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Abstract

Vietnam is the second largest coffee producer in the world but is challenged by an increase in
the frequency and severity of droughts. At the same time, coffee production is associated with
negative impacts on the environment. Various coffee sustainability programs emphasise the
inclusion and conservation of biodiversity in coffee fields to improve sustainability. Assessing
biodiversity with exclusive use of field visits is challenging. Moreover, it is uncertain whether
a correlation between agrobiodiversity and drought stress in coffee plants exists. Using remote
sensing is promising as it offers a transparent and efficient method for both biodiversity assess-
ments as well as drought stress assessments. Therefore, this thesis uses multi-spectral remote
sensing to explore (1) its ability to assess agrobiodiversity in coffee fields with the use of im-
age classification, (2) its ability to assess drought stress in coffee plants with NDVI and VCI
indices, and (3) if a relationship between agrobiodiversity and droughts can be established with
this approach. To validate the remote sensing results, fieldwork was used to (1) collect ground
truth points for the image classification, and (2) examine correlations between agrobiodiversity
traits and the health of coffee plants. Using the commune Quang Hiep as a case study area,
field data revealed that an increase in shade from intercrop or shade trees was highly correlated
with an increase in coffee plant health (r=0.70). The image classification results revealed that
high-resolution SPOT 6 imagery, with NDVI as vegetation index and a Random Forest classi-
fier, can distinguish between high-shade, low-shade, and no coffee areas with an overall accuracy
of 80.03%. The drought stress analysis revealed that the NDVI map derived from Sentinel-2
imagery is moderately correlated with the observed health of coffee plants from the field data
collection (r=0.34). Lastly, after comparing NDVI and VCI indices for the high-shade and low-
shade intercrop coffee classes, results show higher values for high-shade intercrop coffee fields.
Thus, healthier vegetation can be found in the areas classified as high-shade intercrop coffee.
Although more research on optimal shade levels is necessary, these findings suggest that more
shade in coffee fields may reduce drought stress. This research contributes to sustainable coffee
farming practices, emphasising the possible benefits of agrobiodiversity for climate adaptation
in agriculture and the possible use of remote sensing to assess this.

Keywords: Agrobiodiversity, Droughts, Remote Sensing, Sustainable coffee production
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Chapter 1

Introduction

1.1 The Challenges of Coffee Production

Coffee is one of the most traded commodities in the world. It contributes significantly to the
livelihoods of more than 100 million people worldwide and its production has doubled in the
last 30 years (Y. Pham et al., 2019). It is a source of income for millions of smallholders
in tropical countries that depend on the production for their livelihoods (Utrilla-Catalan et al.,
2022). Vietnam is the second largest coffee producer in the world, with around 17% of the global
production (Son et al., 2023). On a national level, coffee is the second largest export crop after
rice. The Robusta variety is especially popular, with 40% of global Robusta yield being produced
in Vietnam (Hung Anh et al., 2019). Within the country, particularly the Central Highlands
region of Vietnam is a fundamental coffee-growing region, as 97% of the coffee production is
located in this area (Byrareddy et al., 2021). However, despite the economic importance of
coffee, there have been various stressors that make the production of coffee challenging. These
stressors include but are not limited to market price volatility, extreme weather events, and plant
diseases and pests (Rhiney et al., 2021). At the same time, unsustainable cultivation methods,
such as overuse of chemical fertilisers, deforestation and intensive water usage, affect and cause
stress to the local environment of coffee producing areas (G. Nguyen & Sarker, 2018). A full
overview of the challenges is visible in the Causal loop diagram in Figure 1.1.

1.1.1 Environmental Impacts of Coffee Production

The coffee production in Vietnam has various environmental impacts. First of all, the Robusta
coffee variant that is mostly grown in Vietnam thrives under intense fertiliser usage (Giovannucci
et al., 2004). However, agricultural intensification in the form of excessive nitrogen fertiliser use
is reducing soil and water quality while increasing emissions (Hung Anh et al., 2019). Inten-
sive fertiliser usage causes contamination of water resources due to its chemical runoff, which
consequently spreads throughout the environment (Giovannucci et al., 2004). Another environ-
mental impact is intensive water use that is threatening to deplete groundwater resources for
agricultural production (Amarasinghe et al., 2015; Byrareddy et al., 2020). The depletion of
deepwater reserves is a major concern for the agriculture of Vietnam as agriculture accounts for
73.1% of Vietnam’s water demand (Q. Pham et al., 2023). Lastly, deforestation and the decrease
in shade coffee, thus coffee growing under the shade of taller trees, is decreasing the available
habitat for biodiversity. The growth in coffee production and many new coffee plantings were
often the result of forest clearance (Meyfroidt et al., 2013). While other species of coffee thrive
under the canopy of larger trees, the Robusta variant, which is mostly grown in Vietnam, can
manage to grow under full sun exposure (Giovannucci et al., 2004). A major benefit of growing
coffee under full sun exposure is its potential of higher yield production in ideal environmental
circumstances (DaMatta, 2004). Besides, harvesting of mono-cultures is easier than with more
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diversified systems (Liu et al., 2018). Thus, growing Robusta in dense monocultures has bene-
fits, but at the cost of forests and biodiversity (Meyfroidt et al., 2013).

1.1.2 Climate Change and Coffee Production

Besides the environmental impacts, climate change is also affecting the coffee production. Specif-
ically, due to climate change, the increasing frequency of droughts causes declines in coffee yields
and loss of areas optimal for coffee production (Byrareddy et al., 2021). In the Central Highlands
region of Vietnam, where coffee production is concentrated, coffee fields were largely affected by
droughts. In 2016, more than 56,000 ha (27.5%) of the total coffee area of Dak Lak province ex-
perienced severe drought stress (Y. Pham et al., 2020). This has severe consequences for farmers
who depend on coffee production for their livelihoods (Utrilla-Catalan et al., 2022). To add on,
it is expected that climate change will increase the distribution of pests and diseases that could
affect coffee cultivation (Y. Pham et al., 2019). Various major coffee pests and diseases, such
as the coffee white stem borer and the coffee berry borer, are expected to increase reproductive
rates and distribution as a result of changing long-term temperature and precipitation patterns
(Kutywayo et al., 2013; Magrach & Ghazoul, 2015). Longer-term changes in precipitation pat-
terns and temperature have already been argued to contribute to recent spikes in coffee leaf rust
in several countries across Latin America and the Caribbean (Rhiney et al., 2021). Epidemics
from plant diseases, such as coffee leaf rust, make globalised coffee systems more vulnerable and
threaten the produce (Rhiney et al., 2021).

1.1.3 Socio-economic Challenges and Coffee Production

From a social and economic perspective, coffee farmers are also facing severe challenges regard-
ing coffee production. In 1989 a global regulated quota system that ensured stable prices ended
(Kolk, 2013). Because of this, price volatility in the coffee market became inevitable and causes
vulnerability in producers’ income (De Fontenay et al., 2002; Kolk, 2013). Non-governmental
organizations (NGOs) correlated this to declining income levels for farmers, and poor working
and living conditions (Kolk, 2013). Particularly ethnic minorities and economically disadvan-
taged individuals are facing these challenges, as the dominant coffee-producing region is also
the region with many socio-economically vulnerable minority groups (De Fontenay et al., 2002;
Khuc et al., 2018).

Figure 1.1: Causal loop diagram visualising the main factors of the NRM problem.
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1.2 Biodiversity, Droughts and Farmlands

1.2.1 The Role of Agrobiodiversity on Farms

It can be argued that the issues regarding the sustainability of coffee fields in Vietnam, partly
arise by producing coffee at the cost of biodiversity as a consequence of agricultural intensifica-
tion. There has been a worldwide growing realisation of the importance of biodiversity for both
environmental conservation as well as agricultural production (Dinesh et al., 2022; Dulloo, 2019;
Thrupp, 2000). Agricultural biodiversity (agrobiodiversity) is essential for a healthy farming sys-
tem. Agrobiodiversity can be defined as “the variability of animals, plants, and micro-organisms
that are used directly or indirectly for food and agriculture, including crops, livestock, forestry,
and fisheries” (Dulloo, 2019).

Agrobiodiversity has multiple benefits for a healthy farm system, which have the potential
to improve the sustainability of coffee production in Vietnam. An example is supporting the
naturally occurring insects, bacteria, fungi, and birds that make it possible to control epidemics
such as insect pests and diseases (Dinesh et al., 2022; Thrupp, 2000). To add on, insects,
birds, and other animals also play an essential role in pollination and fertilisation (Anderson et
al., 2016). Besides, organic matter is provided by the loose leaves or die-off from other plants
(Kuzyakov, 2010). Furthermore, supporting soil organisms is essential for the quality of soil
that is used for production, decreasing dependence on fertilisers (Thrupp, 2000). Soil fauna,
such as worms, are also responsible for decomposition which is essential for providing plants
with nutrients (Bhadauria & Saxena, 2010). Lastly, adding a variety of species, such as different
vegetation types, can support ecosystem services, such as pest control and stability of the farms
with climate and water regulation (Thrupp, 2000). All of these are important in supporting
overall ecosystem health and resilience.

1.2.2 Biodiversity and Drought Resilience

While biodiversity that provides ecosystems resilience to climate change has to be further ex-
plored, various papers suggest there could be a relationship between biodiversity and drought
resilience (Adams et al., 2022; De Keersmaecker et al., 2016; Isbell et al., 2015; Wright et al.,
2021). What is already known, is that there are so-called “insurance effects” of biodiversity.
When ecosystems have higher diversity in species, it is also more likely that they contain species
that are more robust against extreme climate conditions. Thus, when more vulnerable species
are affected by extreme climate conditions, the robust species can compensate for their losses
(Isbell et al., 2015). In biodiversity ecosystem functioning research, the stress-gradient hypothe-
sis is a topic of interest. This hypothesis suggests that ecological interactions between organisms
become more positive to support each other’s survival, for example, by providing shade, im-
proving soil moisture, or sharing nutrients (Adams et al., 2022). According to the hypothesis,
drought-sensitive species may be buffered against climate extremes when growing under two
requirements. For the first condition, they have to grow in either higher diversity or higher
biomass plant communities. The second one states they should grow near drought-resistant
neighbours. The reason for this is that higher-diversity communities can be more productive in
the provision of greater shade, cooler air temperatures, increased relative humidity, increased
likelihood of deep-rooted species and increased surface moisture at the community level (Wright
et al., 2021).

A study by Isbell et al. (2015) explored the relation between grassland plant diversity and
droughts. For a broad range of climate events, including wet, dry, moderate, and extreme events.
In all situations, the productivity of low-diversity communities that only included one or two
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species changed by approximately 50%. In contrast, high-diversity communities with 16 – 32
species were more resistant to the events and only changed by approximately 25%. However, a
year after each climate event, the productivity of both high- and low-diversity had recovered.
This study suggests that biodiversity mainly stabilises the productivity of ecosystems (Isbell et
al., 2015). In another study by Wright et al. (2021), a variety of plant species were tested under
mono-culture and higher-diversity mixture conditions. The species that grew in mono-cultures
during dry years were suppressed in their growth. In contrast, when the same species grew in a
higher-diversity mixture, they were unaffected by drought. The study suggests that biodiversity
should be used as a tool to protect individual species, e.g. crops grown in mono-cultures, from
drought conditions (Wright et al., 2021). In a study by De Keersmaecker et al. (2016), semi-
natural grasslands were compared to intensively managed agricultural grasslands in response to
climate anomalies. This study concluded that the more species-rich semi-natural grasslands were
more resistant to droughts and climate anomalies as compared to the agricultural grasslands,
stating that increasing species-richness may result in stability against climate extremes.

1.3 Societal Response to Negative Impacts of Coffee Production

Sustainable coffee production by focusing on environmentally friendly cultivation practices is
necessary from both a socio-economic as well as an environmental perspective. As a consequence
of the worldwide growing concerns on coffee production, certification programs, and labels have
emerged to set a standard for sustainable coffee production (Kolk, 2013). Certification programs
exist to ensure that the production of coffee takes into account at least one or more aspects of
sustainability. These aspects include the economic viability of coffee for farmers, that coffee is
produced in a healthy environment and promotes fairness among farmers and workers. There
exist various coffee certification programs that all have different main objectives. Nevertheless,
they share common traits in providing economic incentives and a voluntary certification process
to farmers and sustainable production methods, that are verified by independent certification
agency inspectors (Lentijo & Hostetler, 2011).

