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Summary

A Hardware-in-the-Loop (HiL) simulation setup contains a real-time simulator that runs mod-
els or systems at the same pace as real life, allowing instant feedback and interaction. In the
setup, (part of) a plant is simulated in real-time and used to test an implemented controller.
This has safety benefits as it allows thorough testing of the implemented controller without
damaging the real system or its surroundings. It also has benefits with regards to costs. In edu-
cation numerous expensive setups are required when teaching students but HiL simulation
enables the replacement of the expensive setups with cheaper Digital Twins. HiL is a helpful
tool in Embedded Control System (ECS) development as it bridges the gap between the theor-
etical simulation and the physical implementation.

The goal of this project is to develop and test a HiL simulation infrastructure. This infrastruc-
ture enables HiL simulation for various applications. It contains contributions to the real-time
Xenomai framework as well as user guides and recommendations that enable users to perform
HiL simulation of their own application. The second goal is to use this infrastructure to de-
velop a Digital Twin of the RELbot which is a mobile robot frequently used at the Robotics and
Mechatronics research group. This mobile robot has two motors driving two wheels and it has
a castor wheel. The third goal is to measure performance of the Digital Twin with a credibility
assessment method that generates a score between 0 % and 100 %.

This project uses a Raspberry Pi 4 with an Icoboard FPGA as the hardware for the Digital Twin.
This hardware combination is also used by the ECS. An existing real-time framework developed
for the ECS has been used and expanded for use on Digital Twins. This framework facilitates
a firm real-time loop on a Raspberry Pi and enables communication to the FPGAs and other
components in the setup.

The HiL infrastructure has been developed and tested and a Digital Twin of the RELbot has
been developed. Two types of tests have been performed. Firstly, the 20-Sim simulation has
been compared with the results of the Digital Twin. This shows how well the 20-Sim simulation
on a computer compares to a real-time capable model on a Raspberry Pi. Secondly, the Digital
Twin has been compared with the real RELbot to determine if the RELbot model that has been
developed is good enough and if the Digital Twin as a whole has good performance.

The results from the first set of tests show that the difference in output between the 20-Sim
simulation and the Digital Twin simulation is 7× 10−3 %. This is a really small error and it is
below the 1 % difference requirement. The results from the second set of tests show that the
difference in output between the Digital Twin and the RELbot is 1 %. This is also a really small
error and meets the requirement of an error below 5%.

The credibility assessment method was used to generate a score for the Digital Twin. The cred-
ibility score of the Digital Twin is 97 %.

In conclusion, the goals are achieved and the requirements are met. The HiL simulation infra-
structure can be used to develop Digital Twins. The Digital Twin of the RELbot can be used in
education. The credibility assessment of the Digital Twin is also completed.

It is recommended to improve the RELbot model by choosing more suitable reference frames
and modeling the wheels as separate rigid bodies. It is recommended to expand the Digital
Twin framework with a Quality-of-Service check that tracks missed deadlines and informs the
user of unreliable results when too many missed deadlines occur. It is also recommended to
expand the live visualisation of the RELbot to include the angle of the RELbot. The final recom-
mendation is to test the infrastructure with different plants.
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CHAPTER 1. INTRODUCTION 1

1 Introduction

1.1 Context

Limited availability and high costs of equipment and physical setups bottleneck the develop-
ment and testing of controllers in research and education tasks. Such equipment is often task-
specific and applicable in a narrow range of applications. There is a need for equipment for
education and research facilities that is universally applicable for a wide spectrum of tasks.

Hardware-in-the-Loop (HiL) simulation can be used instead of physical setups to develop and
test controllers in order to remove some of the bottlenecks. HiL simulation incorporates crucial
hardware that is involved in the actual system and combines this with real-time simulation
of (part of) the plant rather than simulating purely in a simulation environment (Isermann,
Schaffnit and Sinsel, 1999). Real-time means that the simulation runs at the same pace as real
life, allowing instant feedback and interaction. A real-time simulator that emulates a plant is
also called a Digital Twin of the plant (Grieves, 2016).

Figure 1.1: HiL simulation setup (Groothuis, 2004)

Figure 1.1 shows a general HiL simulation setup. It shows that the controller and plant are con-
nected with the same electrical signals as the actual physical system. The theoretical controller
can be tuned and tested in a simulation environment, but HiL simulation allows testing of the
implemented controller on a microcontroller.

At the Robotics and Mechatronics (RAM) research group at the University of Twente a mobile
robot called RELbot is frequently used for education and research. A HiL simulation infrastruc-
ture can aid in research and the mobile robot is a fitting test case with the added benefit that
the Digital Twin can be used in education. Since the mobile robot is available for this project,
the research can be taken a step further and the developed Digital Twin can be compared to the
real robot.

1.2 Related work

HiL simulation
Groothuis (2004) showed that a HiL simulation setup for a robotic system can yield good res-
ults. The setup consisted of a DC motor with a belt and a load. The used hardware is not as
powerful as what is available today but good enough for a simpler setup. Yeh and Nugroho
(2021) applied HiL simulation to a mobile robot with skid-steering. The controller commu-
nicates with a computer that runs a simulation using Unreal Engine. Instead of a computer
our research will use a Raspberry Pi to perform HiL simulation. Widiarta, Romdlony, Rosa and

Robotics and Mechatronics Frank Hooglander



2 Development and testing of a Hardware-in-the-Loop simulation infrastructure

Trilaksono (2021) uses HiL simulation in the development of a controller for a mobile robot
focussing mainly on avoiding barriers. Březina and Jabłoński (2018) developed a universal HiL
test platform for mechatronic systems using a PLC and tested this with a case study involving a
DC motor drive controller.

Real-time framework
The real-time framework establishes a real-time loop which is required for real-time simula-
tion. Delgado, You and Choi (2019) used a Raspberry Pi 3 with Xenomai 3 to create a firm
real-time loop and they established communication using Robotic Operating System (ROS).
Raoudi (2024) developed a Xenomai framework for firm real-time tasks using a Raspberry Pi 4
with Xenomai 4 and he used ROS2 for communication. The Xenomai 4 framework is used by
the RELbot.

I/O interface
The I/O interface corresponds to the sensor simulation and actuator simulation blocks in Fig-
ure 1.1. A. I. Pop, N. Pop, Ţarcă, Lung and Sabou (2023) developed a quadrature encoder emu-
lator using a low-cost dual-core microcontroller for HiL simulation of a mobile robot. When
generating quadrature signals above 10 kHz the performance was found to be unsatisfactory
with both frequency and phase errors. Groothuis (2004) showed that Field-Programmable-
Gate-Arrays (FPGAs) can be used to emulate encoder signals with high reliability. The FPGAs
are more expensive but have better high-frequency performance and reliability. Hooglander
(2023) also did encoder emulation with FPGAs that are compatible with Raspberry Pi 4s, which
are also used in the RELbot.

HiL simulation evaluation
Often HiL simulation is evaluated in a qualitative manner where the shape of the output plot
of the simulation is compared to the shape of the output plot of the HiL simulation. Dai, Ke,
Quan and Cai (2021) developed a credibility assessment method which can be used to evaluate
HiL simulation setups in a quantitative manner. The method generates a score of a Digital Twin
and these scores can be used to compare different Digital Twins.

1.3 Goals

The main goal is to develop a Hardware-in-the-Loop simulation infrastructure and test this
infrastructure by creating a Digital Twin of a mobile robot. The goal is split into three subgoals:

1. Develop and test a Hardware-in-the-Loop simulation infrastructure.
2. Use the infrastructure to create and test a Digital Twin of the RELbot.
3. Evaluate the Digital Twin using a credibility assessment method.

1.4 Approach

An analysis of the problem and the context is done to come up with a set of requirements.
Throughout the project a clear distinction is made between the infrastructure and the case
study. The infrastructure consists of the parts that are not application specific. The infrastruc-
ture is developed and tested first, and afterwards a case study is done. In the case study a
Digital Twin of a mobile robot is developed, tested, and evaluated with a credibility assessment
method.

Frank Hooglander University of Twente



CHAPTER 1. INTRODUCTION 3

1.5 Outline

The rest of the report is structured as follows:

• Chapter 2 discusses the background information on used work that is done by other
people.

• Chapter 3 discusses the analysis of the target groups, some aspects of real-time simula-
tion and ends with the requirements.

• Chapter 4 discusses the design of the HiL infrastructure to achieve the goals and meet
the requirements for the general HiL simulation infrastructure.

• Chapter 5 discusses the tests of the HiL simulation infrastructure, the results and the
interpretation.

• Chapter 6 discusses the design of the casestudy to meet the goals and requirements of
the Digital Twin.

• Chapter 7 discusses the tests of the casestudy regarding the Digital Twin performance,
the results and interpretation.

• Chapter 8 discusses the conclusion of this project with regards to the goals and require-
ments and recommendations regarding future research.

Robotics and Mechatronics Frank Hooglander



4 Development and testing of a Hardware-in-the-Loop simulation infrastructure

2 Background

2.1 RELbot

The RELbot is a mobile robot with two motors with quadrature encoder sensors. The RELbot
uses differential drive to steer and has a castor wheel for stability. This robot is developed by
the Robotics and Mechatronics research group at the University of Twente. The RELbot is used
as a tool in education and as a platform for research and master thesis projects. The RELbot
has a Raspberry Pi 4 with an Icoboard FPGA as input/output device.

2.2 FPGA input/output device

An FPGA is a chip containing many programmable look-up tables. The chip can be pro-
grammed and synthesised to perform very fast parallel execution of code. The FPGAs use
Verilog code. The FPGAs of the Icoboard are used to perform high speed input and output
processing of the electrical signals with high precision. For the actuator signals the controller
outputs a PWM signal using an FPGA and the Digital Twin reads the PWM signal using an FPGA.
For the sensor signals the Digital Twin generates encoder pulses using an FPGA and the con-
troller reads encoder pulses using an FPGA. The module that generates the encoder pulses is
called the encoder emulator. The Verilog code for the PWM reader and encoder emulator which
has been used and further developed in this project was developed by Hooglander, 2023.

Controller PWM
generator

Encoder
reader

Angle

%

Real-time
simulated Plant

Angle

PWM 
reader

Raspberry Pi FPGA FPGA

PWM

Raspberry Pi (2)

%

Encoder
emulator

Encoder 
signal

Figure 2.1: FPGA communication

2.2.1 FPGA encoder emulator

The encoder emulator operates on discrete time steps but emulates a real sensor which op-
erates in continuous time. The encoder emulator code calculates how many encoder pulses
the encoder position has changed in the previous time-step and sends that amount of pulses
in the current time-step. To do this it generates pulses at a frequency of the amount of pulses
multiplied by the cycle frequency during a single cycle period.
For example, the update frequency is 1 kHz:

1. At t = 0 ms the encoder position is 0.
2. At t = 1 ms the encoder position is 18.

Between t = 1 ms and t = 2 ms the code generates pulses at a frequency of 1 kHz * 18 = 18 kHz.
So the amount of pulses sent in that period is 18.000/s * 0.001 s = 18 pulses.

