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Abstract

This thesis explores and compares various anomaly detection methods to enhance data quality
issues detection in credit risk analysis for financial institutions. Although various taxonomies
exist for anomaly detection methods, this thesis consolidates them into a unified classification
based on an extensive literature review. Using this classification, the thesis selects and compares
relevant anomaly detection methods from the literature through experiments conducted on a
data set from a top European financial institution, ING Bank. These experiments employ par-
allel (bagging) ensemble learning techniques and leverage Explainable Al to explain the models’
decisions to identify specific rows as potential data quality issues.

Keywords: Data quality, credit risk analysis, data quality, anomaly detection, artificial intelli-
gence, ensemble learning, Explainable Al



Chapter 1

Introduction

As businesses accumulate vast amounts of data, the challenge is not merely in collection but in
ensuring data quality. As Prashanth Southekal states, “ Companies have tons and tons of data,
but [success| isn’t about data collection, it’s about data management and insight." — Prashanth
Southekal, author of business analytics, professor, and head of the Data for Business Performance
Institute.”

Many businesses and companies shifted their focus to data quality, which is a process that
lasted for three generations, starting from disconnected data quality checks for business functions
before the 1990s to monolithic data silos and ending with the modern period with scalable
architecture accessible to people of diverse backgrounds [1].

1.1 Motivation

In the banking industry, this aspect of data quality is influential, especially for making business
decisions, in credit risk management, where the risk of poor data quality affects decision-making
processes [23]. Moreover, inadequate data quality management can lead to compliance risks
under GDPR, impacting an institution’s reputation.

Owning fast, scalable, and reliable data quality tools that can perform quality checks quickly
and prevent the propagation of poor-quality data around an organization are solutions that
can tackle this problem. Data quality is a crucial factor that can affect the reputation and
credibility that society gives to banking institutions. Several companies on the market have
started adopting data-driven approaches by implementing data quality tools (models) organized
in so-called "data quality management" teams, which implement data quality checks to ensure
a more accurate process.

Moreover, given a financial institution’s important role in society, thorough and strict regula-
tions often characterize the way of working inside a bank. These constraints usually imply that
innovation attempts to keep up-to-date with current services predominantly suffer, especially
in the Tech sector, where changes happen as often as monthly. It also applies to data quality
issue detection, where at several banks, the data analysts are currently spending an enormous
amount of time using manual, time-consuming, and error-prone data quality checks that can be
automated and improved using Artificial Intelligence.

1.2 Problem statement

Data quality is the subdomain of data analysis, which indicates how well a data set complies
with the fundamental metrics (accuracy, completeness, timeliness, uniqueness, validity, and con-
sistency) and is crucial for operations inside the banking sector, especially in credit risk analysis
[13]. However, some institutions still have not transitioned entirely to more automated methods



(using AI), often deciding to stick with manual data management processes. The strict regula-
tions that institutions must follow create a more robust environment for change, causing a slow
data management process. Qutlier detection is the process of detecting data points that can
potentially be erroneous, a crucial component for detecting data quality issues. Thus, in specific
cases of financial institutions (e.g. within ING Nederland B.V.), we identify several challenges,
expressed by the following research questions:

e RQ1: Many banking institutions still rely on data analysts for data quality issue detec-
tion, resulting in an error-prone and time-consuming process. What are the benefits and
challenges of rule-based /manual data quality detection compared to Al-driven approaches
in banking institutions?

e RQ2: According to [6], many financial organizations use traditional data management
approaches involving periodic audits, leading to delays in addressing data quality issues.
How can Al-driven approaches accelerate data quality management processes in financial
organizations compared to periodic audits?

e RQ3: Manual data quality tools often rely on attribute checks without explaining the
detected issues. How can Explainable Al improve the interpretability and effectiveness of
machine learning models for data quality issue detection?

e RQ4: The implementation of ensemble learning algorithms for anomaly detection is lim-
ited. What benefits could the adoption of ensemble learning methods for anomaly detection
provide in financial institutions?

e RQ5: With the various classifications and taxonomies of anomaly detection discussed
in Chapter 3, the current classifications are scattered around several criteria, often con-
tradicting each other. How can a standardized taxonomy improve the consistency and
cross-domain applicability of anomaly detection methods?

1.3 Objectives

With these problems formulated, this thesis aims to find the appropriate anomaly detection
solution based on Al to detect data quality issues within a banking institution’s data sets. Based
on the study conducted on anomaly detection techniques, this thesis tackles the following research
goals:

1. Compare the benefits of using Al-driven approaches replacing rule-based/manual data
quality detection in banking institutions.

2. Develop and evaluate a real-time Al-based anomaly detection system to proactively identify
data quality issues, reducing reliance on periodic audits and minimizing delays in financial
data management.

3. Apply Explainable AI (XAI) techniques to enhance the interpretability of machine learn-
ing models for data quality issue detection, ensuring transparency and trust in Al-driven
solutions.

4. Implement and evaluate an ensemble machine learning approach to compare the perfor-
mance of multiple anomaly detection techniques, assessing its impact in the credit risk
area.

5. Propose a structured and systematic classification framework for anomaly detection tech-
niques, addressing inconsistencies in existing taxonomies to improve their applicability in
financial contexts.



This research explores the benefits of implementing AI models to assist data analysts with
manual tasks to detect data quality issues. It offers a promising outlook for the future of data
quality detection in banking, with potential improvements in efficiency and accuracy.

1.4 Approach

To address these research questions, the thesis follows a structured approach. It introduces key
background terminology related to credit risk metrics and data quality dimensions, followed by
a comprehensive review of the literature on machine learning, ensemble learning, anomaly detec-
tion techniques, and explainable Al. Before the experiments are conducted, the data preparation
and analysis processes and the models’ architecture are detailed. The empirical study applies
various anomaly detection methods to a banking dataset, comparing different models, assessing
their explainability and potential for real-time data quality monitoring. The results are evalu-
ated through internal datasets and expert domain knowledge. Finally, this research proposes a
standardized taxonomy for anomaly detection and explores the feasibility of ensemble learning
to improve data quality detection performance in banks.

1.5 Methodology

This research follows the Design Science Research (DSR) methodology 28], which is particularly
suited for studies aimed at developing and evaluating innovative artifacts. The choice of DSR
is motivated by the need to create a novel ensemble machine learning model that enhances data
quality issue detection within the banking sector. Unlike purely empirical approaches that focus
on observational analysis, or theoretical approaches that lack implementation, DSR allows for
both model development and validation in real-world settings.

As illustrated in Figure 1.1, the DSR framework consists of the following phases:

1. Problem Identification: The research problem is defined through the formulation of
research questions, highlighting the limitations of existing data quality detection methods
in banking (Sections 1.2 and 1.4).

2. Objectives Definition: The research objectives are established to address the identified
challenges, focusing on improving anomaly detection models and explainability (Section
1.3).

3. Investigation of the Current State-of-the-Art: A comprehensive literature review
is conducted to examine existing methods in machine learning, anomaly detection, and
Explainable A, serving as a foundation for developing a novel approach (Chapter 3).

4. Design and Development of the Solution: The thesis proposes an artifact in the
form of an ensemble machine learning model for data quality issue detection. The model’s
architecture, preprocessing steps, and selected algorithms are detailed in Chapters 4 and
5.

5. Experimental Evaluation: The proposed model is empirically tested on real-world bank-
ing datasets, comparing its performance against traditional anomaly detection techniques
(Chapter 5).

6. Evaluation and Validation: The results are analyzed based on model performance met-
rics (Recall, Precision, and F1-score), explainability (Shapley value scores), and feasibility
for real-time data quality monitoring (runtime). Internal banking datasets and domain
expertise are leveraged to ensure the relevance of findings, as discussed in Chapter 6.
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7. Communication of the results: The study’s contributions are summarized, along with
recommendations for future research directions in Al-driven data quality detection (Chap-
ter 7).

While the primary research methodology is Design Science, an experimental research compo-
nent is integrated into the evaluation phase to quantitatively assess the effectiveness of different
anomaly detection techniques. This hybrid approach ensures that the proposed model is not
only theoretically sound but also empirically validated in a practical banking environment.

1.6 Thesis structure

This thesis continues with Chapter 2, which introduces and explains the ten metrics used for
credit risk analysis and the six data quality dimensions. Chapter 3, where a comprehensive
literature study is conducted on machine learning, data quality, and Ezplainable Al ends with a
taxonomy development of anomaly detection methods. Chapter 4 covers the approach conducted
through the experiments, then explains in detail the preparation steps performed before the
experiments. Chapter 5 explains the architecture of the built models and shows the experiments
carried out on ING’s credit risk data sets. The results of the experiments are discussed in Chapter
6, ending with the conclusion and future work in Chapter 7.



Chapter 2

Background

This chapter discusses the core concepts credit risk, introducing the ten important credit metrics
used for risk analysis. In the second section of this chapter, the data quality concept is introduced
and discussed from the banking perspective.

2.1 Credit risk management

Credit risk analysis represents a crucial process performed in financial institutions to ensure the
efficiency of loan portfolio management by evaluating the creditworthiness of potential borrowers
[38]. Credit risk includes the possibility of a client not meeting his obligations and requires
prudent oversight to maximize the returns from a loan [9].

Bad credit risk management mainly caused the financial crisis; hence, instruments to control
credit risk are crucial. The Basel Accords were established in 1988, and they now have three
versions, with the most recent one published after the economic crisis of 2007-2008. Their main
goal is to ensure that the banking institutions maintain enough cash reserves to meet financial
obligations, identify poor corporate governance, liquidity management and the lack of restrictions
regarding the over-levered capital structures, which led to a crisis. Moreover, Basel 111 added new
requirements and measures to increase the banks’ reserves when credit increases while decreasing
the requirements when the lending is lower.

Probability of Default (PD)

PD is a credit risk metric that expresses the likelihood that the borrower will default in a specific
period (usually a year). This metric is calculated per loan and estimated using credit ratings,
historical default rates, or statistical models. PD is essential for quality credit risk management
by evaluating the risk of each portfolio to which the capital is correctly allocated [39].

The calculation of the PD of an obligor is dependent on two sources: internal data and
internal model ratings, as well as external data from entities such as Moody’s and S&P (see
Table 2.1). The cells highlighted with green represent an acceptable grade of credit risk for an
institution, while the red cells a high probability of default from the borrower (high credit risk).

Loss Given Default (LGD)

LGD is a crucial metric for credit risk analysis that represents the percentage of the Exposure at
Default (EAD) lost in the event of a default. Calculating LGD involves addressing several key
questions [37]:

e How much is recovered and from where (e.g., collateral liquidation)?

e What is the duration of the recovery process, and what financial costs (e.g., forgone interest
income) are associated with it?



TABLE 2.1: Moody’s, S&P’s, and Fitch’s Rating Grades [5]

MOODY'’S | S&P | FITCH | DESCRIPTIONS GRADE

Aaa AAA AAA Highest credit quality, mini-
mal credit risk

Aa AA+ AA+ Very high credit quality, very | Investment Grade
low credit risk

A A, A- A A- High credit quality, low credit
risk

Baa BBB BBB Good credit quality, moderate

credit risk

Ba BB BB Issuer faces adverse conditions
and uncertainty, substantial
credit risk

B B B High default risk, issuer able
to meet financial commit-
ments
Caa CCC CCC Vulnerable, default likely High Yield
Ca CC CC Issuer is highly vulnerable or
near default
C C C Lower ratings, issuer in de-
fault
D RD
D

e How much was spent during the recovery process (e.g., workout expenses)?

LGD is the opposite of the Recovery Rate (RR), which represents the proportion of the total
exposure recovered after a default event. Both metrics are expressed as a percentage, where LGD
is calculated as [9]:

Recovered Amount (RA)

LGD =1-RR RR =
Exposure at Default (EAD)

(2.1)
where RR stands for the recovery rate.

Exposure at Default (EAD)

Exposure at Default measures the potential bank’s loss if a borrower defaults during their credit.
The loss relies on the extent of the bank’s exposure to the borrower at the instant of Default, an
event that could happen at an unpredictable point.

According to Basel, it is calculated with the following expression [9]:

EAD = CurrentExposure + LEF - UnutilisedPortionO fTheLimit (2.2)

where LEF is the Loan Equivalency Factor, which represents the amount of the credit line that
is not utilized and is expected to be drawn before the borrower defaults. In crises (at Default),
the LEF and EAD have an increased utilization, illustrated by Figure 2.1

Expected loss (EL)

FEzpected loss (EL) represents the statistically measured, long-run average loss level due to credit
defaults. For example, consider a bank that expects around 1% of its loans to Default annually,



Figure 3: Estimation of LEF and EAD
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FIGURE 2.1: EAD and LEF utilization normal vs Default

with an average recovery rate of 50%. For a credit portfolio of $1 billion, the one-year EL is
calculated as [9]:

EL=PD-LGD-EAD (2.3)
where
e PD - Probability of Default already discussed before

e EAD - Exposure at Default already discussed before

e LGD - Loss Given Default discussed in this section

Unexpected loss (UL)

Besides anticipating a loss, banks must always store extra funds for safety against unpredictable
losses that can extend over the average losses in the past. Unexpected loss (UL) aims to measure
this aspect and calculates it with the following formulas:

UL =\/PD x o35+ LR? x 0}, (2.4)
[9] where:
e PD - Probability of Default already discussed before
e LGD - Loss given Default already discussed before
e 02GD - Variance of Loss Given Default = LGD(1 — LGD)/4 [11].
e 02D - Variance of default probability = PD(1 — PD) [11].

From the statistical point of view, we can define Unexpected Loss (UL) as the standard deviation
of Expected Loss (EL), depicted by the graph in Figure 2.2.



Figure 1: Expected and Unexpected Loss

LOSS
RATE
# » : (Standard
Fa |I 1
i { I', » : Deviation)
U Ty - 1
B |/, ® i s !
(Mean) g v I 1 I ]
'.I' % ,'._‘ I'I .--’-‘ :
¥ ¥ :
1
-

TIME

FIGURE 2.2: Expected Loss and Unexpected Loss|[37].

Effective Maturity and Maturity adjustment(M)

In Credit Risk Analysis, effective maturity refers to the length of time until the principal amount
of a loan or financial instrument is due to be paid back. It is expressed as a decimal number,
usually represented in years (e.g. a loan with a maturity of 5 years and 6 months can be expressed
as 5.5). [3] Maturity adjustment (M) metric is introduced to reflect the possible deterioration
of credit quality for loans with higher maturities (longer-term loans). It is expressed as a factor

(decimal notation) that adjusts for the increased risk of the longer loan maturities (higher than
2.5 years) [37].