1.3.1 Coffee Certification Programs

There are various internationally known coffee certification programs (Lentijo & Hostetler, 2011).
To begin with, there is Organic. Organic certification focuses on ensuring that no synthetic
chemicals are used during production in agriculture (Organic, n.d.). Another well-known cer-
tification program is Fairtrade. Fairtrade is focused on strengthening the organisation of small
producers by ensuring fair prices and providing stability within trade relationships (Fairtrade
International, n.d.). Next, there is Rainforest Alliance, which focuses on coffee grown by farmers
that are located in conserved forests, soils, rivers, and wildlife. Their focus is on ensuring that
coffee is grown under tree shade and fair working conditions for farmers (Rainforest Alliance,
2024). Furthermore, there is Bird-Friendly, which focuses on promoting shade-grown organic cof-
fee, as this plays an essential role in conserving trees and migrating birds (Bird Friendly, n.d.).
Moreover, Starbucks has a certification program known as Starbucks C.A.F.E. Practices. This
program makes sure that the coffee that is specifically grown for Starbucks takes into account
economic, social, and environmental aspects of production (C.A.F.E., 2020). Finally, there is
the Common Code for the Coffee Community (4C), which addresses social, economic, and en-
vironmental standards for all stakeholders in the supply chain of coffee production (Lentijo &
Hostetler, 2011). While other certification programs have one particular focus, it can be argued
that 4C takes a more overarching approach by focusing on the whole process and supply chain
of coffee production. The general process in which the certification programs work is with inde-
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pendent verification systems that perform physical audits on coffee fields. Various certification
programs, such as 4C include the environmental dimension in their assessments. For example, in
the audit checklist of 4C, "protection of biodiversity and high carbon stock areas" is mentioned
as a criterion, as well as "primary forests and protected areas are protected" (4C Services, 2024).

1.3.2 Sustainable Farming Practices, Biodiversity, and Drought Stress in
Vietnamese Coffee Fields

Currently, unsustainable farming practices are still widely used in the Vietnamese coffee produc-
tion system. Such as the intensive use of water that depletes groundwater resources (Amarasinghe
et al., 2015; Byrareddy et al., 2020) and the overuse of chemical fertilisers (G. Nguyen & Sarker,
2018). Nevertheless, There is an increase in attempts to improve sustainability in coffee fields,
such as with intercropping, water-saving technologies, and mulching.

For example (UNEP, 2020) launched a report on addressing the smallholder resilience in
coffee production in the Central Highlands of Vietnam. The report describes the economic
benefits of transitioning from intensive Vietnamese Robusta cultivation to avocado, durian, or
pepper intercropping models. Not only will diversification result in economic benefits by reduc-
ing the impacts of low coffee prices, but it will also lead to increased biodiversity and improved
soil structure. In return, the economic profitability rises by reducing the requirement of irriga-
tion and agricultural inputs (UNEP, 2020). A study by Clément et al. (2023) supported these
findings. This study focused on transitioning from mono-culture to mixed cropping systems in
Vietnam. Results indicated that farmers are increasingly integrating multiple crops into their
fields. Particularly, coffee, pepper, and fruit trees such as avocado, durian, and macadamia are
grown in the same field. These changes were primarily driven by government incentives and
market prices. Benefits included increased economic resilience to price fluctuations and a de-
creased need for fertilisers and pesticides.

Other farm-scale strategies to increase sustainability are focused on improving irrigation
efficiency (Amarasinghe et al., 2015; Byrareddy et al., 2020) and irrigation techniques to de-
crease the depletion of groundwater resources (Ho et al., 2022). Moreover, conservation of soil
moisture through mulching, thus spreading a layer of litter such as pruned branches and leaves
on top of the soil around the plant, increases coffee production resilience and can result in an
economic benefit of 10.2% as compared to farmers that do not apply this practice (Byrareddy et
al., 2021). Furthermore, shade management, by providing more shade to coffee trees with other
tree species or agroforestry is a practice that can improve sustainability and adds biodiversity
in fields (Boreux et al., 2016).

Coffee farmers in Vietnam continue to adapt and apply more sustainable cultivation methods.
However, it is largely unknown how effective their strategies are for the mitigation of droughts
(Byrareddy et al., 2021). A multitude of these methods directly increase plant biodiversity in
the fields, such as adding intercrop species and shade trees (Boreux et al., 2016; Clément et
al., 2023; UNEP, 2020). Previous research suggests that there may be a relationship between
biodiversity and drought stress (Adams et al., 2022; De Keersmaecker et al., 2016; Isbell et al.,
2015; Wright et al., 2021). However, the correlation between agrobiodiversity, such as intercrop
species and undergrowth of grass and herbs, and drought stress experienced by coffee plants in
Vietnam has not been extensively researched and has the potential to be explored further.
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1.4 Wickedness

A wicked problem can be defined as a problem that involves uncertain knowledge and disagree-
ment among involved stakeholders. This makes it challenging to propose a suitable solution
(Balint et al., 2011). In the case of sustainable coffee production in Vietnam, the primary
wickedness is that the stakeholders who are involved in Vietnamese coffee production have var-
ious opinions on how to define, what to prioritise, and how to implement sustainability within
coffee production (Rhiney et al., 2021). This results in stakeholders that are willing to partici-
pate in the transition to sustainable coffee production, but have different focal points, such as
environmental concerns (Kolk, 2013; World Bank Group., 2015), social concerns (Kolk, 2013) or
the potential economic benefits (Hung Anh et al., 2019).

To begin with, the national government of Vietnam has played a significant role in the rapid
increase in coffee production in the country. Since the late 1970s, the government actively en-
couraged coffee production by removing restrictions and allowing private firms to participate
fully in the market (Giovannucci et al., 2004). An example is having a low import tax for fer-
tilisers (Giovannucci et al., 2004). However, in more recent years, the Vietnamese government
realised the importance of sustainable agriculture and is working together with the World Bank
to make coffee production more sustainable (World Bank Group., 2015). An example is gov-
ernmental support for an intensive coffee program that focuses on improved farm management
practices. The aim is to maintain current levels of production while using less land, water,
and material inputs to decrease impacts on surrounding forests (World Bank Group., 2015).
Another governmental action includes supporting sustainable coffee rejuvenation and replant-
ing practices, as the uncontrolled industry expansion has led to coffee fields in areas that are
not suitable for its production (World Bank Group., 2015). The Vietnamese Ministry of Rural
Development and Agriculture recently released a vision report on transitioning to sustainable
agriculture by 2050 (UNDP, 2023). The concerns about sustainability also led to the emer-
gence of a variety of voluntary standards for sustainable coffee production. This is the result of
NGOs and sometimes industry-accompanied concomitant certification programs. The various
standards that exist, such as Fairtrade, Organic, and Rainforest Alliance. All have different re-
quirements and priorities for what they consider to be sustainably produced coffee (Kolk, 2013).
For coffee farmers, the most important reason to participate in sustainable agricultural practices
is because of the potential economic benefits (Hung Anh et al., 2019). Moreover, farmers who
have experienced soil erosion and a lack of irrigation water also show interest in incorporating
sustainability initiatives into their methods of production and processing (G. Nguyen & Sarker,
2018). Lastly, research on the willingness to pay for sustainable coffee by consumers, shows
that consumers value agrochemical management, such as pesticide-free coffee, more than other
features of sustainability, such as biodiversity protection (Gatti et al., 2022).

For these reasons, it can be argued that the various stakeholders that are involved in the cof-
fee production of Vietnam have various reasons to participate in sustainable coffee production.
This agreement between the stakeholders on increasing sustainability makes the topic seem less
wicked. However, there are different opinions on what sustainability in coffee production entails
(Kolk, 2013). As a result, the aspect of agrobiodiversity on coffee farms becomes overshadowed,
reducing the overall awareness and emphasis on its significance within the broader context of
sustainable practices. Besides the possible economic benefits, the benefits and disadvantages of
having other species on the field are less obvious (Vogt, 2020). Consequently, the wickedness of
the problem increases, as there is no stakeholder consensus on the value of agrobiodiversity and
also uncertainty on the role of agrobiodiversity in coffee fields. Raising awareness and under-
standing on the topic of agrobiodiversity in coffee fields could therefore decrease the wickedness.
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1.5 Potential Use of Remote Sensing in Biodiversity Assessments
and Crop Monitoring

1.5.1 Remote Sensing for Agrobiodiversity Assessment

Assessing and monitoring agrobiodiversity in coffee fields is an essential part of sustainability
certification. However, Nagendra (2001) argues that by only using field visits, it is nearly im-
possible to acquire enough information for a complete biodiversity assessment. Remote sensing
is suggested as a solution as this can provide a systematic, synoptic view of the earth cover, that
proves to be useful for biodiversity assessment. Another advantage of the use of remote sensing
for agrobiodiversity assessment is that it is not necessary to assess one field at a time. In fact,
with the use of remote sensing images, a multitude of fields can be assessed, as larger areas at
a time can be covered by one image. This offers benefits of cost and time efficiency as well as a
transparent way of assessing fields (Read, 2006).

There are challenges when it comes to mapping coffee fields in the Central Highland region
of Vietnam. Mapping coffee fields in this region is especially challenging due to the persistent
cloud cover in the ‘coffee belt’. To add on, the spectral characteristics of coffee are similar when
compared to other agricultural land and tree crops. Apart from this, coffee production systems
themselves also appear to be diverse, making it challenging to find a universal classification
method to use (Maskell et al., 2021). For example, the method of growing Robusta in Vietnam
differs from the methods that are used for the production of Arabica coffee in Latin American
countries. While the Arabica grows under the shade of other trees, Robusta does not necessarily
require the inclusion of shade from other vegetation (Giovannucci et al., 2004). But even within
Vietnam, there are various types and structures of coffee production systems. Despite the chal-
lenges, there has been previous success in the mapping of coffee fields in Vietnam (Kpienbaareh
et al., 2021; Maskell et al., 2021; Zhou et al., 2017). A study by Maskell et al. (2021) integrated
sentinel optical and radar data to map smallholder coffee production systems in Vietnam, which
resulted in an overall accuracy of 89% (Maskell et al., 2021). Another study used a combination
of Landsat and digital elevation model (DEM) data for the mapping of multidecadal changes in
coffee in the Central Highlands region of Vietnam. This resulted in an overall accuracy of 86.9%
(Son et al., 2023).

Since coffee farms in Vietnam generally consist of small fields, high-resolution multispectral
sensors of less than 5 meters become particularly useful for coffee mapping (Hunt et al., 2020).
Agrobiodiversity in Vietnamese coffee fields can be characterised by a large variety of intercrop
species that are grown with the coffee plants in various structures (Clément et al., 2023). This
large heterogeneity in spectral signatures makes it almost impossible to classify distinct intercrop
species to assess agrobiodiversity (Bégué et al., 2018). A more general approach to map agro-
biodiversity within coffee fields would be to map different field structures, such as distinguishing
between high-shade and low-shade intercrop coffee fields. The quality of shade depends on tree
crown sizes, density, and compactness (Tscharntke et al., 2011). Thus, mapping different struc-
tures of intercrop coffee fields, such as distinguishing between high-shade and low-shade fields
has the potential to reveal different forms of agrobiodiversity in coffee fields, but the mapping
of this has not yet been explored.

A common approach for coffee mapping with optical data is the use of spectral pixel-based
methods. These methods classify the image pixels into land cover classes based on spectral
signatures of the land cover types in the study area (Hunt et al., 2020). Often vegetation indices
are used to extract more information from the satellite data. The most widely used index for
this purpose is the Normalised Difference Vegetation Index (NDVI) (Chemura et al., 2017; Hunt
et al., 2020). However, the NDVI is shown to be sensitive to soil colour and brightness, clouds,
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atmospheric effects, and shadows (Xue & Su, 2017). To account for atmospheric effects, the
Atmospherically Resistant Vegetation Index (ARVI) was developed (Xue & Su, 2017), which
has also been used for coffee mapping (H. Nguyen et al., 2016; Phi & Hoa, 2022). Another index
that was derived from the NDVI index and is less sensitive to soil brightness is the Soil Adjusted
Vegetation Index (SAVI) (Xue & Su, 2017). However, reducing the atmospheric effects or the
soil brightness effects may increase the other effects. To counter this, the Enhanced Vegetation
Index (EVI) was developed, which is also used in coffee mapping (Bernardes et al., 2012). Thus,
a broad range of useful vegetation indices for mapping coffee exist. However, there is no univer-
sal classification method. This raises the question of which vegetation index is the most useful
for mapping different structures of intercrop coffee fields in Vietnam.

