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Summary
As robotic systems become more integrated into dynamic environments, enabling non-expert users
to intuitively program robots remains a challenge. Learning from Demonstration (LfD) offers a
promising solution by allowing robots to acquire skills through human demonstrations instead of
explicit programming. Effectively storing and exploiting past user demonstrations is a fundamen-
tal challenge. A solution to this challenge is the organization of demonstrations in a skill library.
However, this requires robust segmentation, classification, and novelty detection techniques to en-
sure effective learning and reusability.

This thesis presents a modular framework for skill recognition, segmentation, and novelty de-
tection. The framework enables robots to identify and classify demonstrated motions by matching
them to skills in a predefined skill library, ensuring that non-expert users can intuitively program
robotic tasks. The system incorporates time series classification using Detach-ROCKET, change
point detection for motion segmentation, and novelty detection to identify previously unseen skills.
User confirmation is integrated into the process to improve robustness and ensure reliability despite
imperfections in human demonstrations.

The framework is evaluated using position data of motion demonstrations recorded with the Franka
Research 3 robotic arm via kinesthetic teaching. Results indicate that Detach-ROCKET with
MINIROCKET kernels provides high classification accuracy while maintaining computational ef-
ficiency. Segmentation methods, including Pruned Exact Linear Time (PELT) segmentation and
binary segmentation, exhibit robust segmentation. Additionally, novelty detection using Local
Outlier Factor (LOF) effectively identifies new skills, enabling the expansion of the skill library.

By improving skill recognition and segmentation, this framework enhances the usability of LfD,
making robot programming more accessible to non-experts. The relevance of this thesis extends
beyond technical challenges. It also plays a role in making robotics more accessible in industries
facing labor shortages. Future work could explore integrating additional contextual information
and alternative teaching methods to further refine the learning process.
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Chapter 1

Introduction
The increasing complexity of robotic applications has driven the need for more flexible and intu-
itive programming methods. While robots have traditionally been used in industrial environments
for pre-programmed, repetitive automation tasks, they are now being introduced into dynamic set-
tings where they interact with humans and adapt to changing conditions. This shift has increased
the demand for skilled robot programmers. However, traditional programming methods require
specialized expertise, making it difficult for non-experts to teach robots new tasks. This knowledge
barrier limits the accessibility and adaptability of robotic systems, particularly in industries where
frequent task updates are needed.

To address this challenge, Learning from Demonstration (LfD) has emerged as an alternative ap-
proach, allowing robots to acquire new skills through human demonstrations rather than explicit
coding. By eliminating the need for expert programming knowledge, LfD makes robot training
more accessible to non-expert users. However, despite its advantages, LfD presents challenges in
efficiently segmenting, recognizing, and reusing previously learned skills. Without effective frame-
works, robots struggle to exploit past demonstrations, leading to inefficient learning processes and
limited adaptability.

In literature, various terms are used to address the concept of ’Learning from Demonstration’, such
as Programming by Demonstration (PbD), Imitation Learning (IL) and Learning from Observation
(LfO). Throughout this report, the term LfD will be used to encompass all synonymous terms
that refer to this concept.

This study set out to develop a modular framework that integrates time series classification, seg-
mentation, and novelty detection to enhance the intuitiveness and efficiency of task-level robot
programming for non-expert users. By addressing key challenges in motion segmentation, recogni-
tion, and skill organization, the proposed framework seeks to improve the usability and practicality
of LfD-based learning systems.

The remaining part of this report proceeds as follows: Firstly, Chapter 2 examines the context and
aims of the project in more detail. Chapter 3 provides the background information relevant to the
project and findings regarding these topics in literature. Chapter 4 describes the framework that
has been designed and its components. This will be followed by an evaluation of components of the
framework in Chapter 5. Finally the limitations, potential improvements, and future extensions
of the framework, as well as recommendations for further research will be discussed in Chapter 6.
The final chapter provides a conclusion.
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Chapter 2

Problem Definition
As robotics technology continues to evolve, robots are being integrated more and more into a wide
range of applications beyond traditional industrial automation. In dynamic environments, robots
are expected to perform complex tasks, often requiring adaptability and interaction with human
operators. One approach to enabling such adaptability is LfD, a technique in which robots acquire
new skills by observing and mimicking human demonstrations. This approach reduces the need
for explicit programming, making robot training more accessible to non-experts.

Beyond the technological benefits, LfD enabling non-expert users to program robots has significant
implications for addressing labor shortages and accelerating industry [1], [2]. Many industries are
experiencing a shortage of skilled robotic programmers [3]. By allowing non-specialists to intu-
itively program robots to perform tasks, LfD can help bridge the gap between workforce demand
and automation, ensuring that businesses remain productive even with a limited pool of skilled
programmers [4].

However, for LfD to be practical in real-world scenarios, it must go beyond simple motion repli-
cation. Demonstrations need to be processed into structured, reusable skills, allowing robots to
generalize from past experiences and efficiently learn new tasks [5]. Without an effective way to
recognize, segment, and store these skills, LfD systems remain limited in scalability and usability.
This research focuses on addressing these challenges in the context of the Franka Research 3 robotic
arm at the Nakama Robotics Lab at the University of Twente.

There are different methods to perform demonstrations to the robots in LfD, e.g. kinesthetic
teaching, teleoperation, and passive observation [4]. At the Nakama Robotics Lab, kinesthetic
teaching is used to demonstrate movements to the robotic arm. Kinesthetic teaching is a method
in which the demonstrator physically guides the robotic arm through the desired motion. The
kinematics of each joint and the end effector are recorded.

2.1 Key challenges and limitations
A fundamental challenge in LfD is ensuring that demonstrated movements can be effectively stored
and reused in future tasks. To achieve this, a skill library can be created, containing templates of
skills that the robot has previously learned [1]. Each skill in this library represents a building block
that can be used to construct more complex tasks. However, for this approach to be effective, these
skills must be meaningful, i.e. they should be modular, parameterizable, and generalizable across
different contexts. If skills are not structured properly, they may be difficult to reuse, limiting the
flexibility of task composition. The challenge lies in automatically recognizing relevant skills from
demonstrations and matching them to existing templates in the skill library.

A second challenge is handling non-expert demonstrations. Non-expert users may have a clear
understanding of what a robot should do but often lack the precision to perform perfect demon-
strations. This creates inconsistencies in recorded movements, making it difficult for the system to
extract reliable skills. If the system were to rely solely on raw demonstrations, it would introduce
variability and noise, leading to inconsistent task execution. To address this, the LfD framework
should allow non-expert users to demonstrate tasks intuitively, while an algorithm maps these
imperfect demonstrations to standardized skill templates. This would ensure that even if different
users demonstrate the same task with variations, the robot can still recognize the intended skills
and execute them consistently.

Additionally, demonstration often consists of a sequence of multiple skills rather than a single
isolated movement. To interpret such demonstrations correctly, the system must segment them
into distinct skills. This segmentation process is crucial for enabling robots to understand com-
plex tasks as a composition of reusable skills rather than a single motion trajectory. Additionally,
non-expert users may attempt to demonstrate movements that do not exist in the skill library.
In such cases, the system must be able to detect novel skills and give the possibility to add these

2



2.2. User Roles 3

to the skill library. Without robust segmentation and novelty detection, the system risks either
misclassifying movements or failing to accommodate new skills, thereby limiting its adaptability.

2.2 User Roles
The system is designed to support two primary user roles:

• Expert demonstrator: The expert demonstrator is a professional within a certain domain
and determines which low-level tasks should be present in a skill library in order to compose
more complex high-level tasks. The expert demonstrator is assumed to be able to demonstrate
these low-level tasks (or skills) in a desired manner such that the skill is executed with
sufficient accuracy and is meaningful for people.

• Non-expert operator: This user has enough knowledge to know which low-level tasks (or
skills) are needed to compose more complex high-level tasks. However, this person may not
have the skills to flawlessly demonstrate these tasks himself. The non-expert user interacts
with the system via, e.g. a GUI or physical guidance of the robotic arm to combine skills
from the skill library into more complex tasks.

2.3 Project Scope
To address these challenges, this project aims to develop a modular framework that enables recog-
nition, segmentation, and novelty detection for robotic skill acquisition. The specific objectives of
the framework are:

• A demonstration of a single skill performed by a non-expert user should be recognized as one
of the template skills from the skill library, i.e. skills need to be classified.

• A demonstration of a sequence of skills performed by a non-expert user should be recognized
as a sequence of template skills from the skill library, i.e. a sequence needs to be segmented
and segments need to be classified.

• When the non-expert user demonstrates a skill that does not resemble a skill already in the
skill library, this should be detected and the skill can be added to the skill library.

These objectives should contribute to a more intuitive way of programming a robotic arm for
non-expert users, the re-usability of expert demonstrations, and getting more insights into the
task execution of the robot. All this might lower the barrier to using this type of equipment
in various settings. As mentioned, the demonstrations considered in this project are performed
using kinesthetic teaching. The time series position data of the end-effector is used for further
processing. However, note that there is potential to extend the framework to also work for other
teaching methods and data inputs.



Chapter 3

Background
This project aims to use time series data of the end-effector position of a robotic arm to segment
and classify data to contribute to an intuitive way to teach robots new tasks. Before diving into
the content of the project, relevant topics will be discussed to ensure a proper understanding of
related fields.

In LfD, human demonstrations often exhibit variability, particularly when performed by non-
expert users. To ensure robust and consistent robot execution, this project assumes that an expert
has predefined a skill library, which serves as a reference for motion recognition. Given a user
demonstration, the goal is to segment and classify the demonstrated actions, mapping them to the
most appropriate skills from the library. This approach refines imperfect demonstrations, ensuring
that executed motions adhere to predefined standards. To achieve this, several key techniques
are employed: Time Series Classification (TSC) for skill recognition, change point detection for
segmenting demonstrations, and novelty detection for identifying actions not present in the skill
library. This chapter provides an overview of these techniques and their relevance to the problem
at hand.