Capital Buffer (CB)

Following the guidelines of the Basel II documentation [2], the capital buffer of an institution,
also known as regulatory capital, which measures the credit risk, can be determined using four
risk parameters: PD (Probability of Default), Loss Given Default (LGD), Exposure at Default
(ED), and the Maturity Adjustment (M) factor for loans with effective maturity higher than 2.5.
Equation 2.5 defines how the Capital Buffer is calculated:

CB = PD % LGD x EAD « M (2.5)

Risk weighted assets (RWA)

RWA is the base concept behind the Basel Agreements and is usually the key metric in all credit
risk datasets. It sets weights for each loan and impacts a bank’s capital adequacy. It aims
to guide banks to more prudent lending decisions. Due to limitations, such as the inability of
RWA to reflect actual risk exposure, Basel II was introduced in 2004. It aimed to strengthen
the banking system by making the capital requirements more robust, which meant changing the
definition of RWA. From Basel I continuously, the minimum ratio of regulatory capital to total
RWA is set to 8%, but the ’core capital’ element (more restrictive definition of eligible capital
known as Tier 1 capital) has been set to be at least 4% according to Basel II [37].

Basel II consists of standards used to improve risk management practices, structured into
three pillars (elements):

e Pillar 1, addressing minimum requirements for credit and operational risks

e Pillar 2, guiding the supervisory oversight process



e Pillar 3 forces banks to disclose key information on their risk profile and capitalization to
keep a market discipline

Using the Vasicek model, the following RWA formulas were derived [37]:

1. Correlation (p) for corporate, sovereign, and bank exposures - used as a function of PD,
ignoring potential important portfolio characteristics such as industry and geographic diversifi-
cation:

(1 _ 6750-PD)

(1 —e=50)

2. Maturity Adjustment (b) - introduced to reflect potential credit quality (PD) deterio-
ration for loans with longer maturity:

b= (0.11852 — 0.05478 - In(PD))? (2.7)

p=0.12 (2.6)

1 — ¢—50-PD\ 2
1—e0 )

+0.24 <1 —

3. Capital Requirement (K) :

¢~1(PD) 1+ (M —25)-b

K= (LGD - o(" ="+ /1 f S 0710999)) ~ PDLGD) - (2.8)
4. Risk-Weighted Assets (RW A):

RWA=K-12.5- EAD (2.9)
5. Capital Charge:

Capital charge = 8% - RW A (2.10)
where

e ®1(2) is the inverse cumulative distribution function (c.d.f.) for a standard normal vari-
able z.

e In(PD) is the natural logarithm PD.
e O(y|p,v) is the c.d.f for a standard normal random variable y.
e v is the value of v such that ®(v) = y.

e M is the effective (remaining) maturity.

First, the capital formula incorporates loss correlation but models it solely based on the Prob-
ability of Default (PD). Moreover, it overlooks crucial portfolio characteristics such as industry
and geographic diversification, relegating them to Pillar II (supervisory review).

The formula 2.7 expresses the maturity adjustment, a term that accounts for potential credit
quality deterioration in loans with longer maturities. Here, the average portfolio’s effective
maturity is anchored at 2.5 years.

Risk weights are adjusted to ensure that a bank maintains sufficient capital to cover unex-
pected credit losses with a 99.9%

From the literature, [23| shows the relation between credit risk and data quality. The paper
focuses on the DQ dimensions assessed using a scorecard index, where the DQ challenges are
tackled. Moreover, the study underscores the importance of maintaining high data quality for
accurate credit risk assessment and adequate decision-making in financial institutions. It further
suggests implementing a Total Data Quality Management (TDQM) program. The paper then
highlights the context-dependent nature of DQ and presents an empirical study to assess the DQ
level of credit risk databases. The extended to additional data quality dimensions, namely ac-
tionability, security, relevancy, objectivity, value-added, and representational consistency, where
the conclusion is that the enhancement can be focused on the relationship between credit risk
modelling parameters used to calculate the buffer capital (BC) with Formula 2.5.
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2.2 Data Quality Management

Data Quality Management is one of the most important aspects of any current data-driven
process, being classified by the level it is applied: on macro and micro-level. On macro-level
the focus is on examination and improvement of processes that affect data quality, while at the
micro-level the focus is on the database aiming to repair errors and artefacts [4].

Data quality impacts crucial processes of businesses and institutions. A notorious example is
the US government, which, according to IBM, lost $ 3.1 trillion yearly due to bad-quality data.
Another example is MIT, where employees manage data quality tasks half their time. There
are several definitions for data quality in the literature. According to Wikipedia, data quality in
the banking industry covers a set of techniques, algorithms, and methodologies to evaluate and
improve the quality of the financial data sets [25]. According to Moges et al., [23], data quality
implies using standards that ensure a financial company makes data-driven decisions to fulfil its
business goals.

There are six dimensions of data quality against which a dataset is assessed in the context of
credit risk data:

1. Accuracy - Ensures that a dataset has accurate values, measured by calculating the cor-
rectness of numerical and categorical values. Numeric values are gauged by the percentage
of outliers (anomaly points) indicating inaccuracies.

2. Completeness - Ensures that a dataset has no missing records in mandatory fields, mea-
sured using the ratio of missing values.

3. Validity - Measures the percentage of data conforming to the required format for specific
business rules. Data is valid if values follow specified types, ranges, patterns, etc, defined
by the financial institution.

4. Consistency - Evaluates records from different datasets to check their relationship based
on a standard source-of-truth table. Consistency is measured by calculating the percentage
of corresponding records from other tables with differing values. This dimension is crucial
for maintaining trust in an organization’s dataset.

5. Uniqueness - Ensures that a dataset contains no duplicate primary keys, evaluated by
computing the percentage of duplicates.

6. Timeliness - Requires the dataset to be regularly updated. It is measured using the
frequency distribution of dates and specific bank rules and is often assessed on time series
data.

Any value which does not comply with one of the data quality (DQ) dimensions’ definition
constitutes a data quality (DQ) issue. Our study also refers to these data points as anomalies or
outliers. From the perspective of occurrence, data quality issues can be split into two categories
[36]:

1. Random - if the DQ issue (anomaly) occurs due to a random error in the system that does
not relate to other data quality issues.

2. Systemic - if the error repeats throughout the data set systematically. In this case, an
expert can solve the issue by removing the related cases using data manipulation or other
specific techniques.

Additionally, Tony Ho et al. [6] addresses critical challenges financial institutions face in
maintaining robust data control capabilities, particularly emphasizing the importance of data
quality, data lineage, and transaction testing. These challenges are compounded by the need

11



for regulatory compliance and the complexities associated with various data requirements. The
paper highlights the need for banks to adopt standard and reusable solutions to meet these
stringent requirements effectively.

In this context, this thesis proposes the implementation of ensemble machine learning models,
as a solution to enhance data quality management within credit risk assessment. By leverag-
ing the strengths of these models, the proposed approach aims to improve anomaly detection
accuracy, thereby ensuring more reliable and accurate data for financial decision-making.

12



Chapter 3

Literature review

This chapter represents the third step of the Design Science methodology (Section 1.5 - Investi-
gation of the Current State-of-the-Art), which introduces and discusses the concept of Al-driven
Anomaly detection. The discussion starts with introducing machine learning algorithms, en-
semble learning technique, and continues with a classification of these methods, which aims to
standardise the ones from literature. The chapter ends with a classification and a detailed de-
scription of the selected anomaly detection methods.

3.1 Machine Learning

Machine learning is defined as a learning technique that aims to improve the performance of
a system using algorithms that build models from data, where the human is not involved. By
applying specific learning algorithms, the model is trained on a particular dataset, such that it can
predict a value using labels (e.g. predict the price of an estate) or without labels (e.g. detecting
anomalies in data) or delayed feedback with a specific goal (e.g. image processing). As part of
Artificial Intelligence, Machine learning is a technique based on algorithms trained on datasets to
create models to perform tasks that are difficult to complete for humans. From this perspective,
the anomaly detection algorithms can be classified by taking into account the trained dataset as
supervised and unsupervised, also commonly referred to as "supervised anomaly detection" and
"unsupervised anomaly detection".

Supervised learning is a machine learning approach that uses labelled datasets to classify data
or to predict outcomes accurately. Using labelled inputs and outputs, the model can measure
its accuracy and improve over time [7]. Two central problems can be solved using supervised
learning: classification and regression.

Unsupervised learning, on the other hand, does not use labelled data provided by humans
and is called unsupervised for this reason. It solves problems related to clustering, association,
and dimension reduction.

Another type of learning called semi-supervised learning combines supervised and unsuper-
vised methods. It is primarily used when unlabelled data is already present while getting the
labelled data is slow.

Lastly, there is also the reinforcement learning technique, which aims to maximise some
notion of cumulative reward using software agents [21].

3.2 Ensemble Learning

Ensemble learning is a Machine Learning technique that combines multiple learners (models,
neural networks, algorithms) to provide better predictions than one model. The method aims
to solve the bias-variance trade-off by combining several models to maintain their particularities

13



and benefits while reducing the error rate. On top of this, ensemble learning helps resolve
high-dimensional data issues by offering an alternative to it.

The ensemble method enhances predictive performance by averaging the variance and errors
associated with individual models, thus creating a more robust and accurate predictor. For
instance, Isolation Forest, which excels at managing large datasets with numerous features, can
highlight feature importance. At the same time, an SVM can find complex boundaries between
classes, even in high-dimensional spaces. By integrating their predictions, typically through
techniques like majority voting or stacking, the ensemble can mitigate noise and improve overall
prediction accuracy without dimensionality reduction, demonstrating resilience and robustness
in different tasks.

According to the literature [14], there are two groups of ensemble learning methods:

e Parallel - where the base learners are trained in parallel and independently

e Sequential - where each model is trained once at a time and where the next one minimises
the errors made by the model trained in the previous step.

Three popular ensemble learning techniques that implement these groups and are used in this
thesis are:

1. Bagging - a homogenous parallel method replicating one training data set to train multiple
models using the same algorithm. A typical example is random forest, an extension of
bagging because it splits the training sets into random subsets of features to create a
decision node [43].

2. Stacking - a heterogenous parallel method that trains several models using different training
algorithms for each learner. The model predictions are compiled and used to train the
resulting model, also known as the meta-model [10].

3. Boosting - use sequential order to train each model. The first model performs poorly, so
the next one in the chain trains the output produced by the first learner with a focus on
the misclassified data. There are two types of boosting depending on their prioritisation:
adaptive boosting (AdaBoost), which adds weights to the misclassified samples of the pre-
vious learner, and gradient boosting, which uses residual errors from the learner to set the
target prediction of the following learner [17].

3.3 Anomaly Detection

Before discussing anomaly (outlier) detection, a clear definition of the concept of anomaly (out-
lier) should be introduced, being the foundation of the anomaly detection concept.

3.3.1 Outliers

Outliers are data patterns that do not correspond to the notion commonly established as "normal
behaviour" [34]. They can appear as points or context, depending on the type of representation.
Thus, based on the literature [34], we classify anomaly detection using the criteria of outlier
types as point, contextual, and collective.

Point Outliers

Point outliers focus on data points that lie outside the boundaries of a region with regular points.
For example, fraudulent credit card detection, where an enormous amount is spent compared to
the history of the suspect’s transactions, is considered an anomaly point.
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FIGURE 3.1: Contextual Outliers on Time-series data [34]

Contextual Outliers

Contextual outliers are anomalous data instances (points) in a specific context. They are of two
types: contextual parameters, used to determine the context (neighbourhood, e.g., latitude and
longitude), and behavioural attributes, used to define non-contextual properties of an instance
(e.g., humidity of the entire world). Both types are explored in time series and spatial data and
require a clear context definition. Given the behavioural attributes within a particular context,
an instance is classified as an anomaly or normal. For example, a point can be an outlier in one
context but a regular point in another. Thus, this method requires identifying contextual and
behavioural attributes for contextual anomaly detection. Figure 3.1 illustrates this behaviour
on time-series data, using time of purchase as a contextual attribute. Applying this detection
method depends on the relevance of the contextual outliers in the target domain. Therefore,
the context must be well-defined to achieve high performance in detecting anomalies with this
method.

Collective Outliers

Collective outliers represent a collection of data instances (points) that represent anomalous
properties compared to the rest of the data set cases. This type of outlier extends the definition
terminology to an entire group of data points or a pattern representing an anomaly, known as
collective anomaly. This type of outliers is explored in sequence, graph, and spatial data. A
specific example is an electrocardiogram, where the Atrial Premature Contraction is considered
the anomaly, represented by a sequence of points that shape a P wave, illustrated by Figure 3.2.
Given that context, outliers depend on the ability to define a context for detecting anomalies; a
collective outlier can also be considered contextual if the context is determined.