1.5.2 Remote Sensing for Drought Stress Assessment

Remote sensing is also suitable for drought impact monitoring. While traditional methods for
drought monitoring fully relied on rainfall data, which was sometimes difficult to obtain, devel-
opments in remote sensing technology offer an efficient and rapid view of droughts at various
scales (AghaKouchak et al., 2015; Zargar et al., 2011).

The NDVI has become a primary tool for the description of vegetation health with remote
sensing because of its ability to distinguish healthy vegetation with high NDVI values from
unhealthy vegetation with low NDVI values (AghaKouchak et al., 2015; Kogan, 1995). This
became the basis for various remote sensing drought indicators, such as the Vegetation Condition
Index (VCI) (Kogan, 1995; Zargar et al., 2011). The VCI scales NDVI values between their
minimum and maximum values over multiple years to separate the short-term weather signals
from the long-term condition (Kogan, 1995). Several studies have been using the VCI for
drought monitoring (Dutta et al., 2015; Liang et al., 2017; Quiring & Ganesh, 2010; Zambrano
et al., 2016), and has been proven especially useful for the monitoring of agricultural drought
(AghaKouchak et al., 2015). This raises the question if these indices without the use of further
data are able to accurately assess drought stress in coffee plants in Vietnam.

1.6 Problem Statement

Coffee production is associated with various negative environmental impacts and improving sus-
tainability in coffee production is challenging. Different types of coffee production systems exist,
such as a variety of intercropping patterns and structures. Thus, coffee fields may substantially
differ in the level of agrobiodiversity. Previous research has shown there may be a relationship
between biodiversity and the level of drought stress. Both intercrop coffee field types and drought
stress have the potential to be assessed with remote sensing. The use of vegetation indices, de-
rived from high-resolution imagery is a promising approach. However, it is uncertain how well
these remote sensing-based assessments perform and if a relationship between biodiversity and
drought stress can be established with this approach.
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1.7 Research Objective and Research Questions

The goal of this research was to assess if different types of intercrop coffee fields respond dif-
ferently to drought stress. First, different high-shade and low-shade intercrop coffee fields were
classified with the use of various vegetation indices. Next, the impacts of droughts on the
field level were calculated using NDVI and VCI indices. Finally, the outcome of these analyses
were used to explore possible correlations between the agrobiodiversity within coffee fields and
drought stress. This led to the following main objectives:

• RO1: To test the suitability of high-resolution multispectral remote sensing imagery for
mapping intercrop coffee fields and drought stress in coffee plants.

• RO2: To investigate the effect of agrobiodiversity on the drought resilience of coffee fields
in Vietnam.

This is answered with the following research questions:

• RQ1: Which vegetation index provides the highest accuracy in distinguishing high-shade
and low-shade intercrop coffee fields with high-resolution multispectral remote sensing
imagery?

• RQ2: To what extent can high-resolution multispectral remote sensing imagery with
NDVI and VCI indices be used for detecting drought stress in coffee plants?

• RQ3: What is the relationship between agrobiodiversity and the level of drought stress
in coffee fields?
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Chapter 2

Materials and Methods

In this chapter, the materials and methods that were used to answer the research questions are
explained.

2.1 Study Area

In Figure 2.1 A, the Central Highlands and Dak Lak province of Vietnam are visible. The
Central Highlands is the main coffee-producing region in Vietnam, The Dak Lak province in
particular is known to be the coffee province of the country, as one-third of the total coffee
production in Vietnam originates from Dak Lak (G. Nguyen & Sarker, 2018). The average
coffee farm size is 1.63 ha with an average of 978 coffee trees per ha (Kuit et al., 2020). Dak Lak
consists of multiple smaller districts, as visible in Figure 2.1 B. In the districts of Krong Pak,
Cu M’gar and Buon Ho, Robusta coffee production is the main source of income (Hung Anh
et al., 2019). According to an expert organisation in the province (Nyguen Thanh Tam from
TMT consulting, personal communication, 17 January 2024), Cu M’gar, as visible in Figure 2.1
B, was at the time of this research a primary coffee-producing district. However, for fieldwork,
the local authorities granted permission exclusively to one of the communes, known as Quang
Hiep. For this reason, Quang Hiep was the case study area of this research. The exact location
of Quang Hiep is visible in Figure 2.2.

(a) Vietnam and Central
Highlands

(b) Dak Lak and Cu M’gar District

Figure 2.1: Maps of the study area.
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Cu M’gar is located in the center of the Dak Lak province in the Central Highlands of Vietnam
and is subdivided into seventeen wards and communes. It is a district of 824.43 km2 and had
a population of 173,024 inhabitants in 2022 (Cu M’gar Government, 2022). Most of the area
in Cu M’gar is planted with coffee, pepper, durian, and annual crops (Cu M’gar Government,
2022). The climate is categorised by the highland tropical monsoon climate. There are two
distinct seasons in a year. During the rainy season from May to October, 92% of the yearly
precipitation happens, which foresees water for crop growth and development. The dry season
is from November to April, precipitation during this season is limited (Vietnam Institute for
Building Science and Technology, 2022). This, in combination with low air humidity and a large
amount of evaporation further increases potential drought stress.

Figure 2.2: The district of Cu M’gar with the study area Quang Hiep.

2.2 Materials

During fieldwork, a GPS system of type Garmin eTrex was used to keep track of the location of
the sample points. A measurement tape with a length of 50 meters was used to make transects
from the sides of the coffee fields toward the center of the coffee fields. Printed-out fieldwork
forms were used together with a pencil to make notes of the fieldwork observations. After field-
work, this data was converted to an Excel file and shapefile.
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For analysis of the sub-questions, multiple satellite images were used. These included a high-
resolution SPOT 6 image as well as a collection of Sentinel-2 images from 2017 till 2024.

SPOT 6 Image

The SPOT satellite image was collected from the archive of the European Space Agency and had
the ID number ID number ORT_SPOT6_20240223_030159400_000. The specific product is a
SPOT 6 image that was orthorectified, pansharpened and contains four spectral bands. These
include, blue, green, red and near-infrared. It has a spatial resolution of 1.5 meters, which is
very high in comparison to other satellite image sources. The repeat cycle of SPOT 6 is 26 days,
and this specific image was captured on 2024-02-23:03:01:54.6. Thus, the image was captured
around the same time as the fieldwork phase of the research. Since the SPOT image has both
a high resolution and a similar timing to the fieldwork phase, it was appropriate to select this
specific image for this research. The coordinates are in UTM zone 48N. Figure 2.3, visualises
the original satellite image with 7343 rows and 8442 columns of pixels, clipped to the study area
Quang Hiep with true colour composite.

Figure 2.3: SPOT 6 satellite image clipped to the study area Quang Hiep in true colour
composition, captured on 24-02-23.
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Sentinel-2 Imagery

The Sentinel-2 satellite images were collected from the online Sentinel Hub platform. The
specific product collection consisted of Sentinel-2 level 2A imagery that was orthorectified and
contained 13 spectral bands in total. These included ultra blue, blue, green, red, multiple visible
near-infrared bands, and multiple short-wave infrared bands. The bands have different spatial
resolutions with the highest resolution of 10 meters for the blue, green and red bands. The
lowest spatial resolution is 60 meters for ultra-blue and short-wave infrared bands. The spatial
resolution is therefore considerably lower in comparison to the SPOT 6 image product. The
earliest available image for the Quang Hiep study area is from 2017, which is why a time series
from 2017 to 2024 was selected. The coordinates are in UTM zone 48N. Table 2.1 shows the
exact dates of every acquired Sentinel-2 image.

Table 2.1: Exact dates of the collected Sentinel-2 images from 2017 to 2024.

Year Month Day

2017 February 7th
2018 February 7th
2019 January 28th
2020 January 23rd
2021 February 16th
2022 January 22nd
2023 March 8th
2024 February 16th

Software

Software that was used for the analysis includes Python version 3.9.12, R version 4.2.3, and
Q-GIS version 3.22.10. The integrated terminal of the code editor Visual Studio Code was used
to run the Python scripts with various libraries. These included, scikit-learn, Rasterio, Pandas,
GeoPandas, NumPy, Matplotlib, seaborn, and SciPy. To run the R code, R studio was used
with the terra library. Q-GIS was used for the creation of the maps in this research.

2.3 Methods

This study consisted of four main phases. To begin with, field data was used to enable and
validate the analysis, by collecting samples of coffee plants and ground truth points (GTPs).
Secondly, image classification of high-resolution remote sensing imagery was used to map high-
shade intercrop coffee, low-shade intercrop coffee and no coffee classes. Next, remote sensing
imagery was used to analyse the drought stress that is experienced on coffee plantations, by
calculating the NDVI and VCI. Lastly, a descriptive statistical and correlation analysis was con-
ducted to search for potential patterns between biodiversity and drought conditions. A workflow
of the study design of this thesis is visible in Figure 2.4.
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Figure 2.4: Workflow of the study design, including the different methods, steps and
how each research question was answered.
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2.3.1 Data Collection

Fieldwork sampling design

The exact timing of the field data collection was from the 3th of March untill the 20th of March
2024. this is during the dry season of the study area. Instruments for the fieldwork included a
GPS system, measurement tape of 50 meters, and two field work forms for the collection of coffee
health data and GTPs. There was no previous selection of farms to visit, because there was
no information or spatial outlines on coffee farms available. Instead, a member from a farmers
cooperative known as Quet Tien cooperative guided us to randomly selected coffee farms in the
area, taking into account that the locations needed to be spread out over the study area.

For the coffee health dataset, points were collected every 10 meters in a transect from the
side of a coffee field to the center, using the measurement tape and GPS. The GTPs were focused
on the collection of points of other land cover types in the study area. For this, random points
were selected and the location was tracked using the GPS. Both dataset collections are in detail
discussed in the following sections.

In total, 88 coffee health sample points and 163 GTPs of various classes were collected. This
is visible in Figure 2.5 and a more zoomed-in version that shows the distribution points on a field
level is visible in 2.6. Approximately 15 farms with multiple coffee fields containing different
characteristics were visited. These characteristics ranged from mono-culture fields with a lot
of sun exposure, to large intercrop trees that provided a lot of shade. Even within the fields,
there was variation in planting structures visible. All fieldwork data sheets were converted into
a database in Excel.

Figure 2.5: Distribution of collected sample points in the fieldwork phase.
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Figure 2.6: Zoomed-in version of the distribution of collected sample points in the
fieldwork phase.

Coffee health data collection

The first type of data that was collected during fieldwork was the coffee health data. This was
done by collecting points every 10 meters in a transect from the side of a coffee field to the
center, to see if there were gradual changes within a field. Because the coffee fields are randomly
distributed and quite small (this varies between 0.5 hectares to 1.5 hectares), one transect per
field was carried out to collect data.

By filling in the data collection form as visible in A.2, at every point, data was collected on
the health state of the coffee shrubs based on observable characteristics. A study by Evizal and
Prasmatiwi (2022) describes observable traits of nutrient deficiencies in Robusta coffee that were
especially present after a long drought season in non-shaded coffee fields in Sumatra. A symp-
tom of nitrogen deficiency is the presence of yellow leaves. Furthermore, magnesium deficiency
is visible with yellow-brown to light brown necrotic spots (Evizal & Prasmatiwi, 2022). Abu-
Mettleq and Abu-Naser (2019) further indicates that coffee plants can suffer from severe leave
loss and branch dieback during dry seasons when water is lacking. The health of the observed
coffee plant samples was evaluated quantitatively, using a percentage-based scoring system from
0 to 100. Figure 2.7 shows an overview of the mainly observed different characteristics. The
sampled coffee plants received a score between 0 and 100. A score of 0 indicated the least healthy
condition, while a score of 100 denoted optimal health.

Plants scoring between 75 and 100 were categorized as "healthy". These samples exhibited
uniformly bright green leaves with no yellow leaves, brown spots, or other stress indicators.
Scores in the range of 50 to 75 indicated plants with moderate health issues, characterized by
the presence of some yellowing or brown spotting on the leaves, but retaining a majority of green
foliage. As the score approached 75, fewer yellow leaves were observed, while scores closer to
50 indicated a greater prevalence of such symptoms. Plants with scores ranging from 25 to 50
demonstrated more pronounced stress, primarily marked by a predominance of yellow leaves.
Lower scores within this range indicated an increased presence of yellowing. Scores below 25
were assigned to plants showing severe stress symptoms, such as significant leaf loss and the
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presence of predominantly yellow or brown visibly dried-out leaves.