3.1 Learning from Demonstration
The applications of robotics are emerging in many fields, ranging from industrial applications such
as manufacturing to healthcare. In many cases, humans are still involved since they have to col-
laborate with or at least instruct or program the robots. It is often attempted to combine the
physical capabilities of robots with the cognitive abilities of humans. This is what the LfD frame-
work also attempts to do. In LfD, robots learn to execute new tasks using physical demonstrations
performed by humans. There is no need for a robotic expert to program the robot to learn new
tasks. This allows people without robotic or programming expertise to teach the robot new tasks.
Furthermore, the robot learns from samples that show successful behavior instead of having to
figure out the desired behavior itself [6]. Therefore, exploiting expert demonstrations has become
one of the most effective ways for robots to acquire skills [7].

Much research on the LfD framework is done in the field of manufacturing and, specifically, as-
sembly. A major shift from mass production towards mass customization can be observed in the
field of manufacturing. This increases the need for flexible and adaptable robotic systems to meet
the demands of the market [8]. LfD is considered to be a useful solution for this. Robots can
be applied not only in industrial settings but also in settings where collaborative robots operate
alongside humans. The application of LfD is also considered for these kinds of complex scenarios
with uncertain and changing environments [2].

As mentioned, LfD allows people without programming expertise to easily teach and use robotic de-
vices. Working with the LfD framework should therefore be accessible and intuitive for non-expert
operators. In [5], the authors aim to bridge the gap between research and practice by providing
practical guidelines on deciding what to demonstrate and how to demonstrate depending on the
desired task. They conclude that demonstrating sequences of skills that together form a simple
task can be efficient. However, for more complex tasks this might not be feasible. In these cases,
it is more efficient to divide the task into smaller skills and demonstrate these single skills one by
one. Furthermore, they give an overview of several learning methods that are commonly used in
LfD, like movement primitives, reinforcement learning, and Gaussian mixture models. Lastly, it
is discussed how the LfD learning process can be further refined in order to increase its generaliz-
ability, accuracy, and robustness. Enhancing the learning process and generalization performance
seeks to align LfD algorithms more closely with human cognitive learning abilities. Improving the
accuracy could be done by making the teaching methods even more intuitive and accessible to
increase the precision of the demonstrations.

3.1.1 Teaching Methods
There are several ways to perform demonstrations to the robots in LfD. The methods most
prominently described in literature are kinesthetic teaching, teleoperation, and passive observation
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3.1. Learning from Demonstration 5

as shown in Figure 3.1 [4]. Each of these methods has its own advantages and disadvantages.
Therefore, it is important to consider which method is best to be used in certain situations and
under certain circumstances [1]. In addition, it is of great importance that the demonstrator
is an expert in his field since suboptimal demonstrations are likely to lead to suboptimal robot
performance.

Figure 3.1: Common teaching methods in LfD [5]

Kinesthetic teaching is a method in which the demonstrator physically guides the robotic arm
through the desired motion. The demonstration is performed in the configuration space of the
robot. The kinematics of each joint and the end effector are recorded. A disadvantage of this
method is that it can be difficult for the user to accurately perform the desired motion because
it can be difficult to manually reach certain positions. Furthermore, the demonstrator’s motions
might be influenced by the kinematics of the robot.

When using teleoperation, the human demonstrator does not physically interact with the robot.
Instead, the demonstrator controls the motions of the robot remotely via an input device, such as
a haptic interface or controllers. This requires a robust communication system for control signals
and feedback. This method can demonstrate a wider range of tasks than kinesthetic teaching
because the user is not constrained to kinematic limitations [9]. Furthermore, teleoperation does
not require the user to be in the same room as the robot. However, it requires a more complex
setup including a control and communication interface.

The robot acts as a passive observer in the third commonly-used teaching method in LfD [4].
The demonstrator performs a task using his own body and possibly additional sensors while the
robot captures relevant data. Data can be captured in various ways, e.g. using cameras, motion
capture systems, and sensors. This barely requires training for the demonstrator. The downside of
this is that it can be difficult to map the actions of the demonstrator to useful, abstract observations
that will be used as input data for the learning algorithm.

3.1.2 Intuitive Task-level Programming and Skill Libraries
Task-level programming is commonly used in LfD to compose tasks from one or more predefined
skills. It provides an intuitive and flexible approach to robot programming and can be well used
in combination with the fast and intuitive teaching approach offered by the LfD framework [10].
Several robotic platforms, such as, Franka Desk [11], ArtiMinds RPS [12], and RAZER [13], incor-
porate task-level programming, allowing users to construct skill sequences by arranging predefined
skills. Task can be composed by dragging skills into a sequence and kinesthetic teaching can be
used for parametrization.

Movement primitives and Gaussian mixture models are widely used to model recorded motions.
While simple tasks can be represented as a single skill encoded in a single movement primitive,
complex tasks benefit from skill sequencing. This approach enables the reuse of generalized skills
across multiple tasks, improving adaptability and efficiency. Furthermore, modifying a planned
movement becomes easier by replacing one of the skills within the sequence with another one.
To facilitate this modular approach, skill libraries serve as repositories for storing learned skills,
enhancing reusability and scalability [14].

Several studies have explored methods for integrating skill segmentation, recognition, and task-level



6 Chapter 3. Background

programming. In [15], the authors developed a framework that determines the optimal segmenta-
tion for a demonstration while simultaneously learning the movement primitives for the segments
in an iterative manner. These movement primitives are then stored in a movement primitive library
for future use. The correct segmentation is not known beforehand. Therefore, this is treated as
a latent variable. A framework that combines task-level programming with semantic skill recog-
nition is proposed in [10]. Tasks are demonstrated via kinesthetic teaching and a semantic skill
recognizer is used to extract skills and their parameterization. This process involves constructing
a world model that captures object relationships, including relative and absolute poses. The rec-
ognized skill sequence is presented in the task-level programming interface. Similarly, in [16], an
ontological knowledge base replaces the world model to encode task-specific knowledge and rela-
tionships between objects. Schou et al. [2] employ task-level programming in an industrial setting.
Pre- and postconditions specified for each skill are used to check if a skill can be executed safely
and predictably. Cameras, sensors, and information from previous skills is exploited to get insights
into the current state.

3.2 Time Series Classification
TSC is used to predict the class for a given instance of time series data. There are many different
methods to extract features from time series and classify time series. The various TSC algorithms
can be divided in several categories like distance-based, feature-based, interval-based, shapelet-
based, dictionary-based, convolution-based, deep learning-based, and hybrid approaches [17].

Time series can be characterized as univariate, involving a single observed variable per time point,
or multivariate, where multiple variables are recorded simultaneously. While most research has
focused on univariate time series of uniform length, real-world scenarios often involve multivari-
ate time series with varying lengths [18]. Multivariate Time Series Classification (MTSC) is less
understood and most classifiers have not been designed to deal with this kind of data [19].

3.2.1 Varying length time series
Different cases of time series can differ in the number of time points in the series. The most com-
mon causes of varying lengths in time series are 1) variations in sampling rate and 2) variations
between the start and the end points of a time series relative to one another [19]. Many of the
frequently used time series classification methods cannot handle this and require the input time
series to be of equal length. Therefore, a common strategy to deal with varying length time series
is to preprocess the time series in order to ensure equal lengths. Consequently, conventional TSC
methods can be applied to the uniform time series.

One technique to ensure equal length time series is uniform scaling. This means that shorter
series will be interpolated and longer series will be downsampled with respect to another time se-
ries. These techniques are specifically efficient if the variation in length is caused by varying sample
rates. The sampling rate of a time series may remain constant or vary throughout its duration
relative to another time series. The latter can, for example, happen when a user unintentionally
accelerates during the recording of a motion.

Another method to equalize time series is padding shorter time series with low amplitude noise. A
benefit of this method is that the information in the original series is preserved. The low amplitude
noise can be added at the start of the time series, at the end, or both. This method appears to be
less successful when the length of the time series differs by a lot.

The most suitable preprocessing method depends on the cause of varying lengths and the clas-
sifier used. Therefore, matching the preprocessing technique with the classifier is essential to
maximize classification accuracy for the given data type [19].

3.2.2 Random Convolutional Kernel Transform (ROCKET)
One of the TSC methods proven to be very time-efficient and accurate is ROCKET. ROCKET is
a convolution-based classification method developed by Dempster et al [20]. It has been inspired
by Convolutional Neurnal Network (CNN)s which are extensively used for image recognition. Con-
volutions are used to transform the time series data and pooling operations extract features that
will be used for classification. The convolutional kernels used in the ROCKET algorithm are char-
acterized by their length, weights, bias, dilation, and padding. These parameters are drawn from
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random distributions. More details on the characteristics of the kernels, as well as the ROCKET
transform, are given in Appendix B. The standard ROCKET model uses 10,000 random kernels
that convolute the input time series. Per kernel, the maximum values (MAX) and the proportion
of positive values (PPV) are extracted. These features are used to train a simple linear classifier.
This method has proven to achieve state-of-the-art performance while requiring less training time
than methods that achieve similar performance [20]. Another advantage of this method is that no
assumptions are made about the nature of the time series data.

ROCKET was initially developed for univariate time series but has been extended to support
multivariate time series. For multivariate data, kernels convolute with a random combination of
channels. The convolution of the data with the kernel is equivalent to the dot product of two ma-
trices. For each kernel, the maximum value and PPV are computed across its assigned dimensions.