Frank Hooglander University of Twente



CHAPTER 2. BACKGROUND 5

2.2.2 PWM reader

The PWM reader measures the amount of time per PWM period that the PWM signal is high.
The period counter is a 12 bit counter so one period is 4096 clock cycles. The Icoboard has
a clock frequency of 100 MHz so the PWM frequency is 100 MHz/4096 = 24.4 kHz. The PWM
reader counts how many counts of the 4096 the input signal is high. The duty-cycle is stored
as a 11 bit number so the high count is divided by 2 to get the PWM value. If it is high for 2048
counts (and low for 2048 counts) the PWM value is 2048/2 = 1024 which represents a duty-cycle
of 50 %.

2.3 ECS framework

The ECS framework is developed by Raoudi (2024). The framework does the following things:

1. The framework runs a firm real-time loop on a Xenomai kernel on a Raspberry Pi.
2. From the firm real-time loop the controller model calculation is called.
3. It enables communication between the Raspberry Pi and the FPGA.
4. It enables communication between the real-time loop and ROS.
5. It has data logging functionality.

2.3.1 Xenomai

Xenomai is a real-time extension for the Linux kernel that provides hard real-time capabilities.
It is commonly used in robotics, industrial automation, and other applications where strict
timing constraints are required. Xenomai typically runs alongside a Linux kernel using a dual
kernel architecture where Xenomai executes the real-time tasks while the non-critical tasks
continue running on standard Linux.

2.3.2 ROS

ROS (Robot Operating System) is a flexible framework for writing robot software. Despite its
name, it is not an operating system but rather a middleware that provides tools, libraries, and
conventions to develop robotic applications. ROS is used on the Linux side of the Raspberry Pi
for the robot software.

2.4 Credibility assessment

The credibility assessment method developed by Dai, Ke, Quan and Cai (2021) uses measure-
ment data to generate a credibility score. First a passing score is set which defines the minimal
score that is still sufficient with a recommended value of 60 %. Then an error threshold is gen-
erated using a confidence interval parameter value with a recommended value of 5 %. The
confidence interval represents the acceptable error percentage. A scaling factor ensures the
score equals the passing score when the error equals the error threshold. The total credibility
score is the weighted average between the time domain score, the performance domain score
and the frequency domain score. The weights are chosen by the user.

1. Time domain
The time domain credibility score uses the mean error over time. It uses this value and
the error threshold to generate a score between 0 % and 100 %. The confidence interval in
the time-domain represents the upper limit for the mean error over time where the error
is the difference between the simulation data and the experiment data. If the mean error
is 5 % of the total movement, a score of 60 % is given if the recommended parameters are
used.

2. Performance domain
The performance domain credibility score compares performance metrics like over-
shoot, time constant, and settling time. These metrics are used to generate a score

Robotics and Mechatronics Frank Hooglander



6 Development and testing of a Hardware-in-the-Loop simulation infrastructure

between 0 % and 100 %. A sufficient score is given when the difference between the
performance metric in simulation and the performance metric in the experiment is less
than 5 %. The performance domain score is the average of the scores generated from the
various performance metrics.

3. Frequency domain
The frequency domain credibility score compares phase and magnitude metrics to de-
termine a score between 0 % and 100 %. Once again the difference between the simu-
lation and the experiment must be less than 5 % for a sufficient score. The frequency
domain credibility score is the average of the scores calculated from the phase and mag-
nitude data.

2.4.1 Time domain formulas

Since our research only uses the time domain credibility score, the formulas for the time do-
main credibility are shown while the performance and frequency domain formulas are not. The
Root-Mean-Square error between the experimental data ye and the simulation data ys is used
to find the error of the experimental curve of the time domain et .

et =
√∑nt

1 (ye (ti )−ys (ti ))2

nt

The time domain error threshold is found by multiplying the maximum range of the experi-
mental curve with the percentage confidence interval Kp .
ϵt = Kp ∗ max

1≤i , j≤nt

|ye (ti )− ye (t j )|
Ke is a normalisation factor that ensures the score is equal to the passing score when the error
is equal to the error threshold.
Ke = ηpass√

1−η2
pass

The time domain credibility score is then calculated as follows.
ηt i me = Ke∗ϵp

(Ke∗ϵ)2+e2

When e = ϵ, it results in ηt i me = ηpass .

Frank Hooglander University of Twente
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3 Analysis

3.1 Introduction

This chapter discusses the target groups, modeling limitations, the influence of delay of the
Digital Twin, the credibility assessment method, and concludes with a set of requirements.

3.2 Target groups

The main target group for the HiL simulation infrastructure is educational institutions. Within
the main target group, four sub-groups can be distinguished:

1. Educators
2. Students
3. Researchers
4. Developers

The needs and wants differ per target group so they are analysed to establish the requirements
for the design. Some requirements are common for all target groups.

All target groups benefit from high accuracy and reliability of the HiL simulation. The infra-
structure should enable users to switch their controller from the Digital Twin to the real setup
without making any software adjustments.

3.2.1 Educators

Educators are teachers and teaching assistants who use HiL simulation as part of their course
material to alleviate some of the bottlenecks that come with practical education. Think of lim-
ited lab space, limited number of physical setups, and the required supervision of students
required to ensure safety while working with expensive equipment. The HiL simulation setup
can be used to quickly test if the student is ready to move on to the real robot. A clear separ-
ation between the students own implementation and the parts provided by the infrastructure
makes grading the students work easier. Some courses use the 20-Sim simulation environment
in the development of plant models and controllers which means that the usefulness of the HiL
simulation infrastructure is improved if it is compatible with 20-Sim.

3.2.2 Students

Students use HiL simulation as part of a course. For some courses a Digital Twin is provided
and only used to test the students work but the infrastructure could also be used in different
scenarios. Various parts of the HiL setup can be left for the students to implement their own
work. The students are not expert programmers so the infrastructure should be easy to use.
Monitoring and live visualisation can help the students to gain insight in what is happening
which improves the learning process.

3.2.3 Researchers

Researchers use the infrastructure to perform HiL simulations for their own research. Develop-
ing the HiL simulation infrastructure to be modular and flexible enables a wider range of use
cases, which is important for researchers. The HiL simulation infrastructure should allow dif-
ferent update frequencies to be selected so that applications of various bandwidths can use it.
The characterisation of the HiL simulation infrastructure is important so that researchers can
weigh the benefits of using it for their research.

Robotics and Mechatronics Frank Hooglander



8 Development and testing of a Hardware-in-the-Loop simulation infrastructure

3.2.4 Developers

Developers improve and expand the HiL simulation infrastructure so modularity and flexibility
of the code is important. Modularity and flexibility make adjustments or expansions to the
infrastructure easier. Data logging functionality on the Digital Twin enables the testing of the
FPGA communication. For most users, data logging on the ECS is sufficient.

3.3 Real-time simulation

A HiL simulation setup contains a real-time simulator that runs models or systems at the same
pace as real life, allowing instant feedback and interaction. A simulation step size of 1 ms means
the simulator must run at 1 kHz and for a simulation step size of 10 ms the simulator must run
at 100 Hz to make sure one second in simulation takes one second in real life. To keep up with
the pace of real-time the calculated states of the next time step must be finished before the
deadline at the end of the current time step. Consequently, a proper balance must be found
between the computational power of the processor and the computational complexity of the
model and integration method.

3.3.1 Implicit vs explicit equations

An equation where the output depends on itself is called an implicit equation and it is solved
using iteration until the output converges. An explicit equation does not depend on itself and
therefore does not require iteration. Iteration is required when either the integration method or
the model is implicit or when both are implicit (Broenink, 2020, Chapter 2.9). Iteration is com-
putationally expensive and not real-time friendly since there is no guarantee that the iteration
is finished before the deadline.

3.4 Digital Twin hardware platform constraint

The hardware platform of the Digital Twin is a Raspberry Pi with Icoboard FPGA, which is a
project constraint. This combination of hardware is frequently used at the RaM group and it is
also used in the RELbot for example.

A Raspberry Pi is limited in computational power which is a drawback of the hardware choice
and a limiting factor in the possible implementations of the Digital Twin. Model calculations
must be finished before the deadline at the end of the cycle in order to do real-time simula-
tion. A powerful processor can do complex calculations like solving implicit equations using
iteration while still finishing before the deadline. The Raspberry Pi might not be able to do this.
The limited computation power of the Raspberry Pi requires the use of an explicit model on the
Digital Twin.

3.5 Computationally-effective modeling

The following optimalisations lead to an explicit and computationally-effective model.

1. Model simplification
Simplify large-scale or complex systems to reduce computation time and meet deadlines
by order reduction, linear approximation of non-linear dynamics, and removal of non-
essential dynamics.

2. Avoid dynamics with high stiffness
High stiffness can introduce high frequency oscillations which require very small time
steps for stability.

3. Avoid dynamic causality changes
Explicit methods may fail if the causal assignment changes during operation due to, for
example, switching power electronics or mechanical collisions.

Frank Hooglander University of Twente



CHAPTER 3. ANALYSIS 9

4. Ensure preferred causality
Explicit models have preferred causality for all energy storage elements. Remove, com-
bine or add elements to ensure preferred causality.

5. Remove algebraic loops
Explicit models have no algebraic loops. Remove, combine or add elements to remove
algebraic loops.

Based on bond-graph books like Broenink (2020). A more detailed guide is found in Appendix A.

3.6 HiL Simulation Setup

Figure 3.1 shows the HiL simulation setup. It shows how the Digital Twin is equivalent to the
real robot and how the FPGAs are used for signal interfacing. The ECS can be connected to the
real robot or to the Digital Twin without any adjustments to the ECS.

Controller PWM
generator

Encoder
reader

Angle

%

Angle

H-bridge

Raspberry Pi FPGA

PWM Voltage

Encoder
sensor

Encoder 
signal

Real-time
simulated Plant

Angle

PWM 
reader

FPGA Raspberry Pi (2)
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Encoder
emulator

f

Real robot

Digital Twin

ECS

Path of signals when ECS is
connected to the real robot

Path of signals when ECS is
connected to the Digital Twin

Motor

Vcc

Load

Figure 3.1: HiL Simulation Setup

3.7 Digital Twin delay

The Digital Twin delay refers to the difference in time it takes the Digital Twin to generate out-
puts based on inputs compared to the real plant. The real plant will almost immediately start
generating encoder signals when a voltage is applied and in this section it is assumed to be
instantaneous.

A Digital Twin has an unavoidable delay due to its discrete nature. Figure 3.2 shows how the
selected update frequency influences the delay of the Digital Twin. The Digital Twin reads and
writes the inputs and outputs at the start of each cycle. This is the sampling moment. The input
is only sampled once every cycle which results in a delay between zero and one cycle period.
Then the calculation of the output takes place which is outputted at the next sampling moment
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resulting in a delay of one cycle period. The total delay is therefore between one and two cycle
periods.

Input

Output of real
plant

Time 0 ms 1 ms 3 ms

0 ms

<0.5 ms
<2msOutput delay

2 ms

Sampling

0

Output of Digital Twin
sampling at 4 kHz

Output of Digital Twin
sampling at 1 kHz

Output Delay of Digital Twin for different update frequencies 

Input signal measured

1 kHz

4 kHz

Figure 3.2: Relation between update frequency and delay of the digital twin.