(a) Health score between 75 and 100 (b) Health score between 50 and 75

(c) Health score between 25 and 50 (d) Health score between 0 and 25

Figure 2.7: Examples of health scores for coffee samples based on appearance. (A) A
coffee plant with exclusively bright green leaves. (B) A coffee plant with mostly green
but also yellow leaves. (C) A coffee plant with predominantly yellow leaves with few
green leaves. (D) A coffee plant with very few leaves, of which all leaves are yellow.
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Moreover, the height of the coffee plants, surface cover type and cover percentage, inter-
crop/shade tree type and cover percentage, the distance between the intercrops, and species
count information were collected. For the species count, all unique plant species within a radius
of 3 meters around the coffee shrub were counted. A local expert supported the recognition and
distinction of various intercrop species during the fieldwork. The coffee height, intercrop cover
percentage, surface cover percentage, and the distance between intercrops were estimated, based
on visual interpretation. A full overview of the collected variables is visible in Table 2.2.

Table 2.2: Information collected for the coffee health dataset during fieldwork.

Field Description

ID Unique identifier for each sample point.
Coordinates GPS coordinates of the sample point.
Distance from the side
of the field (m)

Measured distance from the edge of the field to the sample
point.

Coffee Height (m) Average height of the coffee plants in the three meter radius
of the sample point.

Coffee Health Assessment of the average health of the coffee plants from 0
to 100 in the three meter radius of the sample point.

Surface Cover Type Type of surface cover in the three meter radius of the sample
point.

Surface Cover Percentage of surface area that is not bare soil in the three
meter radius of the sample point.

Intercrop Type Type of intercrop present in the three meter radius of the
sample point.

Intercrop Coverage Percentage of area covered with shade from the intercrop in
the three meter radius of the sample point.

Intercrop Height Average height of the intercrops in the three meter radius of
the sample point.

Distance Between Inter-
crops (m)

Distance between individual intercrop plants on the sample
point location.

Species Count Count of all unique plant species present in the three meter
radius of the sample point.

Ground Truth Points data collection

The second dataset that was collected during fieldwork served as GTPs for the image classi-
fication to create a land cover map. This was done to improve the distinction between coffee
fields and other types of fields in the classification process of the remote sensing image. Random
points of various land cover types were collected. The land cover types that were included in the
observations were selected before the fieldwork and consisted of: bare soil, shrubland, grassland,
cropland, wild trees, other plantations, various intercrop species in coffee fields, mono-culture
coffee, newly planted coffee and water. For this, the data collection form was filled in and the
GPS was used to track the sample locations. Moreover, a picture of the land cover type was
taken at each location. A full overview of the collected data is visible in Table 2.3. A local
expert supported the recognition of the predominant observed plant species in sample locations.
The species count information included all observed plant species on a sample location. The
canopy cover was estimated, based on an on-sight visual interpretation. The fieldwork form that
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was used for this is visible in A.1.

Table 2.3: Information collected for the GTP dataset during fieldwork.

Field Description

ID Unique identifier for each data point.
Coordinates GPS coordinates of the sample.
Land Cover Type Classification of the land cover.
Dominant Species Predominant species observed.
Species Count Total number of species recorded.
Canopy Cover Percentage of canopy cover.
Description Additional description of the area.

In Table 2.4 a full overview of the data that was used for this research is visible. This con-
sisted of the data collected during the fieldwork phase of this research, and the collected satellite
images from the European Space Agency and Sentinel Hub.

Table 2.4: Dataset and Source Information

Dataset Source

Ground truth points Collected during fieldwork
Coffee health Collected during fieldwork
SPOT image European Space Agency
Sentinel-2 images Sentinel Hub

2.3.2 Field data processing

The GTP dataset originally consisted of the following classes: bare soil, shrubland, grassland,
cropland, wild trees, other plantations, various intercrop coffee classes, mono-culture coffee,
newly planted coffee, and water. It was tested whether a classification with distinct intercrop
species in coffee fields was possible. However, the accuracy of classifying distinct intercrop classes
was too low for further analysis. Instead, the classes were generalised to high-shade intercrop
coffee, low-shade intercrop coffee, and no coffee classes. The distinction between high-shade and
low-shade intercrop coffee classes was based on the collected data on canopy cover percentages.
If the intercrop coffee sample had a canopy cover percentage of over 50%, the sample was clas-
sified as high-shade intercrop coffee. If the class had a canopy cover percentage that was lower
than 50%, it was classified as low-shade intercrop coffee. Also, the mono-culture coffee class,
which had a canopy cover percentage of 0%, was merged with the low-shade intercrop coffee to
have a larger number of samples for the classification process.
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2.3.3 Image Processing

Preprocessing of the SPOT image

Before the classification, the image was filtered with a Gaussian smoothing filter using the SciPy
library and .ndimage package for multidimensional image processing. The smoothening process
was necessary because when zooming into the SPOT image, small irregularities in pixel values
became visible which lowered the accuracies in the tested classification results. To smoothen out
these small irregularities and increase the accuracy of the classification, the Gaussian smoothen-
ing filter was used. The Rasterio and NumPy libraries were used the process the raster image.

The Gaussian smoothing filter works by creating a normalised kernel, which is a matrix based
on the Gaussian distribution. The size of this kernel and the sigma decide on the amount of
smoothening that is applied to the image. This kernel is moved over the image to calculate the
weighted average of the pixel values for every pixel based on the kernel. Because this filtering
technique uses a weighted average, in which weights gradually decrease towards the outer pixels,
larger objects are preserved while noise is reduced (Gonzalez & Woods, 2017). For smoothening
of the SPOT 6 image, the selected sigma was 2, with an alpha of 1.5 to preserve the edges of
coffee fields.

Image Classification

For the classification of the SPOT image, several Python libraries were used: Rasterio for
geospatial raster data manipulation, GeoPandas for handling and analysing geospatial datasets,
NumPy for efficient array operations, and Scikit-learn for implementing machine learning algo-
rithms.

The dataset comprised 163 samples, and thus only limited samples per class were available.
Therefore, it was crucial to have a good balance between training and testing sets, as estimat-
ing errors on validation datasets with limited samples is very sensitive (Xu & Goodacre, 2018).
According to Xu and Goodacre (2018), the splitting strategy is data-dependent and cannot be
decided a priori. For that reason, to have a stable model performance, different distributions of
training and validation data were explored before selecting a splitting strategy. This was done by
running an initial Random Forest model with different data splitting strategies and comparing
the results. From this pre-analysis, 80% training and 20% validation, and 70% training and 30%
validation sets resulted in unstable model performances with either very high or very low overall
accuracies. 50% Training and 50% validation set resulted in low overall accuracies, which could
be due to the minimal samples in the training set. For this reason, 60% training and 40% testing
sets were selected. Random stratification was used to ensure that 40% of the samples for all
classes were used as testing set. An overview of the number of training and validation samples
for each class is visible in Figure 2.5

Table 2.5: Total number of training and validation samples per class.

Class Training Validation

High-shade intercrop coffee 16 11
Low-shade intercrop coffee 24 17
No coffee 57 38
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From the SPOT 6 image, all available bands (blue, green, red, and NIR) were used as fea-
tures to train the model. Alongside the regular SPOT 6 bands, a multitude of vegetation indices
including NDVI, EVI, SAVI, and ARVI were tested on their performance. This was done by
developing models that include the regular SPOT 6 bands as a feature set as well as one of the
selected vegetation indices and a model that combined all vegetation indices. An overview of
how each index was calculated is visible in Table 2.6.

Table 2.6: Vegetation index formulas where NIR, RED, and BLUE represent the near-
infrared, red, and blue spectral bands, respectively. L is the soil conditioning index, which
varies from 0 to 1 depending on the density of the vegetation that is being analysed (Xue
& Su, 2017). In this research L = 0.5 was adopted to account for the differences of
high-shade and low-shade intercrop coffee fields.

Index Formula

NDVI NDVI =
NIR − RED
NIR + RED

EVI EVI = 2.5× NIR − RED
NIR + 6× RED − 7.5× BLUE + 1

SAVI SAVI =
NIR − RED

NIR + RED + L
× (1 + L)

ARVI ARVI =
NIR − (2× RED) + BLUE
NIR + (2× RED) + BLUE

The Random Forest algorithm was used for classification. This is an ensemble classifier that
combines the results of multiple decision trees to make a final class prediction. It is often used
for classification in the field of remote sensing due to the accuracy of the classifications. Its
benefits include that it is fast and insensitive to overfitting, has ease of parameterisation, and its
the ability to handle high data dimensionality (Belgiu & Drăguţ, 2016). A grid search algorithm
to optimise the parameters for each model and enhance their predictive performance was used.
Each algorithm underwent 100 iterations of training and testing to account for variability due to
random data splitting, thus ensuring a robust evaluation. Hereafter, the models with the highest
overall accuracy, for each of the vegetation indices were further analysed with their precision,
recall, and F1 scores. These measures give better insights into the specific classes when the data
is imbalanced (Juba & Le, 2019). These evaluations provided a detailed comparison to select a
model of which the resulting land cover map would be further used in the analysis. The selected
model was finally investigated with a confusion matrix.

21



2.3.4 Analysis

Drought Analysis

Drought analysis was performed using the terra library in R to process SPOT 6 and Sentinel-2
imagery. The analysis utilised two key indicators: the Normalized Difference Vegetation Index
(NDVI) and the Vegetation Condition Index (VCI).

The NDVI calculation was conducted for both the SPOT 6 as well as the Sentinel-2 images.
This was done to compare the resulting NDVI map from the SPOT 6 image from 2024 and the
Sentinel-2 image from 2024. Additionally, the mean and median NDVI values were calculated
using the Sentinel-2 imagery from 2017 to 2024 to understand if the plant conditions in 2024 are
similar to those of the previous seven years. With the resulting NDVI maps for the years 2017
to 2024 from the Sentinel-2 images, the VCI for the conditions of the Sentinel-2 image of 2024
was computed with the formula:

VCI = 100× NDVI − NDVImin

NDVImax − NDVImin

where NDVImin and NDVImax are the minimum and maximum NDVI values observed over
the period. VCI provides a relative measure of vegetation health by comparing the current
NDVI to historical extremes (Kogan, 1995). This temporal analysis supported the assessment
of drought conditions and their effects on coffee plant health by comparing extreme values from
the previous 8 years during the dry season with the conditions of the 2024 dry season.

Correlation Analysis

For the correlation analysis, R was used as well as Python. Pearson’s Correlation Coefficient
was the primary statistical tool used to analyse the relationships between agrobiodiversity vari-
ables and coffee plant health. This method was selected for its ability to measure the strength
and direction of linear relationships between continuous variables (Sedgwick, 2012). Pearson’s
correlation is a standard function of R and uses the formula as visible below.

rxy =
cov(x, y)

SDx × SDy

Pearson’s correlation is the most common correlation method that uses the covariance of
two normalised variables by the product of their standard deviations (Makowski et al., 2020).
To begin with, Pearson’s correlation coefficients were computed for all continuous variables that
were collected during fieldwork and the coffee health scores. This included the variables: inter-
crop cover percentage, the height of the intercrop, the distance between intercrop plants, surface
cover percentage, and species count. This analysis supported the recognition of the role agro-
biodiversity variables have on coffee plant health. From these results, the significant continuous
variables were further analysed to explore possible correlations between each other. R was used
to compute the Pearson’s correlation coefficients.

For the categorical variables, which included intercrop types and surface cover types, another
approach had to be used to analyse possible correlations with the coffee health scores. For every
unique category, binary variables were created, using 0 for absence and 1 for presence of the
category. This was used to compute correlation matrices with R. Thus, for all categories, its
presence or absence was correlated with the health of coffee plants.
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Overlay Analysis

Overlay analysis was used to quantify the relationship between the classified land cover map
and the NDVI and VCI maps that were generated in the previous steps of the analysis. For
this, various Python libraries were used, including Rasterio, NumPy, Scipy.stats, Matplotlib,
and Statsmodels. After reading in the land cover, NDVI, and VCI maps, the NDVI and VCI
values were calculated for every pixel of the high-shade intercrop coffee and low-shade intercrop
coffee classes. Descriptive statistics, including the mean and median NDVI and VCI scores per
class, were calculated and plotted with a boxplot. To analyse if the high-shade and low-shade
intercrop coffee groups were significantly different from each other, a two-sample t-test was used,
using the sample means X̄1 and X̄2, sample variances s21 and s22, and samples sizes n1 and n2,
of the two coffee classes. The formula is visible below.

t =
X̄1 − X̄2√

s21
n1

+
s22
n2

2.4 Ethical Considerations and Data Management

Before the start of the fieldwork, the ethical considerations were approved by the ITC GEO
Ethics Committee. Researching small-holder coffee fields in Vietnam raises the geo-ethical con-
cern of privacy. For that reason, the owner of every visited coffee field was informed about the
research and asked for consent before data in the field was collected. Owners of the visited fields
remained anonymous.

