are kept as constant, and the
number of iterations can be changed to change the density of plants placed.

Figure 8: Example of a deformation grid after placing 50 objects.

17

Name Type Bounds Description
iterations int ≥ 0 The amount of objects to be placed.
deformation kernel

curve AnimationCurve f(x) ∈ [0,→) The function used by the kernel from
the center to the edge of kernel.

deformation kernel
radius float > 0 The size of the kernel.

Table 5: The parameters used for placing objects with a deformation kernel

6.2 Connecting components

In the system, the different components interact with each other, and the generation of some
components depends on the result of others. Because of this, an architecture is created that
can combine creation of all components. The architecture separates the different features of the
landscape in order to keep a clear view of the generation and connection of all parts. When more
features are added in the future, the interaction between all components of the system should still
be clear.

6.2.1 Architecture of the system

We have separated the tasks of generating the terrain into multiple components. Some of the
components use the techniques described in the previous chapter to generate a single component
of the system, while other components combine these components. The architecture of the system
is shown in Figure 9. In this diagram, each different component of the system is shown in a
rectangle, while each data type is shown in an ellipse.

In this system, we first generate the surface terrain and after this we plan each river. With the
path of the river, we generate a fat curve. To improve the performance of the system, we calculate
which triangles of the fat curve intersect each chunk. This allows us to skip triangles which do not
pass a given chunk. This is done by component (4). With this information, the terrain is modified
with the fat curve to add a river bed to the terrain, and the river is used to generate the initial
deformation fields that is used to generate the object placements with the deformation kernel.

The components labelled with the numbers (1), (2), (3), (7.1) and (7.2) are described in section
6.1. The rest of this section describes the other components of the system.

6.2.2 Combining terrain and curves

To combine the river with the terrain we need to update each point of the terrain, which is done
by component (5). Using the method described in [14] we can check whether a point is located on
the river, and at what part of the cross section the point is located. With the cross section profile
provided, the change in elevation is calculated. The height of the river is subtracted from the base
height of the terrain. To flatten the riverbed, the base height is interpolated between the heights
of the side of the river.

6.2.3 Masking object placement based on curves

To prevent the placement of objects on places such as water, we need to mask the placement
of objects with rivers. The system uses two separate methods of placing objects, and therefore
requires different kinds of masking.

For the PDD placement, we add an additional check to the multi-level PDD algorithm as
described in section 6.1.3. When a set of objects is generated, they are filtered by their distance to
a river to avoid placing objects on rivers. The size of the object is based on the inner radius, such
that the trunks of the tree never intersect with a river, but their canopy can be above a river.

When generating objects using the deformation kernel method, we create an initial deformation
field. To change the location where objects can be placed, the initial deformation field is modified
with the fat curve of the rivers, and the previously placed PDD objects. In the system, this is
done by component (6). The deformation field generator creates a deformation field based on the

18

Figure 9: A block diagram of the system’s architecture

terrain bounds and the rivers. The parameters used by the deformation field generator can be
found in Table 6. An example of an initial deformation field is shown in Figure 10. By separating
the initial probability of a point placed outside and inside of a river, this method allows for objects
that should be placed near rivers, such as reeds.

Name Type Bounds Description
initial probability float ≥ 0 The initial probability of a point not on a river.
river probability function f(x) ∈ [0,) The initial probability of a point on a river, eval-

uated on the cross-section of the river.

Table 6: The parameters used for generating an initial deformation field

6.2.4 Combining object placement methods

The system uses two techniques for placing vegetation. For larger vegetation the PDD placement
is used as it gives the guarantee of objects being spaced a certain distance from each other. For
smaller vegetation the deformation kernel approach is used as it results in objects being placed
more randomly, which results in a more realistic look.

To combine both methods, the Object placement generator, which is component (7) in the
architecture, is used. This component uses components (7.1) and (7.2), which are described in
chapter 6.1.3. Firstly, the larger vegetation is generated using the PDD. To prevent smaller vege-
tation being placed within these objects, all placements are added to the deformation field using
the inner radius. The probability on those locations is set to 0.

6.2.5 Finalising terrain

When all components are generated and combined, some final steps are performed to transform
our data structures into a terrain. Firstly, the heightmap of the terrain is rasterized into a mesh.
Based on the fat curves of the river, meshes are generated for the river and placed in the landscape.

19

Figure 10: An example of an initial deformation field based on a river and PDD objects.

Figure 11: A complete landscape generated by the system.

After this, the placement objects are added to the terrain based on predefined models. The
height map of the terrain is used to place the objects, as well as the camera, on the correct height
of the terrain. The result of generating a complete landscape is shown in Figure 11, as both a view
from the camera and a top-down perspective.

7 Validation

When generating the terrain, a user might have certain requirements that the terrain has to adhere
to. For instance, when the user needs a terrain with a river, the generated river should be visible
from the camera’s perspective. Additionally, placed objects should not block large parts of the
view or other large sections of the environment. To show how the environment can be analysed
and validated, we have chosen three metrics that we want to analyse. We will look at the density
of forest and how this is influenced by certain parameters, as well as the visibility of rivers and
trees from the perspective of the camera.