There are several variants of ROCKET that use the same basis principle. A set of kernels is
used to transform the time series input to a vast amount of features. Subsequently, a linear
classifier is fit using this high-dimensional data. MINImally RandOm Convolutional KErnel
Transform (MINIROCKET) is a faster version of ROCKET [21]. Its accuracy is comparable to
the accuracy of the original ROCKET algorithm. This version of ROCKET aims to reduce ran-
domness and speed up the data transformation. Firstly, MINIROCKET uses a smaller, fixed set of
kernels. All kernels in MINIROCKET contain nine values. This means that there can be 29 = 512
different kernels. MINIROCKET uses the subset of 84 kernels of which six weights equal α and
three weights equal β. The weights have either value α = −1 or value β = 2. The choice of these
values is arbitrary, the only constraint is that the sum of the weights should be equal to zero.
This results in less computational effort while maintaining sufficient accuracy. Using these binary
kernels allows to perform the convolution operation using additions. This also contributes to a
more efficient algorithm. Secondly, MINIROCKET only extracts the PPV from the transformed
data. Therefore, it relies on fewer features which simplifies the model. MINIROCKET can deal
with multivariate time series in a similar way as ROCKET.

Dempster et al. [20] [21] developed a second variant of ROCKET, called MULTIROCKET. This
variant extends MINIROCKET by using three additional pooling operators per kernel. Next to the
PPV, it uses the mean of positive values (MPV), the mean of indices of positive values (MIPV),
and the longest stretch of positive values (LSPV). Using more pooling operators increases the
diversity and expressiveness of the extracted features [22]. In addition, it does not only transform
the original time series data but also its first-order difference which estimates the first derivative of
the time series. These enhancements increase the classification performance of MULTIROCKET
compared to its predecessors at the cost of greater computational expense. The exact definition of
all pooling operators is stated in Appendix B.

All variants of ROCKET mentioned above share the same strategy, namely using random con-
volutional kernels and pooling operators to extract features. Even though this method has proven
to deliver great results, there are some downsides. Having a massive amount of random features,
not all extracted features might be relevant for the classification task. Even among the relevant
features, a significant portion may exhibit strong correlations. Therefore, the high number of fea-
tures causes more computational effort than necessary, could increase the risk of overfitting and
a substantial proportion of randomly generated kernels have a trivial impact on the classification
results. These are driving factors to investigate ways to reduce the number of features by elimi-
nating irrelevant features or kernels.

In [23], Selective RandOm Convolutional KErnel Transform (S-ROCKET) is introduced. This
variant of ROCKET selects the most important kernels and prunes the less relevant ones while
maintaining classification accuracy. It uses a three-step pipeline consisting of 1) pre-training, 2)
kernel selection, and 3) post-training. Similar performance was achieved with less than 40% of
the original kernels. However, the second step in the pipeline requires many iterations and is
therefore time-consuming. Chen et al. [24] proposed Pruning RandOm Convolutional KErnel
Transform (POCKET). This method first removes features that hardly contribute to the classifi-
cation and then eliminates the corresponding kernels as well. This approach is faster than directly
evaluating the kernels. The classifier is refit on the remaining features. Chen et al. proved that
POCKET, similarly as S-ROCKET can maintain the performance of ROCKET while pruning
more than 60% of the kernels. Recently, Uribarri et al. [25] [26] introduced another method, called
Detach-ROCKET, which also has the objective to reduce the number of features. They propose
a new algorithm, called Sequential Feature Detachment (SFD), to perform feature selection. It-
eratively, features are ranked on importance, and a fixed percentage of the features is removed.
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After each iteration, the accuracy of the model is evaluated using a validation set. The optimal
proportion of pruned features is determined by an optimization problem. This novel method can
eliminate up to 98% of all features without a significant loss of accuracy. However, the training
time is increased by almost 20% compared to ROCKET.

3.3 Change Point Detection
Change point detection involves identifying transitions within time series data. Change point
detection is used in various fields and has many applications, including monitoring medical condi-
tions [27], detecting climate change [28], [29], and analyzing human activity [30]. Time series can
be characterized as a sequence of distinct, non-overlapping segments with unique characteristics.
Each segment could, for example, represent a motion. Insightful features can be derived from
the segments once their temporal boundaries are identified [31]. There are two main categories in
change point detection methods: 1) online methods, where changes are detected as soon as they
occur, and 2) offline methods, where changes are detected after the entire time series has been
collected.

The ruptures python package is a widely used tool for offline change point detection [32]. It
provides an accessible and modular framework for applying various detection algorithms to multi-
variate time series data.
The developers of the rupture package argue that change point detection can be seen as a model
selection problem. The best possible segmentation should be chosen so that a cost function is min-
imized. The most suitable cost function depends on the nature of the task and the prior knowledge
available about it [31]. Ruptures has implementations of both parametric cost functions and non-
parametric cost functions. Parametric cost functions assume a specific data distribution and rely
on parameters, such as mean and variance, to model changes. This offers computational efficiency,
but limited robustness if the assumed distribution does not match the actual data. On the other
hand, non-parametric cost functions do not make assumptions about data distribution. Data-
driven methods, such as empirical distributions or kernel-based measures, are used. This provides
greater flexibility and robustness at the cost of greater computational complexity.

The ruptures package implements various change point detection methods, including search meth-
ods commonly described in the literature, such as:

• Linearly penalized segmentation [33]; Pruned Exact Linear Time (PELT)computes the
optimal segmentation that minimizes the cost for a given cost function and penalty level. In
contrast to the dynamic programming method, this method can be used when the number
of change points is not known beforehand. It includes a pruning step which should reduce
the computational cost of the method.

• Binary segmentation [34]; This is a greedy sequential method. It tries to find the change
points that minimize the costs. The time series data is split up at the location of the detected
change point. The number of change points should be known beforehand and is used as input
for this method. The change point detection process is repeated until a stopping criterion is
met.

The search methods can be used in combination with any of the cost functions implemented in the
rupture package or a custom cost function can be defined.

3.4 Novelty Detection
Novelty Detection (ND) aims to identify whether new observations belong to novel classes that
have not been previously seen in training data. The term ’novelty detection’ is often used inter-
changeably with the terms ’outlier detection’ and ’anomaly detection’ because they are related.
However, they have different meanings. Both ND and outlier detection could be considered as
subsets of anomaly detection [35]. Anomaly detection encompasses any method for detecting data
points that deviate from the expected observations. The difference between ND and outlier detec-
tion is that the former focuses on identifying unlabeled, but valid deviations. It assumes that the
novelties are structurally different from the training data and that the training data is not polluted
by outliers. Outlier detection, on the other hand, aims to detect extreme, potentially erroneous
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points or patterns that are often caused by noise or measurement errors [36]. Additionally, in ND
the model can often be updated with the newly detected observations. This is not the case for
outlier detection [37].

ND algorithms usually first use the original training data to fit a classifier model that is capa-
ble of classifying known classes. A popular ND method is the Local Outlier Factor (LOF). This
method measures the ratio between the local density of a given sample and the local densities of
its k-nearest neighboring points [38].

For each of the k-nearest neighbors of the potential novelty, p, the reachability distance is cal-
culated. The reachability distance of point p with respect to point o is defined as:

reach-distk(p, o) = max{k-distance(o), d(p, o)} (3.1)

k-distance(o) is the distance of o to its k-nearest and d(p, o) is the distance between point p and
point o. Consequently, the Local Reachability Distance (LRD) can be calculated for point p and
its k-nearest neighbors. The LRD is a measure of the density of the k-nearest neighbors. It is
the inverse of the sum of all reachability distances of neighboring points. So, a low reachability
distance means a high density. The LRD is defined as:

LRDk(p) = 1/


∑

o∈Nk-distance(p)

reach-distk(p, o)

|Nk-distance(p)|

 (3.2)

in which Nk-distance is the k-distance neighborhood of point p.

The LOF, which is the ratio of the average LRDs of the neighboring points and the LRD of
the potential novelty, can be calculated with:

LOFk(p) =

∑
o∈Nk-distance(p)

LRDk(o)
LRDk(p)

|Nk-distance(p)|
(3.3)

Points located within a cluster will have a LOF value of approximately one or less than one. For
a value larger than one, the object is considered to be a novelty.
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Framework
The objectives of the project included designing a framework that can 1) recognize skills, 2) segment
sequences of skills, and 3) detect whether a skill has already been taught or not. In this chapter,
the developed framework will be discussed in detail. First, a general overview of the framework
will be given in Section 4.1, after which specific parts will be discussed more elaborately in the
remainder of the chapter.

4.1 General Outline
The framework is implemented in modular components. The main outline of the framework will
first be explained before diving deeper into the distinct components that form this framework.

4.1.1 Expert Demonstrations & Preprocessing
An expert user performs demonstrations of single skills relevant in a certain field. These recorded
skills are labeled and saved in a skill library. These time series data of the motions form the
basis for the framework. Therefore, skills in the skill library must be useful and meaningful in the
context of a certain field or task.

Before these demonstrations are further used, they are preprocessed. The time series in this
project are mostly of unequal length. Even if executed by the same person, the duration of the
motion is very likely to vary. All time series shorter than the longest one are interpolated to ensure
uniform length across the all time series. (Possibly, all motions are aligned along the same axis.)
Data is not aligned temporally, using for example Dynamic Time Warping (DTW). Differences
in timing are likely to occur during demonstrations and these imperfections should not hinder the
classification. Furthermore, temporal alignment using DTW is not possible when the class of a
motion is not known yet since DTW aims to find a minimal cost alignment between the time series
obtained by demonstration and a reference time series.

To reduce the need for extensive manual demonstrations by the expert and ensure the classifier
can handle imperfect demonstrations from non-expert users, data augmentation is applied after
preprocessing. This serves two main purposes: first, it artificially increases the number of training
samples, minimizing the effort required from the expert while enhancing the model’s robustness.
Secondly, by adding ‘imperfections,’ the classifier learns to recognize skills despite natural incon-
sistencies in demonstrations.