The coffee health data collection contains detailed information regarding coffee health and
other crops that are grown in the field. These specific GPS coordinates of farms can be sensitive
because they reveal the exact position of private properties. Moreover, the results of mapping
the various intercrop systems and information on coffee health may expose farming practices
and potential vulnerabilities. Making this data open-source gives organisations and external
researchers access to information that could potentially impact the livelihoods of farmers. To
ensure privacy of farmers, the data that was collected during this research was stored in a se-
cure OneDrive folder and in the local environment of the author’s computer. The data can be
shared based on specific requests and will be based on the motivation and purpose of the request.
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Chapter 3

Results

In this chapter, the results of the analysis are discussed to understand the role of plant biodi-
versity in coffee fields and its possible correlation with drought stress.

3.1 Descriptive Statistics of the Field Data

In this first section, the results that were obtained from fieldwork are discussed with descriptive
statistics. This includes the observations on coffee plant health, and other observed biodiversity
in the fields.

As visible in Figure 3.1, most of the observed coffee samples have a health score that is
centered around 70%. This indicates that these plants do show some signs that can be interpreted
as stress, such as the presence of yellow leaves or brown spots that prevent the plants from
being classified as completely healthy. Nevertheless, the predominant colour of the leaves of the
plants is green. This indicates that while the plants might experience stress that affects their
appearance, this is not to a severe extent.

Figure 3.1: Distribution of coffee plant health scores for each sample that was collected
during fieldwork.
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To test if the coffee health scores were normally distributed, a Q-Q plot was used, which is
visible in Figure 3.2. From this result, in which the points follow a pattern close to a straight
line, the study assumes that the coffee health scores are normally distributed.

Figure 3.2: Q-Q plot to test if the coffee health scores are normally distributed. The
blue data points fall mostly along the straight red line and are not skewed.

3.1.1 Biodiversity in Coffee Fields

During the fieldwork, it was observed that other forms of plant biodiversity primarily consisted
of other intercrop species. The presence of other vegetation such as ground cover from herbs
and grass was limited. For this reason, this section primarily focuses on the different intercrop
species that were observed during fieldwork.

In Figure 3.3 a visualisation of the different observed intercrop species is visible. Various
intercrop species were observed in combination with coffee plants. Black pepper grown on poles
was the most frequently observed intercrop. Following this, cashew trees were commonly found
to be intercropped with coffee. Additional intercrops, such as durian, were also noted, although
less frequently. Intercrop species observed only once or twice were categorised into "other".
This category includes tamarind trees, banana trees and jackfruit trees. In multiple instances,
coffee was intercropped with a variety of intercrop species simultaneously, as represented by the
multiple intercrop species category. This typically involved combinations such as black pepper
with cashew or pepper with durian. While a variety of intercrop species were observed during
fieldwork, mono-culture coffee cultivation was less prevalent, and only limited samples of mono-
culture coffee fields were collected. Even less prevalent was the presence of shade trees. In this
study, shade trees are defined as trees that were planted for shade provision and do not serve as
an intercrop.
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Figure 3.3: Piechart visualising the distribution of mono-culture coffee plants and
intercrop species that were observed during fieldwork at each sample point.

In Table 3.1 the different intercropping types that were observed in the coffee fields are vis-
ible. Notably, shade trees have the highest mean height, followed by the "other" category and
cashew trees. These three categories also have the highest maximum height values. Moreover,
shade trees also have a very high mean cover percentage. Thus, they generally provide more
shade to coffee plants than other categories. The maximum cover percentage for each intercrop
type does not show large differences.

Table 3.1: Mean and maximum height values in meters and mean and maximum cover
percentages for different types of intercrops.

Intercrop
Description

Mean
Height (m)

Max
Height (m)

Mean
Cover (%)

Max
Cover (%)

Shade trees 9.4 10.0 82.0 90
Other 8.7 20.0 28.33 70
Black Pepper 6.56 12.0 20.19 80
Cashew 8.14 20.0 46.67 80
Durian 3.94 6.0 27.78 60
Multiple intercrop species 3.50 5.0 30.00 60
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In Figure 3.4 the different surface cover types that were observed during fieldwork are visible.
The plant biodiversity for surface coverage was very limited. Most ground coverage consisted
of litter consisting of dead leaves. In some instances grass and herbs were visible. Healthy
green-looking grass and herbs were categorised differently than instances with dried-out yellow
and brown grass, which was the least observed surface cover type.

Figure 3.4: Different surface cover types observed during fieldwork at each sample
point.

3.2 Correlating Observed Biodiversity and Coffee Health

With the collected fieldwork data, correlation analysis was conducted using the observed coffee
health scores and the other biodiversity variables. To begin with, the correlation between the
coffee health scores and the intercrop data was tested. These intercrop variables include (1)
the type of intercrop, (2) the amount of shade the intercrop provided to the coffee plant, (3)
the height of the intercrop, and (4) the distance between intercrop plants. From these results,
the intercrop variables that had significant correlation coefficients were further analysed. The
surface cover types were also tested for correlation with coffee health scores. Lastly, correlation
analysis with the overall number of plant species surrounding the coffee samples was conducted.
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3.2.1 Correlating Mono-culture Coffee and Intercrop Types with Coffee Health

In Figure 3.5, the mean health score of the coffee plants for mono-culture coffee and the different
intercrop types is visible. Noticeably, the mean health for mono-culture coffee plants scored low-
est, while shade trees stand out with the highest mean coffee health scores. The second-highest
mean coffee health scores can be found in cashew intercropping. However, there is a relatively
limited difference in mean coffee health scores between cashew, multiple intercrops, durian, and
black pepper intercrops.

Figure 3.5: Histogram visualising the mean health scores of coffee plants for mono-
culture coffee plants and coffee plants growing with different intercropping types.

In Table 3.2, results of a computed correlation matrix between coffee health and different
intercropping types are visible. The correlation with mono-culture coffee shows the most sub-
stantial negative correlation with coffee health scores. Thus, according to this result, growing
coffee in mono-cultures tends to produce coffee plants with lower health scores as compared to
when coffee plants are grown with another intercrop. The highest positive correlation can be
found with growing coffee and shade trees in the same field. Moreover, although the correlation
scores are relatively low, there may be a limited positive correlation between growing both coffee
and cashew trees in a field. Pepper, durian, multiple intercrop species, and other intercrop types
show almost no correlation with the coffee health scores.
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Table 3.2: Correlation values between coffee health scores and intercrop types computed
with a Correlation Matrix.

Intercrop Type Correlation Coefficient (r)

Pepper −0.08

Durian 0.01

Cashew 0.19

Shade trees 0.31

Other −0.13

Mono-culture coffee −0.31

Multiple intercrop species 0.04

3.2.2 Correlating Intercrop Cover, Height, and Distance with Coffee Health

In Figure 3.6 the Pearson’s correlation between the amount of shade that is provided by the
intercrop in cover percentage, and the coffee health is visible. The relatively high correlation co-
efficient of 0.7 and the very small p-value indicate that there is a positive correlation between the
amount of shade provided by the intercrop and the coffee health score. Thus, the more shade that
is provided by the intercrop species, the higher the coffee health score is, according to this result.

Figure 3.6: Pearson’s correlation between the intercrop cover percentage and coffee
health scores.

In Figure 3.7 the Pearson’s correlation between the height of the intercrop and the coffee
health is visible. Although the correlation scores are lower as compared to the amount of shade
that is provided by the intercrop, the result suggests a moderate positive correlation with a cor-
relation coefficient of 0.5. This is supported by the small p-value. Thus, an increase in intercrop
height, suggests a small increase in coffee health.
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Figure 3.7: Pearson’s correlation between the intercrop height in meters and coffee
health scores.

The correlation between the distance between two intercrop species within a coffee field and
the coffee health score had a correlation coefficient of 0.18 and had a high p-value of 0.11. This
result suggests that there is no significant correlation between the distance between intercrops
and coffee health. The measured distance from the edge of the field to the sample point also
showed no significant correlation with the health of the coffee sample with a correlation coeffi-
cient of -0.05 and p-value of 0.66.

3.2.3 Intercrop Characteristics Correlation

To further understand the intercrop variables, a correlation analysis was conducted between the
significant intercrop characteristics from the correlation analysis with coffee health scores. This
included the intercrop species type, shade provision, and height of the intercrop.

To begin with, the correlation between the type of intercrop and the intercrop cover was
computed in a correlation matrix. The results of Table 3.3 indicate that there are positive
correlations between cashew trees (0.29) and shade trees (0.43) and the amount of shade that
is provided. This indicates that these trees have a positive effect on the shade in coffee fields.
On the other hand, the strongest negative correlation was found with black pepper as intercrop
(-0.27), indicating that when pepper is used as intercrop species, there is limited shade in the
coffee field.

Table 3.3: Correlation values between intercropping type and intercrop cover percentage
computed with a correlation matrix.

Intercrop Description Correlation Coefficient (r)
Multiple intercrop species 0.12
Other -0.03
Shade trees 0.43
Cashew 0.29
Durian -0.05
Pepper -0.27

The next analysis focused on the Pearson’s correlation between the height in meters of the
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intercrop and the intercrop cover percentage, as visible in Figure 3.8. From this analysis, the
results indicate that that is a moderate positive correlation between the height of the intercrop
and the cover percentage it provides with a correlation coefficient of 0.46. Thus, taller intercrop
species are generally able to provide more shade according to this result.

Figure 3.8: Pearson’s correlation between intercrop height and intercrop cover percent-
age.

3.2.4 Correlating Surface Cover Types and Coffee Health

In examining the influence of the type surface cover on coffee plant health, a correlation matrix
was used. In Figure 3.9 the mean coffee health scores per surface cover type are visible. The
dead leaves cover category has the highest mean coffee health score. This is followed by the
herbs and grass category, and bare soil. Dried grass shows a very low mean for coffee health
scores in comparison to the other surface cover types.

Figure 3.9: Histogram visualising the mean health scores of coffee plants for different
surface types at each sample point.
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In Table 3.4 the correlation scores for different surface cover types are visible. Dead leaves
show a positive correlation indicating that the presence of dead leaves on the surface is associ-
ated with higher coffee health scores. Dried grass has a strong negative correlation with coffee
health scores. This indicates that its presence is associated with lower health scores. The bare
soil, and herbs and grass categories show limited correlation with the coffee health scores.

Table 3.4: Correlation values between coffee health scores and surface cover types
computed with a correlation matrix.

Surface Type Correlation Coefficient (r)

Bare soil −0.11

Dead Leaves 0.40

Dried Grass −0.44

Herbs and Grass −0.12

3.2.5 Number of Species

With the number of plant species that were counted on the location of the coffee plant, including
intercrop species as well as surface cover plants, no correlation could be found with coffee health
scores. The p-value for this was 0.2495 and thus higher than the 0.05 threshold. The correlation
score was -0.126. Thus, no significant correlation between the plant species count and coffee
health could be found.

3.2.6 Highlights of the Descriptive Statistics of the Field Data

The highest correlation was found between coffee health scores and the amount of shade that
is provided by intercrop species. The type of intercrop was less relevant than the amount of
shade that was provided by the intercrop. However, the amount of shade that each intercrop
type is able to provide is found to be significantly different. The height of the intercrop species
also appears to affect the cover percentage. Because the cover percentage resulted in the highest
and most significant correlation values, the amount of shade in a coffee field was selected as the
focus for the next parts of the analysis.
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3.3 Classifying High-shade and Low-shade Fields

From section 3.2 it was concluded that the most important feature of other plant biodiversity
on coffee health is the amount of shade that is provided by other plant species. For this reason,
the classification process focused on classifying high-shade and low-shade coffee fields to explore
if there is a link with drought stress and the level of shade in these types fields.

For the classification of the SPOT 6 image, a supervised classification approach was used
with a Random Forest algorithm. For the training and testing of the model, the ground truth
data that was collected during the fieldwork was used. A selection of vegetation indices were
tested on their performance. To assess the accuracy of the models, precision, recall, F1 scores,
and a confusion matrix were used as metrics.