The ratio of the controller sampling frequency and the Digital Twin sampling frequency de-
termines how much of the feedback signal has arrived at the controller one sample moment
after sending a signal to the Digital Twin. When the Digital Twin updates at the same frequency
0 % of the feedback has arrived at the next sampling moment. 0-50% at two times sampling fre-
quency, 50-75% at four times sampling frequency, 75-87.5% at eight times sampling frequency.

3.8 Simulation parameter selection

3.8.1 Integration methods

There are three options when it comes to selecting an explicit integration method in 20-Sim:
Euler, Runge-Kutta 2 or Runge-Kutta 4. Euler is the simplest and has the lowest accuracy.
Runge-Kutta 2 and 4 are more accurate and more complex as they use two and four model-
calculation steps respectively. Runge-Kutta 4 is the most accurate and should be considered
the default option.

3.8.2 Selecting the simulation time-step for the Digital Twin

Choosing the right simulation time-step requires balancing real-time constraints, stability, and
accuracy in the HiL setup. The update frequency and time-step is application specific. Two
methods are suggested to find an initial update frequency to start testing:
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Method 1: Heuristic approach without performance measurements

1. If measuring performance limits is not feasible, a good rule of thumb is to set the simu-
lator time-step 4 to 10 times faster than the controller’s time-step.

2. Validate with HiL testing by measuring the percentage of missed deadlines. If missed
deadlines are below 1 %, the time-step is likely appropriate. If above 1 %, the frequency
is likely too high and should be adjusted or the model should be simplified.

Method 2: Performance measurements based approach

1. Before running the performance test, it is recommended to set the CPU scaling governor
to performance mode. This makes sure the CPU runs at its maximum frequency, finish-
ing the calculation in the shortest time possible. Use the following command to set the
performance mode:

echo performance | sudo tee \
/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

2. Measure the average calculation time and overhead per cycle of the Digital Twin.
3. To set the CPU scaling governor back to the default schedutil use this command:

echo schedutil | sudo tee \
/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

4. Compute the theoretical maximum update frequency as the inverse of this duration.
Running at this frequency would cause frequent missed deadlines, as some cycles take
longer than average.

5. To set a practical update frequency, start with 75 % of the theoretical maximum. If this
results in a frequency much higher than needed (e.g., 100× the controller’s frequency),
limit it to 4 to 10 times the controller’s frequency to avoid wasting computational re-
sources.

6. Validate with HiL testing by measuring the percentage of missed deadlines. This method
should result in very few missed deadlines. If missed deadlines are below 1 %, the time-
step is likely appropriate. If above 1 %, the frequency is likely too high and should be
adjusted or the model should be simplified.

Both methods ensure real-time performance while balancing stability, accuracy, and compu-
tational efficiency.

3.9 Credibility assessment

The credibility assessment method by Dai, Ke, Quan and Cai (2021) generates a total credib-
ility score based on the weighted average credibility scores of the performance domain, time
domain and frequency domain. They recommend a confidence interval of 5 % which corres-
ponds to an error threshold of 5 % of the total movement in the time domain. The passing score
threshold can be set by the user and the recommended value is 60 %.

In the time domain calculation the Root-Mean-Square (RMS) error between the simulation
curve and the experimental curve is used to generate a score between 0.00 and 1.00 where 0.00
(0 %) means the RMS error is 150 times higher than the error threshold and 1.00 (100 %) means
the average error is 0.075 times smaller than the error threshold. This requires time-stamped
simulation and experiment data.

The performance domain calculation uses performance parameters like overshoot percentage,
settling time, or steady state error. It compares the performance parameters of the experiment
with the simulation to calculate the credibility score. This requires step response data or im-
pulse response data.

Robotics and Mechatronics Frank Hooglander



12 Development and testing of a Hardware-in-the-Loop simulation infrastructure

The frequency domain credibility compares the magnitude and phase of the simulation and the
experiment. This requires frequency response data from the experimental setup which could
be done with a frequency sweep. Performance and frequency domain analysis require quite
some effort in the data collection so the credibility assessment will be done with time domain
data. The user selected weights of the credibility assessment score are therefore: time domain
100 %, performance domain 0 %, and frequency domain 0 %.

3.10 Requirements

Below are the requirements based on the analysis and the goals. The requirements are split into
three categories corresponding to the three goals.

Requirements for the HiL simulation infrastructure

Must

1. The ECS software for Digital Twin control must be identical to the ECS software for con-
trol of the real plant. Only the hardware connection is adjusted to switch between the
two, no software adjustments.

2. The HiL simulation infrastructure must accept code generated by 20-Sim.

Should

1. The HiL simulation infrastructure should have high accuracy. The Root-Mean-Square
difference between the HiL simulation output and the 20-Sim simulation output should
be less than 1% when provided with an identical input signal.

2. The infrastructure should be applicable for a wide range of applications.
3. The infrastructure should be user friendly.
4. The infrastructure should have a clear separation of built-in and user-created parts.
5. The Digital Twin should have a communication bridge between ROS2 and the Xenomai

kernel as this is used in live visualisation.
6. The approach of real-time capable modeling should be documented in a user guide.

Requirements for the case study

Must

1. A real-time capable model of the RELbot must be developed.
2. The Digital Twin must simulate the physical plant in real-time.

Should

1. The Digital Twin should have live visualisation.
2. The case study should have 3D visualisation in the simulation environment.
3. The Digital Twin should have a sufficient credibility score.
4. The Digital Twin should have data logging functionality.

Requirements for the Credibility Assessment

Must

1. The credibility of the Digital Twin must be assessed.

Should

1. Software should be developed to perform credibility assessment.
2. The time-domain credibility assessment method should be used.

Will not

1. The performance-domain credibility assessment method will not be used.
2. The frequency-domain credibility assessment method will not be used.
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4 Design of the HiL simulation infrastructure

4.1 Introduction

The HiL simulation infrastructure enables the user to incorporate HiL simulation in their Em-
bedded Control System (ECS) development process. Figure 4.1 shows an expanded and more
detailed version of the ECS design approach of Broenink and Ni (2012) and is used to highlight
the HiL simulation infrastructure. A user that wants to use HiL simulation as part of their ECS
development process follows the steps from 1 to 4 in Figure 4.1.

Plant dynamicsControl law

3D visualisation

Firm real-time software
framework

Firm real-time software
framework 

Embedded Control
System Digital TwinECS

FPGA
DT

FPGA
Live

visualisation

Embedded Control
System

ECS
FPGA Real plant

Real-time capable
controller

Real-time capable
plant model

Simulation time
Real-time

Part of software framework

HiL simulation workflow

Hardware-in-the-Loop simulation setup

Real setup

HiL Simulation Infrastructure

Generated code

3b

4

3a

1

2

Generated code

Measurement
data analysis

Measurement
data analysis

Real-time capable simulation setupUsecase specific parts

Identical

Figure 4.1: HiL simulation infrastructure based on model-driven design approach by Broenink and Ni
(2012)

The infrastructure facilitates HiL simulation through a workflow marked with blue arrows and
the real-time software framework marked with blue boxes. The ECS and Digital Twin are a
combination of the framework and user implementation. Chapter 5 and Chapter 7 are testing
chapters. In Chapter 5 the real-time capable simulation setup in the red box is compared to the
HiL simulation setup in the green box. In Chapter 7 the HiL simulation setup in the green box
is compared to the real setup in the purple box using the RELbot case-study.

This chapter consists of two parts, it first elaborates the expansion of the firm real-time software
framework and then it elaborates on the workflow.
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4.2 Firm real-time software framework

4.2.1 Combined ECS and Digital Twin framework

The choice is made to have a combined real-time software framework instead of a separate ECS
framework and separate Digital Twin framework. The blue boxes in step 3a of Figure 4.1 are the
same framework but a few components have a specific version for the ECS and for the Digital
Twin. The reason for the combined framework is that from an execution point of view there is
no difference between an ECS and a Digital Twin. The main functionality of the ECS software
framework is listed below:

1. The framework runs a firm real-time loop on a Xenomai kernel on a Raspberry Pi.
2. From the firm real-time loop the controller model calculation is called.
3. It enables communication between the Raspberry Pi and the FPGAs.
4. It enables communication between the Xenomai and ROS.
5. It has data logging functionality.

The Digital Twin uses a plant model instead of a controller and the contents of the commu-
nication with the FPGA are different because the Digital Twin has different inputs and outputs
compared to the ECS.

In fact, the inputs and outputs are inversed compared to the ECS. The output of the ECS is an
input to the Digital Twin and vise versa. A few classes of the framework that are specific to the
ECS I/O have an inverse counterpart for use of the Digital Twin as expansion of the framework.

4.2.2 Implications of adjustable time-step of Digital Twin

Adjustable time-step means that the time-step can be chosen prior to a simulation. During
the simulation the time-step does not change. For correct real-time simulation the simulation
time-step of the model in the Digital Twin must be equal to the cycle period of the firm real-
time loop of the Digital Twin.

The encoder emulator on the FPGA reads the new angle once per cycle period to calculate
the angle difference. It uses a counter that overflows once per period to do this. To function
properly this counter needs to know the time-step size which means that the FPGA needs to
know the time-step size. A more detailed explanation of the encoder emulator is provided in
the background in Section 2.2.1. Getting the information of the time-step size to the FPGA is
not straightforward.

Possible solutions

The problem of communicating the time-step size to the FPGA has the following possible solu-
tions:

1. Automatic time-step size communication
The first option is automatic time-step size communication between the Raspberry Pi
and the encoder emulator on the FPGA. The advantage is that it is really user friendly
since the user does not have to do any additional manual actions and it enables a wide
range of possible applications. It is also quite robust to user error. The disadvantage
is that automatic time-step size communication requires major changes to the Verilog
FPGA code as the encoder emulator has to be adjusted and the SPI communication has
to be adjusted.

2. Different frequency presets
The second option is to synthesize multiple versions of the FPGA code with different
preset update frequencies. This way the user can choose one of the available update fre-
quencies and use the corresponding FGPA code version. The advantage is that it is not
as hard to implement as it does not require changing the SPI communication between
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the Raspberry Pi and the FPGA and it does not require too many adjustments to the en-
coder emulator code while still allowing different update frequencies. The disadvantage
is that this is prone to user error and it is not as flexible as there is a limited amount of
frequencies to choose.

3. No adjustable time-step
The third option is no adjustable simulation time-step. The advantage is that this re-
quires no extra effort in development. The disadvantage is that it limits the range of pos-
sible applications.

Automatic time-step size communication

Option 1: Automatic time-step size communication is chosen because of the user friendliness
and because it makes the infrastructure useful for a wider range of applications.

The step-size is communicated to the FPGA during the initialisation of the FPGA. The initialisa-
tion happens once and it happens before the simulation starts which is exactly when the step-
size should be communicated. This initialisation is done with an INIT message. The empty
bytes of the INIT message are used to communicate the step-size so a new message type is not
needed. The step-size is put in the initialisation message automatically, so the user does not
have to do anything.

4.2.3 FPGA code version check

The HiL simulation infrastructure contains two versions of FPGA code, one for the ECS FPGA
called icoboard and one for the Digital Twin FPGA called icoboard_inverse. Figure 4.1 shows
that the ECS FPGA is connected to the ECS and the DT FPGA is connected to the Digital Twin.
These two versions can be accidentally mixed up by the user while setting up the HiL simulation
setup. To improve ease of use, common user errors should be prevented. This is why the design
decision is made to add a check during initialisation of the FPGAs that prevents the mixing of
the two FPGA code versions.