3.3.2 Classification of Anomaly Detection Methods

Considering the multiple classifications discussed in the literature [31] [34] [27], this thesis pro-
poses a general classification that aims to serve as a consensus of the existing ones. Thus, we
classify anomaly detection from three perspectives: methodology, technique, and outlier type,
illustrated by Table 3.1.
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FIGURE 3.2: Collective Outliers in a human ECG corresponding to an Atrial Premature
Contraction [34]

TABLE 3.1: Classification of Outlier Detection Techniques

Perspective Category Examples
Z-score, Inter-quartile range
Statistics-based (IQR), Principal Component
Methodology Analysis (PCA)

Machine Learning-based

Decision Trees, SVM, KNN,
Random Forests, Isolation
Forest, Bayesian Networks,
Hidden Markov Model

Deep Learning-based

CNN, RNN, LSTM, Autoen-
coders, GANs

Data Mining-based

Clustering, Classification-
based outlier detection

Outlier Type

Point

Sudden spike in network traf-
fic, high bank transaction

Contextual dependent

context are well-identified be-
fore applying the method. e.g.
time of purchase in credit card
fraud detection [34]

Collective

Sequence of fraudulent trans-
actions, cluster of failed logins

Technique

Statistical Models

Gaussian Distribution Models

Density-based

LOF, RDF, DWOF

Distance-based

K-nearest Neighbors

Clustering-based

CBLOF, CBOD

Isolation-based

Isolation Forest
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Dimension

Category

Examples

Ensemble-based LODA, LSCP

Subspace-based

SOD, LSOF, COP

3.3.3 Method selection

Given the high number of methods introduced in the classification from Table 3.1, we further
researched to identify the strengths and weaknesses of the most significant methods, illustrated

by Table 3.2.
TABLE 3.2: Comparison of the algorithms discussed in this report
Algorithm Type Advantages Disadvantages
e Dimensionality
reduction '
e Requires a large
e Flexibility amount of training
. data
e Detection of novel
. anomalies e Hyperparameter sen-
Autoencoders Deep Learning sitive
e Scalability (good
for high dimensional e Overfitting risk - can
data) be computationally
) intensive
e Unsupervised - no la-
belled data required
* Flexibility e Require complex ar-
e Good for  high- chitecture
dimensional data e Hyperparameter sen-
e High accuracy- able 31t1ye - difficult to
) to self-generate fake train
GANs Deep Learning dat
ata e Computationally in-
e Excellent for detect- tensive
ing subtle anomalies o Interpretability _
e Unsupervised - 1o la- hard to interpret its
belled data required results
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Table 3.2 — Continued from previous page

Algorithm

Type

Advantages

Disadvantages

Isolation Forest

Machine Learning

Good  for  high-
dimensional data

Excellent runtime

High detection accu-
racy

Robustness - focus on
isolating anomalies

Consistency - can be
inconsistent in de-
termining outliers in
certain scenarios

Performance on
lower data sets -
may perform poorly
on medium-sized
datasets and linearly
separable classes

k-Nearest Neighbor

Machine Learning

Simple to implement

Good on small

datasets

Sensitive to noise

Computationally
expensive for large
datasets

LOF

Machine Learning

Local Density-Based
Detection - Effective
for unsupervised out-
lier detection

Robustness - focus on
local density

Flexibility - does not
require labels

Computational Com-
plexity

Parameter Sensitiv-
ity
Interpretability -

their results could be
hard to interpret

Scalability - May per-
form poorly on high-
dimensional data

Bayesian Networks

Machine Learning

Effective for anomaly
detection by identi-
fying deviations from
expected patterns

Useful in diagnosing
faults and predicting
failures

Requires domain
knowledge for model

construction

Can be inconsistent
in determining per-
formance parameters
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Table 3.2 — Continued from previous page

Algorithm Type Advantages Disadvantages
e Simple e Requires prior knowl-
edge for learning the
e More flexible and au- distance-based simi-
. Statistical ~ non- tonomous than para- larity
Histogram methods parametric metrical methods
e Performs poorly on
e Perform well on low high_dimensional
dimensional data data,
o Simble. auick e Perform worse on
pe, d randomly distributed
Simple outlier detection | Statistical para- ° Perform well on data
technique metric numerical, uni- e May miss  subtle
variate and normally anomalies due to its
distributed data R
simplicity

Due to the domain of application for the solution in banking, where the data sets are almost
always enormous, we selected the following methods as possible implementations:

e Isolation Forest - given its simple structure, it goes without saying that it is the best

algorithm in terms of running time. Moreover, it can handle high-dimensional data due to
its random feature selection and linear complexity, making it efficient for this case. Last,
given its robustness, it isolates anomalies using feature selection and split values, which
increases its potential to detect anomalies accurately. Given its run time and accuracy, it
can be well combined with Autoencoders.

Autoencoders - due to its dimensionality reduction capability, it can successfully handle
high dimensional and large data sets. Given its dimension-reduction ability, it could prove
efficient when combined with Isolation Forest in an ensemble of models.

Generative Adversarial Networks (GANs) - given their complex structure, which
can handle high-dimensional data, it proves a well-fitting choice for large data sets. Last
but not least, having two components that train each other can significantly enhance the
accuracy of the ensemble model when detecting subtle anomalies. It is also unsupervised,
meaning it doesn’t require labelled data.

3.4 Isolation Forest

Isolation forest is an unsupervised machine learning algorithm that builds an ensemble of isolation
trees for a given data set, where the anomalies are considered the instances with short average
path lengths on the isolation trees [19]. The method is based on graph theory, incorporating the

concept of nodes and binary trees. Thus, the following terms are introduced:

Definition: Isolation Tree (iTree). Let T be a node of an isolation tree. T is either an
external node with no child or an internal node with one test and exactly two descendent nodes
(T3, T,). A test at node T consists of an attribute q and a split value p such that the test ¢ < p
determines the traversal of a data point to either 7} or T [19].

Thus, if we take a tree T and divide it into external (leaves) and internal nodes, the non-leaf
nodes are based on an attribute q, the split value p of attribute q, and two child nodes: (1}, T;),
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where p is a random value between the maximum and minimum values of the attribute q. These
two literals (p,q) determine the separation of nodes based on the comparison of q value, which
determines whether the new sample is classified as T; or T, [41].

Definition: Path Length h(x) of a point x is measured by the number of edges x traverses
an iTree from the root node until the traversal is terminated at an external node [19].

In the training step, if the data is d-dimensional as the set X = {x1,z9,...,2,}, X’ C X
is computed by sampling X with size 1». The method works recursively by splitting X’ until
each node contains only one sample or all samples of a node have an identical value. Then, the
dataset is sampled n times to train different isolation trees, and by merging them, it constitutes
the ensemble isolation forest method [41]. The path length determines the degree of susceptibility
to isolation:

e a short path length represents a high probability of isolation
e a long path length represents the low probability of isolation

According to Zhang [41] anomaly detection using Isolation Forest is composed of two stages:
training stage, and the evaluation stage.

Training stage

In the first stage, isolation trees are built recursively by partitioning a sub-sample X’ until all
the instances are isolated. The algorithm has two input parameters: sub-sampling size (1) and
the number of trees t. The algorithm’s output is a collection of trees, further evaluated in the
second step.

Evaluation stage

In the second stage, the length of the paths is calculated by counting the number of edges e from
the root node to the instance node x. When the traversal reaches a predefined height limit hlim,
the algorithm returns the number of edges e plus an adjustment of c. The adjustment represents
the average path length of a random sub-tree that could be constructed using data whose size
is beyond the tree height limit. The anomaly score, calculated with the equation below, is
obtained by computing the single path length h(x) and has values in the interval [—1, 1] after
normalisation.

s(a,p) =270 (3.1)
Here:

e s(x, 1)) represents the anomaly score of the data point x, given a set of ¢ instances

e (E[h(x)]) denotes the expectation (average) of the function h(x) from a collection of isolation
trees.

e (c()) is the average of h(x) given 1, used to normalize h(x).

After the normalisation, the anomaly score is interpreted as anomalous if the instances return
a score s very close to 1 and as normal if the cases have a score much more minor than 0.5.
The dataset is balanced without any anomaly if all the data points are around 0.5. Figure 3.3
illustrates the visualisation of the isolation forest method using a contour, where the potential
anomalies are the instances with a score s > 0.6.
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FIGURE 3.3: Anomaly score contour of isolation forest for a normal distribution of 64
points [19]

With a relatively low time complexity of O(n - t), the algorithm can be further applied for
detecting data quality issues. For accuracy, validity, and completeness, the algorithm detects
data points with missing values by identifying unique paths in the isolation trees, leading to
shorter path lengths, and thus can be identified as anomalies.

For consistency, one can create separate Isolation Forest models for each data source. If the
models give significantly different anomaly scores for the same input data, it indicates a potential
inconsistency issue.

The algorithm might not be directly applied to timeliness, but one can use it together with
time-series analysis. For example, one could use Isolation Forest to detect anomalies in the
distribution of data timestamps, which could indicate out-of-date data.

Isolation Forest can also help detect duplicate data. If a data point duplicates another,
they will have similar paths in the isolation trees, leading to longer path lengths. However,
other methods could prove more suitable for detecting duplicate records because the algorithm
is typically used to detect outliers, not uniqueness related issues.

3.5 Autoencoder

Autoencoder is a deep learning algorithm, consisting of feed-forward Neural Networks with mul-
tiple layers that transform an input vector into an output vector in an unsupervised manner. A
popular benefit of using this specific deep-learning method is its ability to reduce the dimensions
of a data set. Formally, autoencoders are defined as follows:

Definition. Autoencoders

An autoencoder is an algorithm aiming to learn an "informative" representation of the data
that can be used for different applications by learning to reconstruct a set of input observations
well enough [22].

Structurally, an autoencoder has three components:

1. Encoder - maps the input data into a lower-dimensional code (latent space representation)
and extracts the essential features from the input.

2. Latent feature representation - contains the essential information from the original
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Loss is computed between input-vector and the
reconstituted input (output-vector) during training.
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FIGURE 3.4: Autoencoders’ architecture - schematic illustration [33].

input encoded into a tensor of real numbers
3. Decoder - reconstructs the original input from the latent feature representation.

These components are implemented using Neural Networks and trained using the back-propagation
function. Figure 3.4 illustrates the main components of a Neural Network adapted to the au-
toencoder’s structure. Here, the structure is made of the input layer, output layers, and hidden
layers. The latter ones are made of the encoder layer(s), the latent feature representation (on
a lower dimensionality) illustrated by the bottleneck layer, and the decoder layer(s). An au-
toencoder can have one or multiple encoder/decoder layer(s), depending on the use case and the
complexity of the data. Back-propagation is the core of a feed-forward neural network because it
determines which neural network weights must be adjusted during each iteration of the training
phase. The encoder can be written as a function g, which depends on the parameters:

hi = g(ml) (3'2)

, where h; € RY is the latent feature representation calculated as the encoder output evaluated
on the input x; (the previous neural network layer). The decoder can be written as a composed
function f of the latent features:

Xi = f(h) = f(g(:) (3.3)

, where X; € R” is a real number. The training algorithm of autoencoders requires finding the
functions g and f that satisfy the equation:

arg min (1A @i, f(g(z:)]) (3.4)

)

Where A measures the difference between the input and the output, which in Neural Networks
translates to the loss function between the input and the expected value (in this case - the output)
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(.) represents the average of all observations. Another component of Figure 3.4 is the bottleneck
layer, which illustrates the lower dimensionality than the input. The reason for including this is
the possibility of perfect reconstruction of the output, which means learning the identity function.
On top of this, the regularisation method is applied to deal with the overfitting problem. To
achieve this, two regularisation parameters are added to the final result of the loss function:

arg-n}g’ign\A(wi,f(g(xi)))! +>\Z9¢2 (3.5)

, where 6; are the parameters in the functions f, g (parameters are the weights).

While traditional auto-encoders have a fixed latent space that is deterministically represented,
variational auto-encoders represent their latent space as probabilistic, modelled as a multivariate
Gaussian distribution, allowing for sampling and creating new data points.

As a deep learning algorithm, autoencoders have activation functions crucial for anomaly de-
tection. The most popular activation functions are ReL U and Sigmoid function. ReL U assumes
all values in the range [0, inf], given the formula:

ReLU(x) = max(0,x). (3.6)

Choosing ReL.U is only beneficial when the input values x; have positive values. Sigmoid function
o assume all values are in the range [0,1], and has the formula:

1

R — 3.7
14e® (37)

o(x)

According to their structure, there are six types of autoencoders [30]:

1. Vanilla autoencoders - contain just an encoder and a decoder, where training minimises
the reconstruction error using back-propagation.

2. Sparse autoencoders - use a regularisation term to enforce sparsity in the hidden layer.
Hence, the number of active neurons is reduced, and only one hidden layer is used. This
architecture is achieved by introducing a sparsity constraint that pushes the activations of
the hidden layers close to zero.

3. Denoising autoecnoders - add noise to the input data and learn to recover the original
data, improving the model’s generalisation ability.

4. Contractive autoencoders - use a penalty term to make the hidden layers more robust
to slight variations in the input data, thus encouraging feature extraction.

5. Stacked autoencoders - formed by stacking multiple layers of autoencoders on top of
each other, hence having multiple hidden layers.

6. Variational autoencoders (VAEs) - use uncertainty modelling to learn meaningful
latent representations with approximate posterior distributions for better data matching.

7. Recurrent autoencoders - incorporates recurrent layers for sequential data (time series).

Anomaly Detection using auto-encoders

There are multiple types of autoencoders for anomaly detection, the most popular being vari-
ational autoencoders, denoising, and deep autoencoders. Kumar et al. [16] used a Machine
Learning model to detect data quality issues through two components: a predictor, and a split-
ter. An autoencoder is used in the first stage, where after it passes the data entered by the user
to the already trained model, it applies dimensionality reduction on the data set and detects the
anomalies.
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FIGURE 3.5: Area Under the Curve (AUC) for different types of autoencoders

Pol et al. [26] proposed a deep learning implementation of anomaly detection using Vari-
ational Autoencoders (VAE), also strongly recommended by [40], where his experiments show
that VAE and AE outperform Generative Adversarial Networks (GANs) performance in terms
of F1 Score, Accuracy, Recall and AUC.

Moreover, the authors of [26] prove that the autoencoder approach can automate the Data
Quality Monitoring (DQM) scrutiny, using a tolerance for false negatives. Figure 3.5 illustrates
the area under the curve graph (AUC) for different types of autoencoder algorithms, where the
variational one has the second highest AUC of 0.9 .

The algorithm adopted by the authors is supposed to solve the problem of the data quality
monitoring system, which involves analysing histograms based on a quick first-pass analysis of
events seen by the detector. The goal is to provide real-time feedback to detector experts to ad-
dress issues promptly using autoencoders. These provide robust detection by performing quality
assessment and minimising reconstruction errors during training. Further, the autoencoders can
identify deviations from the learned standard patterns, signalling potential anomalies. However,
fully unsupervised VAEs struggle to achieve perfect disentanglement, leading to multiple latent
variables influencing the same observed features. Next, the algorithms disentangle the factors
of variation in the dataset by identifying and isolating specific latent factors contributing to the
observed data.

The authors also classified anomalies based on two types: type A Anomalies, and type B
Anomalies. The first type involves significant changes only in one feature, while the second is
more subtle and involves systematic changes across a structural configuration group (collective
behaviour).

The model’s architecture also aims to solve the Variational Autoencoders (VAE) disentan-
glement issue by identifying the known and unknown factors in the representation. The authors
propose a model based on a function of known (k) and unknown (u) latent vectors (x = f(k;u)),
where it is assumed that k£ and w are marginally independent. The authors then use structural
configuration groups, which capture a subset of the k vector and form a structural group. This
is aimed at capturing specific patterns or structures in the data.

Training of the autoencoder model is firstly done on the standard (non-anomalous) data.
Here, the model learns to encode the input data into a compact representation (encoding) and
then decode it to reconstruct the original data while minimising the difference between the input
and the reconstructed output.
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The last step is detecting anomalies, using threshold firing where the potential anomalous
instances are flagged.