4.1.2 Time Series Classification
All time series used for training are transformed by convolving ROCKET kernels with the time
series data. The maximum values and the proportion of positive values are extracted for each
kernel. The transformed data set has shape (nsamples, 2 · nkernels). This data is used to fit the
classifier. A simple linear classifier, like RidgeClassifierCV, is usually used in combination with
ROCKET. The transformed data is also used to fit the novelty detector.

4.1.3 Segmentation
When a non-expert performs a demonstration, it should first be clear whether this is a single
motion or a sequence of motions. In the case of a single motion, the time series can directly be
preprocessed. When the demonstration is a sequence of consequential motions, these need to be
segmented. A change point algorithm is used to detect the change points in the sequence. The
detected change points are proposed to the user for confirmation. If the detection change points
appear meaningful, they will be used to segment the data sequence. If one or more of the detected
change points do not seem to be placed reasonably, the user can manually adjust the change points
before the sequence is split up into segments. The original time series data can be used as input
in the segmentation method, but the ROCKET transformed data could be used as well. Both
options have been considered and are discussed in Section 4.5.2 and Section 4.5.1, respectively.

10
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4.1.4 Novelty Detection
The transformed segments are input for the novelty detection algorithm. This algorithm predicts
whether a motion segment is a skill from the skill library or a new motion that has not been seen
previously. When the motion is a known skill, it can be classified. Once a new motion has been
detected, the user will be asked to confirm that this might be a new skill. If this is indeed the case,
the segment will be labeled by the user, and a new class will be made. More samples for this class
will be generated via data augmentation. The new samples will be transformed and added to the
training data to re-fit the classifier to ensure continuous learning.

4.1.5 User Confirmation
Some checkpoints for user confirmation have been added to make the segmentation and novelty
detection process more robust. When the system fails to detect change points or novelties correctly,
this can be adapted manually. Instead of trying to solve complex segmentation tasks autonomously,
the human operator is kept in the loop by taking advantage of its knowledge and intuition. In the
end, decisions made regarding segmentation and detection of new motion should be meaningful to
humans. The user confirmation also reduces the chance of a mismatch between the user’s intention
and the robot’s interpretation.

4.1.6 Next step after the framework
The full framework is shown in Figure 4.1. The workflow of the framework ends when all task skills
have been classified or when new skills have been recognized. This output gives the user feedback
on how the system has interpreted the demonstrated task. The next step would be to let the robot
execute the task. Characteristics or parameters can be extracted from the demonstration data
and used to adapt encoded template skills from the skill library. These templates could be in the
form of, for example, dynamic movement primitives. Dynamic features could be extracted from
the human demonstration to auto-tune parameters of dynamic movement primitives. [39]. The
precise implementation of these next steps is beyond the project scope and will not be addressed
in this report.

4.2 Preprocessing
Both the demonstrations recorded by the expert and the time series data from the non-expert are
preprocessed. The preprocessing consists of three main steps: 1) downsampling, 2) interpolation,
and 3) spatial alignment. Furthermore, the start and end of the recordings are trimmed if the
robot is not moving.

4.2.1 Downsampling
When performing the demonstration, the data is logged with a certain frequency. The time series
data will contain a more detailed representation of the motion when a higher frequency is used.
However, not all details are necessary for subsequent actions like classification and novelty detec-
tion. Therefore, both the skills in the skill library and the motion demonstrated by the user are
downsampled. Having a more compact representation of the motion is more time-efficient when
convolving the ROCKET kernels over the time series data.

4.2.2 Interpolation
As mentioned in Section 3.2.1, various TSC methods cannot deal with time series of varying
lengths. This also holds for ROCKET since the dilation of the kernels depends on the length of
the time series. When the ROCKET kernels are generated, the dilation is calculated such that the
longest kernel is not longer than the time series. However, this is based on one time series sample.
Therefore, shorter time series are interpolated to ensure they have at least longer than the longest
kernel. Padding shorter time series is not used because it affects the PPV. Cubic polynomials
are used to ensure that the interpolated time series, as well as its first and second derivatives, are
continuous. If the lengths between the original time series and the interpolated time series differ
too much, this could influence the ROCKET transformation. However, it is assumed that the time
series lengths of all individual skills in this project are in the same order of magnitude.
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Figure 4.1: Framework overview; The colored dashed boxes indicate the main components of the
framework: 1) segmentation, 2) TSC, and 3) novelty detection. The black dot marks
the end of the framework. At this point, a sequence of motions is segmented and
each segment is classified or detected as a new motion.

4.2.3 Spatial Alignment

When data is transformed using ROCKET kernels, similar motions in different directions can end
up in different places in the feature space. When all dimensions are used by all kernels, there is
no clear difference between drawing a line upward (positive y-direction) and a line to the right
(positive x-direction). These result in almost the same features. However, default ROCKET uses
a random combination of channels when transforming the data. In that case, a line upwards and
a line to the right will result in slightly different features.

Being invariant with respect to direction or orientation when classifying motions might be de-
sirable. However, one could argue that the importance of the orientation and direction of motions
is task-specific. In some situations, the orientation/direction of motions does not have any mean-
ing, while in another context it might have. This will be further discussed in Section 6.2. For now,
it is assumed that at least some level of invariance is desired since this results in a more compact
representation of a motion.

In order to ensure that comparable motions that have been performed in different directions
map to comparable places in the feature space, some preprocessing happens before the data is
transformed. For each motion or motion segment, the mean position is calculated and subtracted.
So, all motions are translated to the same origin. Then singular value decomposition (SVD) is
performed to obtain a factorization of each motion. Position data X can be decomposed into an
orthogonal matrix U , a diagonal matrix of singular values Σ and another orthogonal matrix V T ,
as shown in Equation 4.1.

X = UΣV T (4.1)

This factorization separates the motion into rotational components, encoded in U and V , and
scaling factors, encoded in Σ. The equation can be rewritten to isolate the motion along its
principal components, aligned by their singular values:
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U−1X = ΣV T (4.2)

This transformation standardizes the orientation of the motion by factoring out the influence of
U .

4.3 Data Augmentation

As mentioned previously, data augmentation serves two main purposes: 1) increasing the number
of training samples to enhance the robustness of the classifier without requiring the expert to
manually record numerous demonstrations, and 2) introducing controlled variations to account
for imperfections in demonstrations performed by non-expert users. By applying different types
of data augmentation to the original time series data, the classifier becomes more adaptable to
variations in execution while still recognizing the intended skills. Figure 4.2 illustrates the original,
unaugmented data for three different motions.

Figure 4.2: Original time series data of mirrored Z-shape, CCW circle, and S-shape. The red dot
marks the starting point of the motions.

4.3.1 Drift

First of all, drift is added to the expert skill demonstrations. This causes time series values to devi-
ate from the original values in a random and smooth manner. The drifting is added independently
for each channel in an additive way. This simulates deviations that can occur from the original
motion trajectory when a non-expert performs demonstrations. Figure 4.3 shows three generated
samples for each of the motions shown previously.

Figure 4.3: Augmented time series data of mirrored Z-shape, CCW circle, and S-shape. Additive
drift has been added to the original time series data. The red dot marks the starting
point of the motions.

The effect of drift is clearly visible. All samples slightly deviate from the original trajectory. Figure
4.4 shows the position data of the z-shape motion over time. The variations due to the added drift
are proportional to the variance in each direction.
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Figure 4.4: Effect of the added drift over time for the mirrored Z-shape.

4.3.2 Time warping

Time warping changes the speed of the timeline of the time series. This is likely to happen in
reality as well because users might demonstrate skills with varying speeds. The number of speed
changes can be controlled when augmenting the data as well as the ratio between the maximum
and minimum speed. Time warping does not change the shape of the motion, as can be seen in
Figure 4.5.

Figure 4.5: Augmented time series data of mirrored Z-shape, CCW circle, and S-shape. Random
time warping has been added to the original time series data. The red dot marks the
starting point of the motions.

The effect of time warping can be seen when observing the timeline of the positional data of the
z-shape in each direction, shown in Figure 4.6.
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Figure 4.6: Effect of the added time warping over time for the mirrored Z-shape.

The data used for further processing is augmented with both drift and time warping. The com-
bination of these effects should simulate the varying and imperfect behavior of humans. For each
demonstration in the skill library, 100 augmented samples are created.

4.4 Time Series Classification
TSC using ROCKET consists of two main steps: 1) transformation of the data using the random
kernels and 2) classification. Exact details on the kernels and the classifier are given below.

4.4.1 Convolutional Kernels
Detach-ROCKET is used to transform the position data of the end-effector, as it effectively removes
a significant part of irrelevant features as explained in Section 3.2.2. It can be used in combina-
tion with ROCKET, MINIROCKET, or MULTIROCKET kernels and pooling operators. The
default version for Detack-ROCKET is ROCKET. However, the authors of [20]–[22] suggest using
MINIROCKET as the default version because it is more time-efficient and performance similar to
ROCKET. Which version performs best and is most time-efficient is tested in the evaluation. The
characteristics of all kernels and a more detailed description of the ROCKET and SFD algorithm
can be found in Appendix B.

The feature elimination process results in a feature mask. The recorded data from the skill li-
brary is used to fit the Detach-ROCKET instance and create the feature mask. When a new input
is given, the data is transformed using all the kernels. The features mask is then applied to elimi-
nate part of the features. This feature elimination reduces the dimensionality of the transformed
data, which is advantageous for downstream tasks such as novelty detection. Detection accuracy
can be affected in higher dimensions. For this reason, reducing the dimensionality of the data
enhances the performance and accuracy of algorithms like LOF. The phenomena of challenges and
complications arising when analyzing data in high-dimensional spaces is referred to as the curse
of dimensionality. As the number of dimensions increases, more data is required to analyze and
resolve problems adequately.