When the Raspberry Pi sends the SPI INIT message the FPGA code responds with a unique
value. The value of the ECS FPGA code is different from the value of the Digital Twin FPGA code.
The ECS and Digital Twin throw an error if the wrong value is returned during initialisation.
Figure 4.2 shows the error message when the Digital Twin FPGA is connected to the ECS.

Figure 4.2: Wrong FPGA version error message

4.2.4 Improving the Encoder Emulator of the Digital Twin

The FPGA I/O device of the Digital Twin contains a module that reads PWM signals and a mod-
ule that emulates encoder signals. Although the encoder emulator developed by Hooglander
(2023) was quite reliable at 1 kHz with an error below 1 in 50.000 messages, reliability dropped
at higher frequencies. The part of the code that determines output frequency of the encoder
based on the angle input has been improved. The output frequency calculation consists of
three steps:

1. Angle difference calculation
At the start of each time step, sample the new position and calculate the absolute differ-
ence between the new and old angle, and the direction.

2. Overflow correction
Since the relative encoder position is used it can happen that -200 steps is calculated as
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+16183 steps. This should be detected and corrected. If overflow is detected the direction
should be corrected as well.

3. Scaling with the update frequency
The angle difference should be scaled with the update frequency. If 200 steps must hap-
pen in 1 ms (1000 Hz) the output should generate pulses at 200*1000 = 200.000 Hz.

FPGA code has blocking (=) and non-blocking (<=) statements. Blocking statements are ex-
ecuted sequentially while non-blocking statements are executed in parallel which is preferred.
Hooglander (2023) implemented this calculation with blocking statements which is easier as it
consists of three steps that have to be executed sequentially but it is not as reliable. The code
has been changed to only use non-blocking statements.

Combined angle difference calculation and overflow correction

The angle difference calculation and overflow detection are calculated at the same time. There
are four possible angle difference situations since the difference can be positive or negative and
it can have overflow or not.

Table 4.1: Angle difference, overflow and direction overview.

Situation Difference (new-old) Overflow Direction

A Positive No Positive
B Negative No Negative
C Positive Yes Negative
D Negative Yes Positive

This is implemented in the following way in pseudocode:

if (A) begin
clk_encoder_pulses <= angle_difference
direction <= positive;

end else if (B) begin
clk_encoder_pulses <= - angle_difference;
direction <= negative;

end else if (C) begin
clk_encoder_pulses <= full_encoder_resolution -
angle_difference;
direction <= negative;

end else if (D) begin
clk_encoder_pulses <= full_encoder_resolution +
angle_difference;
direction <= positive;

end

Scaling the clock divider value

In FPGA implementations, the use of multiplication and division operations should be min-
imized or avoided whenever possible due to their high resource consumption and latency. The
multiplication required to scale the angle difference is removed and instead, the frequency gen-
erator uses a clock divider which scales the output to the correct frequency. The clock divider
value is provided by the Raspberry Pi during initialisation.

This part of the code responsible for calculating the encoder emulator output frequency was
executed on the rising edge of a register which led to race conditions causing reliability issues.
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This is adjusted to execute on the rising edge of the clock and then detect if the register is high,
removing the final reliability issues. The error of 1 in 50.000 messages is removed and in 720.000
messages, no error was found. The encoder emulator is tested in the next chapter.

4.3 Workflow

4.3.1 Real-time modeling user guide

The workflow consists of steps 1 to 4 as shown in Figure 4.1. This section is about the arrows
between these steps which help the user to progress through the workflow. The workflow starts
at step 1 of Figure 4.1 with a normal plant and controller model. In order to do HiL simulation
using this framework explicit models are needed as shown in step 2. To help users to make their
models real-time capable and explicit, a user guide is provided which is shown in Appendix A.
The user guide focuses on three aspects.

1. Model complexity reduction
Explains some methods to reduce the complexity of the model and thereby the required
computation time of the model.

2. Model stability
Explains the possible problems of high stiffness dynamics when it comes to stability and
fixed time-step simulation.

3. Making the models explicit
Explains the implicit relations that can be encountered and how to make them explicit.

4.3.2 Implementation user guide

Now that the user has explicit models at step 2 of the workflow, a second user guide is made
about the steps the user should take to do HiL simulation and eventually implement the ECS
on the real setup. The user guide is shown in Appendix B. The user implementation and the
live visualisation are further elaborated in the next sections. The guide contains the following
information:

1. Code generation
Explains how to generate code from the explicit model.

2. Generated code implementation
Explains how to implement the generated code in the framework.

3. Simulation parameters
Explains how to adjust the simulation time-step, the simulation duration, and the integ-
ration method.

4. User implementation
Explains what the user has to implement for the parts that are specific to the use case.
This is pre- and post-processing of the model inputs and outputs, executing the calcula-
tion, and optionally logging.

5. Output analysis
Explains how the logged data from the ECS can be processed and plotted using 20-Sim.
Explains how the credibility assessment script is used. The credibility assessment script
is shown in Appendix C.

6. Live visualisation
Explains how to adjust the model for live visualisation, how to use ROS topics to commu-
nicate the data, and how to do live visualisation.

7. From HiL simulation to the real setup
Explains the steps the user should take to connect the ECS to the real plant.

Robotics and Mechatronics Frank Hooglander



18 Development and testing of a Hardware-in-the-Loop simulation infrastructure

User implementation

There are four main steps that the user has to do to implement the generated code with the
software framework on the Raspberry Pi as shown in Figure 4.3.

1. Preprocessing of the measured input data of the FPGA so it can be used by the model
calculation.

2. Calculating the new outputs of the model.
3. Postprocessing of the model calculation output values so they can be sent to the FPGA in

the next cycle.
4. Logging the input and output values. This is optional as logging on the ECS side is suffi-

cient in most cases.

Output Input

Preprocess Calculate Postprocess
PWM % [m]

Output Input

Log values

1 2 3

4

encoder 
pulses

Timer Timer

Figure 4.3: Overview of user implementation of code
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Live visualisation

A live, visual representation of the simulation is easier to understand than reading changing
simulation variables in a terminal. The HiL simulation infrastructure enables implementation
of live visualisation. Live visualisation should be kept simple to minimise delay and to achieve
acceptable framerates. The centre-of-mass position of a mobile robot or the position of an end-
effector are good options. These position values should be outputs of the simulation model
which are then sent to a ROS topic. The variable names and datatypes in the ROS message are
use case specific and are set by the user. The live visualisation is done with a ROS visualisation
package on a computer which is connected to the same network as the Digital Twin.

Plant
model

FPGA
RPI

FPGA

Controller

RPI

Computer

PWM signal

Encoder signal

Digital TwinEmbedded Control System

Y

X

Visualisation
packageDisplay

Figure 4.4: Live visualisation setup
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5 HiL Simulation Infrastructure Testing

5.1 Introduction

This chapter contains the tests of the infrastructure and the results. The tests and results in
this chapter focus on the performance of the Digital Twin platform rather than a specific im-
plementation of a Digital Twin. By comparing the Digital Twin with the 20-Sim environment,
modeling errors do not influence the outcome as both platforms use the same model. The
errors are a result of the limitations of the Digital Twin platform.

Tests in this chapter compare the Hardware-in-the-Loop simulation setup with the normal
simulation setup. The HiL simulations are green as they are part of the green box in Figure 4.1
and the normal simulations from 20-Sim are red. Note that comparative plots showing the
difference between the 20-Sim and HiL simulations are also in red.

5.2 Digital Twin vs 20-Sim open-loop test

5.2.1 Goal and setup

The goal of this test is to validate the Digital Twin platform by comparing the open-loop re-
sponse to an input profile with the response of the 20-Sim model. The input is designed to
excite all aspects of the model and it includes sudden input changes as well as gradual input
changes as shown in Figure 5.1. The input profile below is about 36 s but this input profile is
repeated to perform a test of 10 min.

Figure 5.1: Duty-cycle input profile for open-loop comparison test of 20-Sim and Digital Twin.

Figure 5.2 shows the test setup. The ECS reads the input profile into memory before the start of
the simulation and during the test it sends the PWM from the input profile to the Digital Twin.
The Digital Twin simulates the plant in real-time and returns encoder signals corresponding to
the calculated model output. The ECS reads the encoder values and logs both the duty-cycle
and position value at the end of each cycle. This data is used as a source file in 20-Sim where
the logged duty-cycle is connected to the plant model and the output of the plant model is
compared to the outputs in the log file. The test is done with a model of the RELbot and the
output that is compared is the position of the right wheel. A model of a different plant could
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have been used too as these tests are largely model independent. The test setup in 20-Sim is
shown in Appendix F.

Input profile ECS

Digital Twin

Logged data:
Duty-cycle,

Position

Plant model

Duty-cycle

Plot

20-Sim position output

HiL Simulation 20-Sim Simulation

HiL Sim position outputPWM Encoder

Figure 5.2: Open-loop Digital Twin vs 20-Sim comparison test setup.

5.2.2 Results

Figure 5.3 shows the wheel position output from the Digital Twin in green and the wheel posi-
tion output from the 20-Sim model in red in the top plot. These curves are very similar so only
the green line is visible. The pattern of the position is as expected given the used input pro-
file. The bottom plot shows the difference between the two curves by plotting the Digital Twin
values subtracted from the 20-Sim values. The absolute position difference is 2 mm or less.

Figure 5.3: Open-loop 20-Sim and Digital Twin comparison

Robotics and Mechatronics Frank Hooglander



22 Development and testing of a Hardware-in-the-Loop simulation infrastructure

5.2.3 Interpretation

The average difference between the Digital Twin simulation output and the 20-Sim output is
9.22×10−4 m or 7.29×10−3 %. This means the requirement of an average difference below 1 %
is achieved. There is a pattern in the error with a period matching the input profile which could
be a result of the delay introduced by the Digital Twin.

5.3 Digital Twin vs 20-Sim open-loop test with post-test delay compensation

5.3.1 Goal and setup

The goal of this test is to find how much of the error of the Digital Twin is a result of the delay.
The setup is the same as in the previous test but the delay of the Digital Twin is compensated
using a time-delay block in 20-Sim. The test setup in 20-Sim is shown in Appendix F.

Input profile ECS

Digital Twin

Logged data:
Duty-cycle,

Position

Plant model

Duty-cycle

Plot

20-Sim position output

HiL Simulation 20-Sim Simulation

HiL Sim position outputPWM Encoder

Delay

Figure 5.4: Open-loop Digital Twin vs 20-Sim comparison test setup with delay compensation.

5.3.2 Results

Figure 5.5 shows the wheel position output from the Digital Twin in green and the wheel pos-
ition output from the 20-Sim model in red in the top plot. The curves are very similar so only
the green line is visible. It shows the difference between the curves in the bottom plot. The
plots show that the absolute value of the position difference between the Digital Twin output
and the 20-Sim output is 0.3 mm or less during this test.
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Figure 5.5: Open-loop 20-Sim and Digital Twin comparison without delay.