3.6 Generative-adversarial networks

Generative-adversarial networks (GANs) are another type of Deep Learning deep learning al-
gorithm, which adds a new component: an adversary on top of the generative model. The
generative model tests the adversary by producing fake data and using it without detection. In
contrast, the adversary model acts as a detective, trying to spot the fake (anomalous) entries
generated by the first component. The intuition aims to improve both components’ performance
until their counterfeits are not distinguishable from genuine articles [12]. Goodfellow further
formulates the problem as a min-max game using the following equation:

mén IIlBX V(D7 G) = Ezwpdam(x) [log D({L')] + EZsz(Z) [log(l - D(G(Z)))] (3'8)

where ming shows that the generator G minimises the value of the equation, and maxp shows
that discriminator D maximises the result of the equation. E,., ()[log D(r)] represents the
expected value of the log probability that the discriminator correctly identifies real data samples
(x) as real, E,,_(.y[log(1 — D(G(2)))] represents the expected value of the log probability that
the discriminator correctly identifies generated data samples G(z) as fake. The value of D(x)
is expected to be around one when it takes as input real data X. If the input comes from the
generator, the value of D(G(z)) is expected to be around 0 [8]. This means that the better one
component gets, the worse the other component becomes, implying an inverse proportionality
relationship. Thus, the generator aims to minimise its loss function, defined by the following
equation:

m k
max = " log(D(z:)) + 3 log(1 ~ D(G(z,)) (39
i=1 j=1

Where x; stands for the i-th object in the actual data X, m stands for the total number of objects
in X, k is the total number of samples generated by the generator, z; is the j-th fake data, D(z)
is the output of the actual data, and D(G(z)) is the probability of correctly identifying the
accurate data [8].

In its turn, the discriminator is trying to maximise its success rate at classifying inputs as
real or fake, which is defined by the following equation:

k
min = » "log(1 — D(G(z))) (3.10)
=1

Ve -
]_

Where log(1 — D(G(zj))) represents the log probability that the discriminator classifies the
generated sample as fake. Here, the generator expects its mapped noise to have a similar value
as the distribution of the actual data X [8]. In other words, the generator tries to make the
discriminator’s job as hard as possible by generating indistinguishable samples from accurate
data.

According to Langr et al. [15], GANs have several components, depicted in Figure 3.6:

e Real Data (X) - also known as the training set, has the instances that the generator G
must learn to generate

e Random Noise Vector (z) - Raw input to the generator, composed of random numbers.

e Generator (G) - Learns the distribution of input data. Generates fake examples (G(z))
resembling real data.
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FIGURE 3.6: GANs components, where the classification error is used to update the
parameters of the discriminator and generator models - Sabuhi et al. [20]

e Discriminator (D) - Distinguishes between real and generated data. Outputs binary
decisions (real/fake).

e Iterative Training - GANs are trained using the classification error of the discriminator,
which is used to tune first the discriminator’s parameters, then the generator’s parameters.
Here, back-propagation is the usual choice as a training algorithm and contains two loops:

— Inner loop - Tune discriminator parameters to maximise classification accuracy for
real and generated data.

— Outer loop - Tune generator parameters to minimise the chance of detection by the
discriminator.

Usually, the Generator (G) is the crucial component in most use cases, as it has to generate
fake examples well enough to challenge the Discriminator (D). However, the second component
usually stands out in anomaly detection. This process happens because the discriminator deter-
mines the model’s performance in detecting anomalies.

Anomaly Detection using GANs

Xusheng Du et al. [8] propose a GAN-based network structure that includes a generator, a
discriminator, and an autoencoder. Their approach is based on an ensemble of the basic structure
of a GAN (a generator, a discriminator, and an autoencoder) as depicted in Figure 3.7. The
generator is trained to fit the normal object distribution in unsupervised conditions, whereas
the autoencoder is trained with fake data generated by the GAN to learn the deep features of
standard objects.

Moreover, the authors further use adversarial learning to fit the potential distribution of a
dataset in a self-supervised manner, addressing the misclassification problem often encountered
in conventional methods due to difficulty fitting the data distribution. In their experiments, the
authors show that the GAN-based Unsupervised Outlier Detection (GUOD) method has a better
performance when compared to ten baseline algorithms, including k-nearest Neighbours (KNN),
Local Outlier Factor (LOF), k-means, isolation forest, and autoencoders.

To detect anomalies, the authors perform several steps in their experiments:

1. Training the GAN - this step is done using the gradient descent formula, as illustrated in
Figure 3.8, where the authors show how the fake data from random points gradually reaches
the distribution range of standard objects. Given a dataset X of standard objects and
outliers, the generator prioritises fitting the normal object distribution and maps random
noise to this distribution, minimising network error. Hence, the generator’s fake data can
extend the set of standard objects in X.
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2. Training the autoncoder - is the next step, based on augmented data, where both
the encoder and decoder use the sigmoid activation function o(W1 X + b1), while the loss
function is the Mean Absolute Error (MAE):

1 n
MAE = =S |y — i) 3.11
n;!y 3l (3.11)

where y; are the actual observed values, g; are the predicted values, and n is the total
number of observations or instances. Thus, the ensemble of models operates in two stages.
In the first one, the GAN network learns the distribution of normal objects unsupervised,
as described at the beginning of this section.

3. Calculation of the outlier factor is the last step of the anomaly detection process,
where the outlier factor represents the degree of deviation of an object from others, where
a higher value means a higher likelihood of the instance being an outlier. In their solution,
the authors use the reconstruction error of the autoencoder as the outlier factor.
During the second stage of autoencoder training, the dataset to be detected is fed into
the autoencoder for one forward propagation. The autoencoder, trained on ‘normal’ ob-
jects, learns their deep features. Therefore, regular objects in the dataset could easily be
reconstructed using the autoencoder, while outliers increase the reconstruction error. The
output of the ensemble model after autoencoder reconstruction is denoted by 0;; € O. The
outlier factor is then calculated using the formula:

d
OFi = Z(l‘w — 0@')2 (3.12)
7=1

Ul

where OF; is the outlier factor for the i-th object, 0;; denotes z;; after autoencoder recon-
struction, and d denotes the dimensionality of x;.

Finally, in their experiment, this method proved to have the highest performance among the
eleven algorithms selected: AutoEncoder, Local Outlier Factor, k-Means, isolation forest and
k-Nearest Neighbours. Its performance is measured using the Area Under the Curve (AUC),
Receiver Operating Characteristic (ROC), Accuracy (ACC), Detection Rate (DR), False Alarm
Rate (FAR), and runtime metrics. Accuracy (ACC) measures the proportion of total correct
predictions (both true positives and true negatives) out of all predictions, with the formula:

TP+ TN

A =
ce TP+TN+ FP+ FN

(3.13)

Detection Rate (DR) measures the proportion of true positives out of actual positive cases,
with the formula:

TP
DR= ———— 14
o TP+ FN (3.14)
False Alarm Rate (FAR) measures the proportion of false positives out of actual negative

cases, with the formula:

_FP
TN+ FP

Here, TP and T'N denote the algorithm’s number of correct classifications, and F'P and F'IN
indicate the number of outliers the algorithm misclassifies as everyday objects and the number
of normal objects that it mistakes as outliers, respectively. Higher values of ACC and DR and
lower values of FAR indicate the algorithm’s better detection performance.

FAR (3.15)
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GAN is not limited only to one implementation since the algorithm has several variations,
which are discussed by Sabuhi et al. [20]. The authors mention different variants of GANs used
for anomaly detection, where the most significant are the following:

1. Deep Convolutional GAN (DCGAN) is a type of GAN that uses convolutional layers
in its generator and discriminator networks, unlike a normal GAN, which can use any kind
of layer in its generator and discriminator networks. The generator and the discriminator
behave identically to the discussion of the paragraph above. The difference between the
generated and accurate data can then be used as an anomaly score. This variant uses con-
volutional and convolutional-transpose layers in the discriminator and generator, avoiding
fully connected layers. Here, the discriminator contains stridden convolution layers, batch
normalisation layers, and LeakyReLU activations.

2. Wasserstein GAN (WGAN) is a type of GAN that improves based on the original
GAN’s training stability and generated sample quality. It uses a different loss function, the
Wasserstein loss, calculated as in Equation 3.16. This loss function measures the distance
between the distribution of the generated data and the actual data, making it a suitable
choice for anomaly detection. The smaller the Wasserstein distance, the more similar the
generated and accurate data are, and vice versa. Thus, the formula for the objective
function is:

minmax V(D, G) = By, (0 [D ()] = Ecro, (5 [D(G(2))] 4+ AEsp, [(1[ V2. D(@) |~ 1)
(3.16)

the first two terms are the original WGAN objective ( critic and generator loss). The last
term is the gradient penalty multiplied by A, standing for the penalty coefficient.

3. Conditional GAN (cGAN) is a variant of GANs that allows the generation of data
conditioned on certain types of information, providing more control over the data generation
process. This method can be beneficial in anomaly detection, where the type of anomaly
(e.g., fraud, network intrusion) can be used as a condition to generate data. The generated
data can then be compared with the actual data to detect anomalies.

Where E,,...(2)[Dx(z) = Dx (F(x))] ensures that the discriminator (Dx) can distinguish
between authentic images = from domain X and fake images F'(x) generated by the gen-
erator (F), and Ey.,, . ,)[Dy(y) — Dy (G(y))] this term ensures that the discriminator
(Dy) can distinguish between authentic images (y) from domain Y and fake images (G(y))
generated by the generator (G).

Next, AEqp,..0 (@) |[F(G(7)) — z|[1]] ensures that if one transforms an image (x) from do-
main X to domain Y using (G) and then back to domain X using (F), one should get
back the original image (x). The parameter (A) controls the importance of this term, while
Ay piara ) |G (F(y)) —yl1] term ensures that if one transforms an image (y) from domain
Y to domain X using (F) and then back to domain Y using (G), one should get back the
original image (y).

In conclusion, these algorithms can help detect violations in each data quality dimension
discussed in Chapter 2. Any significant deviations in the generated data could indicate, for
completeness: missing information in some regions of the dataset, and for accuracy: significant
deviations from the expected output could indicate inaccuracies in the original data.

For consistency, it can learn to generate consistent data across different data sources, where
significant inconsistencies in the generated data could indicate inconsistencies in the original
data. Regarding uniqueness, the models can generate unique synthetic customers, where any
significant similarities in the generated data can indicate duplication in the original data.
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For wvalidity, all GANs can be trained to generate valid data that follow specific rules, where
any significant deviations in the generated data could indicate invalid entries in the original data.
Finally, for timeliness, the GANs can be trained on actual data and produce records based on
the most recent trends. If the generated data shows significant deviations from the expected
output based on the most recent trends, it could indicate outdated entries in the original data.

Concluding the discussion, anomaly detection proves to be a suitable choice in detecting data
quality issues. Isolation Forests, Autoencoders and Generative Adversarial Networks (GANs)
are three powerful algorithms used for Anomaly Detection in several areas, so comparing their
performance can significantly enhance the data quality issue detection from the banks. Thus,
the thesis proposes a solution using a parallel implementation of an ensemble model (bagging),
which enables the comparison and combination of the rows detected by each method. The results
are then validated using the expertise and internal data analysts’ results.
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Chapter 4

Experiments’ preparation

The first part of this chapter discusses the steps corresponding to the fourth step of the DSR: De-
signing and Development of the Solution (in Section 1.5), explained in the methodology section.
The chapter further explains the data preparation (manipulation) step, which is necessary before
running the experiments. The manipulation phase is divided into data extraction, processing,
and analysis substeps.

4.1 Solution’s Workflow

This section outlines the methods for anomaly detection in our solution, focusing on identifying
data quality issues. The approach is structured into the following key phases: Data Extraction,
Data Processing, Data Analysis, Model Development, and Result Validation, represented in a
workflow diagram.

Ensemble: Isolation Forest and Autoencoders

To achieve the goals defined in the Design Science (Chapter 1.5), we construct an ensemble
solution based on the following artifacts and processes illustrated by Figure 4.1:

e Isolation Forest: This algorithm isolates anomalies based on the shortest tree paths. It
builds an ensemble of trees for the dataset to compute anomaly scores. The thesis uses
the Sci-Kit Learn module to implement Isolation Forest, where the parameters are mostly
kept default, except contamination and max samples, which adapt to the data set they
are applied on (see Chapter 5).

e Autoencoders: These neural network models are used to learn a compressed data repre-
sentation. In the thesis, this algorithm is implemented using the Keras module in Python,
where seven layers are used to build the model’s architecture. Lastly, the reconstruction
errors are analyzed to detect anomalies, explained in Chapter 5.

e Top K-Selection: The top 20 anomalies are selected from the results of the two algo-
rithms. Next, the typical results of the two algorithms are extracted, where the top 3
unique customers are sent for validation to Subject Matter Expertise (SMEs) from ING.

¢ Results explanation: Applying Shapley Values, an Explainable Al on the top 20 records
classified as anomalies by each model, gives insights into the feature contribution to the
results detected by the model.

Data sets

The preparation of the experiments starts from the internal credit risk data sets of ING. Gaining
access to the credit risk data set inside a bank, especially one of the largest in Europe, was crucial
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Select Data Fiter Data Sort Data

Filter the raw data Oper
= &% Where
T RATING_SYSTEM_KEY = 14 AND
T11.REPORTING DATE BETWEEN 04/29/2024 00:00:00 AND 06/01/2024 00:00:00

FIGURE 4.2: Filtering on the fact table with RATING SYSTEM KEY = 14
selects only the large corporate customers and REPORTING DATE on April and May
2024

to implement anomaly detection solutions on actual business data. The data sets used in this
work are based on the ING’s large corporate portfolio. Internally, the portfolio is structured into
Internal, External, and Remediated data sources, where the Internal data source has been the
focus of our experiments, as it contains the original data before remediation. The tables used in
this thesis arrive from internal sources, including the central data system, where the credit risk
calculations are stored monthly.

Access to these sources has been obtained through the SAS Enterprise Guide, a SAS-based
tool, where ING stores its data sets and queries on servers. Since these sources store credit
information from corporate customers, key figures are limited to numbers and do not reveal the
names/IDs.

The base data set was extracted from a specific data library of ING that stores the historical
credit risk metrics. The data set is a fact table containing loan portfolio data of ING Bank
for both Business and Consumer exposures aggregated at the outstanding/cover level, with 325
features, retaining a total of 18 months of reporting dates. The focus is here on the credit risk
metrics discussed in Chapter 3, where the data quality issues can significantly impact the data
set. The following attributes were extracted from this table, among which the most notable
ones are: RWA, LGD, PD, RWF (Risk Weighted Factor), EAD, EXPOSURE (Amount), MA-
TURITY (Rate), MAX LIMIT (of amounts a customer could take for loan), OS (Outstanding),
and PROVISIONS, shown in Table 4.1.

The other data sets used are situated in other internal databases, merged on top of the
extracted one, containing information about Offices, Customers, Limit Purpose, Risk Rating,
and Industry Type that contains information where data quality issues can be potentially found.

4.2 Data pre-processing

As ING analysts work with credit risk samples, stored in the lowest level of granularity (out-
standing/cover), its data sets require several transformation operations to the highest level (cus-
tomer /facility level), where only the attributes relevant for the experiments part are stored. This
section covers the steps performed in the data processing phase.