4.4.2 Classifier
The features extracted from the convoluted data are used as input for the classifier. ROCKET
could potentially be used with all classifiers. However, Dempster et al. [20]–[22] suggest the use
of a ridge regression classifier in combination with ROCKET. Therefore, the scikit-learn ridge
regression classifier is used [40]. The classifier performs leave-one-out cross-validation (LOOCV) to
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determine the regularization parameter λ that reduces the chance of overfitting. The optimization
problem to be solved is defined as follows:

θ̂ridget = argmin
θ


N∑
i=1

(
yi − θ0 −

F∑
k=1

xikθk

)2

+ λ

F∑
k=1

θ2k

 (4.3)

With N being the number of training samples and F being the number of ROCKET features. yi
are the target labels.

For a multiclass classification problem, the ridge classifier applies a one-vs-rest strategy, mean-
ing that one classifier is trained for each class. Each classifier learns to distinguish between one
class and all other classes. For each class k, there is a hyperplane, defined by its weight vector wk

and bias bk. The hyperplanes represent the decision boundaries that separate one class from the
others. Once the model is trained, the decision function calculates the distance of each test sample
x to each class-specific hyperplane. These values form the confidence score for x being in each
class k. If the confidence score is positive, the sample is classified as belonging to that class. If the
confidence score is negative, the sample is considered not to belong to the class. The magnitude
indicates the distance from the sample to the hyperplane. The sample is assigned to the class with
the highest confidence score. In other words, the sample is assigned to the class for which it has
the highest positive distance.

4.5 Segmentation

Several methods have been considered for the segmentation of sequences of motions. Initially,
an online segmentation method was developed using sliding windows. Even though this method
showed promising results, it comes with challenges that make it unsuitable for the framework. An
elaboration on the method and its challenges will be provided in Section 4.5.1. Alternatively, the
offline methods provided in the ruptures python package have been considered and proved to fit
better in the framework, as discussed in Section 4.5.2.

4.5.1 Online Method

This method uses a window to slide over the time series data. The window segment is transformed
using an ensemble of ROCKET transformers. Then, a class label is predicted for the given window
segment, and the probability estimates of the class labels are obtained. This happens iteratively.
However, in contrast to original sliding window methods, the window size is not constant. A
minimum window size is set beforehand and the size increases each iteration with a fixed amount
until the probability estimate of the predicted class label is above a certain threshold for n times
in a row. The prediction probability estimate threshold and n have to be determined beforehand.
When the specified condition is met, the window moves to the next part of the time series, the size
of the window is reset to the minimum window size, and the same process is applied to detect the
subsequent motion.

An advantage of the method is that it does not require information about the number of mo-
tions present in the sequence or the length of the time series. Some examples of the segmentation
and classification of a 2D data sequence of letters are shown in Figure 4.7.
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Figure 4.7: 2D letter sequences segmented using the increasing sliding window method. In the
left figure, all letters have been classified. In the right figure, the last letter has not
been classified because the threshold was not exceeded because the end of the time
series had already been reached.

Despite the promising result of the left plot, the method comes with several challenges. Firstly,
errors in segmentation and classification at the start can propagate, resulting in incorrect predic-
tions throughout the rest of the sequence. Secondly, the final motion in the sequence may remain
unrecognized if the prediction threshold is not met by the end of the time series, as can be seen
on the right-hand side in Figure 4.7. The algorithm was close to detecting the final letter of the
sequence but did not meet the condition yet. This issue could be mitigated by extending the time
series or fine-tuning hyperparameters. The performance of the method is highly influenced by hy-
perparameters such as the minimum window size, window increment, n, and prediction probability
threshold, which are linked to the velocity of motion execution. Consequently, the accuracy is
highly dependent on the demonstration velocity.

In the context of the rest of the framework, there are some additional considerations. Combining
this method with novelty detection is particularly challenging, as it is difficult to discern whether
a window segment represents a part of a known motion whose continuation might still unfold be-
yond the current window or an entirely new motion. This does not play a role in offline change
point detection where the time series data is first segmented and then transformed and classified.
Furthermore, preprocessing motion segments is more straightforward when they are predefined.
For these reasons, offline methods are considered to be more suitable in the framework.

4.5.2 Offline Method
As mentioned in Section 3.3, the ruptures python package is commonly used for offline change
point detection. Also in this project, methods implemented in ruptures are used to detect the
change points in sequences of motions. The complete time series containing position data of a
demonstrated sequence is the input for the segmentation method.

Search Method

The PELT method is used to detect the change points. This method is more accurate than ap-
proximate alternatives as it computes the exact solution. In addition, it is faster than other exact
methods [41]. The algorithm requires either the number of change points in the sequence or a
complexity penalty. This complexity penalty is related to the amplitude of the changes. If the
penalty is too small, too many change points are detected. If the penalty is too big, only the
most significant changes are detected, or none [33]. Different penalty values are evaluated in Sec-
tion 5.2.1.

Some other hyperparameters can need to be set:

• min size; determines the minimum size of a segment. Each motion in the skill library
contains at least 200 samples, so this parameter is set to 200.

• jump; defines the interval between possible change points, such that only every kth point
(where k = jump) is evaluated. This can reduce the computational complexity and control
the resolution of change point detection. The jump parameter equals one in this project. In
this way, each sample could be a potential change point.
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Alternatively, binary segmentation is a good option when the number of change points is known
beforehand. This method does not compute the exact solution and is therefore more time-efficient.
The values for min size and jump stated above can be the same for this method.

Cost Function

A cost function is minimized to detect the change points. The choice of the cost function depends on
the type of data being analyzed and the goal of the analysis. There are parametric cost functions,
as well as non-parametric cost functions available in ruptures. A non-parametric cost function
is chosen to minimize assumptions about the underlying data distribution. The following cost
function is used:

c(xa..b) = (b− a)− 1

b− a

b∑
s,t=a+1

exp
(
−γ∥xs − xt∥2

)
(4.4)

with xa..b is the segment {xt}bt=a+1 (1 ≤ a < b ≤ T ) taken from multivariate time series {xt}Tt=1.
a is the starting index of a segment, b is the ending index. γ is the so-called bandwidth param-
eter. The cost function in Equation 4.4 uses a Gaussian kernel to map the original signal onto a
higher-dimensional Hilbert space to better capture nonlinear patterns in the signal.

This cost function was chosen because it handles the nonlinear and multidimensional motions
of robotic arms and captures complex trajectory transitions better than cost functions that only
detect changes in mean or variance.

4.6 Novelty Detection
The LOF method, as described in Section 3.4, is used for novelty detection in this framework.
The preprocessed and ROCKET transformed data is used to fit the novelty detector. The LOF
algorithm implemented by scikit-learn is by default only meant for outlier detection. It requires
the ’novelty’ parameter to be set to true if used for novelty detection. When set to true, the LOF
detector is fit on the training data, the data in the skill library, and all new inputs are considered
as potential new observations. The number of neighbors used for which the local densities are
calculated can be set. This value is at least two and at most all provided samples. A too small
number of neighbors might result in undesirable statistical fluctuations. It is suggested to use at
least as many neighbors as there are objects in a cluster [38]. The Euclidian distance is used as
the distance metric.
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Framework Evaluation
For the evaluation of the framework, a dataset of 3D trajectories has been recorded through
kinesthetic teaching with the Franka Research 3 robotic arm. The logging frequency of the recorded
motions is 1000Hz. The individual skills that have been recorded can be divided into four categories
and are listed in Table 5.1. All skills have been recorded twice.

Table 5.1: Recorded skills categorized in four distinct categories. ’+x’ and ’-x’ indicate move-
ment in the positive and negative x-direction, respectively, while ’+y’ and ’-y’ refer to
movement along the y-axis.

Lines Circle-shapes S - Z shapes Up-down-up-down

Line +y CCW circle S-shape Up-down-up-down y-direction
Line -y CW circle Mirrored Z-shape Up-down-up-down z-direction
Line +x CCW semi-circle
Diagonal line +x +y

To test the segmentation of sequences of skills, two different sequences have been recorded. Both
sequences consist of three skills, as shown in Table 5.2.

Table 5.2: Recorded sequences including the individual skills in each sequence.
Sequence 1 Sequence 2

Line +x S-shape
Up-down-up-down z-direction Up-down-up-down z-direction
CCW circle Mirrored Z-shape

A visual overview of the recorded skills is shown in Appendix C. The position data of all recordings
is expressed in the base frame of the robot, which is shown in Figure 5.1.

Figure 5.1: Franka Research 3 and the reference frame in which all motions are expressed.

5.1 Classification evaluation
The classification has been tested by evaluating the success rate when classifying skills from the
skill library. Detach-ROCKET is used for the skill classification. All recorded skills have been
divided over a training set and a test set in order to evaluate the classification. Each set contains
one recording of each skill stated in Table 5.1.
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The data of both datasets is preprocessed in the same way. First, the data is downsampled
by a factor of 10 to reduce computational load. Then, for each recording in the training set, 100
augmentations are generated with added drift and time warping. The augmented training set is
transformed using 10,000 MINIROCKET kernels. For each kernel convolution, the PPV is calcu-
lated. Afterward, the SFD algorithm, as proposed in [25], is used to eliminate part of the features.
Over 95% of the features are pruned. Finally, the remaining features of the transformed training
set are used to fit the classifier.

Similarly, the test set is transformed and classified. The test set was classified with an accuracy of
100%, meaning that all 11 skills were classified correctly.

5.1.1 Use of different ROCKET versions
Detach-ROCKET can be used with the kernels and pooling operators of ROCKET, MINIROCKET,
or MULTIROCKET. All three options have been considered. To find the most suitable option,
they have been tested on classification accuracy and time efficiency. In all three scenarios, 10,000
kernels have been used. The results in Table 5.3 show that MINIROCKET is more time-efficient
than the other versions while classifying all motions correctly.