5.3.3 Interpretation

The 2 mm error becomes 0.3 mm when the 20-Sim data is shifted 2 ms in time resulting in
an average error of 9.71×10−5 m or 7.68×10−4 %. This is ten times smaller than the average
error with delay. This shows that about 90 % of the error is a result of the delay. Due to the
small average error between the model in 20-Sim and the model on the Digital Twin it can be
concluded that the HiL simulation platform works well. This includes:

1. The code generation tool.
2. The real-time framework of the ECS and Digital Twin.
3. The Raspbery Pi to FPGA communication.
4. The PWM generator and PWM reader modules.
5. The Encoder emulator and encoder reader modules.

5.4 Digital Twin update frequency tests

5.4.1 Goal and setup

The goal of this test is to compare the performance of different Digital Twin update frequencies.
In Section 3.7 the relation between update frequency and delay of the Digital Twin is analysed
and the previous tests of Section 5.2 and Section 5.3 showed that delay increases the output
error. The analysis also showed that high update frequencies can lead to missed deadlines. This
test uses the same setup as the test in Section 5.2 and performs the same test at four different
update frequencies. The errors are plotted and the missed deadlines measurements are shown
in Table 5.1.
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5.4.2 Results

The four plots show the position difference at 1 kHz, 4 kHz, 8 kHz, and 16 kHz. Table 5.1 shows
the total amount of cycles of the firm real-time loop on the Digital Twin, the amount of missed
cycles and the percentage of missed cycles for each of the four update frequencies.

Figure 5.6: Position difference with Digital Twin at 1kHz.

Figure 5.7: Position difference with Digital Twin at 4kHz.

Figure 5.8: Position difference with Digital Twin at 8kHz.
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Figure 5.9: Position difference with Digital Twin at 16kHz.

Table 5.1: Percentage of missed deadlines for various Digital Twin update frequencies.

Frequency (kHz) Total cycles Missed cycles Missed percentage (%)

1 600.000 1 1.66×10−4

4 2.400.000 9 3.75×10−4

8 4.800.000 325.762 6.78
16 9.600.000 1.630.674 17.0

5.4.3 Interpretation

The plots show a clear improvement in error between 1 kHz and 4 kHz and a slight improve-
ment between 4 kHz and 8 kHz. Figure 5.9 shows that 16 kHz is too high resulting in unpredict-
able behaviour. Table 5.1 shows that 1 kHz and 4 kHz have almost no missed deadlines while
8 kHz has 6.78 % and 16 kHz has 17.0 % missed deadlines.

With 6.78 % missed deadlines for the 8 kHz test a noticeable error is expected in plot Figure 5.8,
but there is no noticeable error in this particular test. This is why it is important to also look at
missed deadlines when selecting an update frequency.

Figure 5.8 suggests that 8 kHz is the optimal frequency but with 6.78 % missed deadlines the
reliability is too low. Using the plots and the table it is concluded that 4 kHz is the preferred
update frequency as it has a missed deadline percentage below 1 % and a smaller error than
the 1 kHz update frequency.
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5.5 FPGA encoder emulator test

5.5.1 Goal and setup

The goal is to test the performance of the FPGA encoder emulator module. Encoder values are
sent from the Digital Twin to the ECS and the values are logged on both sides. The encoder
values of the ECS are subtracted from the encoder values of the Digital Twin and the resulting
data is plotted. Any error in the generation of the encoder pulses or the reading of the en-
coder pulses result in a non-zero data point. Since logging is done on two devices, the data
has to be synchronised after the test using recognisable features in the dataset as explained by
Hooglander (2023, Section 5.3.1).

ECS Digital TwinEncoder signals

Synchronise
and compare

Logging encoder signalsLogging encoder signals

Figure 5.10: Encoder test setup

5.5.2 Results

Figure 5.11 shows the difference between the sent and the received encoder pulses.

Figure 5.11: Encoder signal communication test

Frank Hooglander University of Twente



CHAPTER 5. HIL SIMULATION INFRASTRUCTURE TESTING 27

Table 5.2: Encoder emulator and encoder reader reliability test.

Number of messages sent Number of messages received Number of messages missed

720.000 720.000 0

5.5.3 Interpretation

Figure 5.11 and Table 5.2 show that no error exists between the encoder emulator and encoder
reader during this test since the error is 0 throughout the whole test. Other tests at different
frequencies have the same result and are therefore not shown here. This result is possible due
to the high reliability and fast parallel processing of FPGAs when proper Verilog code without
race conditions is used.

5.6 Credibility assessment of HiL simulation hardware platform

5.6.1 Goal and setup

The goal is to find the credibility score of the HiL simulation infrastructure. This is done by
comparing a Digital Twin simulation to the plant model in a simulation environment. This
way model inaccuracies will not affect the credibility score as the same model is used on both
systems. Delays, calculation inaccuracies and other imperfections of the Digital Twin are the
only contributors to the output difference between the Digital Twin and the 20-Sim simulation.

The test compares the open-loop output data of the Digital Twin with an update frequency of
4 kHz with the open-loop output data of 20-Sim given an input profile. The passing score is set
at the recommended value of 60 %. The confidence interval is set at the recommended 5 %.
The time-domain credibility assessment method is used on the position data of test 5.2 shown
in Figure 5.3.

5.6.2 Result

Parameters:
Kp = 0.05 ,npass = 0.6

Ke = npass√
1−n2

pass

= 0.75

Measurements:
Error threshold: ϵt = 0.1854 m
Difference between 20-Sim and HiL curve: et = 9.101×10−4 m
ηt i me = Ke∗ϵtp

(Ke∗ϵt )2+e2
t

ηt i me = 0.75∗0.1854p
(0.75∗0.1854)2+(9.101×10−4)2

= 0.999978 = 100 %

5.6.3 Interpretation

The credibility assessment score is calculated to be 100 % which is the highest possible score.
This is expected since the average error of 9.101×10−4 m is so small compared to the 0.1854 m
error threshold. This result is possible because the test excludes model imperfections. The
result shows that the Digital Twin hardware platform will not be a limiting factor for the cred-
ibility score of HiL simulation setups. This means that the Raspberry Pi with Icoboard FPGA is
a suitable hardware platform for a Digital Twin when used with an explicit model.
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6 Case-study Design

6.1 Introduction

This chapter describes the design of the case-study with the RELbot. The RELbot shown in
Figure 6.1 is a mobile robot developed by the Robotics and Mechatronics (RaM) research group
at the University of Twente. This robot is used for educational purposes and research.

Figure 6.1: Image of the RELbot

6.2 RELbot model

6.2.1 Top level model overview

Figure 6.2 shows a top level overview of the RELbot model in the simulation environment. The
Controller receives wheel position feedback and generates steering values. The Plant receives
steering values and has the wheel positions as outputs. The full model and all submodels are
shown in Appendix D.

Figure 6.2: The RELbot controller and plant model in 20-Sim
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6.2.2 Model reference frame

The reference frame of the model is fixed to the body of the RELbot as shown in Figure 6.3.
Positive X is forward and positive Y is to the left of the RELbot. The RELbot can only move
around in the X and Y axes. The wheels are modeled in the same reference frame which means
they rotate along the Y axis. Positive rotation of the wheels means the RELbot moves forwards
in the positive X direction. The origin of the reference frame is in the centre-of-mass of the
RELbot. Movement in the Z-axis is not considered but the RELbot can rotate around Z.

Figure 6.3: RELbot reference frame

6.2.3 Implicit RELbot plant model

In a previous project Wielink (2024) developed a bond-graph model of the RELbot in 20-Sim
which is the starting point for the case-study model. This implicit model must be converted to
an explicit model so that it can be used for real-time simulation by the Digital Twin.

Figure 6.4: The RELbot plant model subsystem overview

The drivetrain models receive steering values from a controller. The drivetrain models calculate
how fast the wheels rotate and the wheel models convert the rotation to translation. The rigid
body determines how the body rotates and moves based on the inputs from the wheels.

6.2.4 Model input/output datatype selection

The model inputs and outputs could be chosen to match the types used in the FPGA input/out-
put devices to make implementation easier. However, the choice is made to use SI units adher-
ing to standard modeling principles. This means the inputs and outputs require some pro-
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cessing between the model and the FPGA interface as mentioned in Section 4.3.2. This is ex-
plained in Section 6.5.1.

The input for the model can be a voltage or a duty-cycle value. The choice is made to use a
duty-cycle value between -1 and 1 as input to the model. This is because the output of the
controller is not a voltage. The duty-cycle is turned into a voltage by the motor drivers that are
part of the drivetrain. The output of the model is chosen to be the wheel position in meters,
which is the distance the center of the wheels have moved in the X direction with respect to the
ground. This is chosen because it is an SI unit and it enables easy visual validation with the real
robot.

6.3 Conversion to a Real-Time capable model

The user guide to real-time capable modeling in Appendix A is used to convert the implicit
RELbot model to a real-time capable and explicit model. There are causality issues in the driv-
etrain and wheel model and causality issues in the rigid_body. Solving these issues resulted in
an algebraic loop which was subsequently solved.

6.3.1 Drivetrain

Step 1 of the user guide is to simplify the model by removing non-essential dynamics. A motor
inductance often has negligible influence on the dynamic of a system so a test is performed
comparing the model with the inductance vs without the inductance. This showed that the
difference between the wheel position with the inductance and without the inductance is neg-
ligible so the inductance is removed to simplify the model. This means the R_actuator now has
flow-out causality instead of effort-out. Removing this inductance does not solve any causality
issues.

Step 4 of the user guide is to ensure preferred causality which is applied to the various I-
elements in the drivetrain and wheel model shown in Figure 6.5. The elements can be com-
bined by pulling it through the transformer (TF) elements. The rotor inertia, the wheel inertia
and the wheel mass are combined in an equivalent inertia element to ensure preferred causal-
ity.

Figure 6.5: Adjustments to the drivetrain and wheel models
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6.3.2 Spring damper connections

The moment of inertia of the body, the mass of the body and the wheels all have preferred
flow-out-causality meaning that they cannot all have preferred causality when they are con-
nected with a zero-junction. Precisely one connection of a zero-junction must have effort-out
causality. This is shown in Figure 6.6.

Figure 6.6: Left part of the rigid-body model without spring-damper

Step 4 of the user guide suggests three possible methods to solve this: remove non-essential
elements, combine elements, or add elements. There are no non-essential elements that can
be removed to solve this. The connections are too complex to combine elements. This means
elements need to be added to solve the causality issue. A spring element, represented by a C,
can be added to the zero-junction as this has preferred effort out causality. A resistor is added
to damp the oscillations that occur as a result of the spring as shown in Figure 6.7.
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Figure 6.7: Rigid body model with spring-damper

Adding a spring-damper to connect multiple I-type elements is a good way to solve this issue
(Broenink, 2020, Chapter 2.6.3). The spring applies a force to the masses to keep the position
difference between the points small while the damper reduces oscillation. A weak spring leads
to big position differences while a stiff spring leads to high frequency oscillation and possible
instability as mentioned in the user guide. The R-element damps the oscillation. The spring-
damper models elasticity in the mechanical connection that was modeled as rigid previously.
The spring-damper values are selected to keep position difference small while avoiding high
frequency dynamics. Plotting the integrated flow of the spring gives insight into the displace-
ment in the connection.
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6.3.3 Rigid body to wheel connection

The Rigid-body uses 2D-bond-graph elements since it can move in the X and Y plane but the
wheel models are 1D-bond-graph elements only moving in the Y plane. This was solved in the
previous model with a resistance element and a powermux component which introduced an
algebraic loop.