3.3.1 Model Comparison using Different Vegetation Indices

Different models were used to test the performance of various feature sets. All models included
the regular bands of the SPOT image and one of the vegetation indices from the selection
NDVI, SAVI, ARVI, EVI and a combined model. Each model was run 100 times and each time
the accuracy was assessed. In Figure 3.10, boxplots of the overall accuracies for each model
are visible. The model using the standard bands and NDVI as vegetation index achieved the
highest overall accuracy result and is followed by the combined model. However, the mean
overall accuracy from the ARVI model is higher and has a smaller interquartile range. While
the highest ARVI overall accuracy is similar to the highest SAVI accuracy, the SAVI and EVI
models generally scored the lowest accuracies. To select a model for the coffee classification task,
the precision, recall, and F1 metrics of the best-performing models for each vegetation index
were compared.

Figure 3.10: Boxplots visualising the overall accuracies after running the models for
each vegetation index with Random Forest classifier 100 times.
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3.3.2 Precision, Recall and F1 Scores

In Table 3.5 the precision scores for each class per model are visible, as well as the number of
validation samples that supported the assessment. The precision score represents the number of
correctly classified samples from a class divided by all samples that are classified as belonging
to this class (Tharwat, 2021). Thus, this gives a measure of how many samples per class are
correctly classified. Overall, the NDVI model scored higher than 0.70 for all three classes. The
Combined model scored highest for the low-shade intercrop coffee class, but lower for the high-
shade intercrop coffee clas. While the EVI model precision scored very high on the high-shade
coffee field class (0.89), it scored lower on the low-shade coffee field class (0.67). The SAVI model
was not able to reach a score higher than 0.7 for the coffee classes, and the ARVI model scored
low on the low-shade coffee intercrop coffee class (0.58).

Table 3.5: Class-specific precision for the best-performing model of each vegetation
index.

Class NDVI SAVI EVI ARVI Combined Support

High-shade
intercrop coffee 0.73 0.69 0.89 0.71 0.67 11

Low-shade
intercrop coffee 0.75 0.67 0.67 0.58 0.8 17

No coffee 0.84 0.85 0.78 0.83 0.81 38

In Table 3.6, the recall scores for the best-performing models are visible. The recall scores
are defined as the correctly classified samples from a class divided by the total number of sam-
ples that should have been classified as belonging to the class (Tharwat, 2021). Generally, the
recall for the no coffee class is high for all models with scores centered around 0.80. The models
also generally have high recall scores for the high-shade intercrop coffee class with scores over
0.70. The ARVI model is an exception to this, as it has a recall score of 0.45 for the high-shade
intercrop coffee class. For the low-shade intercrop coffee class, all models scored relatively low
with scores centered around 0.50. Thus, the models tend to classify low-shade intercrop coffee
as other classes. The ARVI model performs better than the other models with a recall score of
0.65 for low-shade intercrop coffee.

Table 3.6: Class-specific recall for the best-performing model of each vegetation index.

Class NDVI SAVI EVI ARVI Combined Support

High-shade
intercrop coffee 0.73 0.82 0.73 0.45 0.73 11

Low-shade
intercrop coffee 0.53 0.47 0.47 0.65 0.47 17

No coffee 0.95 0.92 0.92 0.87 0.95 38
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In Table 3.7 the F1 score for the best-performing models are visible. This measure com-
bines the precision and recall scores in one harmonised mean value of the two other measures
(Tharwat, 2021). All models, except for the ARVI model, score high on the high-shade intercrop
coffee class. The EVI model outperforms the other models with an F1 score of 0.80 for high-
shade intercrop coffee. The NDVI and SAVI models, have similar F1 scores for the high-shade
coffee class, wich are 0.73 and 0.75 respectively. The ARVI model has a very low score of 0.56
for this class, as compared to the order models. The F1 scores of the models for the low-shade
coffee class are lower. The NDVI model outperforms the other models with an F1 score of 0.62
for low-shade intercrop coffee. All models perform relatively well on the no coffee class with F1
scores of at least 0.84.

Table 3.7: Class-Specific F1 Scores for the best-performing model of each vegetation
index.

Class NDVI SAVI EVI ARVI Combined Support

High-shade
intercrop coffee 0.73 0.75 0.80 0.56 0.70 11

Low-shade
intercrop coffee 0.62 0.55 0.55 0.61 0.59 17

No coffee 0.89 0.87 0.84 0.85 0.88 38

The NDVI model was able to achieve the highest overall accuracy from all tested models.
Moreover, the precision, recall and F1 scores for the three classes were well-balanced for the
three classes in comparison to the other models. For these reasons, the resulting landcover map
of this model was selected for further use in the analysis.

3.3.3 Confusion Matrix

The results of the best NDVI model outcome are further explained in Table 3.8, which presents
the confusion matrix for three classes. The classification results indicated a high overall accu-
racy of 80.3%. Despite the limited and unequal number of samples for each class, the Kappa
coefficient was calculated to be 0.64, suggesting substantial agreement between the classified
map and the reference data. As visible in the confusion matrix, most confusion is caused by
low-shade intercrop coffee pixels that are classified as no coffee.

Table 3.8: Confusion matrix of NDVI model.

Actual/Predicted High-
shade
intercrop
coffee

Low-shade
intercrop
coffee

No coffee Total

High-shade intercrop coffee 8 2 1 11
Low-Shade intercrop coffee 2 9 6 17
No coffee 1 1 36 38

Total 11 12 43 66
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3.3.4 Visualisation of the classification result

In Figure 3.11, the landcover map from the NDVI model classification result is visible. During
the field visit, it was observed that also within coffee fields the structure can vary. One coffee
field could contain both high-shade and low-shade areas. This is also visible in the classification
result in which the classified high-shade and low-shade intercrop coffee fields are intertwined.
This highlights the potential for high-resolution SPOT imagery to classify variation within coffee
fields.

Figure 3.11: Landcover map derived from classifying a SPOT 6 image, using a Random
Forest algorithm with the regular image bands and NDVI index as features.

3.4 Drought analysis

For the assessment of the drought stress in the study area, The collected SPOT image was used,
as well as a time series of Sentinel-2 images from 2017 to 2024. The time of the images varies
from the end of January till mid-March, ensuring the images are in proximity to the fieldwork
dates. From these images, the NDVI and VCI were calculated and used as primary indicators
of vegetation health and drought stress.
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3.4.1 NDVI

The median and mean NDVI for the years of the Sentinel-2 images from 2017 to 2024 was
calculated. Furthermore, the NDVI values for the SPOT image were also calculated. This
resulted in the NDVI maps as visible in Figure 3.12. Noticeable is that the SPOT NDVI has
lower values as compared to the other NDVI maps. The Sentinel 2 NDVI also has lower values
when compared to the mean and median NDVI from 2017 to 2024. However, the difference is
especially noticeable in the SPOT NDVI map.

(a) Mean NDVI from Sentinel-2 time-series
images from 2017 - 2024 with dates ranging
from the end of January till mid-March.

(b) Median NDVI from Sentinel-2 time-series
images from 2017 - 2024 with dates ranging
from the end of January till mid-March.

(c) Sentinel-2 NDVI for February 16th 2024. (d) SPOT 6 NDVI for 23 February 2024.

Figure 3.12: NDVI maps from SPOT6 and Sentinel-6 images.

37



3.4.2 VCI

The Sentinel 2 images were also used for the calculation of the Vegetation Condition Index (VCI)
of 2024. In Figure 3.13 the VCI map is visible. According to Kogan (1995), VCI values that
are lower than 35 can be argued to be areas of drought stress. In the VCI map for 2024 that
is derived from Sentinel 2 satellite images from 2017 to 2024, it is visible that a large area with
Quang Hiep is experiencing drought stress according to this threshold.

Figure 3.13: VCI 2024 map derived from Sentinel-2 images from 2017 till 2024. Values
lower than 35 could be the result of drought stress according to Kogan (1995).

3.5 Coffee Fields and Drought Stress

Finally, the relationship between biodiversity and the level of the drought stress indicators in
coffee fields was explored. First, the correlation between the observed coffee health scores and
the NDVI and VCI indices was analysed. Next, the landcover map and both the NDVI and VCI
maps were used to analyse differences between the high-shade and low-shade coffee field classes.
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3.5.1 Observed coffee health and drought indices

As visible in Figure 3.9, performing a Pearson’s correlation analysis reveals a moderate positive
correlation between coffee plant health scores and the NDVI values from all sources. The me-
dian NDVI shows the highest correlation with a correlation coefficient of 0.354 and a p-value
of 0.0001. This is followed by the Sentinel-6 NDVI image with a correlation coefficient of 0.344
and a p-value of 0.001. These findings indicate that NDVI, particularly from Sentinel-2 and the
median NDVI value from a time-series of Sentinel-2 images, can moderately reflect the health
status of coffee plants as observed in the field. The SPOT NDVI showed a weaker but still
significant correlation with a correlation coefficient of 0.252 and a p-value of 0.020. This sug-
gests that while it can also be useful, it may be less accurate for assessing the health of a coffee
field than the Sentinel-2 NDVI sources. In contrast, the VCI demonstrated a very weak and
non-significant correlation with coffee plant health (r = 0.1318618, p = 0.229). Thus, the VCI
index is not directly suitable for assessing coffee health as observed during fieldwork.

Table 3.9: Correlation coefficients and p-values for different vegetation indices and the
observed coffee health samples.

Vegetation Index Correlation Coefficient (r) p-value

Median NDVI 0.35 0.0009

Sentinel-2 NDVI 0.34 0.0012

SPOT 6 NDVI 0.20 0.0201

VCI 0.13 0.2290

3.5.2 Comparing the landcover map and NDVI values

For all the pixels that were classified as high-shade intercrop coffee and low-shade intercrop
coffee, descriptive statistics of their NDVI values from the SPOT 6 image were calculated. In
Figure 3.14 the boxplots of the classified coffee fields and their NDVI values are visualised. High-
shade intercrop coffee has the highest mean NDVI value (0.47), while low-shade intercrop coffee
has a mean NDVI value of 0.40. These findings suggest that low-shade coffee fields generally
have lower NDVI values than high-shade coffee fields. However, this difference in mean values
is minimal. Nevertheless, the results of the two-sample t-test demonstrate that it’s difference is
significant with a t-statistic: 2957.19 and p-value of less than 0.05.
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Figure 3.14: Boxplots visualising the SPOT 6 NDVI values per type of classified coffee
field.

To further test this, the same descriptive statistics were computed for the land cover classes
and the NDVI values of the Sentinel-2 image, as visible in Figure 3.15. The mean of high-shade
intercrop coffee was 0.70, while the mean for low-shade intercrop was 0.58. For this result, the
two-sample t-test also resulted in a large t-statistic of 2651.25 and a p-value of less than 0.05.
This further proves that these intercrop classes have significantly different NDVI values.

Figure 3.15: Boxplots visualising the Sentinel-2 NDVI values per type of classified
coffee field.
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3.5.3 Comparing the Landcover Map and VCI values

In Figure 3.16, boxplots of the different coffee field types and their VCI values are visualised.
These discriptive statstics are based on the total number of pixels that were classified as high-
shade and low-shade intercrop coffee fields. For high-shade intercrop coffee, the mean VCI
value was 47.02, which is higher than the VCI drought stress threshold of 35. For low-shade
intercrop coffee, the mean had a value of 30.36, which is below the VCI drought stress threshold.
According to these findings, high-shade intercrop coffee fields generally have higher VCI values
than low-shade coffee fields. Thus, these fields may experience less drought stress than low-shade
intercrop coffee fields. The two sample t-test revealed a high t-statistic: 912.73 and low p-value
of less than 0.05, further proving significant differences.

Figure 3.16: Boxplots visualising the VCI values per type of classified coffee field.
The red line represents the threshold for drought stress, with any values lower than 35
indicating drought stress according to Kogan (1995).
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Chapter 4

Discussion

This chapter aims to answer the research questions from the key findings presented in the Results
chapter. Moreover, limitations and recommendations are discussed.

4.1 Classification of Different Types of Coffee Fields

In this section, the performance of the vegetation indices for the classification of different inter-
crop coffee fields is compared and discussed. This answers research question one (RQ1).