Table extraction

First, the relevant attributes are extracted from the central fact table (the credit risk portfolio
data set), illustrated in Figure 4.2. Here, the filter is applied for RATING SYSTEM = 14, the
corresponding value for the Large Corporate customers. Next, because the amount of data we
wanted to send to the experts would be too large, we filtered the data set to include only the last
two consecutive reporting dates to generate times series analysis format (Dataset B) for April,
and May as in Figure 4.2.

Merge operations

Next, to gather all the necessary information for the data analysis, we extracted more granular
records (Cover, Office, Industry etc.) from the following tables, and left-joined them in this order
to the fact table extraction:

33



Column Name Source Column

CUSTOMER_ID (CUSTOMER _ID) t1.CUSTOMER_ID

REPORTING DATE (REPORTING DATE) t1.REPORTING DATE

RWA R (RWA R) t1.LRWA R

RWF R (RWF_R) t1.RWF_R

CUSTOMER_KEY (CUSTOMER _KEY) t1.CUSTOMER_KEY

EAD R (EAD R) t1.LEAD R

LGD R (LGD_R) t1.LGD_R

PROVISIONS R (PROVISIONS R) t1.PROVISIONS R

EAD E (EAD E) t1.LEAD E

EAD I (EAD I) t1.LEAD I

PD R (PD_R) t1.PD_R

ALLOC_LIMIT (ALLOC LIMIT) t1.,ALLOC _LIMIT

EAD P (EAD P) t1.LEAD P

OS_R (0OS_R) t1.0S_R

OS_E (OS_E) t1.0S_E

EXPOSURE_E (EXPOSURE_E) t1.EXPOSURE E

MAX LIMIT (MAX LIMIT) t1.MAX LIMIT

OUTSTANDING ON_R (OUTSTAND- [t1.OUTSTANDING ON_R
ING_ON_R)

NET SALES (NET_SALES) t1.NET SALES

PAST DUE_AMOUNT (PAST DUE_ AMOUNT) [t1.PAST DUE AMOUNT
MATURITY R (MATURITY R) t1. MATURITY R

MIS RAROC_ PRODUCT_ KEY t1.MIS  RAROC_PRODUCT KEY
(MIS_ RAROC_PRODUCT _KEY)

CUSTOMER TYPE KEY (CUS-|t1.CUSTOMER TYPE KEY
TOMER_ TYPE KEY)

INITIATING _OFFICE KEY (INITIAT-|t1.INITIATING OFFICE KEY
ING_OFFICE_KEY)

MATURITY R1 (MATURITY RI1) t1. MATURITY RI1

COUNTRY INCORP KEY (COUN-[t1.COUNTRY INCORP KEY
TRY INCORP_KEY)

DEPARTMENT KEY (DEPARTMENT_ KEY) t1.DEPARTMENT KEY
EXPOSURE CLASS OFFICIAL KEY (EXPO- [t1.EXPOSURE CLASS OFFICIAL KEY
SURE_CLASS_OFFICIAL KEY)

FACILITY ID (FACILITY ID) t1.FACILITY ID

LIM_INIT BASE_ENTITY KEY t1.LIM_INIT BASE_ENTITY KEY
(LIM_INIT BASE ENTITY KEY)

LIM BOOK BASE ENTITY KEY t1.LIM_ BOOK_ BASE ENTITY KEY
(LIM_BOOK_BASE_ENTITY KEY)

TABLE 4.1: Table from the Credit Risk Dataset Columns and Their Sources

OFFICE_BASE ENTITY - getting information about the office responsible for managing
the loan

EXPOSURE CLASS - getting information about the financial status of the Large Corpo-
rate customers

INDUSTRY TYPE - information regarding the industry where the customer is currently
active

RISK RATING - the rating system and score for a customer

RISK RATING MODEL - a tool used to assess the probability of default for a borrower
or a specific credit exposure. These models use various factors to generate a numerical or
symbol-based rating that summarizes the level of default risk.

RATING SYSTEM - measure and differentiate credit risk across individual credits and
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groups of credits. It monitors changes and trends in risk levels, improving the risk man-
agement process.

e LEGAL ENTITY - contains information about the organization or company that is legally
recognized as a separate entity from its owners.

e PRODUCT TYPE - contains information related to the type of facility (product) lent by
a customer.

e CUSTOMER SEGMENT - information on the customers’ categorization based on specific
criteria such as industry, size, revenue, geographic location, or risk profile.

e COVER_TYPE - information of the type of collateral or security provided to mitigate the
risk of default.

e LIMIT PURPOSE - information about the specific reason or objective for which a credit
limit is set.

Aggregation

Once merged, all the clients with only one reporting date were removed from our scope to have
an accurate time-series representation of the data set. This step was necessary to calculate the
inter-monthly change rates, which can be impossible for the customers having only one reporting
date in the data set. Finally, for the modelling, two data sets were obtained:

1. Dataset A - aggregated on the CUSTOMER ID/REPORTING DATE/FACILITY_ ID level
due to granularity reasons, containing information about each Facility of a Customer on
a Reporting Date, which further contributes to the analysis of the 10 Credit Risk Metrics
from the LC Portfolio.

2. Dataset B - aggregated on the CUSTOMER _ID level, consists of the inter-monthly ratios
between April and May of the 10 Credit Risk Metrics analyzed.

Normalization

The last step following aggregation is normalizing the data to enhance the model’s performance by
ensuring a consistent data range. This result has been achieved by applying the MinMaxScaler
from the SciKitLearn library to the numerical values of the aggregated dataset, which scales
all features to a specified range (between 0 and 1). This normalization process is crucial for
optimizing the model’s accuracy and efficiency.

4.3 Data Analysis

This section describes in detail the data analysis step, which is crucial for understanding the
data before performing manipulation operations for the model development part.

4.3.1 Aggregation level

The data analysis was conducted on the original aggregation level of the credit risk data set (also
the lowest - outstanding/cover level), which provided insights of the data before aggregating it
to the format used in the modelling part - the customer/facility level, described in the section
above.
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FIGURE 4.3: Number of customers per country

Number of Facilities per Product Type
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CHAIR Synthetic Limit

Financial Lease

Lending Limit Term Loan

Synthetic Equity (Equity Loan)

OL (Polish standards) - FL (IFRS) Synthetic Equity (Equity Borrow)
Revolving Loan Settlement Limit

FIGURE 4.4: Number of Facilities per Product Type

4.3.2 General insights

The analyzed data set has 13,254 unique customers, sampled on two reporting dates: April 30,
2024, and May 31, 2024 to be able to provide a time-series analysis representation of the data
set, and to allow receiving validation results on time.

Customers

The most significant number of Large Corporate customers is from the Netherlands, as depicted
by Figure 4.3.

Facilities

There are 99,058 unique facilities in the Large Corporate Portfolio, where among the product
types with the most facilities is the lending limit, depicted in Figure 4.4.
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4.3.3 Dataset A - Outstanding/Cover level (not-aggregated)

Below, we perform a complete statistical analysis of the first data set (Dataset A).

Descriptive Analysis

We considered all the credit risk metrics mentioned above, looking for the count, mean, standard
deviation, minimum value, maximum value, median and percentiles, as depicted in Table 4.2.

TABLE 4.2: Statistical Analysis of the data set (non-aggregated)

Metric oS RWA EAD LGD PD RWF | MATURITY EXPOSURE MAX
LIMIT
count 466,192 466,192 466,192 466,192 466,192 466,192 466,192 244,460 466,192
mean 1,307,769 257,979 1,273,663 0.322 0.040 0.628 1.915 1,785,105 | 31,346,476
std 25,726,614 3,004,181 | 25,218,543 0.220 0.131 0.757 1.395 | 13,998,229 | 98,051,507
min 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000
25% 0.000 0.000 0.000 0.112 0.004 0.110 0.400 307 11,781
50% 1,807 241 1,380 0.432 0.005 0.357 1.906 12,337 1,155,367
75% 37,467 5,516,474 24,507 0.436 0.015 0.884 2.918 94,461 | 16,400,000
99% 22,700,198 6,087,516 | 23,635,176 0.709 1 3.365 5 | 40,932,301 | 644,834,416
max 8,365 14,008 | 677,464,994 4,008 1.000 9.571 5.000 1,122,281 2,600,000

The descriptive analysis of the financial ratios highlights significant variability and skewness
across the dataset. Key metrics such as OS, RWA, EAD, and others exhibit mean values around
zero, indicating a central tendency, while standard deviations and interquartile ranges (IQR)
demonstrate substantial variability.

The presence of extreme values at the 99th percentile suggests significant outliers, which is
critical for understanding the risk and quality of the data. Skewness in the data distributions
indicates asymmetry, which could impact the accuracy of predictive modelling.

Concluding the descriptive analysis, it was necessary to apply normalization techniques before
developing the model, as described in Section 4.2.

Duplicates

Next, a check for duplicates is performed, where no duplicates can be found.

Missing values

Concerning missing data values, EAD P, OUTSTANDING ON _ R, and PAST DUE AMOUNT

were the columns with the highest percentage of missing values, depicted in Figure 4.5.

Outliers

A scatter plot of the Mahalanobis distances visualizes the data set’s distribution. This plot helps
to identify a natural separation between normal data points and potential outliers.

For outlier detection in our data set, we selected the Mahalanobis distance method for its
effectiveness in handling multivariate data, considering the correlations between variables to
measure the distance of each data point from the mean.
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FIGURE 4.5: Missing values of Dataset A

Threshold setting

The subsequent critical step involved determining the optimal threshold. Using a cross-validation-
based approach, the optimal threshold was identified to be around the 94" percentile. However,
we set the threshold at the 99 percentile to target the most extreme outliers in the data set.

Correlation. Variable Dependence

The correlation analysis revealed direct proportional relationships between key financial vari-
ables. The highest correlations were observed between Exposure at Default (EAD) and both
Outstanding (OS) and Exposure Amount (EXPOSURE). These relationships indicate that as
EAD increases, OS and EXPOSURE tend to increase proportionally. This is visually represented
in the heatmap of Figure 4.7, highlighting significant interdependencies crucial for understanding
the dynamics within the dataset.
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FIGURE 4.7: Correlation Matrix of the Dataset A (non-aggregated)
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4.3.4 Exceptional case analysis

We identified an unexpected pattern during our exploratory data analysis for the non-aggregated
dataset (Dataset A). This pattern represents a few customers with an Exposure at Default (EAD)
value of 0, while their Probability of Default (PD), Loss Given Default (LGD), and Risk-Weighted
Assets (RWF) metrics were positive. Domain experts confirmed this unexpected behaviour and
indicated anomalies within the dataset.

Following the advice of these experts, we decided to implement a data-cleansing strategy.
Specifically, we removed customers with more than one record where PD, LGD, or RWF metrics
were positive, while their EAD was 0. However, we retained customers with only one record with
positive PD, LGD, or RWF metrics with an EAD of 0.

This filtering process revealed that approximately 0.017% of the data set’s records (80 rows)
exhibited this anomalous property.

Removing these obvious outliers resulted in the model’s focus on extreme outliers.

4.3.5 Dataset B - Inter-monthly log ratios data set

The next phase of the analysis focuses on examining the inter-monthly variations for two con-
secutive months for the ten credit risk metrics. This specific data format allows us to closely
monitor abrupt changes between consecutive reporting dates for each customer, facilitating the
detection of potential anomalies.

By tracking these sudden shifts, we can identify irregular patterns that could indicate un-
derlying issues or risks. This approach provides a valuable tool for early warning and proactive
credit risk management.

To transform the raw data set (Dataset B) into this format, we first aggregated it into the
customer/facility level, where we then used feature engineering to create logarithmic ratios for
each of the ten credit risk metrics. We calculated the logarithmic ratios of each numerical value
using the following formula:

Metricyray

Metricratio = log( (4.1)

Metricapri

Where Metricap,i stands for the value of the respective credit risk metric with 30th April 2024
as the reporting date, while Metricyray represents the value of the respective credit risk metric
on 315t May 2024. The aggregation here was changed to the facility/reporting date level, which
allows us to perform time-series analysis on the data set for the two consecutive months.

Descriptive analysis

As for the raw data set, we performed statistical analysis on the time-series data set (inter-
monthly ratios), shown in Table 4.3.

The descriptive analysis of inter-monthly credit risk ratios reveals key insights about the data
and potential anomalies, similar to Dataset A. The mean values for these ratios are close to zero,
indicating minimal average monthly changes. However, the substantial standard deviations and
wide ranges point to significant variability. For instance, the RWA Ratio, with a mean of -0.034
and a standard deviation of 0.378, spans from -17.935 to 19.722, while the EAD Ratio has a
mean of -0.022 and a standard deviation of 0.313, ranging from -18.195 to 15.454. This wide
variability suggests the presence of notable outliers or anomalies in the dataset.

Outliers

Following the same approach as for the raw data using Mahalanobis distance with the threshold
set for 99%, we calculated the percentage of outliers for each column, as Figure 4.9 shows:
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TABLE 4.3: Statistical Analysis of the inter-monthly rates (log ratios)

count 70,392 70,392 70,392 70,392 70,392 70,392 70,392 70,392
mean -0.034 -0.022 0 -0.008 -0.023 -0.021 -0.024 -0.013
std 0.378 0.313 0.190 0.194 0.416 0.243 0.350 0.209
min -17.935 -18.195 -5.691 -5.049 -18.018 -17.744 -18.018 -6.411
1% -0.850 -0.612 -0.531 -0.367 -1.042 -0.400 -0.693 -0.172
25% -0.027 -0.015 0 0 -0.017 -0.019 -0.015 -0.031
50% 0 0 0 0 0 0 0 0
75% 0 0 0 0 0 0 0 0
99% 0.558 0.366 0.587 0.052 0.868 0.107 0.418 0.162
max 19.722 15.454 7.289 4.897 15.454 12.391 11.185 6.411

Correlation. Ratio dependence

Then, we looked for correlations between logarithmic ratios finding only direct proportionality
relationships. The highest correlations are this time between the Exposure at Default (EAD)
and the Risk Weighted Assets (RWA) ratios, followed by Exposure amount and Outstanding
ratios, illustrated in Figure 4.9:
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Inliers vs Outliers using Mahalanobis method with percentile 99
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FIGURE 4.8: Scatter plot of outlier distribution for Dataset B
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42



Chapter 5

Model development

This chapter explains the architecture and the development reasoning of the two models, Isolation
Forest and Autoencoders, and continues with a detailed overview of the experiments performed.