Table 5.3: Classification accuracy using different versions of ROCKET and time needed to fit
the Detach-ROCKET object. Fitting the Detach-ROCKET object includes the SFD
process to select the most relevant features and fit the classifier.

ROCKET kernels Classification accuracy Time (s)

ROCKET 92% 409.43
MINIROCKET 100% 20.65
MULTIROCKET 100% 128.70

5.1.2 The Effect of Downsampling and Interpolation
It has been evaluated how the downsampling of the test data influences the classification perfor-
mance. Manipulating the time series data can have a negative impact on classification accuracy
because it changes the information content of the time series. The preprocessing step in the frame-
work includes downsampling the time series, mainly to increase time efficiency, and subsequently,
time series are interpolated to match the longest time series used to generate the random kernels.

At the beginning of this evaluation, the training set is still downsampled by a factor of 10, where
the samples in the training set have a length of 850 time instances after downsampling. Then the
downsampling factor of the test set is increased by steps of 10 until the classification accuracy
drops. This happens when the downsampling factor reaches 100, after which the data in the test
set consists of 94 time instances. At that point, one of the skills in the test set is not predicted
correctly anymore. The mirrored Z-shape is predicted as an S. This can be expected since the
mirrored Z and the S follow a similar trajectory. When the motion trajectory of a mirrored Z-
shape is excessively downsampled, the points that define its sharp angles are likely to be lost.
During interpolation, the limited sampled time points cannot fully reconstruct the original abrupt
changes, resulting in a smoother trajectory that resembles an S-shape. This happens because in-
terpolation algorithms naturally favor smooth curves over sharp angles when there is insufficient
data resolution.

5.2 Segmentation Evaluation
The segmentation evaluation focuses on inter-rater reliability, agreement between the user and
algorithm, and consistency of the algorithm outputs. This is done instead of comparing the de-
tected change points to an objective ground truth because the nature of a good segmentation is
subjective. Furthermore, segmentation is the first step of the framework, so the segmentation
output influences downstream processes. Therefore, the influence of several hyperparameters on
the segmentation outcomes will be shown in this section. Lastly, the classification accuracy of the
segments produced by different methods will be analyzed, as well as the segments resulting from
the human segmentation.
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5.2.1 Segmentation Consistency
The consistency of segmentation algorithms in finding the change points in several demonstra-
tions of the same sequence is analyzed. Assessing segmentation consistency is important because
large variations in detected change points across repeated demonstrations can impact the relia-
bility of downstream processes, such as classification. The sequence used for evaluation has been
demonstrated five times in total by three different individuals. The five demonstrations have been
preprocessed to ensure equal lengths and have been downsampled by a factor of 10 for time-
efficiency reasons. This allows for easier comparison between the different demonstrations. After
downsampling, the time series of the demonstrated sequences contains 2163 time instances. Each
demonstration has been segmented using the same method and hyperparameters. The location of
the change points can be compared to check the consistency of the segmentation algorithm’s out-
put. The segmentation consistency is analyzed using two segmentation algorithms. Firstly PELT
segmentation, which can be used without explicitly giving the number of change points, is used.
Secondly, binary segmentation is used, which assumes the number of change points is known. The
five demonstrations of the sequence of skills used for this evaluation are shown in Figure 5.2.

Figure 5.2: Five demonstrations of a motion sequence consisting of 1) line in x-direction, 2) up-
down-up-down in z-direction 3) CCW circle

PELT Segmentation

PELT segmentation has been used to segment the sequence of motion skills. The location of the
change points in all five demonstrations is shown in Figure 5.3. All demonstrations have been
split into four segments due to the resemblance between a CCW circle and two CCW semi-circles.
Although the expected segmentation was three segments, the algorithm’s result is not necessarily
incorrect, as both a full CCW circle and two CCW semi-circles represent valid motion patterns.
The detected change points are closely aligned across demonstrations. The detected change points
that can be seen in the plot are also stated in Table 5.4. This shows that the algorithm is capable of
providing a consistent segmentation despite the imperfections induced by different demonstrators.

Figure 5.3: Position in x-, y-, and z-direction over time of all five demonstrations. The dots
indicate change points detected by PELT. The penalty value is set to 100.

Increasing the penalty value promotes a segmentation with fewer change points. Table 5.4 shows
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at which time instances change points have been detected for penalty values of 100 and 140 re-
spectively. It can be noted that for a higher penalty value, the algorithm tends to split up the
sequence into three parts. The two last segments, two semi-circles, are combined into one circle.
One of these segmentations is not better than the other, the preferred segmentation depends on
how skills in the skill library have been defined and demonstrated.

Table 5.4: Detected change points using PELT with different penalty values. The detected change
points are reported in sample numbers in the time series.

Detected change points

PELT Demonstration 1 264, 1320, 1782

penalty = 100 Demonstration 2 276, 1417, 1764

min size = 200 Demonstration 3 293, 1459, 1774

downsampled x 10 Demonstration 4 260, 1510, 1770

Demonstration 5 245, 1491, 1769

PELT Demonstration 1 264, 1320, 1782

penalty = 140 Demonstration 2 277, 1356

min size = 200 Demonstration 3 293, 1435

downsampled x 10 Demonstration 4 260, 1533

Demonstration 5 245, 1508

Binary Segmentation

The segmentation consistency has also been evaluated for binary segmentation. This method
allows providing the number of change points as input. The number of change points is set to
two. Figure 5.4 shows the segmentation for each demonstration using binary segmentation. The
corresponding change points are stated in Table 5.5. The change points are located on quite similar
positions across all demonstrations.

Figure 5.4: Position in x-, y-, and z-direction over time of all five demonstrations. The dots
indicate change points detected by PELT. The number of change points is set to 2.

When changing the number of change points to be detected to 3, the sequence will be split into
four segments. An extra change point is added in the last segment, resulting in two semi-circles
instead of a full circle, similar to the PELT segmentation. An overview of the detected change
points is given in Table 5.5.
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Table 5.5: Detected change points using binary segmentation with different values for
n changepoints. The detected change points are reported in sample numbers in the
time series.

Detected change points

Binary segmentation Demonstration 1 265, 1290

n changepoints = 2 Demonstration 2 255, 1360

min size = 200 Demonstration 3 280, 1435

downsampled x 10 Demonstration 4 235, 1535

Demonstration 5 230, 1505

Binary segmentation Demonstration 1 265, 1290, 1780

n changepoints = 3 Demonstration 2 255, 1360, 1760

min size = 200 Demonstration 3 280, 1435, 1770

downsampled x 10 Demonstration 4 235, 1535, 1780

Demonstration 5 230, 1505, 1775

5.2.2 The Effect of Downsampling on Segmentation Consistency

To further reduce the computational effort, the time series could be downsampled even more. To
check how this influences the change point detection, the PELT and binary segmentation have
been performed on the sequence with different degrees of downsampling. Table 5.6 shows the
change points for the first demonstration of the sequence when different downsample factors are
used. Note that the hyperparameters, min size, and the penalty for PELT, have been adjusted
accordingly. Comparing the change point’s time samples does not work in this case since the time
series do not have the same amount of time samples after downsampling. Therefore, the location
of the change points has been expressed as a percentage of the timeline to be able to compare these
for the different downsample factors. It can be noticed that downsampling the time series barely
influences the location of the detected change points. Similar results were found for the other four
demonstrations.

Table 5.6: Detected change points using PELT and binary segmentation for different downsampling
factors. The detected change points are reported in sample numbers in the time series.
The location of the change points has also been expressed as a percentage along the
timeline of the time series. Demonstration 1 has been used for all scenarios in this table.

Detected change
points

Percentage (%)

PELT (penalty = 100, min size = 200, downsampled
x 10)

264, 1320, 1782 12.21, 61.03, 82.39

PELT (penalty = 20, min size = 40, downsampled x
50)

53, 264, 357 12.24, 60.97, 82.45

PELT (penalty = 10, min size = 20, downsampled x
100)

27, 132, 179 12.44, 60.83, 82.49

Binary segmentation (n changepoints = 2, min size =
200, downsampled x 10)

265, 1290 12.25, 59.64

Binary segmentation (n changepoints = 2, min size =
40, downsampled x 50)

55, 260 12.70, 60.04

Binary segmentation (n changepoints = 2, min size =
20)

25, 130 11.52, 59.91

5.2.3 User vs Algorithm Segmentation

Each sequence was annotated by human annotators to see how people would intuitively split up
sequences of motions. This human annotation is compared to the outputs of the segmentation
algorithms. A total of 14 individuals have been asked to manually segment the sequence. For
each segmented demonstration, change points indicated by the different users have been grouped.
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(a) (b)

Figure 5.5: Human change point detection vs binary segmentation (n changepoints is 2). The
segments found by the algorithm are indicated by the colored segments. The black
dots and black dashed lines indicate the average change points indicated by people.
The black dotted lines in (b) indicated the standard deviation of the human change
points.

Change points within a range of 120 time samples are considered to belong to the same cluster.
For each cluster consisting of at least 8 points, the mean time sample has been calculated. This
results in a list of average change points for each segmented demonstration, as shown in Table 5.7.
One of the segmented demonstrations is shown in Figure 5.5.

Table 5.7: Average detected change points using human segmentation. The detected change points
are reported in sample numbers in the time series.

Detected change points

Human Demonstration 1 347, 1176

Demonstration 2 379,1279

Demonstration 3 415, 1321

Demonstration 4 374, 1465

Demonstration 5 452, 1374

The segmentation of a sequence can highly influence the classification of individual skills. There-
fore, the classification accuracy is analyzed for the different segmentations performed by people,
the PELT method, and the binary segmentation method. All segments resulting from the seg-
mentation of the three different methods have been classified using Detach-ROCKET with 10,000
MINIROCKET kernels. The training set, representing the skill library, contained all motions
stated in Table 5.1. The classification accuracy of each method is stated in Table 5.8, as well as
the average deviation from the change points detected by humans expressed in time points.