7.1 PDD placement and object density

In research of digital nature, one of the variables in the type of environment is spaciousness, or
the difference between dense and spacious environments[35], which is related to the density of the
objects placed. Instead of generating environments and calculating the density of the objects from
the result, it is more efficient to derive the density of the environment from the parameters.

In the PDD placement algorithm, the placement of the objects is dependent on the radius of
each layer. Changing the radius of an object changes the minimum distance between two objects.
The density of the objects placed can therefore be changed by increasing the radius. To show the
effect of the radius on the density, we take an initial radius r that represents the bounds of the

20

Figure 12: Density of objects placed with the PDD using increasing radii, along with a
few examples of objects placed.

object itself. We increase this radius by a factor f and run the algorithm. From the number of
points placed we calculate the area that the points occupy with the original radius and calculate
the density. To see the effect of increasing the radius of an object, we take a ratio from 1 to 4
with increments of 0.2. For each ratio, we run the algorithm 500 times and calculate the average
density by using the area of the initial radius. The results of this example are shown in Figure 12,
along with a few examples showing the change of radius. From the figure, we see that the average
density of points decreases as the minimum radius increases.

7.2 Object segmentation

When validating the terrain, we want to make a distinction between different types of objects, such
as the difference between the ground and rivers, or between the sky and placement objects. To
solve this we use object segmentation, which is regularly used in computer vision [19]. In object
segmentation we make a distinction between semantic segmentation, where all objects of the same
type have the same colour, and panoptic segmentation, where each object has a different colour,
regardless of its type.

In our implementation, we use a custom shader to colour the individual objects. When analysing
the resulting image, we use pixel counting to find the relative size of the objects in the view.

An example of applying image segmentation to an image of a landscape is shown in Figure 13.
In this image, we can see the original landscape on the top-left, and the segmented images on the
right. The top image shows the object segmentation where the different kinds of placement object
have a shared colour. The bottom image shows panoptic segmentation, where each object has an
individual colour.

21

Figure 13: Example of object segmentation (top-right) and panoptic segmentation
(bottom-right) on a generated terrain (left)

7.3 Presence and visibility of rivers

When generating an environment with a river, it is important that the river is visible from the
camera’s perspective. If a river is not visible, or only a very small part is visible, the generated
landscape does not meet the user’s requirements and cannot be used.

To show the visibility of the river in the landscape, we analyse the proportion of the river in
the terrain. As placement objects can obscure both rivers and terrain, this analysis is performed
without the generation of placement objects.

To calculate the visibility of the river, the view of the camera is rendered with object segmen-
tation, and the proportion of river pixels against the entire terrain is calculated.

7.3.1 Testing the visibility of rivers

To test the visibility of the river, we take 500 samples of generated terrain, of which we calculate
the percentage of terrain covered by the river. The result of this experiment is shown in Figure
14. In these results, we see that the visibility of the river is very low, with more than 60% of the
samples containing a river where the visibility is less than 5% of the total terrain. One of the
experiments where there is no river visible is shown in Figure 15a. A top down perspective of this
terrain is shown in Figure 15b. As seen, the river is generated near the edge of the terrain, outside
of the perspective of the camera. The experiment with the largest visible river is shown in Figure
15c. As seen in the top down perspective in Figure 15d, this river runs through the middle of the
terrain, and bends close to the camera.

7.3.2 Improving the visibility of rivers

In the previous tests, we kept the camera in a fixed position, namely on the centre of one side of
the terrain. Instead of generating the terrain multiple times, which takes additional, the camera
can be placed on any of the four sides of the terrain. This results in a different perspective on the
terrain and therefore a different view of the river.

22

Figure 14: Histogram of the results of the river visibility test

To test this improvement, we repeat the previous experiment where we calculate the proportion
of the river, but for each generated terrain we calculate the visibility for each camera position,
and take the camera position with the largest visibility. The histogram with the results of the
experiments can be seen in Figure 16. From the results it shows that checking different camera
positions does result in terrains where the river is more visible. Instead of more than 60% of the
experiments having no visible or nearly invisible river, only 40% of the samples show this property
when multiple camera angles are used. Most of the samples have a visible river proportion between
5 and 20%.

7.4 Single-object occlusion

As trees are placed randomly on the terrain, it is important to ensure that a large part of the view
is not obscured by a single tree or a few objects. Because of this, it is important to evaluate the
proportion of an individual object to the scene.

To calculate the individual proportion, we use panoptic segmentation to separate the different
trees in the image. For each tree in the view, we calculate the size of the object in the view in
pixels, as well as the position of the object relative to the camera.

As a test, we generate the terrain 500 times and calculate the panoptic segmented image from
the terrain. We calculate the distance from the object to the camera and the size of the object in
pixels as a fraction of the total size of the screen. The result of these experiments can be found in
Figure 17. In Table 7 a breakdown of the objects and their sizes is shown.