5.1 Ensemble modelling

This phase is split into two experiments with different combinations of the researched methods:
e [teration A - Isolation Forest and Autoencoders on the aggregated data set
e [teration B - Isolation Forest and Autoencoders on the log ratios data set

Each experiment in terms of iterations was conducted using bagging (parallel) ensemble learning
type, where the results are calculated as the commonly detected rows and sorted by the average
anomaly probability.

As the data set was mainly skewed, before running the model, we applied Min-Maz Scaling
for Dataset A on the numerical features while ensuring there is no missing value or duplicate in
the data set. Next, even though splitting is not mandatory, we applied an 80/20 training/test
split to evaluate the model’s performance on unseen data, given its unsupervised nature.

5.1.1 Train, test and validation strategies

An important step for the modelling part is the data split. The Isolation Forest model was
trained on the entire dataset to maximize the learning potential from all available data using
the £it method. Given the unsupervised nature of anomaly detection, this approach allows the
model to comprehensively understand both normal patterns and anomalies within the dataset.
Utilizing the entire dataset ensures the model is exposed to the full range of data variations,
essential for enhancing its ability to detect subtle anomalies.

Next, the same threshold of 99" percentile is used as a threshold for the anomaly detection
(called with the predict method from the sci-kit learn library) - see Figure 5.2.

train_isolation_forest(data, contamination= n_estimators=
random_state= max_samples= ):
iso_forest = IsolationForest( =n_estimators
=contamination =random_state

=max_samples)

iso_forest.fit(data)

iso_forest

FI1GURE 5.1: Using "fit" method to train Isolation Forest
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predict_anomalies(iso_forest, data):

anomaly_scores = iso_forest.decision_function(data)

predictions = iso_forest.predict(data)

datal ] = anomaly_scores

datal ] = predictions

top_anomalies = data.sort_values(by= ) .head(20)
anomaly_scores = np.sort(anomaly_scores)

shap_values = calculate_shap_values(iso_forest, top_anomalies.iloc[:, :-2])

data, anomaly_scores, predictions, shap_values, top_anomalies

FIGURE 5.2: Isolation Forest Predict method to detect anomalies

def select_non_anomalous_rows_ae(df, percentile=99,
is_log_ratios=False):
df = prepare_data_non_anomalous(df)
mask = apply_mahalanobis(df, percentile)
normal_instances = df[mask]
plot_results_non_anomalous_ae(df, mask, percentile, is_log_ratios)
return normal_instances

F1GURE 5.3: Function for selecting the non-anomalies using Mahalanobis distance

Autoencoders and Threshold setting

On the other hand, a more complex strategy has been implemented for the auto-encoders, mo-
tivated by its Deep Learning nature. Firstly, the model is trained solely on data classified as
non-anomaly due to its approach that reconstructs the data into an original format [42]. Here,
the threshold is set using the same method as for data analysis - the statistical method of Ma-
halanobis Distance. This choice is motivated by the model’s core engine, which reconstructs the
data to its original format. Since the model is trained on normal data, it struggles more to
reconstruct anomalies when tested on our dataset (with anomalies). An anomaly is identified
as a data point above the threshold the autoencoder model determines, having a higher recon-
struction error. The 95/5 training/validation split has been applied for the data set, where the
training is set to the default of 100 epochs using shuffling to ensure a good generalization. The
next parameter, batch size, is set to 32, a popular choice in the research literature [18].

The detection step is performed on the entire data set, acting as the test set. This approach
ensures that the model learns the normal data (non-anomalies) distribution effectively, improv-
ing its ability to detect deviations (anomalies) during testing. It comprehensively evaluates the
model’s performance, including its generalization capabilities and robustness in different scenar-
ios. Careful consideration of performance metrics and validation techniques can mitigate the
overfitting risk, ensuring a robust and accurate model.

5.1.2 Models architecture

This subsection consists of the chosen architecture of the model, with the necessary explanations.
The parameters presented in this section are the final version which produced the best results,
while other versions are discussed in the experiments part, in Chapter 5.

Isolation Forest

For running Isolation Forest, we considered the following parameters [32] :

e Contamination: 0.01 - Useful when the proportion of anomalies in the dataset is un-
known, allowing the model to adapt to the data distribution.
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e N estimators: 100 - Specifies the number of base estimators in the ensemble. The default
parameter provides a balance between computational efficiency and model performance.

e Max samples: 0.5 - Common amongst researchers, trains each base estimator on a
random subset containing 50% of the training data. This value is a good trade-off between
bias and variance and helps to reduce overfitting.

e Random _state: 42 - Controls the randomness of the bootstrapping of the samples and
the feature selection. It allows for consistent results across multiple runs.

e Bootstrap: False - Default value, if True - individual trees are fit on random subsets of
the training data sampled with replacement. If False - sampling without replacement is
performed.

Autoencoders

For Auto-encoders, we considered the following architectural design with one input and output
layer, one encoder and decoder, and one "bottleneck layer" as illustrated in Figure 3.4: Next,
the chosen hyper-parameters are the following:

e GlorotUniform Initializer: GlorotUniform(seed=42) - Ensures weights are initial-
ized to values that promote faster convergence and better training stability.

e BatchNormalization: BatchNormalization() - Normalizes input layer for faster
training and improved performance.

e Input Layer: 10 (input dimension) - Defines the input data shape necessary for building
the model.

e Dense Layers (Encoder):

— Dense(12, activation="relu", kernel regularizer=11 12(11=0.02,
12=0.02), kernel initializer=initializer) - Uses ReLU activation, reg-
ularization to prevent overfitting, and proper weight initialization.

— Dense(8, activation="relu", kernel regularizer=11 12(11=0.02, 12=0.02),
kernel initializer=initializer) - Further reduces dimensionality with same
motivations.

— Dense(4, activation="relu", kernel regularizer=11 12(11=0.02, 12=0.02),
kernel initializer=initializer) - Bottleneck layer with same motivations.

e Dense Layers (Decoder):

— Dense(8, activation='relu’, kernel regularizer=11 12(11=0.02, 12=0.02),
kernel initializer=initializer) - Symmetrical to encoder for consistent
training.

— Dense (12, activation='relu’, kernel regularizer=11 12(11=0.02,
12=0.02), kernel initializer=initializer) - Similar structure to en-
coder layers.

— Dense(input_dim, activation='sigmoid’, kernel initializer=initializer)
- Final layer to reconstruct input data.

e Optimizer: Adam(learning rate=0.00015) - Adam, short for Adaptive Moment
Estimation, is an optimizer that adapts the learning rate for each parameter. It combines
the benefits of two other popular optimization methods, AdaGrad and RMSProp, to ef-
ficiently handle sparse gradients and non-stationary objectives. The learning rate, set to
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0.00015, controls the step size during each iteration of the optimization process, determin-
ing how much to adjust the model weights in response to the estimated error each time the
model weights are updated.

e Loss Function: Mean Squared Error (MSE) - Measures error between input and
reconstructed output to guide optimization. Calculated with the formula:

R o PR
MSE =~ (yi — i)

i=1
Where:

— n is the number of observations
— y; is the actual value

— ¢ is the predicted value

¢ ReduceLROnPlateau Callback: ReduceLROnPlateau(monitor='val loss’, factor=0.5,
patience=5, min 1r=0.000015) - Reduces learning rate on validation loss plateau.

e EarlyStopping Callback: EarlyStopping(monitor='val loss’, patience=4,
restore_best weights=True) - Stops training early if validation loss doesn’t im-
prove.

e Random Seed: np.random.seed(42); tf.random.set seed(42) - Ensures re-
producibility of results.

e Training Data Preparation: prepare _data ae(data, test size=0.05, random state=42)
- Splits the data into training and validation sets, which is essential for model evaluation.

e Training Procedure: train_autoencoder(train data, val data, loss_ function)
- Defines the training process, including the optimizer, loss function, and callbacks for re-
ducing learning rate and early stopping.

5.1.3 Explainable Al

On top of each detected anomaly by both models, Shapley Values - an implementation of Ex-
plainable Al has been applied to enable the ability to understand the reasoning behind each
model for detecting a specific row as an anomaly. Using Shapley Values, the percentage of each
feature contributing to the detection of a specific row has been calculated.

However, the calculation differs from both models, as Isolation Forest uses anomaly score
parameter to indicate whether a point is an anomaly with a range between -1 (anomaly) and
1 (normal), contrary to the Autoencoders. The latter method uses reconstruction error, which
ranges between 0 (normal) and 1 (anomaly), leading to the following interpretation regarding
the Shapley Values:

1. Lower values - higher contribution in the detection using Isolation Forest

2. Higher values - higher contribution in the detection using Autoencoders
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5.1.4 Result interpretation

The chosen architecture consisted of a parallel ensemble (bagging) to check models’ consensus
in detecting anomalies and potential data quality issues. For clarity in the interpretation, the
top 20 anomalies are extracted separately for each model, together with their calculated Shapley
Values.

Next, the common results between the two models are stored in a DataFrame, where both
anomaly score and reconstruction error are scaled using MinMax to probabilistic values, adding
two extra columns altogether in the common results data set. Table 6.5 from Chapter 5 illustrate

5.1.5 Validation

To provide a solid validation of the models used, we applied two types of validation on top of
the results of both Isolation Forest and Autoencoders

1. Quantitative validation — using formal methods and metrics to validate model perfor-
mance.

2. Qualitative validation — using subjective judgement and domain expertise to interpret
the model’s results (if the record is an anomaly or not).

Quantitative Validation

The evaluation methods used in our experiments are:
1. For Isolation Forest:

e Distribution test: Histogram distribution of anomaly scores, ranging from —1 to 1.
e Robustness test by checking whether the detected records are the same after five
consecutive runs.

2. For Autoencoders:

e Distribution test: Reconstruction Error Histogram for the training
e Loss tests: Learning Curve with Training and Validation Loss.

e Robustness test by checking whether the detected records are the same after five
consecutive runs.

Qualitative Validation

The qualitative validation described in this subsection is performed using two approaches:

1. Validation against an internal dataset from ING contains exceptions detected already for
a specific period, including both random and systemic data quality issues. The success
criteria for the models for this step is determined by the percentage of the three metrics:
Precision, Recall and F1 Score.

2. Validation against the Subject Matter Expertise (SMEs), specialists reporting daily data
quality issues found. As their time is limited, the validation has been limited to the top
3 customers from the data set containing the common records of anomalies detected by
Isolation Forest and Autoencoders. The success criteria here are less strict, as the SMEs
can only detect systemic data quality issues using the false positive rate.

Thus, these diverse methods ensure that both models are evaluated from different perspec-
tives.
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5.2 Experiments

This section presents the experiments done inside ING Bank Netherlands using its internal
customer data set, which contains over 500,000 records. The experiments are done over two data
sets:

1. Dataset A’ - Dataset A aggregated to the Customer/Facility level filtered, containing
customer information from two reporting dates.

2. Dataset B’ - Dataset B, where only the columns containing the log ratios are kept to
prevent noise.

5.2.1 Iteration A (Dataset A’)

The first iteration consists of several experiments on Dataset A’, illustrated by Table 5.1.

In our study, there were a total of 70 experiments conducted (solely on Dataset A’), where
most aimed to tune and stabilize the Autoencoder model. As mentioned in Chapter 5, the initial
results sent for validation to the SMEs are produced by an unstable version of the models mainly
caused by Auto-encoders, which required several runs to be stabilized. From the beginning of the
experiments, Isolation Forest turned out to be stable by using the same parameters mentioned in
Section 5.1.2; thus, for simplicity, Table 5.1 only included the Autoencoders relevant parameters
that helped stabilize the model.

In the first 17 runs, it can be seen that with a 7-neuron bottleneck layer architecture, the
model produced different results for consecutive runs. No callbacks or regularization techniques
were used here.

However, when changing the architecture to a more symmetrical one with four neurons in the
bottleneck layer and introducing BatchNormalization, a GlorotInitializer, callbacks (FEarlyStop-
ping and ReduceLROnPlateau with patience values) and regularizers after each training epoch,
the model performance stabilized. This is illustrated by Table 5.1, where similar results can be
seen in consecutive runs for the experiments labelled between numbers 66 and 70.

BatchNormalization has been applied before the training process, which normalizes the ac-
tivations of the input layer for each subset of the training set, using a random seed of value
42. Given a mini-batch, it computes the mean and variance of activations, subtracts the mean
and divides each value by the standard deviation. Among the callbacks, FEarlyStopping stops
the entire training process if the loss does not modify after several consecutive epochs set as a
parameter, known as a "patience" value corresponding to the column name "Patience2". Our
experiments set the patience rates to 2, improving the model’s performance. The last callback
used is ReduceLROnPlateau, a learning rate scheduler that dynamically adjusts the learning rate
after each epoch based on the model’s performance on the validation set. This addition helps
the model converge uniformly by adjusting the learning rates in training based on a patience pa-
rameter, which does not stop the training process, unlike EarlyStopping. ReduceLROnPlateau
reduces the learning rate if the loss is not decreasing significantly after a certain number of
epochs, represented by the column named "Patiencel".

Isolation Forest

Firstly, Isolation Forest proved robust initially, constantly detecting the same records. Figures
5.4 and 5.5 show the histogram distribution of the anomaly scores for the initial and final versions
of the model.

The first graph displays the anomaly score distribution from the initial version of the Isolation
Forest model. This histogram reveals that most data points cluster around low anomaly scores,
suggesting that the model deems most instances normal. The pronounced peak near the score
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FIGURE 5.4: Histogram distribution of FIGURE 5.5: Histogram distribution of
the initial version of Isolation Forest on the final version of Isolation Forest on
Dataset A’ Dataset A’

of 0.1 means that the model consistently identifies a substantial portion of the data as non-
anomalous. This initial analysis serves as a baseline for evaluating the model’s performance
detecting anomalies within the dataset.

The second graph depicts the anomaly score distribution from the final, stabilized version
of the Isolation Forest model. Identically to the initial version, most data points continue to
cluster around low anomaly scores, with a peak close to 0.1. This consistency in anomaly score
distribution before and after stabilization underscores the model’s robustness and stability.

Autoencoders

Next, for the autoencoders model, the quantitative validation starts with the same histogram
method and includes loss tests before and after stabilizing the model.

The first method of the quantitative validation for the autoencoder model includes the his-
tograms of the reconstruction errors before and after stabilization.