Figure 6.8: Wheel to rigid body connection adjustment

The new model splits the 2D rigid body into separate X and Y sections. Since the wheels can
only be actuated in the X direction they can be directly connected to the X position elements of
the Rigid body. This means the R pivot friction can be removed and this resolves the algebraic
loop.
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6.4 3D Visualisation

3D visualisation helps to better understand how the plant behaves compared to standard value
plots. In 20-Sim a 3D model can be added and its position can be linked to certain variables
of the simulation model. Then after simulation the 3D visualisation render can be played. The
following aspects are important for meaningful results.

1. Consistent coordinate system
A well defined coordinate system in the 20-Sim model and the 3D model helps to avoid
confusion in the 3D visualisation process.

2. 3D model alignment
The offset of the 3D model to the origin of the design space determines the offset to the
origin in the 3D render. The 3D model is centered on the origin to simplify 3D rendering
in 20-Sim.

3. Scaling
Scaling is used to make the 3D model fit well inside the visualisation space. There are
various points where scaling can be applied. Scaling must be consistent between all parts
to ensure correct results. The parts can be scaled as a group to ensure that the 3D visu-
alisation is not too small or too big for the visualisation space, and this way the scaling
between parts is unchanged.

Figure 6.9 shows the 3D RELbot model in 20-Sim. The 3D model of the RELbot consists of a
body and two wheels. Since the body and wheels always have the same relative position to
each other they are put in the same reference frame and they move as a group.

Figure 6.9: 3D visualisation of the RELbot in 20-Sim.

6.5 Implementation of models on the HiL simulation platform

6.5.1 Input and output processing

The controller with a sample frequency of 1 kHz is implemented with the Xenomai framework
on the ECS. The encoder reader on the FPGA of the ECS counts the encoder pulses and provides
the encoder count to the ECS where it is converted to meters and given to the controller model.
The output of the controller is a duty-cycle between -1 and 1 but the datatype for the PWM
generator is an integer value between -2048 and 2047 so the duty-cycle is scaled before it is
sent to the PWM generator on the FPGA.
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The plant model is implemented with the Xenomai framework on the Digital Twin. The PWM
reader on the FPGA provides the PWM value between -2048 and 2047 which is scaled down
with the PWM resolution to -1 to 1 before it is given to the plant model. The output of the plant
is the wheel positions in meters which is converted to the relative encoder position before it is
sent to the encoder emulator. The code for these conversions for the Digital Twin is shown in
Appendix G.

Controller

Pwm [-1,+1]
ECS

User code

Pwm [-2048,+2047]
ECS

FPGA
Encoder count
[-8192,+8191]

Wheel position
[meters]

Pwm [-1,+1]Pwm [-2048,+2047]

Encoder count
[-8192,+8191]

Wheel position
[meters]

Plant modelDigital Twin
User code

Digital Twin
FPGA

Figure 6.10: Input and output conversions between the FPGAs and the models

6.5.2 Selecting the update frequency of the Digital Twin

Heuristic approach

The heuristic approach described in Section 3.8.2 sets the Digital Twin update frequency
between 4 and 10 times higher than the ECS update frequency. The update frequency of the
ECS is 1 kHz so the recommended frequency is between 4 kHz and 10 kHz.

Performance based approach

At the time of the performance-based approach measurements we did not set the CPU in per-
formance mode because we were unaware of this functionality. Consequently, the measure-
ments of the theoretical maximum frequency are incorrect and the theoretic maximum fre-
quency is higher than stated here. This oversight does not affect the final choice of the update
frequency.

The performance measurements based approach described in Section 3.8.2 calculates a theor-
etic maximum frequency and uses this to give a good initial update frequency for the Digital
Twin. The overhead of the firm real-time loop is 35 µs (Raoudi, 2024). The average calculation
time is found through testing. The model calculation function is executed many times and the
average duration is measured. The average time is 85 µs from experiments. 1/120 µs = 8.3 kHz
as theoretical maximum frequency. This approach recommends an update frequency of 75%
of the theoretical maximum, which is around 6 kHz.

Chosen update frequency

The approaches suggest an update frequency of 4 kHz to 6 kHz as a starting point for testing.
Multiple tests are done at different frequencies to find the average error and the missed dead-
lines. With 4 kHz the average error is very small and there are very few missed deadlines. The
marginal performance improvements at higher frequencies are not worth the increase in com-
putational resources. As a result 4 kHz is chosen as the update frequency for the Digital Twin of
the RELbot.

Robotics and Mechatronics Frank Hooglander



36 Development and testing of a Hardware-in-the-Loop simulation infrastructure

6.6 Live visualisation

The choice is made to implement live visualisation of the X and Y position of the centre-of-mass
of the RELbot so the X and Y position are added as outputs of the model. In the implementation
on the Digital Twin, a custom ROS message is added to send the centre-of-mass position to a
ROS topic. To visualise the position live, a computer with the following components is required:

1. ROS.
2. A connection to the network where the ROS message is published.
3. A ROS visualisation package.
4. A display.

The Raspberry Pi of the Digital Twin meets these requirements so it is used to do the visual-
isation. The visualisation package plotjuggler runs on the Raspberry Pi and the visualisation
window is displayed on a connected computer.

The visualisation plot shown in Figure 6.11 displays the last data point and a number of points
before it, which is why the plot shows a line instead of a single dot.

Figure 6.11: Live visualisation of the Digital Twin using Plotjuggler
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7 Case study Testing

7.1 Introduction

This chapter contains the tests of the case study and their results. In Chapter 5 the Digital Twin
is compared to the plant model in 20-Sim to look at the hardware platform rather than the
specific application. In this chapter the Digital Twin is compared with the real RELbot in order
to test the performance of the Digital Twin and the quality of the model. The data from the HiL
simulation is green in the plots, the data from the real RELbot is purple in the plots and the
difference between the two is plotted in red.

7.2 Digital Twin and RELbot closed-loop test

7.2.1 Goal and setup

The goal of this test is to see if the theoretical controller developed in 20-Sim that is implemen-
ted on the ECS can control the Digital Twin and the RELbot. A controller test in 20-Sim is docu-
mented in Appendix E. The controller is provided with a setpoint input profile and connected
to the Digital Twin and the output is logged. Then the test is repeated with the real RELbot and
the output is logged. The logged data files are put in 20-Sim for comparison. The output is
compared to the setpoint to find the position error. The test setup is shown in Figure F.4.

7.2.2 Measurements

The top plot of Figure 7.1 shows the wheel position setpoint and the wheel position output of
the Digital Twin and the wheel position output of the RELbot. The lines overlap so only the
purple line is visible. The bottom plot shows the error between the setpoint and the measured
value for both the Digital Twin and the RELbot.

Figure 7.1: Closed-loop controller tests of Digital Twin and RELbot.
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7.2.3 Interpretation

The error between measured position and setpoint position is close to zero for both as during
the 2.5 m test the error stays below 3 mm. This shows that the controller works well for both the
Digital Twin and the RELbot. The error plot of the Digital Twin looks very similar to the error
plot of the RELbot which isexpected since they should have very similar dynamics.

7.3 Digital Twin vs RELbot open-loop comparison

7.3.1 Goal and setup

The goal for this test is to see how similar the Digital Twin is to the RELbot in an open-loop
test. This test is used to find the average open-loop error and it is also used to calculate the
credibility assessment score. The ECS of the HiL simulation setup is copied to the ECS of the
RELbot which has identical hardware. The RELbot ECS and the ECS of the HiL simulation setup
are given the same input profile of PWM values. The encoder output of the RELbot is logged
and the encoder output of the Digital Twin is logged. The logged data is compared and plotted.
The open-loop setup in 20-Sim is shown in Figure F.3.

7.3.2 Measurements

The top plot of Figure 7.2 shows the measured position value of the Digital Twin and of the
RELbot. The bottom plot shows that the difference between both position values is less than
4.6 cm during this test.

Figure 7.2: Open-loop controller test of Digital Twin and RELbot.

7.3.3 Interpretation

The test shows that the Digital Twin is quite similar to the RELbot but it does have a measurable
difference in the output. This is expected since the Digital Twin uses a simplified representation
to model the dynamics of the RELbot. The average error is calculated from the plot data and is
found to be 24.4 mm which corresponds to 1 % which is below the required 5 % so it meets the
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accuracy requirement. This test shows that the Digital Twin works well and the RELbot model
is good enough.

7.4 Credibility assessment of the RELbot

7.4.1 Goal and setup

The goal is to find the credibility score of the Digital Twin by comparing Digital Twin output
data with output data from the real RELbot. Both are given the same PWM input profile. The
time-domain credibility assessment method is used on the data of the top plot of Figure 7.2.
The passing score is set at the recommended value of 60 % meaning that scores above 60 %
are good enough and scores below 60 % are insufficient. The confidence interval is set at the
recommended 5 %.

7.4.2 Result

Parameters:
Kp = 0.05 ,npass = 0.6

Ke = npass√
1−n2

pass

= 0.75

Measurements:
Error threshold: ϵt = 0.1311 m
Difference between HiL and RELbot curve: et = 0.0244 m
ηt i me = Ke∗ϵtp

(Ke∗ϵt )2+e2
t

ηt i me = 0.75∗0.1311p
(0.75∗0.1311)2+0.02442

= 0.9706 = 97 %

7.4.3 Interpretation

The credibility assessment score is calculated to be 97 %. This score is close to 100 % which
means that a good Digital Twin has been developed. It also means that the requirement of a
sufficient credibility score for the Digital Twin has been achieved.
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8 Conclusions and Recommendations

8.1 Conclusions

HiL Simulation infrastructure development and testing
A HiL simulation infrastructure was developed and tested. The infrastructure consists of user
guides and extensions of the Xenomai framework. The tests show that the requirements are met
and that the infrastructure can be used to develop a Digital Twin and perform HiL simulation.
The hardware platform of the Digital Twin introduces a negligible error of 7×10−3 % compared
to the 20-Sim simulation which is below the 1 % requirement. This proves that the Raspberry
Pi with Icoboard FPGA and the Xenomai framework is a suitable platform for HiL simulation.

RELbot Digital Twin development and testing
The goal of developing and testing a Digital Twin of the RELbot with live visualisation func-
tionality was achieved. The Digital Twin simulates the RELbot in real-time on a Raspberry Pi.
An open-loop output comparison between the Digital Twin and the real RELbot shows that the
average error is 1 % which is below the 5 % requirement. This means that the goal of developing
an accurate real-time model of the RELbot has been achieved. 3D visualisation of the RELbot
has also been successfully implemented. The tests show that the requirements are met and a
good Digital Twin is developed.

Credibility assessement
The goal of performing credibility assessment was achieved. A credibility assessment script
is developed which determines the credibility score based on simulation data. The credibility
assessment of the Digital Twin gave a score of 97 %. A score of 60 % is sufficient so 97 % is
certainly good enough. This means that the Digital Twin simulation results have high credibility
and can be used to test Embedded Controllers with.