In these results we can see that most of the objects only cover a small proportion of the screen.
Almost all objects that are visible in the frame take up less than 10% of the screen. Only 3.7% of
the generated objects are larger than 10%, but some of these objects occupy a very large section
of the screen. In Figure 18 an example of a terrain is shown where a single object occupies a large
section of the window. The tree is placed close to the camera, only 6.6 metres away from the
camera, and obstructs a large part of the view of the camera.

7.4.1 Improving single-object occlusion

As seen in Figure 17, most objects with a very large visibility are placed within 15 units of the
camera. All objects that cover more than 30% of the screen are placed within 11 metres of the

23

(a) Segmented view of a terrain without vis-

ible river (b) Terrain of the view without a visible river

(c) Segmented view of terrain with the most

visible river

(d) Terrain of the view with the most visible

river

Proportion of object # of objects % of Objects
>10% 633 3.71%
>20% 195 1.14%
>30% 94 0.55%
>40% 48 0.28%
>50% 27 0.16%
>60% 17 0.10%
>70% 7 0.04%
>80% 3 0.02%
>90% 1 <0.01%

Table 7: Amount of objects with a minimum size, from 500 experiments.

24

Figure 16: Histogram of the results of the river visibility test with the best camera position.

Figure 17: A plot of the distance and size of each object in the experiments.

25

Figure 18: Example of a view obstructed by a single object, with a normal render and
using panoptic segmentation

camera. To prevent occlusion by a single object, objects within 11 metres of the camera are
removed. The second round of experiments can be seen in Figure 19. This approach significantly
reduces the amount of objects with a very large visibility on the screen.

26

Figure 19: A plot of the distances and sizes of each object in the experiments with camera
distance filtering of 11 meters.

8 Discussion

With the architecture we have created, Magrathea is capable of generating digital landscapes with
rivers, smaller vegetation, and larger trees. The different components are connected to each other
without overlap, but they still create a whole environment. In the environments created during
testing, which represents a forested area, the generation terrain does not require large inclines, but
still results in a landscape that is not fully flat. The generation of the river results in rivers that
curve throughout the terrain, but the planning of the rivers does not work very well. Randomly
placing points often results in rivers that generate mostly near the corners of the terrain and are
not visible to the camera. The placement of vegetation allows different types of plants to be placed
on the terrain without overlap with each other or with rivers. The distribution can be configured
to modify how plants spread or clutter in the environment.

The system is able to generate environments quickly enough. To test the system, we created a
preset with a single river, an environment with 10 by 10 chunks of 65 by 65 vertices each, a single
PDD object, and a single deformation kernel object. Running the testing setup, the system takes
an average of 2.23 seconds to generate an environment. Further optimisations can improve this,
but when only a small number of environments need to be generated, the current runtime is good
enough.

8.1 Architecture

In the architecture that we have defined, the different tasks of generating each terrain feature are
separated into one or multiple different components. Each of the components generates, transforms,
or combines specific parts of the system. Some of the components are isolated from other parts of
the system, such as the curve planner and fat curve generator, while others are used by a lot of
different components, like the cached intersections between fat curves and chunks.

The different components of the system can be divided into 3 categories, based on the different
terrain features. The division of these categories is shown in Figure 20. The first category, category
A, is related to the generation of the terrain and is the smallest category. Only the generation of
the chunks is required to create the terrain. The second category, category B, is responsible for the

27

Figure 20: Architecture of the system with components categorised for each environment
feature

planning and generating of the rivers, as well as combining the rivers onto the terrain. Category
C is used to calculate the positions of objects to be placed onto the terrain using both the PDD
and deformation field placement methods. This category depends on the rest of the system, as it
requires the height map of the chunks to place objects and the rivers to filter object placements.
In Figure 20, the intersections between fat curves and chunks are not divided into a category, as
it is a separate data structure used by all parts of the system.

8.2 Parameters of the system

For each of the components in the system, we have established a set of parameters that influence
the generated terrain. Some of these parameters, such as the size and resolution of the height maps
of the terrain, can be kept constant for any generated terrain. With the other parameters, the user
is able to influence the generated terrain.

For the parameters related to the generation of the terrain, most of the parameters are very
technical. The parameters of the fractal noise algorithm apply to the mathematical nature of noise
algorithms and are not accessible for users without knowledge of noise functions. Due to this, when
a designer wants a specific feature on the terrain, more experimentation is required to generate a
terrain that is acceptable to the user.

To plan the generation of the river, the parameters have a clearer meaning on how they influence
the system. The planned rivers generate in a specific shape, namely a meandering curve that can
randomly curves around the environment, and the parameters can influence the shape the river
takes. Changes in meandering amplitude or random rotation can result in different characteristics
of rivers, as shown in the research by Teoh [33]. In the current version of the system, there are no
direct parameters that contribute to the initial position and direction of the river, so this is still a
completely random process. This results in rivers that only occupy a very small part of the terrain

28

Figure 21: The density of points with varying ratios, with an exponential and inverse
quadratic fit

Function MSE
Exponential 3.97 ∗ 10−5

Quadratic 9.60 ∗ 10−7

Table 8: Mean squared error of different relations.

and are barely visible. To transform the river path into a fat curve, the process mainly contains
constant parameters. Since the interpolation of the path uses Bezier curves, a parameter has been
added to derive the tangents of each control point. As this is mainly to control the smoothing of
the curve, this parameter can be kept as a constant.