The Random Forest model with regular SPOT 6 bands and NDVI index, was able to achieve
a high overall accuracy of 80.3%, demonstrating it’s ability to distinguish high-shade intercrop,
low-shade intercrop and no coffee classes from each other. Despite the sensitivities of the NDVI
for soil colour and brightness, atmospheric effects, clouds, and shadows (Xue & Su, 2017), it out-
performed the other models in terms of the highest overall accuracy. By comparing the precision,
recall, and F1 scores, the Random Forest model with NDVI index was selected over the SAVI,
ARVI, EVI, and combined indices models for further analysis. Noticeably when comparing these
metrics, some vegetation index models scored very high on one intercrop class, but lower for the
other class. An example is the EVI model that outperformed the other models with high-shade
intercrop coffee predictions, but scored low on the low-shade intercrop class in comparison to
other models. This highlights that the selection of vegetation indices is case dependent.

However, mapping low-shade intercrop coffee was challenging for all models as the recall
scores for low-shade intercrop coffee were low, leading to an underestimation of the presence of
this class. This difference in accuracy per intercrop class might be attributed to the types of
intercrops that can be found in high-shade and low-shade intercrop coffee fields. For high-shade
intercrop fields, common intercrop types that were present in the field were intercrop types with
large tree crowns, such as mature cashew, durian, and shade trees. For low-shade intercrop coffee
fields, the intercrop types that could be found were very diverse, ranging from younger cashew
and durian trees to pepper, avocado, and even passionfruit. A random distribution of various
plant species and sizes causes a wide range of heterogeneity in spectral signitures, making the
classification challenging (Bégué et al., 2018).

Limited previous studies have attempted to classify different coffee planting structures. Two
studies focused on the distinction between shade and mono-culture coffee with lower-resolution
Landsat imagery. Cordero-Sancho and Sader (2007) achieved a maximum overall accuracy of
65%, while Ortega-Huerta et al. (2012) had an overall accuracy of 76%. One previous study by
Maskell et al. (2021), used Sentinel-2, and SAR data, to map mono-culture coffee, intercropped
coffee and young coffee systems in Vietnam. This resulted in an overall accuracy of 72%, as well
as user accuracies of 65% for mono-culture coffee and 56% for intercropped coffee. As far as this
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research is aware, no studies focused on the distinction between different levels of shade within
coffee fields. With an overall accuracy of 80.3%, SPOT 6 imagery with the use of NDVI has
shown potential for mapping distinctions within small-holder coffee fields in Vietnam. Especially
for high-shade intercrop coffee, the recall and precision scores are promising. However, low-shade
intercrop coffee was more difficult to distinguish from other classes. To improve the accuracy of
the results, more sophisticated image classification techniques could be explored. One potential
technique would be to fuse synthetic aperture radar (SAR) data with SPOT 6 imagery. SAR
data allows for a texture-based approach to capture aspects of canopy structure, this been proven
to be particularly useful for classifying coffee (Hunt et al., 2020; Maskell et al., 2021). Since
the SPOT 6 imagery that was used for this research has shown potential for the classification of
different intercrop coffee fields, a combined approach with SAR data could improve the accuracy
of the results.

4.2 Detecting Drought Stress in Coffee Plants

In this section, the key findings from the drought analysis are discussed, as well as the per-
formance of SPOT 6 imagery for this assessment. This answers the second research question
(RQ2). Furthermore, the limitations of the used methodology and potential future research are
discussed.

SPOT 6 imagery was used to detect drought stress in coffee fields, with differing results.
First of all, the NDVI values of the SPOT image were noticeably lower than the Sentinel-2
NDVI values. This can be explained by the Red and NIR spectral bands that both data sources
use. For SPOT 6, the wavelength of the Red band is in the range 0.625 to 0.695 µm, and NIR
0.760 to 0.890 µm (Airbus, 2013). For Sentinel-2, the Red band has a more narrow value of
0.665 µm, and the NIR band ranges from 0.705 to 0.865 (European Space Agency, 2015). A
study by Teillet et al. (1997) compared the spectral characteristics of different sensors on vege-
tation indices. This study demonstrated that spectral bandwidth, especially for the Red band,
significantly affects the NDVI. Therefore, the difference in NDVI values for the SPOT 6 and
Sentinel-2 images may be explained by the bandwidth of the Red band. A study that focused on
rice plant health, in which SPOT 6, and Sentinel-2 NDVI values were compared, also resulted
in generally lower values for the SPOT 6 dataset (Octavia & Supriatna, 2022)

Using Pearson’s correlation to to determine the strength of the relationship between the
observed coffee health scores with the NDVI values, the highest and most significant correlation
coefficients were found with the Sentinel-2 NDVI products. The correlation with the SPOT
NDVI image was less high but still significant. From these results, it can be argued that the
lower-resolution Sentinel-2 images perform better than the SPOT 6 image for detecting veg-
etation health in the study area. Sentinel-2 has proven to be significant in vegetation health
mapping in a multitude of other studies. Examples include vegetation stress assessments (Shukla
et al., 2019), crop monitoring (Ghosh et al., 2018), and pest detection (Haghighian et al., 2022).
While Spot 6 imagery was useful for the mapping of different intercrop coffee fields in this study,
it is less useful for vegetation health monitoring.

To further analyse the drought stress in coffee plants, the VCI index was used. The VCI,
which was derived from Sentinel-2 images from 2017 till 2014 showed no significant correlation
with the observed coffee health. Previous studies that used the VCI for drought monitoring
had mixed results. A study assessed agricultural drought using the VCI and the Standardized
Precipitation Index (SPI). This study found a high correlation coefficient (r>0.75) between the
VCI and yield of major rain-fed crops and concluded that the VCI was efficient in assessing agri-
cultural drought (Dutta et al., 2015). In contrast, a study by Quiring and Ganesh (2010) found
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no high correlation between the VCI and station-based meterological drought indices in Texas.
They argued that the VCI is strongly affected by climate region, as well as land use/land cover,
amount of irrigation and soil properties (Quiring & Ganesh, 2010). During field data collection
in Vietnam, various irrigation techniques were observed that likely influenced the results from
the drought analysis, as the coffee grown in these fields is not rain-fed.

The NDVI and VCI indicators were able to show that high-shade and low-shade intercrop
coffee fields significantly differed in NDVI and VCI values, with high-shade intercrop coffee
having a higher mean for both indices. While the NDVI and VCI indicators are efficient and
non-complex methods for drought assessments, these indicators have their limitations as they
only use remote sensing data. A more comprehensive drought analysis would involve more data
from various resources, such as temperature data or precipitation data. This would allow for
a more complete drought assessment. For example, to monitor droughts in Vietnam, various
studies used the Vegetation Health Index (VHI), which combines the VCI and the Tempera-
ture Condition Index (TCI), based on land surface temperature data (Du et al., 2018; Tran et
al., 2017). In Ha et al. (2016), local climate factors, including seasonal average temperature,
rainfall and length of the dry season, and land-use data were combined to analyse drought in
the Central Highlands of Vietnam. These methods are promising approaches for future research.

4.3 Relationship between Agrobiodiversity and Drought Stress

In this section, the relationship between agrobiodiversity and drought stress in coffee fields is
explored with results from the field data analysis and the remote sensing analysis. This answers
the third research question (RQ3).

4.3.1 Intercrop Shade Cover

With the collected fieldwork data, a correlation analysis between the observed health of coffee
plants and a variety of agro-biodiversity variables was conducted. The results that were derived
from this analysis, showed that the highest and most significant correlation can be found be-
tween coffee health and intercrop canopy cover. Research shows various benefits of shade coffee,
such as the preservation of biodiversity, and potential decline in diseases (Van Long et al., 2015).
Moreover, shade trees create a micro-climate by buffering temperature in the understory, which
in turn can reduce water and heat stress within coffee fields (Boreux et al., 2016). To add on,
shade trees can improve soil water infiltration and soil conservation when adequate management
practices are used (Byrareddy et al., 2021). Van Long et al. (2015) investigated the effects of
various shade tree types on the production of Robusta coffee in Vietnam. Results demonstrated
that the number of flowers that were produced by the coffee plant in shaded and unshaded sites
was similar. However, under shaded conditions, there was less premature fruit fall than coffee
that was grown under full sun exposure (Van Long et al., 2015). Ultimately, the combination of
these benefits may lead to increased production. Results from the overlay analysis of this thesis
show that high-shade intercrop coffee has higher mean values for the NDVI and VCI indices as
compared to low-shade intercrop coffee. This indicates that high-shade intercrop coffee is asso-
ciated with healthier vegetation as compared to the low-shade intercrop coffee. These findings
support the initial assessment of the field data analysis and provide further support that more
shade tends to be correlated with healthier coffee fields.

However, this result must be nuanced. Experts from TMT noted that if the crop is inter-
cropped with a fairly thick density, it will also affect the growth and development of coffee trees,
causing the plant to be obstructed, not enough light for photosynthesis to feed fruits, branches
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and leaves and prone to pests and diseases due to high humidity. Therefore, it is necessary to
pay attention to what percentage of shade is present in the field (Duong Van Hoai from TMT
consulting, personal communication, 22 March 2024). Other studies also argue that shade trees
may decline coffee yield. One reason is shade causes less stimulus for the growth and number of
flower buds while focusing more on vegetative growth (DaMatta, 2004; Van Long et al., 2015).
In Costa Rica, the decrease in coffee yield because of shading has shown to be between 18%
and 30% (Siles et al., 2010). Similar studies have shown a 28% decrease in Central America
(Haggar et al., 2011) and 50% in Brazil (Campanha et al., 2004). This thesis did not focus
on the relationship between shade and yield from coffee production. Potential future research
could focus on finding a balance between the amount of shade and light intensity for sustainable
coffee growth. Thus, how shade from intercrop species can be used to limit the impact of ex-
treme weather events while not compromising the growth and yield development of coffee plants.

While yield maximisation with unshaded coffee fields is a major economic benefit, this comes
with drawbacks that need to be considered. To begin with, unshaded coffee leads to biennial
production. This means that coffee shrubs can provide a high yield for one year, but are ex-
hausted during the production, with a decline in yield production in the following year as a result
(DaMatta, 2004). Thus, the yield per year is unstable. Since the coffee market experiences global
price volatility (Kolk, 2013), this can increase uncertainty in income levels for Vietnamese cof-
fee farmers. With shaded coffee production, the produced yield is stabilised (DaMatta, 2004).
Another drawback of sun coffee production is that it may be maintained with the use of large
external inputs, such as fertilisers and intesive water usage, but this is often at the expense of
the environment (Boreux et al., 2016). As the agricultural sector in Vietnam is challenged with
groundwater resource depletion and droughts (Byrareddy et al., 2020; Y. Pham et al., 2019),
further decline of groundwater levels is unfavorable.

DaMatta (2004) states that the advantages and disadvantages of adding shade trees to cof-
fee production systems ultimately depend on the site conditions and management. Unshaded
coffee fields are favorable when coffee is grown under ideal environmental conditions, as this
will result in higher yields than shaded coffee fields can provide ideal environmental conditions.
However, the benefits of shaded coffee fields increase as the site conditions become less favorable
for coffee cultivation. The benefits of shade trees particularly increase in regions that suffer from
soil and/or atmospheric droughts. Therefore, it can be argued that in the Central Highlands
of Vietnam, conditions are becoming less favorable with the increasing frequency of droughts
(Y. Pham et al., 2020). These unfavorable climatic conditions can explain the correlation that
was found between coffee health and shade from other plant species in this thesis.

The topic of adding shade trees to coffee production systems and its potential benefits and
disadvantages have been widely discussed in scientific research. However, The interactions and
functioning between coffee and different kinds of shade trees are complex and remain a challenge
to fully investigate (Boreux et al., 2016; Byrareddy et al., 2021). Based on existing literature,
the increasing pressure of droughts, and the results of this thesis, shade tree inclusion in Viet-
namese coffee fields may lead to increased benefits. Thus, while the outcomes of this thesis align
with the literature on the benefits of shade trees, more research, such as on optimal levels of
shade, is necessary for a full understanding of the topic.

4.3.2 Species Count

The number of unique plant species that were found in proximity to the coffee plant, did not
affect the plant health significantly according to the results of this research. A previous study by
Teixeira, Bianchi, Cardoso, Tittonell, and Pena-Claros (2021) investigated coffee productivity

45



and agro-ecological coffee management and could also not demonstrate a causal link. However,
they did conclude that coffee maintained under agroecological management had higher biodiver-
sity and maintained similar coffee productivity as compared to conventionally managed farms.
(Teixeira et al., 2021). this means that higher biodiversity may lead to satisfactory crop yields
that can be maintained without intensive use of external inputs, which is beneficial for farmers
in terms of cost and labour efficiency.