Table 5.8: Classification accuracy for segments of the sequence. The sequence has been segmented
using different segmentation methods.

Segmentation method Classification accuracy Average deviation from human segmentation

Human segmentation 100% -
PELT 85% 121.2
Binary segmentation 84% 121.1

5.3 Novelty Detection Evaluation
To assess novelty detection using the LOF, the algorithm’s performance in identifying previously
unseen skills transformed by MINIROCKET kernels is evaluated. The recorded dataset is split
up into a training set and a test set. The training set represents the skill library. The test set
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represents recorded motions which will be labeled as known or new by the novelty detector. The
datasets were preprocessed in the same way as for the classification evaluation. When a recording
of a motion is in both the training set and the test set, it should be predicted as known, meaning
that a similar motion has been seen before, i.e. it is in the skill library. The novelty detection
performance has been also tested for different combinations of the motion categories stated in
Table 5.1.

The performance is expressed in terms of precision, recall, and F1-score. The precision is a measure
of how many detected novel motions are actually novel. Recall says how many actual novel points
were correctly detected. The F1-score combines the precision and recall. These measures can be
calculated as follows:

Precision =
TP

TP× FP
,Recall =

TP

TP + FN
,F1-score = 2× Precision× Recall

Precision + Recall
(5.1)

with TP, FP, and FN being the true positives, the false positives, and the false negatives respec-
tively. An overview of the precision, recall, and F1-score using different training sets is shown in
Table 5.9.

When all motions are in both the training set and the test set, everything is predicted to be
known, as expected. In order to test if new motions can be detected as well, part of the samples in
the training data is removed. The corresponding motions in the test set should then be detected
as ’new’ by the algorithm. When all motions in the category ’lines’ are removed from the training
set, they are detected as new motions. In a similar fashion, when the up-down motions are left
out of the novelty detection, they are detected as novelties. Hence, the novelty detection works
correctly for the lines and up-down motions.

When leaving the three circle-shaped motions out of the training set, only one of these motions
was detected as a novelty. This happens because the curves of the circles and the semi-circle show
much resemblance to the curves of the S-shape. When leaving the circle-shapes in the training set
and taking out the S,Z-shapes, similar conclusions can be drawn. The S-shape is not predicted as
a new motion due to its resembling characteristic to the circles. However, the mirrored Z does not
have these curvy characteristics, so it is detected as a novelty, as expected.

Similarly, when only one or a few motions of the same category are removed from the training
set, the novelty detector will predict the unknown motions as known. For example, when leaving
the line in x-direction out of the training set, it will not be detected as new. It shows too much
similarity to a line in y-direction, especially after all motions have been spatially aligned using
SVD. For this reason, entire categories have been left out of the training set during the novelty
detection evaluation.

Table 5.9: Precision, recall, and F1-score for novelty detection using Local Outlier Factor (LOF).
For each trial, a specific motion category was removed from the training set, and
the performance metrics were computed based on the ability to detect these removed
categories as novel in the test set. The test set includes all motion categories listed in
Table 5.1, unless noted otherwise.

Removed from training set Precision Recall F1-score

- 1.00 1.00 1.00
Lines 1.00 1.00 1.00
Circle-shaped 1.00 0.33 0.50
S-Z shapes 1.00 0.50 0.67
Up-down-up-down shapes 1.00 1.00 1.00
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Discussion
6.1 General Discussion

This project aimed to develop a framework that can segment sequences of skills, detect if the skills
are already present in a skill library and, if so, recognize the skills correctly. Furthermore, the user
is kept in the loop by being able to confirm or modify decisions made by the algorithm.

Detach-ROCKET with MINIROCKET kernels and pooling operators was selected as the most
suitable TSC method. Compared to ROCKET and MULTIROCKET, MINIROCKET demon-
strated significantly faster processing times while maintaining high performance. Consequently, all
further evaluations were conducted using MINIROCKET.

The few demonstrations used to fit the classifier were augmented by adding drift and time warping
to create more training samples and to account for imperfections in demonstrations performed by
non-experts during classification. The classification evaluation showed that Detach-ROCKET per-
formed well in classifying skills based on position data of the end-effector of the Franka Research
3. However, it is required that the number of time instances does not differ too much between the
data to be classified, the data used to generate the kernels, and the data used to fit the classifier.
Manipulation of the data by means of downsampling and interpolation should be done with care
because excessive downsampling of the time series data changes temporal relations and results in
information loss. Motions with abrupt changes, like the Z-shapes, will lose their characteristics
when downsampled excessively.

Segmenting multiple demonstrations of the same sequence showed consistent behavior for the
PELT method and binary segmentation. Changing the penalty parameter from the PELT method
influences how many change points are detected in the sequence. The binary segmentation method
requires to know the number of segments in a sequence beforehand. This requirement means that
prior knowledge or an additional step needs to be added to the framework before applying binary
segmentation. If the estimated number of segments is incorrect, it may lead to over- or under-
segmentation, affecting the accuracy of subsequent classification and novelty detection.

Both PELT and binary segmentation showed comparable classification performance, achieving
accuracies of 85% and 84%, respectively. The human segmentation yielded the highest classifi-
cation performance, as these segments closely reflect the skills in the skill library. Changing the
downsampling factor, and hence the number of time instances in the time series, had no signifi-
cant impact on segmentation outcomes. Change points are detected at similar locations along the
timeline of the time series for different downsampling factors.

Motions that exhibit partial similarities in movements can be challenging to distinguish as separate
skills. This is because ROCKET aims to identify patterns in the data and uses these to differen-
tiate motions during classification by convolving random kernels with time series and extracting
features. As a result, motions with similar patterns, such as curves, tend to end up close together
in feature space.

The ROCKET features used for classification are also used for novelty detection. To the best
of the author’s knowledge, the use of ROCKET features for novelty detection with LOF has not
been previously explored. The challenge of distinguishing similar motion patterns also arises in
this context: previously unseen motions were not recognized as novelties if a resembling motion
was already present in the skill library. However, for clearly distinct motions, such as the lines and
up-down motions, the novelty detection performed well.

Unsupervised segmentation remains challenging for complex tasks, as models struggle to infer
patterns relevant for humans without explicit input [1], [42]. Various studies, such as [43], [44],
and [45], aim to perform segmentation fully unsupervised. While this approach is useful in scenar-
ios where humans play no role, it introduces unnecessary complexity in situations where humans
interact with robots. Therefore, the proposed framework incorporates a user confirmation step,
allowing human feedback to refine segmentation and classification, thereby enhancing robustness

26
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in real-world scenarios. By allowing users to manually adjust segmentation or reject novelty de-
tection predictions, the confirmation step mitigates challenges associated with these parts of the
framework.

The modular design of the framework enables easy replacement or adjustment of individual com-
ponents. The modularity allows for adaptations or extensions of the framework. Various methods
could be investigated for segmentation, feature extraction, classification, and novelty detection.
For instance, integrating a segmentation model that updates after user confirmation could improve
the change point detection algorithm over time. Similarly, updating the novelty detection model
after the confirmation step could promote continuous learning. Furthermore, alternative feature ex-
traction techniques may improve classification and novelty detection for specific skills and motions.

Another relevant topic to investigate is the scalability of the skill library. New motions can easily
be added to allow continuous learning. However, as the skill library grows, it is important to
manage memory and classification efficiently. A key question would be how to manage memory
efficiently while maintaining classification efficiency. Potential solutions include periodic pruning
of skills or organizing them hierarchically to optimize storage and retrieval.

6.2 Directional and orientation invariance
Section 4.2.3 shortly discussed the challenge regarding directional and orientational invariance.
One could argue that the importance of the orientation and direction of motions is task-specific.
In some situations, the orientation/direction of motions does not have any meaning while in an-
other context, it might have. For example, consider the action of stirring in a pan. It does not
matter whether the motion is clockwise or counterclockwise. On the other hand, rotating a key
in a lock can either lock or unlock a door depending on the direction in which the key is turned.
Moving clockwise or counter-clockwise has a distinctively different meaning in this case. Therefore,
the significance of invariance is highly context-dependent, as the relevance of motion orientation
and direction varies based on the specific task.

In the novelty detection evaluation, it was observed that motions with highly similar movement
patterns are not always recognized as ”new”. Instead, the algorithm may classify them as previ-
ously seen motions, even if they have not been encountered before, especially when SVD is used
to align them. Whether it is desirable to detect a line in one direction as a similar motion as a
line in another direction, depends a lot on the context of the motions. Also for motions like circles
and curves, the starting position of the motion and the movement direction greatly impact where
the motion will end up in feature space.

The relevance of orientation/direction could also depend on preceding or subsequent actions. The
importance of orientation/direction could be determined by pre- or post-conditions of a certain
action. In these cases, the importance of orientation/direction is not intrinsic to the single motion
but arises from the larger sequence or context, with pre- or post-actions determining its significance.

The extent to which similar motions performed in different directions are considered distinct also
impacts motion generalization. Allowing for directional or orientation invariance can reduce the
number of unique motion classes by grouping similar motions. On the other hand, too much
invariance can lead to over-generalization, where motions with subtle but meaningful directional
differences are misclassified as the same action. Therefore, it is desirable to get more insights
into the context in which a skill has to be performed. Based on the situation, a decision can be
made about the degree of invariance needed. This prevents over-generalization in cases where the
direction or orientation is relevant.

6.3 Recommendations for Future Work

6.3.1 Including more contextual information
This study relied solely on end-effector position data for motion segmentation, classification, and
novelty detection. Using only position data limits skill differentiation to movement patterns. Fu-
ture work could incorporate additional data streams, such as gripper data, force sensor data,
end-effector orientation, and vision data to provide greater contextual awareness. Integrating
additional features could enhance classification specificity by capturing other distinguishing skill
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characteristics than just motion patterns. This added context could also help determine the neces-
sary degree of invariance for different tasks. However, meaningful information might be overruled
by information from less important channels as the number of data channels increases.