The parameters related to placing objects are closely related to the type of vegetation used. For
the PDD algorithm, the parameters are related to the physical size of the objects that are placed.
For trees, these are the outer radius which equates to the size of the canopy, which prevents overlap
between trees, and the inner radius, which is to prevent overlap with smaller objects. The multi-
level PDD placement has been used in testing and allows smaller objects to be placed between
larger objects, but realistic placement patterns such as clumps do not appear when using PDD.

For the deformation kernel the initial probability field is based on the path of the river, with a
parameter specifying the initial probability of an object placed on or near a river. For the placing
of objects, there are parameters related to the size of the object to be placed, as well as how the
probability function changes when an object is placed. With these parameters, different kinds of
distributions can be achieved. The amount of objects placed.

8.3 Validating system components

To validate the generated terrain, we have used a number of different metrics to check and control
the environment. Each of these methods analyses a specific component and how it affects the
generated environment. Currently, these methods are not directly involved in the final terrain
generation, but can instead be used after a terrain has been generated to improve the result.

For the placement of PDD objects, we have experimented with increasing the radius to reduce
the density of trees. From this, we see an inverse relation between the radius of the object and the
density of the objects within the area. To find this relation, we fitted two functions on the dataset,
the exponential function and an inverse quadratic relation. These fits are shown in Figure 21. For
both fits, we calculated the mean squared error, which is shown in Table 8. From this we can see
that the quadratic relation has a better fit. This is expected, since increasing the radius linearly
results in the area quadratically. With this relation, the user can calculate the expected density of
the generated objects.

29

Figure 22: Examples of environments generated with objects closer than 11 units removed

8.3.1 River visibility

In the current implementation of the system, generating a river visible from the camera is very
unreliable. Since the start point and direction of the rivers are selected by random, rivers often
only traverse for a small distance before moving out of bounds, or they can travel near a border
that is not visible from the perspective of the camera. In the initial version, more than 80% of all
rivers have a visibility lower than 5% of the total terrain surface, which results in a large number
of terrains to be generated before an acceptable terrain appears. Improving this method by taking
multiple camera positions into account has improved the system somewhat, although there is still
a large amount of generated rivers that still do not contain a large section of the river. If a river
is generated near the corner of the terrain, none of the camera positions will be able to view the
river.

8.3.2 Single object occlusion

To validate whether the view is obscured by a single large object, we have used panoptic segmenta-
tion to calculate the size of each object in the view. With this, we found that the system sometimes
generates objects close to the camera that take up almost all the space in the view, as shown in
Figure 18.

The solution to remove all objects close to the camera has resulted in removing most large
objects in the view. Some examples of landscapes generated using this method are shown in Figure
22. Although the second round of experiments still contains objects that cover more than 30% of
the view, the majority of views do not contain a large object in front of the camera. Although this
approach seems to work well when looking at the statistics alone, the environments generated do
look more sparse because of the empty space between the camera and the closest trees. When a
dense environment is required, filtering nearby trees removes a large part of the density.

9 Future work

In its current state, the system is able to generate environments with vegetation and rivers, which
can be manipulated using a set of parameters. However, there are still some changes and improve-
ments that can be made to the system to enhance the features and capabilities of the system.
Some of these improvements are described in the following section.

9.1 Improving performance

In the initial version of the system, there has been no significant focus on improving the performance
of the system. One improvement that has been made is caching the intersection between fat
curve triangles and chunks, but the performance of the system can be further improved by taking
advantage of Unity’s optimisation techniques. One example would be to use parallelisation and
SIMD by using Unity’s job system in generating the terrain or operations with fat curves. Research

30

done by Wei [38] proposed a way to parallelise the Poison Disk Distribution on the GPU, which
can be applied to the PDD object placement component.

Although the current system can generate landscapes in a reasonable time, faster landscape
generation can allow the user to generate more terrains in the same timespan, allowing for more
options of the resulting environment.

9.2 Multiple environments

While the system is able to generate environments with multiple types of vegetation, is not able to
generate terrains with multiple environments within the same landscape. For example, the system
cannot generate the edge of forests where a section of the terrain contains trees and the other section
only contains grass or bushes. Interesting environments often contain different types of landscape,
so therefore, the addition of multiple types of environment should be added. Some research has
already gone into the generation of multiple ecotope. Hammes [13] uses terrain features such as the
height and slope of the terrain to determine which ecotope the section of terrain belongs to. Based
on the ecotope, different plants are selected for placement. [9] and [37] take a similar approach,
but both use water as well as terrain, so rivers also influence the selected ecotype.

9.3 Generating roads

In digital nature research, the presence of artificial objects is a desired component of the system
[35]. Because of this, one of the next features that should be added is the presence of roads or
road networks. Roads can be planned on the terrain similar to rivers, and the addition will change
the architecture. The planning and generation of roads has been researched before, most times in
the procedural generation of cities [18] or in the procedural generation system by Smelik [32]. In
addition to the placement of the roads itself, certain objects can be placed adjacent to roads, such
as roads, sign posts or bins. With these objects, tended natural environments can be tested, like
in the research of van Houwelingen-Snippe [35].