8.2 Recommendations

Improve the RELbot reference frames selection
The wheels should be modeled as rigid-bodies with their own reference frame. In the current
model the wheels are modeled in the same reference frame as the body of the RELbot. With
their own rigid-bodies the axes of rotation of the wheels are modeled the same way as is expec-
ted of the real robot with positive rotation corresponding to the right-hand-rule.

Quality-of-Service check
Expand the Digital Twin to perform a Quality of service (QoS) check at the end of a simulation
that evaluates the missed deadlines and informs the user if the test results are valid or not. If
a HiL simulation test gives bad results due to many missed deadlines a user might think the
controller is bad and change it. Missed deadlines reduce Digital Twin reliability. It is crucial to
define acceptable QoS metrics tailored to the specific application’s needs and constraints and
it would be nice to have the QoS check done automatically. The pattern of missed deadlines is
also important so QoS for firm real-time systems is often done with a sliding window analysis.
(Donglin Xiu, Hu, Lemmon and Qiang Ling, 2003; Hamdaoui and Ramanathan, 1995)

Improve live visualisation
Currently the visualisation package runs on the Digital Twin which renders the live plot and
sends this to a computer via SSH. This is a suboptimal solution as this puts the computational
load on the Digital Twin. As a result, the live visualisation becomes laggy when the windowsize
of plotjuggler is too big. A better solution would be to subscribe to the ROS topic from a com-
puter and run the visualisation package on the computer.
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Expand live visualisation for the RELbot
It is recommended to expand the live visualisation of the RELbot to include the angle of the
body as well. The current visualisation only displays the X and Y position of the centre of mass.
If this is not possible with plotjuggler it means a new visualisation package is required. It also
means that the angle of the RELbot must be added as an output in the model and added to the
ROS message.

Tests with different plants
More research can be done to find the limitations of the HiL simulation infrastructure when it
comes to high-frequency plant dynamics, higher-order systems or different types of systems.
A setup with a robot arm could be interesting because this also requires implementation of
end-stops which are discrete events which have not been part of the HiL simulations so far.
This would also require using more states of the state machine which was not required for the
RELbot case-study.
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A User guide for real-time capable modeling

Steps for real-time capable and explicit model development

1. Model simplifications:
Simplify large-scale or complex systems to reduce computation time and meet deadlines
by order reduction, linear approximation of non-linear dynamics, and removal of non-
essential dynamics.

2. Avoid high stiffness dynamics:
High stiffness dynamics introduce high frequency oscillations which require very small
time steps for stability.

3. Avoid dynamic causality changes:
Explicit methods may fail if the causal assignment changes during operation due to, for
example, switching power electronics or mechanical contact.

4. Ensure preferred causality:
Explicit models have preferred causality for all energy storage elements.

1. Remove non-essential elements.
2. Combine elements.
3. Introduce extra elements.

5. Remove algebraic loops: Explicit models have no algebraic loops.
1. Remove non-essential elements.
2. Combine elements.
3. Introduce extra elements.

6. Choose an explicit integration method: Euler, Runge-Kutta 2 or Runge-Kutta 4. Prelim-
inary tests show that Runge-Kutta 4 has the most accurate results. Runge-Kutta 4 should
be the default.

Based on bond-graph books such as Broenink (2020).

Step 1: Model simplification

In model development in general, but especially for real-time simulation, the model must be
as simple as possible while still capturing the important dynamics of the system. This way
a competent model can be developed. Each additional independent energy storage element
increases the number of states of the model and the order of the model. In general, more states
increase the calculation time of the simulation or control algorithm, because there are more
differential equations to solve and more variables to track.

To verify if an element can be removed a simulation with the element and without the element
can be done. If removing an element or section of the model has a negligible effect on the sim-
ulation outcome then it might not be necessary to include this part in the model. Make sure
that the simulation that is used to measure the influence of an element actually excites the rel-
evant part of the model. That is to say: measuring the influence of a mass moving at a constant
velocity does not make sense. Perform a simulation with acceleration and deceleration instead.

Step 2: Avoid high stiffness dynamics

A stiff spring introduces high frequency oscillations. The natural frequency of a mass-spring
system is given by:

fn = 1
2π

√
k
m

This shows that a spring with high stiffness k results in a high natural frequency. Note that the
electrical equivalent of a spring is a capacitor where the stiffness corresponds to the inverse of
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the capacitance. A capacitor with a very small capacitance introduces high frequency oscilla-
tions.

To avoid high frequency dynamics each stiff springlike element should be considered. If there
is a very stiff spring in the model then it might be better to model it as completely rigid. If this
spring connects two I type elements these elements could be modeled as a single I element.
This removes two storage elements and a stiff spring.

Step 3: Avoid dynamic causality changes

Maintaining stable causality is essential for ensuring the efficiency and stability of models. Dy-
namic causality changes can result in causality issues during simulation. Avoiding dynamic
causality changes ensures that the simulation remains straightforward, predictable, and com-
putationally feasible. Below are some common causes of dynamic causality changes:

1. Discrete events
In systems that include discrete events or sudden state changes dynamic causality
changes can occur. For example, a switch in a power circuit, a mechanical system that
engages or disengages or mechanical collisions.

2. Switching control strategies
In certain models the control strategy may change dynamically based on inputs or cer-
tain conditions. For example, a system might switch from a PID controller to an adaptive
controller.

3. Nonlinear systems
Certain models may operate linearly under certain conditions but switch to a nonlinear
model under other conditions, changing the causal relationships.

4. Conditional logic
If the model uses if-else branches or similar logic it can lead to dynamic causality
changes.

Step 4: Ensure preferred causality

To solve a causal conflict the model must be changed. Sometimes it is necessary to restructure
part of the model and change multiple aspects, but often one of the following adjustments
solves the issue:

1. Remove non-essential elements
If there is a causal conflict and one of the elements is non-essential then it can be re-
moved to solve the issue.

2. Combine elements
If two elements have a causal conflict sometimes they can be taken together to eliminate
the conflict. This can be performed via transformations in the graph. The complexity of
this operation depends on the size and kind of submodels along the route betweeen the
two elements.

3. Introduce elements
This is the third option since this increases the complexity of the model. Sometimes re-
moving elements and combining elements can not solve a causal conflict and additional
elements are required. The added elements can be parasitic, for example, to add elasti-
city (C-elements) in a mechanical connection, which was modeled as rigid. Additionally
adding a damping element reduces the simulation time considerably, which is being ad-
vised. (Broenink, 2020, Chapter 2.6.3).
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Step 5: Remove algebraic loops

Algebraic loops occur when two resistive elements are in conflict. Often this is an indication
that a storage element was not modeled, which should be there from a physical systems view-
point. The three steps are the same as in step 4.

Step 6: Choose an explicit integration method

The 20-Sim C++ code generation tool allows three explicit integrators:

1. Euler
2. Runge-Kutta 2
3. Runge-Kutta 4

Runge-Kutta 4 is recommended.
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B User guide for HiL simulation implementation

1. Code generation
Explains how to generate code from the explicit model.

2. Generated code implementation
Explains how to implement the generated code in the framework.

3. Simulation parameters
Explains how to adjust the simulation time-step, the simulation duration, and the integ-
ration method.

4. User implementation
Explains what the user has to implement for the parts that are specific to the use case.
This is pre- and post-processing of the model inputs and outputs, executing the calcula-
tion, and optionally logging.

5. Output analysis
Explains how the logged data from the ECS can be processed and plotted using 20-Sim.
Explains how the credibility assessment script is used. The credibility assessment script
is shown in Appendix C.

6. Live visualisation
Explains how to adjust the model for live visualisation, how to use ROS topics to commu-
nicate the data, and how to do live visualisation.

7. From HiL simulation to the real setup
Explains the steps the user should take to connect the ECS to the real plant.

1. Generate code from explicit model

1. In 20-Sim, click Start simulator to go to the simulation window.
2. Click Run Properties to go to the simulator settings.
3. Select an explicit integration method. We recommend Runge-Kutta 4.
4. Click Set Properties, and set the step-size. See Section 3.8.2 for step-size recom-

mendations.
5. Click Run simulation to run the simulation.
6. Click Tools, Real Time Toolbox, C-Code Generation.
7. Select C++ class for 20-sim submodel.
8. Under Submodel:, choose a (sub)model from your model that you want to generate

C++ code from. This (sub)model should be called LoopController. Calling it LoopCon-
troller ensures that the user does not have to make many adjustments in the CMake file
in C++.

9. UnderOutput Directory:, choose a location to store the model in. It must be stored
in a folder named plant. This is also to make sure the user does not have to make many
adjustments in the CMake file in C++.

2. Implementation of the generated code on the Digital Twin

The implementation for the Digital Twin is very similar to the implementation of the ECS which
already has a user manual written by Raoudi (2024, Appendix F.2). The user guide below ex-
plains which steps are different and what steps are missing. The ECS implementation guide
has 31 steps. The adjustments are summarised as follows. controller in the manual of the
ECS should be plant for the Digital Twin. This is because the controller model is saved in
a folder named controller, while the plant is saved in a folder named plant. The name
LoopController should not be changed however.

5: Use Template-20sim-Inverse.
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8: Put the data for the live visualisation in the Xeno2Ros message.

9a: Go to the /plant folder.

16: (Notice) The state machine is not as important for the Digital Twin. When the Digital Twin
is started it goes to the run state automatically. You don’t have to do anything here.

18: The variable sample_data provides all the sampling data from the FPGA of the Digital
Twin and has the following structure:

struct IcoRead
{

int channel1; ///< Pwm value from channel 1
int channel2; ///< Pwm value from channel 2
int channel3; ///< Pwm value from channel 3
int channel4; ///< Pwm value from channel 4
bool channel1_1; ///< Digital input 1 from channel 1
bool channel1_2; ///< Digital input 2 from channel 1
bool channel2_1; ///< Digital input 1 from channel 2
bool channel2_2; ///< Digital input 2 from channel 2
bool channel3_1; ///< Digital input 1 from channel 3
bool channel3_2; ///< Digital input 2 from channel 3
bool channel4_1; ///< Digital input 1 from channel 4
bool channel4_2; ///< Digital input 2 from channel 4

};

The variable for controlling the FPGA output of the Digital Twin is called actuate_data and
it has the following structure:

struct IcoWrite
{

int16_t enc1; ///< Encoder value for channel 1
bool val1; ///< Digital output of channel 1
int16_t enc2; ///< Encoder value for channel 2
bool val2; ///< Digital output of channel 2
int16_t enc3; ///< Encoder value for channel 3
bool val3; ///< Digital output of channel 3
int16_t enc4; ///< Encoder value for channel 4
bool val4; ///< Digital output of channel 4

};

19: Implement the computation.

• 20-sim variant
1. The 20-sim model is already imported and is called plant. Through the

plant.calculate function one computation step is performed. The
plant.finished function tells when the simulation is finished. Explore the
plant class for other functionality provided by the 20-sim generated code.