Reconstruction Error Histogram After Training
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-—- Percentile Threshold (97th) Reconstruction Error Histogram After Training
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FIGURE 5.6: Reconstruction error his- —
togram of the initial (non-stabilized) FIGURE 5.7: Reconstruction error His-
version of the Autoencoders on Dataset togram of the final (stabilized) version
A’ of the Autoencoders on Dataset A’

It can be seen in Figures 5.6 and 5.7 that even after stabilizing the autoencoder, the recon-
struction error histogram shows minimal changes, the majority of reconstruction errors remaining
concentrated at the lower end of the spectrum. In both the histograms, the reconstruction er-
ror ranges from 0 to 1, where most observations are concentrated near zero. The distribution is
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heavily right-skewed, with the highest frequencies observed for reconstruction errors close to zero,
indicating that the autoencoder effectively reconstructs most normal data points with minimal
error. A sharp drop in frequency is observed for higher reconstruction errors, with only a few
outliers exhibiting errors significantly above the 97th percentile threshold, marked as a vertical
dashed line. This threshold is a cutoff for distinguishing between normal data points and poten-
tial anomalies. The results demonstrate the autoencoder’s capacity to generalize well to normal
patterns in the data while assigning higher reconstruction errors to anomalous observations,
which deviate from the learned representation. This consistency suggests that the stabilization
techniques improved the model’s training and validation losses but did not significantly impact
the overall distribution of reconstruction errors. This could be caused by the data’s inherent
characteristics of the initial model, such as correlation and relationships between the variables
(OS with EAD, EXPOSURE and RWF with LGD, EXPOSURE).

Next, for the loss test, the graph in Figure 5.8 shows the instability of the initial autoencoder
model, characterized by a sharp spike in validation loss, which signifies poor generalization and
overfitting to the training data.

In contrast, the right graph from Figure 5.9 displays the final (stabilized) version, where
both training and validation losses decrease sharply and converge closely, indicating enhanced
model stability and generalization when applied to unseen data. This stabilization is crucial for
ensuring reliable and accurate anomaly detection in practical applications.

Learning Curve for Autoencoder
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Despite model stability and generalization enhancements, the autoencoder reconstructs most
data points with minimal error, highlighting its efficiency and robustness in the anomaly detection
task.

Explainable AI - Shapley Values

The results of both Isolation Forest and Autoencoders (Top 20 Anomalies) are illustrated in
Table and the corresponding Shapley Values.

Table 5.2 illustrates the explainable Al results detected by the Isolation Forest model for each
feature in the top 3 customers. Here, the principle goes as follows: the lower the value, the higher
the column’s contribution is to the algorithm’s detection of the respective row. PROVISIONS
and RWA, with Shapley Values of -0.04 and -0.03, contributed the most to the detection for the
first record.

As for the overall contribution of the results for the auto-encoders, Figure 5.10 illustrates
the features that contributed the most across the entire Dataset A’, where LGD, RWF and PD
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TABLE 5.2: Shapley Values for the top 20 anomalies detected by IF

Index [ LGD |PD |RWF OS MAX LIMIT|PROVISIONS [ EAD |RWA |MATURITYEXPOSURE
156874 |0.00 -0.02 [0.00 [0.02 -0.00 -0.04 0.01 -0.03 0.00 -0.00
53459 |-0.00 0.02 |-0.02 |0.02 0.00 -0.02 0.01 -0.04 |-0.00 -0.00
156873 |0.00 -0.02 |0.00 |-0.07 -0.00 -0.04 0.01 -0.02 0.00 -0.00
43870 |-0.00 0.02 |0.01 |-0.07 0.01 0.03 -0.07 0.02 0.00 0.02
43871 |-0.00 0.02 |0.01 |0.03 0.01 -0.02 0.01 -0.05 -0.00 0.00
53460 |0.00 -0.02 (0.00 |[0.03 0.00 -0.06 0.02 0.02 -0.01 0.01
52731 |0.00 -0.01 [-0.00 [0.00 -0.03 0.03 0.03 0.02 0.00 -0.06

vaTURITY R [}
EXPOSURE_E
MAX_LIMIT
RWA R
0s R
PROVISIONS_R

EAD_R

0.00 0.02 0.04 0.06 0.08 010
mean(|SHAP value|) (average impact on model output magnitude)

FIGURE 5.10: Average feature contribution for the top 20 anomalies detected by Autoen-
coders on Dataset A’

are the top 3 contributors. The Shapley value is calculated by applying a mean function on the
shape value of one feature for the entire data set.

Results for validation

The last step was to send the results to the validation experts inside ING in an Excel format,
illustrated by Table 6.5. The results are the records corresponding to the Top 3 Customers from
the common results (detected by both Isolation Forest and Autoencoder).

5.2.2 Iteration B (Dataset B’)

For the second iteration, we applied the same steps on Dataset B, which contains the time-series
version of Dataset A’. Since the autoencoder model has already been stabilized during Iteration
A, the second iteration only consists of 10 experiments, where the models produced the same
results, as shown in Table 5.3

Isolation Forest

For Isolation Forest, the histogram distribution illustrated by Figure 5.11 was the same in each
of the 10 experiments, showing the robustness of the model.
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TABLE 5.3: Experiments on Dataset B’

No. | Test set Separator Architecture |ID |Batch|Output Hidden |Loss|Regularization | Learning Rate Reduce Pati C IF AE |Identical Previous Rows
1 Mahalanobis/99% |10-12-8-4-8-12-10100| 32 Sigmoid | ReLU |MSE|L1/L2 (0.02 all) 0.00015 5 4 15 20
2 Mahalanobis/99% |10-12-8-4-8-12-10(100| 32 Sigmoid | ReLU |MSE|L1/L2 (0.02 all) 0.00015 5 4 15 20
3 Mahalanobis/99% | 10-12-8-4-8-12-10|100| 32 Sigmoid | ReLU |MSE| L1/L2 (0.02 all) 0.00015 5 4 15 20
4 Mahalanobis/99% | 10-12-8-4-8-12-10|100| 32 Sigmoid | ReLU |MSE| L1/L2 (0.02 all) 0.00015 5 4 15 20
5 Mahalanobis/99% [10-12-8-4-8-12-10|100| 32 | Sigmoid | ReLU |MSE|L1/L2 (0.02 all) 0.00015 5 4 15 20
6 Mahalanobis/99% |10-12-8-4-8-12-10{100| 32 | Sigmoid | ReLU |MSE| L1/L2 (0.02 all) 0.00015 5 4 15 20
7 Mahalanobis/99% |10-12-8-4-8-12-10{100| 32 Sigmoid | ReLU |MSE|L1/L2 (0.02 all) 0.00015 5 4 15 20
8 Mahalanobis/99% | 10-12-8-4-8-12-10|100| 32 Sigmoid | ReLU |MSE| L1/L2 (0.02 all) 0.00015 5 4 15 20
9 Mahalanobis/99% |10-12-8-4-8-12-10{100| 32 | Sigmoid | ReLU |MSE| L1/L2 (0.02 all) 0.00015 5 4 15 20
10 | Mahalanobis/99% |10-12-8-4-8-12-10{100| 32 |Sigmoid | ReLU |MSE| L1/L2 (0.02 all) 0.00015 5 4 15 20

Anomaly Scores Distribution

oy
©
S 20000
o
&
L

15000

10000

5000 |
0 _-Il- .lI I
0.00 0.02 0.04 0.06 0.08 0.10

Anomaly Score

FI1cURE 5.11: Histogram of anomaly scores for Isolation Forest on the Dataset B’

The anomaly scores, ranging from approximately 0 to 0.12, exhibit a distinct unimodal dis-
tribution with a sharp peak near 0.10. This representation indicates that most data points in the
dataset are concentrated within a narrow band of scores, representing normal behaviour. The
frequency decreases sharply for anomaly scores deviating from this peak, particularly below 0.08
and above 0.11, suggesting fewer data points in these regions. The highest observed frequency
exceeds 35,000, underscoring the algorithm’s ability to group most normal observations into a
specific score range.

Autoencoders

Regarding Autoencoders, for the quantitative evaluation, the reconstruction error plot showed a
normal distribution with a sharp peak around 0.01. This illutration means a high percentage of
the data points in the set are concentrated on normal behaviour. Illustrated by Figure 5.12, the
graph shows a sudden decrease in the frequency between 0,0 and 0.01. The frequency of records
with a reconstruction error above the threshold of the 99th percentile is extremely low, with only
dozens being detected as anomalies. This graph showcases the algorithm’s ability to detect most
normal observations in a certain range, separated by the anomalies using a threshold.

The second quantitative method was the loss test using a learning curve graph, illustrated
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FIGURE 5.12: Reconstruction error histogram of the Autoencoders model on Dataset B’

in Figure 5.13. The plot shows variation in training and validation loss of Iteration B in the 100
training epochs. In the illustration below, it can be seen that both losses converge early, with
the validation loss converging slightly faster and at a barely higher value than the training loss
in most of the epochs. This shows stability and robustness, indicating that the model improves
its performance throughout the training process.

Explainable AI - Shapley Values

For Dataset B’, both models produced the results of the features’ shapley values for each of the
top 20 anomaly rows detected. Table 5.4 illustrates the Shapley Values for the Isolation Forest
model, where the lower values represent a higher contribution of the feature to the record being
detected as an anomaly by the model.

TABLE 5.4: Shapley Values of the Isolation Forest on the output of Dataset B’

Index|RWA_LR_shap RWF_LR_shap|EAD_LR_shap|PD_LR_shap|LGD_LR_shap|OS_LR_shap MAX_LIMIT_LR_shap| EXPOSURE_LR_shap MATURITY_LR_shap PROVISIONS_LR_shap
40595 0.024 0.009 -0.024 0.002 0.006 -0.049 0032 0.023 0.000 0.014
3724 0051 0,016 0.028 0.002 0,015 0.042 0.010 0.025 0.000 0.015
6785 -0.003 0.009 0012 0.002 0.005 0018 -0.021 -0.008 0.000 0.016
24245 0.012 -0.019 -0.006 0.002 -0.016 -0.011 0.011 -0.003 0.000 0.001
6816 0.014 -0.020 -0.002 0.002 -0.015 -0.006 -0.017 -0.001 0.000 0.017
52287 -0.038 0.014 -0.030 0.002 0.012 0.024 0.010 -0.033 0.000 0.016

Next, the Shapley values for the entire data set are expressed in Figure 5.14, where PROVI-
SIONS, OS and RWA are the features with the highest contribution. Their value is calculated
as the average of the Shapley Values of a feature throughout the rows of the model’s output.

Results for Validation

The time-series log ratios data set (Dataset B’) has not been validated due to time-related issues.
This limitation should be considered when interpreting the results.
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Chapter 6

Validation

This chapter corresponds with the sixth phase of the Design Science methodology (Evaluation
and Validation). We outline the validation strategy, describe how the results are formatted,
and present two methods used for validation: internal data validation using ING’s data sets
and expert validation through Subject Matter Experts (SMEs). The use of these two methods
is needed to assess models’ performance in detecting both systemic and random data quality
issues.

6.1 Validation Strategy

We validate the model using both expert and non-expert input, leveraging internal data sets that
contain both systemic and random data quality issues. The internal data validation (non-expert)
focuses on assessing the model’s ability to detect potential data quality problems. In contrast,
expert validation is dedicated to evaluating systemic data quality issues, allowing for a more
precise understanding of the model’s effectiveness in identifying genuine data problems. The
performance of both methods is aggregated using the arithmetic mean.

6.2 Results’ formatting

The results of Iteration A consisted of the top 20 anomaly rows detected by Isolation Forest
and Autoencoders, together with a dataset resulted from the common records from the top 20
anomalies detected by each algorithm.

Table 6.1 illustrates these common rows, where besides the original columns, it contains the
anomaly probability calculated by each algorithm and the average probability, calculated as a
simple arithmetic mean between the probabilities of Isolation Forest and Autoencoder. Here,
the Anomaly Probability IF and Anomaly Probability AE columns are calculated by applying a
Min-MaxScaling transformation of the Anomaly score and Reconstruction error, respectively.

Evaluation Metrics
To evaluate the model’s performance, we use the following metrics:
e Precision: The proportion of detected anomalies that are actual anomalies [29].
e Recall: The proportion of actual anomalies that the model correctly identifies [29].

e F1-Score: The harmonic mean of precision and recall, offering a balanced measure of the
model’s effectiveness [35].

We chose only these metrics because of the limitations of the data set, caused by being only
able to obtain the True Positives expressed as correctly detected anomalies.
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TABLE 6.1: Common anomaly records detected by Isolation Forest and Autoencoders
(Iteration A)

Index | Anomaly Probability AE|Anomaly Probability IF | Average Probability
156874 0.8995 1 0.9498
43870 1 0.8728 0.9364
156873 0.8827 0.9589 0.9208
43871 0.9663 0.8539 0.9101
53459 0.6477 0.9845 0.8161
52731 0.9411 0.4849 0.7130
152127 0.6043 0.3591 0.4817
152128 0.5867 0.3333 0.4600
52730 0.6686 0.2209 0.4447
158138 0.6224 0.1118 0.3671
158139 0.6224 0.0962 0.3593

Results evaluation

Being an unsupervised solution, we did not rely on labels for the results. However, after further
inquiring inside ING, we found the data set where the Model Validation team stores the detected
exceptions, consisting of both random and systemic data quality issues, which means a limited
perspective of evaluation, as we cannot see whether the records were systemic issues or not. As
can be seen, Table 6.2 illustrates all the rows detected by both our algorithms that were found
inside the internal data set of ING. The entirety of the rows could be found in the data set,
giving a 100% precision, recall and F1 Score in detecting potential data quality issues.

Thus, the evaluation of the results has two methods. The first concerns potential (systemic
and random) data quality issues, where both Autoencoders and Isolation Forest performed 100%
in precision, recall and F1-score, shown in Table 6.3.

6.3 Internal Datasets

For Iteration A, Table 6.2 illustrates a relevant section of the internal data set of ING with
systemic and random data quality issues. As can be observed, all the records detected by
Isolation Forest and Autoencoders are present in the internal table.