9.4 Generating from point of view

Although the aim of the system is to generate an environment for a single point of view, the
generation techniques used are the same that are used to create large-scale environments. New
techniques that involve the position of the camera directly to generate each component can generate
the environment more effectively. As mentioned in the discussion, generated rivers are often not
generated visible to the camera. When the position of the camera is taken into account, rivers
can be generated such that they will appear in a certain position of the view. Additionally, the
generation of objects can be changed by including the position of the camera to distinguish between
foreground and background objects, which can result in interesting environments, or to prevent
occlusion by a single large object.

10 Conclusion

10.1 RQ 1: Terrain generation

How can we generate each component in a landscape, and how do these components

interact to create a landscape suited for a single point of view?

The system we have created currently supports 3 features: The terrain, rivers and the placement
of vegetation.

RQ 1.1: How can we generate each component required for the landscape?

The surface terrain is generated using fractal Perlin noise as a two-dimensional height map, and
split into separate chunks. For each height map, a mesh is generated. This method is able to
generate simple terrain with some ruggedness, which is enough for simple environments, such as
forests.

31

To generate rivers, we plan the path of a meandering river that randomly moves around the
terrain. This path is transformed into a fat curve, which is used in other steps of the program. To
reduce the amount of calculations in other parts of the program, the intersections between chunks
and fat curves are cached.

For the generation of vegetation we have selected two methods. The first method randomly
places objects on a Poisson Disk Distribution, where all objects have a minimum distance to
another object. With the second approach, a probability distribution is used to randomly place
objects with each object modifying the distribution. Using different kernels changes the behaviour
of objects placed, where certain kernels produce a prohibiting effect for other objects, other kernels
can attract objects to clutter near each other. Using both methods of generation, different types
of behaviour can be produced when generating the environment.

RQ 1.2: How can we connect all components to create a landscape for a single point

of view?

Using the cross section of the river, the fat curve modifies the height map of the terrain to imprint
the river bed and creates a mesh that represents the river surface. Although the generation of
the river itself works, the river planning is very simplistic and often generates rivers that are not
visible from the camera’s perspective. From our experiments more than half of the terrains we
have generated does not include a significant portion of the river in the view.

To prevent overlap with rivers, the fat curve of the river acts as a filter for PDD objects, where
objects are not generated if they are placed on a river. For the deformation kernels, the fat curve
modifies the initial probability distribution to change the probability of an object placed on a
certain part of the river. To place the objects onto the terrain, the height map is used to find the
vertical position of the object on the terrain and the update is placed on the surface.

10.2 RQ 2: Parameters of the system

What are the influences of the different parameters on the resulting landscape?

In the architecture we have created, each of the different components has a number of parameters
that influence the generation or transformation of the specific feature. These parameters are
categorised into two categories, where parameters can be considered as constant in most of the
generated terrains, and parameters that change the terrain in order to get a desired effect.

For generating the terrain, most parameters are related to the mathematical noise functions,
and changing the parameters requires knowledge of these functions. The generation of rivers
uses parameters that describe the general shape and direction of the river. For the generation of
objects, the parameters are inherent to the objects to be placed on the terrain. In the Poisson
Disk Distribution, objects specify separate radii for objects of the same type or objects in a lower
layer. In the deformation field, the objects placed specify how the probability field is modified in
an area around the object. The amount of objects placed using the PDD is limited by the bounds
of the terrain and the minimum distance, while the deformation uses a parameter to control the
amount of objects generated.

10.3 RQ 3: Validating terrain

In what ways can we validate the procedurally generated terrain?

To validate the generated environments, we have selected three metrics to test the landscape.
These metrics are as follows:

• The density of trees in the environment.

• The visibility of the generated rivers.

• Whether objects obstruct a large part of the view.

32

RQ 3.1: How can different requirements be translated into rules to validate the ter-

rain?

For the first metric, we analysed the density of the generated trees. With the PDD algorithm,
a minimum distance between each object is ensured but by increasing this minimum distance,
the density of objects decreases. By testing the density for different radii, we found an inverse
quadratic relation between the radius used in the PDD algorithm and the density of objects.

The second metric we have analysed is the visibility of the generated rivers in the view of the
camera. To analyse this, the generated terrain is evaluated by the proportion of river visible on
the terrain from the camera’s perspective. This method only analyses the surface without any
vegetation placed. From this terrain, object segmentation is used to calculate the size of the river
in pixels. From this the ratio between the surface and the rivers is calculated.

For the placement objects, we analysed the visibility of each object, and looked at whether
some objects take up a significant portion of the screen. Instead of object segmentation, panoptic
segmentation is used to separate each object in the image. For each terrain, the pixels per object
are counted and calculated as the proportion of the total screen size. From this we have seen that
some objects occupy a significant portion of the screen.

RQ 3.2: How can the terrain generation be influenced by the validation to create

terrain conforming to certain rules?