The authors of [25] and [26] developed a way to identify the most relevant channels for classifica-
tion when using an ensemble of Detach-ROCKET instances. When the number of input channels
is high, more convolutional kernels are needed to find relevant patterns. However, increasing the
number of kernels is computationally inefficient. Instead, an ensemble model can be used which
combines several standard instances of Detach-ROCKET. After the pruning step, the model re-
trieves the data channels used by the kernels that have not been eliminated. This information is
used to give an estimation of the relevance of each channel.

Additionally, during this project, code was developed to analyze the proportion of MAX values
and PPV values in the remaining features after pruning. This provides insights into the relevance
of specific pooling operators when classifying certain data. These findings could be used to design
new pooling operators for feature extraction. This ’feature shaping’ could contribute to versions
of ROCKET that are more specialized for specific data types.

6.3.2 Using textual input instead of physical demonstrations
Instead of letting a non-expert user physically demonstrate the skill or task that needs to be
executed, the user could give instructions via prompts that will serve as input for a large language
model. The language model can select skills from the skill library that are suitable for the execution
of the explained skill or task. Similar work has been investigated in [46]. The segmentation in the
current framework will then be replaced by task interpretation. Depending on the interpretation,
suitable skills can be chosen from the skill library.
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Conclusion
This project developed a framework for task segmentation, classification, and novelty detection
that allows non-expert users to leverage a skill library containing motions recorded by experts.
By integrating user feedback, the framework ensures that segmentation and classification remain
adaptable and interpretable, addressing challenges associated with unsupervised motion analysis.

The evaluation demonstrated that Detach-ROCKET, particularly its MINIROCKET variant, pro-
vides an efficient and accurate method for classifying motion sequences. Despite its strong perfor-
mance, the difference in sample rate between training and test data should be minimized for the best
results. Some degree of downsampling is desired because it significantly decreases computational
load and increases time efficiency. However, excessive downsampling results in too much informa-
tion loss to still obtain accurate performance in classification and novelty detection. Segmentation
methods, including PELT and binary segmentation, exhibited consistent performance, but user-
defined segmentation yielded the highest classification accuracy. Therefore, the user-in-the-loop
approach proved valuable in refining results, particularly in mitigating errors in segmentation and
novelty detection.

A key challenge identified was distinguishing similar motion patterns, particularly when move-
ments shared overlapping features in the feature space, which is the case for i.e. circles and
semi-circles. The extent to which directional and orientation invariance should be applied depends
on task-specific requirements, as some motions may be interchangeable while others require precise
directional control. Future work could explore context-aware methods to determine when invari-
ance is appropriate.

The framework’s modular design enables easy adaptation, allowing for improvements in segmenta-
tion, feature extraction, classification, and novelty detection. Enhancing novelty detection through
adaptive learning could improve the system’s ability to recognize previously unseen skills. Addi-
tionally, incorporating contextual data such as force, vision, and gripper data could further refine
classification performance since in this research, only end-effector position data was used.

Finally, the scalability of the skill library presents an important avenue for future research. As
more motions are added, efficient memory management and hierarchical organization will be nec-
essary to maintain classification speed and accuracy.

Overall, this framework provides a strong foundation for skill-based learning, enabling non-expert
users to efficiently apply expert-recorded skills in diverse applications without the need for hours
of training or complex coding. It advances LfD by offering a computationally efficient, and human-
guided framework for skill acquisition and task programming in robotic learning.
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Appendix A

Usage of AI tools
Conforming the guidelines of the University of Twente concerning ”Use of AI in Education at the
University of Twente”, the following statement can be made:

During the preparation of this work, the author used the following tools for the following rea-
sons.

• ChatGPT: ChatGPT has been used for debugging purposes and served as source of inspi-
ration to help improve the academic tone of certain sentences.

After using this tool/service, the author reviewed and edited the content as needed and takes full
responsibility for the content of the work.
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Appendix B

ROCKET Details
B.1 Kernel characteristics
The kernel specifications of the ROCKET algorithm and its variants are stated in Table B.1.

Table B.1: Kernel specifications for ROCKET, MINIROCKET, and MULTIROCKET.
ROCKET MINIROCKET MULTIROCKET

Kernel length lk 7, 9 or 11 9 9
Weights W Normal distribution N (0, 1) {-1,2} {-1,2}
Bias b Uniform distribution U(−1, 1) From convolution input From convolution input
Dilation d Random Fixed (relative to Fixed (relative to

input length) input length)
Padding Random decision whether Fixed Fixed

or not padding is used
Pooling operators MAX PPV PPV

PPV MPV
MIPV
LSPV

The dilation d can be defined as d = [2Ud ], Ud ∼ U
(
0,

log2(linput−1)
log2(lk−1)

)
for the standard ROCKET

algorithm, where linput is the length of the input time series. For MINIROCKET and MULTI-
ROCKET, the dilation d is sampled from set D = [20, ..., 2A], where the exponents are uniformly

spaced between 0 and A =
log2(linput−1)
log2(lk−1) .

B.2 ROCKET Transform
ROCKET transforms a time series into a feature space using a large number of kernels. The
transformation happens by convolving time series X with kernel k which has length lk, weights
[w1, w2, ..., wl], bias b, and dilation factor d. Each element of convolution output Z can be written
as:

zi =

lk−1∑
j=0

wj · xi+j·d + b (B.1)

For multivariate time series, the output is the sum of the convolutions of the kernel with random
subsets of the input channels. The number of selected channels Ck for each kernel k is determined
probabilistically by:

Ck = 2Uk , Uk ∼ U (0, log2(min(nchannels, lk) + 1)) (B.2)

where:

• Uk is sampled from a uniform distribution.

• The exponentiation ensures that Ck follows an exponential distribution, favoring smaller
values.

• The upper bound min(nchannels, lk) + 1 ensures Ck does not exceed the number of available
channels or kernel length.

After the transform, features will be extracted from the convolution output Z. There are several
pooling operators that are used to extract the features.

B.3 Pooling Operators
The definitions of the pooling operators used in the various ROCKET algorithms are given below.
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Proportion of positive values:

PPV(Z) =
1

n

n∑
i=1

[zi > 0] (B.3)

in which Z is the convolution output with length n.

Global max pooling

MAX(Z) = max(Z) (B.4)

Mean of positive values:

MPV(Z) =
1

m

m∑
i=1

z+i (B.5)

in which Z+ is the vector with length m containing the positive values of Z.

Mean of indices of positive values:

MIPV(Z) =

{
1
m

∑m
j=1 i

+
j if m > 0,

−1 otherwise.
(B.6)

in which I+ represents the vector with the indices of all positive values of Z.

Longest stretch of positive values:

LSPV(Z) = max[j − i]∀i≤k≤jzk > 0] (B.7)

Depending on which ROCKET version is used, the features extracted from all convolution outputs
are placed in a vector. The set of all extracted features is then denoted as F .

B.4 Sequential Feature Detachment (SFD)

Detach-ROCKET uses the SFD algorithm to perform feature selection. SFD is an iterative pro-
cess. At each detachment step, a fixed percentage of features is removed from the set of active
features S, where S ⊆ F . Parameter p is the proportion of eliminated features at each step. The
default value for p is 0.05.

At each iteration t, a ridge regression classifier is applied to the current set of selected features,
denoted as St. This involves solving the following optimization problem:

θ̂ridget = argmin
θ


N∑
i=1

(
yi − θ0 −

∑
k∈St

xikθk

)2

+ λ
∑
k∈St

θ2k

 (B.8)

The resulting coefficients θ̂ridget = {θ̂k} indicate the contribution of each feature to the classifier’s

decision. Features are then ranked based on the absolute values of these coefficients, |θ̂k|, with the
least significant 100 · p percent being eliminated. The remaining 100 · (1− p) percent features are
preserved for the next step, forming St+1. The algorithm is explained step by step in Algorithm 1.
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Algorithm 1 Sequential Feature Detachment

Require: Number of iterations M , initial number of features N , number of kernels K, elimination
fraction p

1: Initialize: Generate feature set using ROCKET with F = 2K features
2: Train ridge regression model using LOOCV to determine λ
3: for t = 1 to M do
4: Train ridge classifier on active feature set S
5: Compute optimal coefficients θ̂k for each feature

6: Rank features based on |θ̂k|
7: Eliminate the lowest p fraction of ranked features
8: Update S with the remaining features
9: end for

10: Return Selected feature subsets St at each step

The accuracy of the model can be computed and plotted for each St, as shown in Figure B.1. The
optimal number of retained features Qc is determined by the following optimization problem:

Qc = argmax
q

{α(q) + c · q} (B.9)

q represents the proportion of eliminated features and α(q) is the model accuracy for a certain
number of eliminated features. c influences the trade-off between accuracy and number of features.

Figure B.1: Example of a SFD curve; The model accuracy relative to the accuracy of the initial
model is plotted with respect to the proportion of retained features.

When Qc is known, the ridge classifier is retrained on the training data using the selected set of
features. The reduced model can then also be used to classify the test data.



Appendix C

Recorded demonstrations
All recorded skills are visualized below. The red dot marks the start of a motion.

(a) (b) (c)

(d)

Figure C.1: Demonstrations of line motions: (a) Line +y (b) Line -y (c) Line +x (d) Diagonal
line

(a) (b) (c)

Figure C.2: Demonstrations of circle-shapes: (a) CCW circle (b) CW circle (c) CCW Semi-circle

(a) (b)

Figure C.3: Demonstrations of S- and Z-shapes: (a) S-shape (b) Mirrored Z-shape
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(a) (b)

Figure C.4: Demonstrations of up-down-up-down motions: (a) Up-down-up-down y-direction (b)
Up-down-up-down z-direction
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