TABLE 6.2: Internal results - systemic and random data quality issues for Iteration A

Index LGD PD RWF os MAX LIMIT | PROVISIONS EAD RWA MATURITY | EXPOSURE
53459 0.64622511 0.275 3.98010682 187046995.56 187046995.56 41587586.1 187046995.56 744467023.141 2.62498093 187046995.56
43870 0.001 0.00153432 | 0.00062104 | 23013940811.91 0.0 0.0 2301394081191 14292642.203 1.0 0.0
53460 0.64629412 0.275 3.96887773 168882133.48 168882133.48 36588976.21 168882133.48 670272538.919 2.54286066 168882133.48
152127 | 0.43571616 | 0.16323687 1122281973.4 1122281973.4 0.0 0.0 0.0 1.0 1122281973.4
152128 | 0.43571616 | 0.16323687 1105430427.0 1105430427.0 0.0 0.0 0.0 1.0 1105430427.0
80845 0.6104557 0.275 104746317.51 104746317.51 16355915.21 104746317.51 372241301.487 1.08772958 104746317.51
80846 0.61047317 0.275 103173506.52 103173506.52 15460765.31 103173506.52 365489991.266 1.00295674 103173506.52
158139 | 0.35890377 1.0 0.0 123919810.26 122871336.12 55587276.78 123919810.26 0.0 1.83974763 123919810.26
62828 0.4848407 1.0 4.16018135 60602251.53 60602251.53 10136914.86 60602251.53 252116356.78 2.54880681 60602251.53
161222 0.001 0.00233709 | 0.00081981 | 11328906261.72 0.0 0.0 11328906261.72 9287589.872 1.0 0.0
94527 0.730648 1.0 9.5714888 8731349.21 10000000.0 0.0 T27597.27 6964189.121 1.0 8731349.21
18682 0.4881906 1.0 6.39529686 0.0 1.0 0.0 0.1 0.6395 5.0 0.0
18690 0.4881906 1.0 6.39529686 0.0 1.0 0.0 0.1 0.6395 5.0 0.0
18685 0.4881906 1.0 6.39529686 0.0 1.0 0.0 0.1 0.6395 5.0 0.0

The performance score of this method is calculated as the average of precision, recall, and
F1 score, with a total score of 100%, averaging the results from Table 6.3.

For Iteration B, Table 6.4, similarly as for Iteration A, illustrates the unique rows detected
by both Autoencoders and Isolation Forest as Top 20 anomalies found in the internal data set
of ING, containing random and systemic data quality issues.
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TABLE 6.3: Model Performance Metrics for the First Validation on Iteration A

Model Precision | Recall | F1 Score
Isolation Forest 100% 100% 100%
Auto-encoders 100% 100% 100%

TABLE 6.4: Internal data quality issues - systemic and random data quality issues for
Iteration B

Index RWA LR| RWF LR| EAD LR| PD LR| LGD LR OS LR MAX LIMIT LR EXPOSURE LR | MATURITY LR| PROVISIONS LR
40595 | -17.54 0.48 -18.02 0 0.48 -18.02 -17.74 -18.02 0 0
3724 | 19.72 4.27 15.45 0 4.27 15.45 0 0 0 0
6785 | -10.86 0.61 -11.48 0 0.61 -11.48 -11.48 -11.48 0 0
24245| -6.07 3.57 -9.64 0 3.58 -9.64 0 -9.64 0 -4.07
6816 | -5.22 3.54 -8.77 0 3.54 -8.77 -8.77 -8.77 0 0
52287| 14.86 -0.01 14.86 0 0 0 0 14.86 0 0
49028 -11.10 -2.76 -8.33 0 -2.76 -8.33 -8.33 -8.33 0 0
10858 | -17.94 0.26 -18.20 0.42 -0.02 -8.81 -0.02 -8.81 0 0
60481 -9.79 0.01 -9.80 0.34 0 -9.80 0 -9.80 0 9.51
58384 | -8.65 -2.02 -6.62 0 -2.02 -6.62 0 -6.62 0 -10.90
32095| -4.29 3.57 -7.86 0 3.58 -7.86 0 -7.86 0 -2.36
39110 1.91 -0.01 1.92 0 -0.01 11.18 0 11.18 0 10.76
21782 1.79 0 1.79 0 0 9.97 0 9.97 0 9.88
10895| 8.66 -0.01 8.67 0 0 0 8.67 8.67 0 0
7589 | -9.05 0 -9.05 0 0 -0.33 -0.02 -9.74 0 -10.32
71344| 5.78 5.75 0.04 3.60 4.29 0.08 0 0 0 9.02
34326| -4.95 -3.73 -1.21 0 -3.73 -7.71 0 -7.71 0 0
32603| -9.19 -0.27 -8.92 -0.53 0 0 -8.92 -8.92 0 0
34408| 5.82 4.23 1.59 0 4.23 1.59 1.59 1.59 0 7.22
32461 | -8.78 -0.27 -8.52 -0.53 0 0 -8.52 -8.52 0 0
43948 -12.23 -0.99 -11.25 0 -0.99 -0.46 -0.46 -0.46 0 -3.62
36200| 0 0 0 0 0 0 -16.52 0 0 0
35876 | -7.29 0 -7.29 0 0 -7.29 -7.29 -7.29 0 0
25517| 0 0 -0.02 0 0 -0.02 -16.09 -0.02 0.22 0.10
25516| 0 0 -0.02 0 0.19 -0.02 -16.03 -0.02 0.16 0.03

6.4 Subject Matter Expertise (SME)

The second evaluation consists of Subject Matter Expertise (SME) answers for the top 3 cus-
tomers, corresponding to the first six rows of the common results from the non-stabilized version
of the model from Table 6.5. The first two rows, corresponding to the indexes 156873 and 15687/
correspond to the first customer.

TABLE 6.5: Initial Results sent to the SMEs

Index | LGD PD RWF oS MAX LIM | PROVISIONS EAD RWA MATURITY | EXPOSURE
156873 | 0.3943 1 1.299 2.61E+408 2.48E-+08 76977010 2.61E+08 | 3.39E+08 1 260821951
156874 | 0.3971 1 1.422 2.64E+08 2.48E-+08 76081468 2.64E4+08 | 3.75E+08 1 263697304
52730 | 0.4840 1 0 1.24E4-08 1.24E4-08 65946362 1.24E4-08 0 0.247 124000000
52731 0.4840 1 0 1.24E4-08 1.24E4-08 98108901 1.24E4-08 0 0.162 124000000
16376 | 0.0014 | 0.000683 | 0.000491 | 1.44E+10 1.44E+10 0 1.44E410 7080076 1 0

16377 0.001 0.001009 | 0.000464 | 1.4E+410 0 0 1.4E+10 6495068 1 0

The expertise’s response stated that one out of three customers was indeed a systemic data
quality issue, presented in Table 6.6.

To evaluate the performance in this step, we use a stricter evaluation, which implies calcu-
lating the percentage of the rows confirmed by the experts as systemic data quality issues. Table
6.5 shows that only two of six records were confirmed as systemic data quality issues, giving a
performance score of 33%.

The final score is calculated using a weighted average of the two scores: 100% for potential
data quality issues and 33.3% for actual (systemic) data quality issues. The final result of 66.5%
shows a relative imbalance in the ensemble solution, where both models perform excellently in
detecting potential data quality issues. However, in terms of real (systemic) data quality issues,
the ensemble shows a much lower performance of 33.3%, indicating limitations in relying solely
on Al models without expertise, a fact discussed more in detail in Chapter 7.
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TABLE 6.6: Feedback received from the SMEs for the top 3 customers detected by both

models
Expert Responses
e Customer 1 - "Don’t see an issue here. It is a defaulted

customer, i.e. PD is 100%. 1In these cases, RWA can be
higher than limitoutstanding. Defaulted customers are
usually subject to individual provisioning, i.e. based on
expert judgement on deal by deal basis."

e Customer 2 - "Also a defaulted customer, i.e. PD is 100%. On
the contrary, having zero RWF and RWA seems to be an issue.
The transaction is not fully provisioned."

e Customer 3 - "There seems to be an issue. I don’t understand
where OS R is coming from, in [main dataset] I see zero
outstanding. There are covers reported in [main dataset]
in a similar amount (but not the exact amount). But also
in [main dataset], I can see reported RWA R (amount not
matching figure in the table, but close). Having RWAs here
seems to be an issue, I would not expect this for a zero
limit with zero outstanding."

6.5 Explainable Al

Implementing Explainable Al through the Shapley Values detected the features that contributed
the most to the detection of a specific record and the entire data sets for each of the Isolation
Forest and Autoencoders models. In Table 5.2 it can be seen for the top anomaly record the
higher contribution of RWA, PROVISIONS and PD features with a lower score for the Isolation
Forest model. Outstanding (OS) is the feature with the highest contribution, for the third and
fourth record, with a Shaply Value of -0.07, while Exposure at Default (EAD) shares the same
value of -0.07 for the fourth row. Exposure is the feature with the second highest Shapley Value
in the data set, with the highest contribution of -0.06 for the 8t most anomalous record.

Figure 5.10 illustrates the overall contribution for the top 20 anomalies detected by Autoen-
coders. Here, the Loss Given Default (LGD), Risk Weight Factor (RWF) and Probability of
Default (PD) are the features with the highest contribution in the output data set, calculated
using a mean function.

Using, thus, Explainable Al the data analysts can easily spot and fix the data quality issues.
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Chapter 7

Final Remarks

This chapter concludes the thesis paper, discussing its results, limitations, and possible directions
for future work.

7.1 Conclusions

In this paper, we experimented with a parallel ensemble Machine Learning model, combining
Isolation Forest and Autoencoders to detect anomalies and enhance the data quality detection
of a credit risk data set inside a top banking institution (ING). By classifying anomaly detection
algorithms from three perspectives, namely methodology, outlier type, and technique, this paper
provides a comprehensive review of the current literature. The thesis then reviews and selects
the most promising anomaly detection techniques discussed while performing experiments with
two chosen methods. A Machine Learning model (Isolation Forest) and a Deep Learning model
(Autoencoders) were used for experiments on an actual credit risk data set of one of Europe’s
most significant financial institutions.

While Isolation Forest exhibited robust performance, Autoencoders required several rounds
of hyper-parameter tuning to achieve stability. Both models successfully detected potential data
quality issues (anomalies) 100%, as confirmed by ING’s internal data sets, which contain both
random and systemic data quality issues.

Despite the promising results on the internal datasets anomaly detection success rate, the
systemic data quality detection rate (2/6 true positives) remains suboptimal. These results are
due to challenges in feature selection or insufficient hyperparameter tuning. Further adjustments
to the model’s parameters or incorporating domain-specific rules could help address this issue.

Considering the research goals identified in Chapter 1, this thesis implements a proof of
concept that reduces the effort required by data analysts to detect data quality (DQ) issues.
By leveraging a combined Machine Learning solution and Explainable Al, we provide a novel
approach to improve both efficiency and interpretability in anomaly detection within banking
institutions.

Answers to the Research Questions

RQ1: Many financial institutions still rely on manual, rule-based data quality detection, which
is both time-consuming and prone to human error. Our findings demonstrate that Al-driven ap-
proaches significantly enhance efficiency by reducing execution time to under a minute, enabling
real-time anomaly detection. Compared to traditional methods covered in [4],[6], [23] Al-based
techniques also allow for greater scalability, automation, and adaptability in detecting diverse
data quality issues.

RQ2: The automation of data management processes through AI improves the timeliness
of data quality issue detection. This directly addresses the challenges outlined in McKinsey’s
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report [6], where periodic audits often introduce delays in identifying and resolving data issues.
Our approach accelerates data quality management by continuously monitoring financial data,
reducing dependency on scheduled audits, and enabling proactive corrections.

RQ3: One major limitation of traditional Al models in banking is their lack of interpretability
[24]. To address this, we integrated Explainable Al techniques, providing insights into how
anomalies are detected. This question is addressed through the integration of SHAP values and
feature importance scores to provide transparency into model decisions. By coping with the
black-box nature of Machine Learning models, analysts can better understand AI decisions and
fine-tune detection thresholds, enhancing trust and usability in real-world financial applications.

RQ4: While the model demonstrates good anomaly detection performance, its computational
complexity could be a concern for real-time deployment. A trade-off analysis indicates that the
benefits in detection accuracy justify the increased resource demands, but optimizations for
runtime efficiency are necessary. However, our research demonstrates the benefits of a parallel
ensemble approach using Isolation Forest and Autoencoders, which enhances anomaly detection
performance [42],[19]. The combined method allows for a comparative evaluation, leading to a
more representative subset of anomalies being flagged for further validation.

RQ5: Existing classifications of anomaly detection methods are fragmented and inconsistent
across different domains. To address this, we developed a structured taxonomy based on three
perspectives: methodology, outlier type, and technique. By synthesizing insights from multiple
sources [31, 34, 27|, this thesis provides a standardized classification framework, improving the
applicability of anomaly detection techniques across various financial and non-financial domains.

7.2 Limitations and Future Work

This thesis has the following limitations that could be addressed in future research:

1. Limited number of algorithms - The study contains experiments using only two
Machine Learning methods: Isolation Forest and Autoencoders. These algorithms were
selected based on their proven efficacy in anomaly detection tasks. However, the inclusion
of additional algorithms could further improve the model’s performance and robustness.
In particular, a third selected algorithm, e.g. Generative Adversarial Networks (GANSs),
could offer significant advantages. GANs, with their complex structure and ability to
generate synthetic data, are well-suited for anomaly detection in high-dimensional datasets,
such as those typically found in banking. By leveraging the power of GANs to generate
realistic data points, anomalies may be more easily identified. Furthermore, GANs can be
combined with Autoencoders, as proposed by Du et al. [8], illustrated by Figure 3.7. This
architecture could potentially enhance anomaly detection by improving the model’s ability
to differentiate between normal and anomalous data, particularly in cases of complex,
nuanced data distributions.

2. Root cause analysis - In this current version, the models can accurately detect records
that have potential data quality issues. However, in addition to detecting systemic data
quality issues, the models must track the starting point of such issues to further improve
the detection process in a banking institution due to the vast amount of data sets.

3. Limited feedback from experts - Although the method performed excellently in detect-
ing potential (random) data quality issues from the commonly detected anomalies, only the
first six records received feedback from the experts, making it hard to assess the method’s
efficiency. Moreover, due to time considerations, the final robust version of the model and
the time-series data set (Dataset B’) have not been managed to be validated by the experts.
Thus, including a more significant amount of records in the data sets with expert feedback
will improve the ability to assess the algorithms in detecting systemic data quality issues
in particular.
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4. Limited training and test sets - As the ensemble model has been trained and tested
on a small chunk of the credit risk data set within ING, changing this approach to using
more diverse data sets will improve the model’s performance. This can be achieved by
changing the training strategy to feeding the Autoencoder model with training and test
sets from different data sets. This corresponds with the extraction of regular records in the
autoencoders model.

5. One ensemble learning method - In this thesis, only the parallel ensemble learning
method is implemented, where both models independently detect the anomalies. Imple-
menting the ensemble method using the boosting or stacking method (see Section 3.2)
could also generate better results by using a second model in the ensemble to train the
errors made by the first model.

Finally, this study underscores the potential of Machine Learning methods for improving the
detection of data quality issues in financial institutions. However, it also highlights the irre-
placeable role of human expertise. Integrating this semi-automated system within a financial
institution is a significant undertaking that requires time and resources, as safety is often prior-
itized over innovation. Therefore, implementing the suggested next steps, alongside conducting
technical workshops within the bank to showcase the system’s impact, is crucial to achieve the
ultimate objectives.
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