The relation between the minimum radius and the density of objects generated by the PDD algo-
rithm can be used by a designer to estimate the resulting density in the generated environment.
When a certain density of objects is required, it can be calculated back to a minimum radius and
then validated when the terrain is generated by counting each object.

The visibility of rivers can be used by a designer to automatically find a suitable terrain. If
a designer requires a river to be visible, they can generate the terrain until the visibility is larger
than a set amount. With multiple camera positions, this increases the chance that a terrain has a
river that is visible enough.

With the size of each placement object on the screen, objects that block a large part of the
view can be removed. We found that most objects that occupy a large part of the view are placed
within a distance of 11 metres of the camera. To prevent these objects from blocking a large part
of the view, they can be removed on the basis of the distance of the object to the view.

References

[1] Farès Belhadj and Pierre Audibert. Modeling landscapes with ridges and rivers: bottom
up approach. In Proceedings of the 3rd international conference on Computer graphics and
interactive techniques in Australasia and South East Asia, GRAPHITE ’05, pages 447–450,
New York, NY, USA, November 2005. Association for Computing Machinery. URL: https:
//dl.acm.org/doi/10.1145/1101389.1101479, doi:10.1145/1101389.1101479.

[2] Bedřich Beneš and Rafael Forsbach. Visual simulation of hydraulic erosion. 2002. Accepted:
2013-07-15T13:50:11Z Publisher: UNION Agency. URL: http://dspace5.zcu.cz/handle/
11025/5963.

[3] Robert Bridson. Fast Poisson disk sampling in arbitrary dimensions. In ACM SIGGRAPH
2007 sketches, page 22, San Diego California, August 2007. ACM. URL: https://dl.acm.
org/doi/10.1145/1278780.1278807, doi:10.1145/1278780.1278807.

[4] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen. Wang Tiles for image
and texture generation. ACM Transactions on Graphics, 22(3):287–294, July 2003. URL:
https://dl.acm.org/doi/10.1145/882262.882265, doi:10.1145/882262.882265.

[5] Juncheng Cui, Yang-Wai Chow, and Minjie Zhang. A voxel-based octree construction ap-
proach for procedural cave generation. Faculty of Informatics - Papers (Archive), January
2011. URL: https://ro.uow.edu.au/infopapers/3612.

33

[6] D. D’Ambrosio, S. Di Gregorio, S. Gabriele, and R. Gaudio. A Cellular Automata model
for soil erosion by water. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans
and Atmosphere, 26(1):33–39, January 2001. URL: https://linkinghub.elsevier.com/

retrieve/pii/S1464190901850115, doi:10.1016/S1464-1909(01)85011-5.

[7] Oliver Deussen, Pat Hanrahan, Bernd Lintermann, Radomír Měch, Matt Pharr, and Prze-
myslaw Prusinkiewicz. Realistic modeling and rendering of plant ecosystems. In Proceedings
of the 25th annual conference on Computer graphics and interactive techniques, SIGGRAPH
’98, pages 275–286, New York, NY, USA, July 1998. Association for Computing Machinery.
URL: https://dl.acm.org/doi/10.1145/280814.280898, doi:10.1145/280814.280898.

[8] Rahul Dey, Jason G. Doig, and Christos Gatzidis. Procedural feature generation for volumetric
terrains using voxel grammars. Entertainment Computing, 27:128–136, August 2018. URL:
https://linkinghub.elsevier.com/retrieve/pii/S1875952117301349, doi:10.1016/j.
entcom.2018.04.003.

[9] Bruno Torres do Nascimento, Flavio Paulus Franzin, and Cesar Tadeu Pozzer. GPU-
Based Real-Time Procedural Distribution of Vegetation on Large-Scale Virtual Ter-
rains. In 2018 17th Brazilian Symposium on Computer Games and Digital Entertain-
ment (SBGames), pages 157–15709, October 2018. ISSN: 2159-6662. URL: https:

//ieeexplore.ieee.org/abstract/document/8636903?casa_token=IoZQcW6PpB8AAAAA:

7gvMS7_v60kDTLNDIcNa3XBuwLQAengSbAZs2V2URLTRxSy4ayn6ibXbF2riyOd8N66va6BGnw,
doi:10.1109/SBGAMES.2018.00027.

[10] Jonathon Doran and Ian Parberry. Controlled Procedural Terrain Generation Using Software
Agents. IEEE Transactions on Computational Intelligence and AI in Games, 2(2):111–119,
June 2010. Conference Name: IEEE Transactions on Computational Intelligence and AI
in Games. URL: https://ieeexplore.ieee.org/abstract/document/5454273?casa_

token=GPHytrYBv10AAAAA:etKTf-MqS36Xpc6fRwIksbRZ9ZpWJ68gTeFZAwrtKjoGYlA2ShUIT_

mC-hFqX03nDag2fz4SGg, doi:10.1109/TCIAIG.2010.2049020.

[11] Manuel Gamito and F. Musgrave. Procedural Landscapes with Overhangs. Decem-
ber 2003. URL: https://www.researchgate.net/publication/2948853_Procedural_

Landscapes_with_Overhangs.