31 This is not necessary on the Digital Twin.

3. Adjusting simulation parameters

Simulation parameters can be adjusted in the LoopController.cpp file. This file is found
in the following location: workspace/src/<user-application>/Xenomai/plant.
Open the LoopController.cpp file. The simulation duration can be set at the the
m_finish_time variable. The simulation time-step size can be set in the m_step_size
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variable. The integration method can be adjusted in the LoopController.hpp file. The class
of the object called myintegmethod can be changed to one of the classes defined in the
xxinteg.h file.

4. User implementation

There are four main steps that the user has to do to implement the generated code with the
software framework on the Raspberry Pi as shown in Figure B.1.

1. Processing of the measured input data of the FPGA so it can be used by the model calcu-
lation.

2. Calculating the new outputs of the model.
3. Processing of the model calculation output values so they can be sent to the FPGA in the

next cycle.
4. Logging the input and output values. This is optional on the Digital Twin side but is

definitely recommended on the ECS side.
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Output Input

Preprocess Calculate Postprocess
PWM % [m]
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Log values
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Figure B.1: Overview of user implementation of code

4.1. Preprocessing

The PWM value from the FPGA is an integer between -2048 and +2048. If the input of the
model is a duty-cycle, the PWM value should be divided by the PWM resolution. If the input is
a voltage, the duty-cycle should be scaled accordingly.

4.2. Calculate

Before running the model calculation, correctly put the input values in the array u[]. To run
the model, use LoopController.Calculate(u,y);. This will update the outputs in the
array y[].

4.3. Postprocessing

The output of the model may be meters, or radians or something else. This should be converted
to an encoder position before it can be sent to the FPGA. Convert the position to an integer
datatype. The icoboard_inverse class applies the modulus of the encoder resolution to the
given encoder position to get the relative encoder position.

4.4. Logging

Logging should be done on the ECS side and is optional on the Digital Twin side. This is because
tests with the real plant are logged on the ECS side so to compare the two it is best to do logging
on the same device for both tests.

Put the variables that should be logged in the logger. The user manual for this is provided by
Raoudi (2024, Appendix D). Below is an example where the duty-cycle and position of two
wheels is logged. The application is called Demo. In the Demo.hpp file:

#pragma pack (1)
struct ThisIsAStruct
{

double dutycycle_right = 0.0;
double position_right = 0.0;
double dutycycle_left = 0.0;
double position_left = 0.0;

};
#pragma pack(0)

In the constructor of the Demo class:

logger.addVariable("dutycycle_right", double_);
logger.addVariable("position_right", double_);

Frank Hooglander University of Twente



APPENDIX B. USER GUIDE FOR HIL SIMULATION IMPLEMENTATION 49

logger.addVariable("dutycycle_left", double_);
logger.addVariable("position_left", double_);

In Demo::initialising():

logger.initialise();}

In Demo::run():

data_to_be_logged.dutycycle_right = u[1];
data_to_be_logged.dutycycle_left = u[0];
data_to_be_logged.position_right = y[1];
data_to_be_logged.position_left = y[0];

5. Output analysis

5.1 Sourcing logged data to 20-Sim

It is advised to use logged data from the ECS. This is because the ECS is used for both the Digital
Twin and the real plant so measuring at the same point ensures only one variable is changed at
a time between tests. The logged data can be converted to a .mat file using the logger decoder
made by Raoudi (2024). This can be found in the following folder:

ros2-xenomai4-framework/XenoRosFramework/Common/
XenoFrtLogger_decoder

Use the following command: python binairy_to_matlab.py.

To compare the HiL simulation with the 20-Sim simulation or with data from the real plant,
the data can be sourced to 20-Sim using CSV-files. 20-Sim interprets the first column as time-
data, so a column of time-data has to be added for example in Matlab. To add the logged data
with the time-column to 20-Sim, use the DataFromFile block found in: Library/Signal/-
Sources/DataFromFile. Open the DataFromFile block and provide the path to the CSV-file.

5.2 Performing credibility assessment

The following steps explain how to perform Time-Domain Credibility Assessment.

1. Source the data from the experiment with the Digital Twin and the experiment with the
real plant to 20-Sim.

2. Plot the data in a plot like Figure B.2.
3. Right click on the plot. Go to Save Data To File and click Only for this

plot.
4. Save the CSV file.
5. Open the Credibility Assessment script in Matlab.
6. Import the CSV file in Matlab.
7. This will create a variable in the Matlab workspace of the type: table. This variable will

have multiple columns: The first column is time-stamp data, the other columns are the
curves of the plot.

8. Put the name of the CSV file from the previous steps in the table2array function at
the top of the Matlab script.

9. In line 10 and 11 the two variables y_s and y_e should correspond to the data of the two
curves that we want to compare. The first curve in the plot is the second column of the
variable in Matlab and the second curve is the third column.

10. Run the script, the credibility score is stored in the nt variable. The score is between 0
and 1. Multiply by 100 to get the score as a percentage.
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Figure B.2: Plot for credibility assessment

6. Live visualisation of an XY-plot using SSH and Plotjuggler

This section explains live visualisation using SSH. In this setup the ROS Plotjuggler package is
executed on the Digital Twin and the data is sent to a computer which is connected through
SSH.

1. Add the variables to be visualised as outputs to the plant model in 20-Sim, generate the
code and copy the generated code to the C++ workspace.

2. The variables are outputs of the plant.calculate() function and are stored in the
array y.

3. Add the variables to the Xeno2Rosmessage (probably called xeno_data). The default
datatype of the 20-Sim model output is a double. To use this directly, the variables in the
Xeno2Ros message datatype should be float64.

4. Connect a PC to the Digital Twin using:

ssh -X <rpi-name>@<ip\_address>

5. Start the HiL simulation.
6. Start the Ros-Xeno bridge using:

ros2 run ros_xeno_bridge RosXenoBridge

7. Start X-Launch on the PC that is connected to the Digital Twin.
8. Ensure that the Raspberry Pi displays visuals on the computer using:

export DISPLAY=<pc_ip_address>:0.0

9. Start the visualisation package on the Digital Twin using the following command in a
terminal:

ros2 run plotjuggler plotjuggler

10. This should open a plotjuggler window on the connect PC.
11. In the lefthand pane click Start.
12. Select the variables that should be plotted from the list and press Ok.
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13. The variables now appear on the left side. Select the two variables for the XY-plot and
drag them with the right-mouse-button to the plot window to create an XY-plot. Dragging
them with the normal left-mouse-button will plot the two variables against time instead
of agains eachother.

14. Make sure the1:1 button in the top right is selected to ensure the XY-plot is in a 1:1 ratio.
15. Adjust the buffer size to display more or fewer past data points.
16. To adjust the min and max X values of the plot, right-mouse-click on the plot and click

edit curves. The limits can be adjusted there.
17. Note that the window size of plotjuggler heavily impacts the performance. Keep the win-

dow small to keep the visualisation running smoothly.

7. From HiL simulation to the real plant

If the HiL simulation results are satisfactory, the plant behaves as expected and the controller
works well, then the ECS can be tested with the real plant. In some cases it may be possible
to disconnect the wires from the ECS to the Digital Twin and connect them to the real plant
but this is not always the case. Sometimes the ECS is built in to the real plant and it cannot be
disconnected. Assuming the ECS hardware connected to the real plant is identical to the ECS
connected to the Digital Twin, the whole code workspace can be copied to the ECS of the real
plant. If a git repository is used it can be cloned to the ECS. Built the code, source, and run.
Always consider safety before testing.
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C Credibility assessment script

CredibilityData = table2array(Test8HilData);

y_s = CredibilityData(1:end,2); %Simulation data
y_e = CredibilityData(1:end,3); %Experimental data
timestep = CredibilityData(2,1);
%% Time domain

%Confidence interval
Kp = 0.05;
n_pass = 0.6;

Ke = n_pass/sqrt(1-power(n_pass,2));

eta_t = Kp * (max(y_e)-min(y_e)); %Error threshold

%Average error = sqrt(1/n sum (difference^2)
n = size(y_e,1);
difference = y_e-y_s;
differenceSquare = power(difference,2);

%Average error
e_t = sqrt(1/n*sum(differenceSquare));

%Credibility assessment score
nt = Ke*eta_t/(sqrt(power(Ke*eta_t,2) + power(e_t,2)))
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D 20-sim model

Full bondgraph shown in Figure D.1. It shows the controller, the plant, the filedata containing
HiL simulation data and a compare block which calculates differences between signals.

Figure D.1: Full bondgraph

Full plant subsystems are shown in Figure D.2.

Figure D.2: Full plant bondgraph
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The left drivetrain model is shown in Figure D.3.

Figure D.3: Left drivetrain bondgraph

The left wheel model is shown in Figure D.4.

Figure D.4: Left wheel bondgraph
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The Rigid body model is shown in Figure D.5.

Figure D.5: Rigid body bondgraph
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E 20-Sim controller test

Goal and setup

The goal of this test is to find the performance of the PID controller in 20-Sim. A position ref-
erence profile is given to the controller. The controller generates control values so that the po-
sition of the plant corresponds to the position reference. The difference between the position
setpoint and the measured position is a measure of controller performance.

Results

Figure E.1 shows the position setpoint and the plant position in the top plot and the difference
between the two in the bottom plot.

Figure E.1: Closed-loop controller test in 20-Sim

Interpretation

The plot shows that the controller works well since the position error remains below 3 mm and
the controller has no steady state error. Therefore the controller is good enough.
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F Test setups

Open-loop HiL vs 20-Sim test

Figure F.1: 20-Sim model for the open-loop HiL vs 20-Sim test

Open-loop HiL vs 20-Sim test with delay compensation

Figure F.2: 20-Sim model for the open-loop HiL vs 20-Sim test with delay compensation
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RELbot vs HiL simulation open-loop comparison

Figure F.3: 20-Sim model for the RELbot vs HiL simulation open-loop test

RELbot vs HiL simulation closed-loop comparison

Figure F.4: 20-Sim model for the RELbot vs HiL simulation closed-loop test
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G Digital Twin input output conversion code

FPGA PWM to dutycycle conversion

u[0] = ((double)sample_data.channel2)/PWM_RESOLUTION; //Left
u[1] = ((double)sample_data.channel1)/PWM_RESOLUTION; //Right

Output wheel position to FPGA Encoder position

//meters to wheel_radians to motor_radians to encoder_counts
encoder_output_left = y[0]/wheel_radius/gear_ratio

*encoder_counts_per_rotation;
encoder_output_right = y[1]/wheel_radius/gear_ratio

*encoder_counts_per_rotation;

actuate_data.enc1 = static_cast<int16_t>(encoder_output_right);
actuate_data.enc2 = static_cast<int16_t>(encoder_output_left);

Absolute encoder position to relative encoder position

The following code makes sure the encoder position is between -8192 and +8191. Depending
on the encoder resolution.

InvIcoIo::WriteValue InvIcoIo::calc_value(int enc_val, bool
pin_val)

{
WriteValue write_value;
write_value.fill = 0;

while(enc_val >= encoder_resolution/2){
enc_val = enc_val - encoder_resolution;

}
while(enc_val < -encoder_resolution/2){

enc_val = enc_val + encoder_resolution;
}
write_value.enc_val = enc_val;

write_value.pin_val = static_cast<unsigned int>(pin_val);
return write_value;

}
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