4.3.3 Intercrop Type

Noticeable, is that the intercrop type is of less importance for coffee health according to the
results of this study. A previous study by Opoku-Ameyaw et al. (2003) focused on the effects
of different intercrop species on Robusta coffee in Ghana. Results found significant differences
in coffee growth, yield, and economic benefits by intercropping coffee with either jack bean,
cowpea, cassava, or plantain. Future research could use a similar approach to further analyse
the differences and effects of commonly used intercrop species on Robusta coffee in Vietnam,
such as black pepper, cashew, and durian. Nevertheless, this thesis found a significant difference
in the mean cover percentage of each intercrop type. For example, cashew trees had a posi-
tive correlation (0.29) with the intercrop cover percentage, while black pepper had a negative
correlation (-0.26) with the intercrop coffee percentage. This finding indicates that the type of
intercrop can affect the shade that is present in the fields. Also, the height of the intercrop
significantly affects the cover percentage (r = 0.56). Thus, a field with taller cashew trees could
be more beneficial for shade provision in coffee fields than shorter black pepper intercrop species.

4.3.4 Surface Cover

Correlation analysis between coffee health and the presence of litter from dead leaves showed a
moderate positive correlation. Teixeira et al. (2021) argues that soil litter cover can be related
to higher soil quality. Thus, this may be a reason for the positive correlation between litter from
dead leaves and coffee health. The presence of herbs and grass did not have a significant impact
on the coffee health scores. According to Teixeira et al. (2021), higher weeding intensity does not
necessarily result in more coffee productivity. Therefore, while herbs and grass may not directly
have added benefits for coffee fields, it’s removal through weeding practices may not be necessary.

4.4 Addressing the Wickedness

This master thesis explored the use of image analysis for intercrop coffee mapping and drought
assessment in coffee fields. These results were related to field observations to understand the
role of agrobiodiversity in Vietnamese coffee production. The topic of agrobiodiversity is of-
ten overshadowed in sustainable coffee production as the involved stakeholders have differing
opinions on what sustainability in coffee production entails (Kolk, 2013; Vogt, 2020). Research
on agrobiodiversity can decrease uncertain knowledge on the topic. With more evidence on
the benefits of agrobiodiversity, stakeholder agreement on the value of agrobiodiversity might
increase, which makes the problem less wicked. From the results of this master’s thesis, it can
be concluded that there is a correlation between coffee plant health and shade from other plant
species. Certain intercrop types, such as cashew, are correlated with more shade provision as
compared to other intercrop types, such as pepper. Although optimum levels of shade have yet
to be determined, these results suggest that planting shade trees is promising for the health of
coffee plants in Vietnamese coffee fields.
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Figure 4.1: The role of intercrop species in the Causal loop diagram visualising the
main factors of the NRM problem.

This master’s thesis therefore opens a pathway for more focus on the topic of agrobiodiversity
in coffee fields. In Figure 4.1, the causal loop diagram that visualized the NRM problem in the
Introduction chapter of this thesis is visible. However, this causal loop diagram also shows how
the addition of intercrop trees can affect the system, which benefits multiple stakeholders.

On a national level, the Vietnamese Ministry of Agriculture and Rural Development worked
on a Sustainable Agriculture and Rural Development Strategy 2021-2030 Vision to 2050 (UNDP,
2023). More emphasis on intercropping is aligned with the Ministry’s ambition to increase sus-
tainability. Adding intercrop trees to coffee fields increases biodiversity. As biodiversity can
increase the resilience of ecosystems, and therefore also coffee production systems, the overall
sustainability of these agricultural fields can improve. The findings of this research may be used
by policymakers to further explore the inclusion of intercrop trees within coffee fields. Similarly,
organisations and certification programs focused on biodiversity conservation may use these in-
sights to promote for the transition away from large-scale monocultures in favor of shade coffee
systems as they may offer various environmental benefits. Coffee certification programs can
also benefit from the methodology of this research as it allows for transparent assessment of
the state of intercrop coffee fields by separating high-shade intercrop and low-shade intercrop
coffee without extensive field visits by auditors. This allows for general but efficient assessments
of agrobiodiversity in small-scale coffee fields. For coffee farmers, who are challenged with un-
stable income levels, adding intercrop trees has the potential to decrease this instability. Not
only will the inclusion of intercrop trees result in a diversification of income that makes the
farmers less reliant on coffee production, but it also has the potential to improve the health
of the coffee shrubs and spread the risk of crop loss by a pest or disease. To add on, there
are market benefits, as shade coffee cultivation is associated with sustainability and organically
produced coffee (DaMatta, 2004; Van Long et al., 2015). Further research on what intercrop
types can be combined with coffee plants for increasing economic benefits can benefit the farmers.

Thus, the topic of agrobiodiversity and the information provided in this thesis may be of
interest for multiple stakeholders in the sustainable coffee production chain. An increase in
knowledge on the benefits of agrobiodiversity for different stakeholders may lead to more con-
sensus on its value. This ultimately decreases the wickedness of sustainable coffee production.
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4.5 Limitations and Recommendations

In this section, limitations and recommendations for further research are discussed.

4.5.1 Field Data Collection

A limitation that made the classification of intercrop coffee fields challenging and introduced
uncertainty is the limited number of samples that were collected during fieldwork. Due to con-
strains in time and accessibility of locations during fieldwork, a limited number of samples could
be collected for both the GTP dataset, as well as the coffee health datasest. Also the locations
of the samples that were collected in Quang Hiep were dependent on where the local farmers
guided us and no maps of coffee farms were available. This made it challenging to collect well-
distributed data. For more reliable classification results, a larger number of samples should be
used for training and testing of the models.

Moreover, the study area became smaller than originally anticipated. The original study
area consisted of the whole district of Qu M’gar. However, the permission that was received
from the local authorities allowed for research exclusively in the commune Quang Hiep. As a
result, only a small area of Vietnam could be researched, which does not fully represent the
variety of conditions that can be found in the country, province of Dak Lak, or even district of
Cu M’gar. For example, the commune of Quang Hiep had limited groundwater sources in the
area. Some of the other communes in Cu M’gar had relatively more groundwater availability,
which may result in less drought stress. Besides, Clément et al. (2023) mentioned integration
of various intercrop species within coffee fields. Some of the mentioned intercrop species, such
as macadamia was not observed in Quang Hiep. Moreover, the topography varies throughout
Vietnam, while Quang Hiep had a slightly hilly topography, there are locations with mountains
of high altitudes. Lastly, all visited farms in Quang Hiep were not certified by coffee certification
programmes. Local experts in the study area indicated that in other communes, some coffee
farms are certified (personal communication, TMT consultancy). Therefore, this research could
be conducted in larger or more study areas in Vietnam. This would allow for a more compre-
hensive overview of the conditions of coffee fields in Vietnam and to make comparisons between
different regions.

The field observations on coffee health were performed by the author of this paper, who is no
expert in the recognition of coffee health conditions. Although literature was used in support of
the recognition, it is possible that certain observable characteristics were either not recognised
or misinterpreted. Involving expert on this topic during the field data collection could increase
the quality and reliability of the data.
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Another limitation that is necessary to consider is the presence of spatial autocorrelation.
The small geographic extent of this study area means that any spatial autocorrelation might
result from field-level patterns. For example, the coffee fields within the Quang Hiep commune
may have similar environmental conditions, such as soil type and climate. This could cause other
coffee fields in Quang Hiep to have similar coffee health scores or levels of intercrop shading.
This might introduce bias, making it difficult to distinguish the effects of different variables on
coffee health. However, the small study area also means that the potential for spatial variation
is reduced, such as variety in climatic conditions, which could simplify the interpretation of
results. In future research, spatial analysis techniques can be applied to measure potential
spatial autocorrelation. Examples of methods that can support spatial autocorrelation analysis
include Moran’s I, or variograms to detect whether spatial patterns exist (Getis, 2009).

4.5.2 Methods

A limitation of the classification approach was that while the presence of shade from intercrop
species can be linked with the presence of agrobiodiversity in coffee fields, this approach did
not account for the species richness that can be found within the fields. For this, a numerical
approach, such as with a specific biodiversity index is more suitable. One such approach could
be measuring Rao’s Q, as proposed in Rocchini, Marcantonio, and Ricotta (2017). Another re-
search direction for more specific agrobiodiversity mapping is to classify specific intercrop types
within the coffee fields. For this, unmanned aireal vehicle (UAV) imagery are a suitable ap-
proach. UAV data has been used in multiple studies for the detection of intercrop species, with
reliable results (Jamil et al., 2022; Parra et al., 2022; Shi et al., 2022). Nevertheless, for this
research, high-shade and low-shade coffee fields were appropriate to perform statistical analysis
on to further analyse the effect of shade in coffee fields.

Another limitation of this research is that the remote sensing analysis is only able to capture
NDVI and VCI indicators of the top layer of canopy. This means that the NDVI and VCI of cof-
fee plants under the canopy of taller trees could not be analysed with remote sensing. This was
taken into account with the correlation analysis between the coffee health and intercrop cover
percentage. The results of this analysis indicated that more shade resulted in healthier coffee.
Thus, it is assumed that the classified high-shade coffee type generally includes healthier coffee
than the low-shade and mono-culture coffee classes. However, more research on the relationship
of understory vegetation and canopy is necessary to prove this assumption.

Finally, coffee health is affected by more factors that were not researched in this thesis. While
this research exclusively focused on agro-biodiversity and droughts, other factors, such as nutri-
ents in the soil and pests can also affect the coffee health, but were not taken into account in this
study. Another potential future research could focus on the coffee-related health factors that
were not focused on in this research. This includes research on soil nutrients, pests, and diseases.
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Chapter 5

Conclusion

This research focused on the role of agrobiodiversity on drought stress in coffee fields in Viet-
nam and the suitability of remote sensing data to assess this. The first research objective was
to test if high-resolution remote sensing imagery was suitable for mapping intercrop coffee fields
and drought stress assessments. Results indicate that SPOT 6 imagery with regular bands and
NDVI index can be used to distinguish between high-shade and low-shade intercrop coffee fields
with F1 scores of 0.73 and 0.62 respectively. Therefore, high-resolution optical remote sensing
imagery has shown potential for distinguishing different types of coffee intercrop structures. For
drought stress assessment in coffee plants, the correlation coefficients of the Sentinel-2 imagery
were more aligned with field observations than those of SPOT 6 imagery. This indicates that
Sentinel-2 imagery may be more suitable for drought stress monitoring of coffee plants. To
improve on these results, the use of UAV data is recommended for more accurate mapping of
agrobiodiversity, intercropping in particular, in coffee fields. Moreover, for drought assessments,
the use of more data, such as surface temperature data, might increase the alignment with field
observations. The second objective of this research was to investigate the effect of agrobiodiver-
sity on the drought resilience of coffee fields in Vietnam. Results indicate that there is a high
correlation between the observed health of coffee plants and the shade that intercrop species
provide for coffee plants. This was further supported by the results from the classified coffee
field types and the drought indicators. High-shade intercrop coffee fields had a significantly
higher mean and median value for the NDVI and VCI indicators than the low-shade intercrop
coffee fields. The type of intercrop and the number of plant species that were present on the
farm were not significantly relevant for the observed coffee plant health. However, some types
of intercrop species, such as cashew, were more effective than other species in providing shade.
To add on, the height of the intercrop species was also found to be significant for the shade
provision. Although the optimal shade conditions have yet to be determined, these results un-
derscore the added value of agrobiodiversity with high shade cover for coffee fields.
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Appendix A

Fieldwork forms

In this section of the appendices, the field work forms for collection coffee health and the GTPs
are visible.

Figure A.1: Picture of one of the filled-in fieldwork forms on collection coffee GTPs
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Figure A.2: Picture of one of the filled-in fieldwork forms on collection coffee health
data
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Appendix B

Landcover maps

In this section the other produced landcover maps from each model are visible.

B.0.1 SAVI model

Figure B.1: Landcover map derived from classifying a SPOT 6 image, using a Random
Forest algorithm with the regular image bands and SAVI index as features.
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B.0.2 EVI model

Figure B.2: Landcover map derived from classifying a SPOT 6 image, using a Random
Forest algorithm with the regular image bands and EVI index as features.

62



B.0.3 ARVI model

Figure B.3: Landcover map derived from classifying a SPOT 6 image, using a Random
Forest algorithm with the regular image bands and ARVI index as features.
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B.0.4 Combined model

Figure B.4: Landcover map derived from classifying a SPOT 6 image, using a Random
Forest algorithm with the regular image bands and the combination of NDVI, SAVI, EVI
and ARVI indices as features.
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