[12] Sarah F. F. Gibson. Constrained elastic surface nets: Generating smooth surfaces from binary
segmented data. In William M. Wells, Alan Colchester, and Scott Delp, editors, Medical Image
Computing and Computer-Assisted Intervention — MICCAI’98, Lecture Notes in Computer
Science, pages 888–898, Berlin, Heidelberg, 1998. Springer. doi:10.1007/BFb0056277.

[13] Johan Hammes. Modeling of Ecosystems as a Data Source for Real-Time Terrain Rendering.
In Caroline Y. Westort, editor, Digital Earth Moving, Lecture Notes in Computer Science,
pages 98–111, Berlin, Heidelberg, 2001. Springer. doi:10.1007/3-540-44818-7_14.

[14] Remco Huijser, Jeroen Dobbe, Willem F. Bronsvoort, and Rafael Bidarra. Procedural Nat-
ural Systems for Game Level Design. In 2010 Brazilian Symposium on Games and Digital
Entertainment, pages 189–198, Florianpolis, Santa Catarina, TBD, Brazil, November 2010.
IEEE. URL: http://ieeexplore.ieee.org/document/5772287/, doi:10.1109/SBGAMES.

2010.31.

[15] Min Jiang, Yahan Zhou, Rui Wang, Richard Southern, and Jian Jun Zhang. Blue noise
sampling using an SPH-based method. ACM Transactions on Graphics, 34(6):211:1–
211:11, November 2015. URL: https://dl.acm.org/doi/10.1145/2816795.2818102, doi:
10.1145/2816795.2818102.

[16] Thouis R. Jones. Efficient Generation of Poisson-Disk Sampling Patterns. Journal
of Graphics Tools, 11(2):27–36, January 2006. Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/2151237X.2006.10129217. doi:10.1080/2151237X.2006.10129217.

34

[17] Martin Kahoun. Realtime library for procedural generation and rendering of terrains. Septem-
ber 2013. Accepted: 2017-05-15T13:04:09Z Publisher: Univerzita Karlova, Matematicko-
fyzikální fakulta. URL: https://dspace.cuni.cz/handle/20.500.11956/51668.

[18] George Kelly and Hugh McCabe. Citygen: An Interactive System for Procedural City
Generation. URL: https://www.researchgate.net/publication/357658334_Citygen_An_
Interactive_System_for_Procedural_City_Generation.

[19] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollar. Panoptic
Segmentation. pages 9404–9413, 2019. URL: https://openaccess.thecvf.com/content_
CVPR_2019/html/Kirillov_Panoptic_Segmentation_CVPR_2019_paper.html.

[20] Brendan Lane and Przemyslaw Prusinkiewicz. Generating spatial distributions for multilevel
models of plant communities. 2002. URL: https://citeseerx.ist.psu.edu/document?

repid=rep1&type=pdf&doi=5eb032f25a186124371de7c537b13fb0ad49113a.

[21] Thomas Lechner, Benjamin Watson, U. Wilensky, and M. Felsen.
Procedural City Modeling. 2003. URL: https://www.

semanticscholar.org/paper/Procedural-City-Modeling-Lechner-Watson/

dc8a76e03a9139f24c2a4f03279d8a6980e86692.

[22] Gavin S P Miller. The definition and rendering of terrain maps. In Proceedings of the 13th
annual conference on Computer graphics and interactive techniques, SIGGRAPH ’86, pages
39–48, New York, NY, USA, August 1986. Association for Computing Machinery. URL:
https://dl.acm.org/doi/10.1145/15922.15890, doi:10.1145/15922.15890.

[23] Casey Muratori. The Color of Noise, May 2014. URL: https://caseymuratori.com/blog_
0010.

[24] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The synthesis and rendering of eroded fractal
terrains. ACM SIGGRAPH Computer Graphics, 23(3):41–50, July 1989. URL: https://dl.
acm.org/doi/10.1145/74334.74337, doi:10.1145/74334.74337.

[25] Callum Newlands and Klaus-Peter Zauner. Procedural Generation and Rendering of Realistic,
Navigable Forest Environments: An Open-Source Tool, August 2022. arXiv:2208.01471 [cs].
URL: http://arxiv.org/abs/2208.01471, doi:10.48550/arXiv.2208.01471.

[26] Jacob Olsen. Realtime Procedural Terrain Generation. 2004. URL:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=

5961c577478f21707dad53905362e0ec4e6ec644.

[27] Przemyslaw Prusinkiewicz and Mark Hammel. A Fractal Model of Mountains with
Rivers. 1993. URL: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&
doi=0af95fb26380dae62a6ec46dfd7eba9fcaeccdc3.

[28] Nicoletta Sala. Mathematics, Territory and Landscape. 2002. URL:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=

ee6f5c2e6b279ef9d81e1249bb07ebf7dcaab750.

[29] Jens Schneider, Tobias Boldte, and Rudiger Westermann. Real-Time Editing, Synthesis, and
Rendering of Infinite Landscapes on GPUs. 2006. URL: https://citeseerx.ist.psu.edu/
document?repid=rep1&type=pdf&doi=2000fd31703293aaa08fe622a3b032f21ba707e6.

[30] Noor Shaker, Julian Togelius, and Mark J. Nelson. Procedural Content Generation in
Games. Computational Synthesis and Creative Systems. Springer International Publish-
ing, Cham, 2016. URL: http://link.springer.com/10.1007/978-3-319-42716-4, doi:

10.1007/978-3-319-42716-4.

[31] Marcus Sköld. Generating terrain features using software agents. 2023. URL: https://urn.
kb.se/resolve?urn=urn:nbn:se:mau:diva-62688.

35

[32] R. M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra. A declarative approach to
procedural modeling of virtual worlds. Computers & Graphics, 35(2):352–363, April 2011.
URL: https://www.sciencedirect.com/science/article/pii/S0097849310001809, doi:
10.1016/j.cag.2010.11.011.

[33] Soon Tee Teoh. RiverLand: An Efficient Procedural Modeling System for Creating Realistic-
Looking Terrains. In George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, Yoshinori
Kuno, Junxian Wang, Jun-Xuan Wang, Junxian Wang, Renato Pajarola, Peter Lindstrom,
André Hinkenjann, Miguel L. Encarnação, Cláudio T. Silva, and Daniel Coming, editors,
Advances in Visual Computing, Lecture Notes in Computer Science, pages 468–479, Berlin,
Heidelberg, 2009. Springer. doi:10.1007/978-3-642-10331-5_44.

[34] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron Browne. Search-
Based Procedural Content Generation. In Cecilia Di Chio, Stefano Cagnoni, Carlos Cotta,
Marc Ebner, Anikó Ekárt, Anna I. Esparcia-Alcazar, Chi-Keong Goh, Juan J. Merelo, Fer-
rante Neri, Mike Preuß, Julian Togelius, and Georgios N. Yannakakis, editors, Applications
of Evolutionary Computation, Lecture Notes in Computer Science, pages 141–150, Berlin,
Heidelberg, 2010. Springer. doi:10.1007/978-3-642-12239-2_15.

[35] Josca van Houwelingen-Snippe, Somaya Ben Allouch, and Thomas J. L. van Rompay. De-
signing digital nature for older adults: A mixed method approach. DIGITAL HEALTH,
9:20552076231218504, January 2023. Publisher: SAGE Publications Ltd. doi:10.1177/

20552076231218504.

[36] Josca van Houwelingen-Snippe, Thomas J. L. van Rompay, and Somaya Ben Allouch. Feeling
Connected after Experiencing Digital Nature: A Survey Study. International Journal of
Environmental Research and Public Health, 17(18):6879, January 2020. Number: 18 Publisher:
Multidisciplinary Digital Publishing Institute. URL: https://www.mdpi.com/1660-4601/17/
18/6879, doi:10.3390/ijerph17186879.

[37] J van Muijden. GPU-based procedural placement in Horizon Zero Dawn, 2017. URL: https:
//www.youtube.com/watch?v=ToCozpl1sYY.

[38] Li-Yi Wei. Parallel Poisson disk sampling. ACM Transactions on Graphics, 27(3):1–9, August
2008. URL: https://dl.acm.org/doi/10.1145/1360612.1360619, doi:10.1145/1360612.
1360619.

[39] Martin Weier. Generating and Rendering Large Scale Tiled Plant Populations. 10(1), 2013.
doi:10.20385/1860-2037/10.2013.1.

[40] Ondřej Št’ava, Bedřich Beneš, Matthew Brisbin, and Jaroslav Křivánek. Interactive terrain
modeling using hydraulic erosion. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’08, pages 201–210, Goslar, DEU, July 2008. Eu-
rographics Association.

36

	Introduction
	Problem statement
	Research questions
	Background
	Generation of terrain
	Fractal terrain
	Rivers

	Placement of vegetation
	Distributed placement

	Connecting components
	Level of detail
	Probabilities and masking

	Related work
	Terrain generation
	Volumetric terrain
	Alternate terrain generation methods
	Agent-based algorithms

	Vegetation placement
	Tiling
	Ecosystem simulation

	Connecting components
	Agent-based simulation
	Frameworks
	Commercial products

	Validation
	Validating terrain
	Search-based Procedural Content generation

	System Architecture
	Generating components
	Terrain
	Rivers
	Placing vegetation

	Connecting components
	Architecture of the system
	Combining terrain and curves
	Masking object placement based on curves
	Combining object placement methods
	Finalising terrain

	Validation
	PDD placement and object density
	Object segmentation
	Presence and visibility of rivers
	Testing the visibility of rivers
	Improving the visibility of rivers

	Single-object occlusion
	Improving single-object occlusion

	Discussion
	Architecture
	Parameters of the system
	Validating system components
	River visibility
	Single object occlusion

	Future work
	Improving performance
	Multiple environments
	Generating roads
	Generating from point of view

	Conclusion
	RQ 1: Terrain generation
	RQ 2: Parameters of the system
	RQ 3: Validating terrain

