
MSc Thesis Biomedical Engineering

Decoding Motor Unit Firing Events During Walking:
An Adaptive Approach Validated with Intramuscular
Electromyography

B.J. van Dieren

Graduation Committee:

dr.ir. T. Heida

dr.ir. A. Gogeascoechea

dr. S.U. Yavüz
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Decoding Motor Unit Firing Events During Walking:
An Adaptive Approach Validated with Intramuscular Electromyography

Abstract— Motor unit decomposition from high-density sur-
face electromyography (HD-EMG) provides insights into neural
control of movement. However, variations in motor unit action
potential (MUAP) shapes during dynamic conditions, such as
walking, pose challenges for decomposition accuracy. This thesis
presents an adaptive framework to address these challenges,
focusing on the m. soleus in walking.

The framework consists of: (1) an offline procedure to
extract decomposition parameters from low-force isometric and
walking trials, (2) an online-ready system applying these param-
eters in static and adaptive algorithms to estimate MU-specific
activation dynamics, and (3) validation against intramuscular
EMG (iEMG) benchmarks.

Results showed that static decomposition performed well at
lower speeds ( 0.6 m/s), while the adaptive algorithm improved
robustness in dynamic conditions for processing windows ≥ 200
ms. When train and test datasets were from different trials, the
adaptive method significantly outperformed the static approach.

This adaptive approach enables real-time tracking of m.
soleus motor unit activity, with applications in movement
analysis, rehabilitation and human-machine interfacing. Future
research should optimize parameters for muscles with greater
MUAP variability and validate the method in impaired pop-
ulations. Integrating adaptive decomposition with neuromus-
culoskeletal models could enhance joint torque estimation and
real-time control of wearable robotics.

Significance: A conference proceeding containing preliminary
results from an earlier draft of this thesis has been accepted and
selected as a finalist for the Best Paper Award at Rehabweek
2025.

I. INTRODUCTION

Human movement is driven by interplay between neural
commands and muscle fibers. The smallest functional unit
responsible for force generation is the motor unit (MU),
consisting of an alpha-motor neuron and the muscle fibers it
innervates [1]. Gaining insight into the mechanisms underly-
ing the functioning of motor units is crucial for understanding
both normal and impaired motor function. [2]–[4]. The goal
of this thesis is to improve the estimation of motor unit
firing patterns under dynamic and real-world conditions.
Decoding motor unit activity in these scenarios provides
valuable insights into the underlying mechanisms of muscle
function and contributes to the development of strategies
for mobility restoration and rehabilitation in individuals with
motor impairments.

When a MU is activated, it produces an action potential.
This action potential travels from the dendrites along the cell
to the axon, where the muscle fibers are activated. These
muscle fiber action potentials (MFAPs) cause muscle fibers
to contract, resulting in force production and movement. The
total sum of all the MFAPs of the muscle fibers belonging
to one motor unit is called the motor unit action potential

(MUAP) [1], [5]. A visual representation of the MUAP can
be seen in figure 1.A.

Traditional methods to record single motor unit activity
involve intramuscular electromyography (iEMG) recordings
using fine-wire or needle electrodes [6]. Template matching
algorithms have been proposed as a method for decomposing
iEMG signals, enabling full decomposition that provides
insight into single motor unit behavior [7], [8]. This tech-
nique identifies surface motor unit action potentials (sMUAP)
by detecting their characteristic shapes and amplitudes and
classifies them into specific motor units based on these
features. However, the main limitation of this technique is its
inability to distinguish action potentials that overlap in time,
often resulting in incomplete action potential trains [6].

In recent years, high-density electromyography (HD-
EMG) has emerged as a technique that can non-invasively
record temporal and spatial muscle activity on the skin’s
surface [9], [10], with an example of such a grid shown
in figure 1.B. Combined with blind source separation (BSS),
this approach enables the identification of motor unit (MU)
discharge patterns in vivo without requiring a priori knowl-
edge of MUAP shapes. Instead, it relies on the statisti-
cal properties of MU discharges and filter properties of
sMUAPs [11], [12]. Several studies have demonstrated the
potential of this technique to investigate common synaptic
input in force generation [13], [14], explore the mechanisms
underlying essential tremor [3], [15], and assess the effects
of electrical stimulation on motor unit pools in individuals
with incomplete spinal cord injury (SCI) [4]. Additionally,
it has shown potential when combined with personalized
musculoskeletal modeling for human-machine interfacing,
offering promising applications in movement analysis and
exoskeleton control [16], [17].

Although current BSS techniques have been extensively
validated for isometric contractions, they assume stationary
conditions [11], [18], making them suitable only for isomet-
ric or slow dynamic tasks. This limits their applicability to
real-world dynamic scenarios like hand gestures or walking
in which factors such as innervation zone and tendon shifts
relative to the electrodes [19], [20], volume conduction
changes, and joint angle variations [21] change sMUAP char-
acteristics throughout movement. Even the MUAPs during
consistent isometric contractions are prone to changes due to
fatigue and changes in firing patterns over time [22]. Another
big limitation of HD-EMG recordings is its susceptability
to amplitude cancellation, which refers to the phenomenon
where overlapping sMUAPs of opposite polarity partially
or completely cancel each other out [23]. This effect poses



Fig. 1. A: Motor units (MU 1 in red, MU 2 in green) generate motor unit action potentials (MUAPs), which is the sum of individual muscle fiber
action potentials (MFAPs). B: High-density EMG (HD-EMG) uses an electrode grid to record spatial and temporal muscle activity on the skins surface. C:
Extended observations, i.e. surface EMG signals, (x) are modeled as the convolution of mixing matrix H , which contains the MUAPs and their delayed
versions for all motor units and across all channels, and the extended motor unit spike trains, with added extended noise (ω)

significant challenges when trying to analyzing low-threshold
MUs during high-force activities, such as walking, because
the recruitment and elevated firing rates of high-threshold
MUs amplify the likelihood and severity of amplitude can-
cellation.

These limitations restrict the use of motor unit decompo-
sition in movement analysis and exoskeleton control for both
healthy and impaired individuals, as well as improvement of
neuro-rehabilitation techniques such spinal stimulators, and
neuroprosthetics in impaired individuals [2], [4]. Addressing
these limitations would enhance the understanding of neu-
romuscular control during dynamic tasks and pave the way
for targeted interventions in motor disorders and improved
exoskeleton control.

To address amplitude cancellation, previous work already
proposed a decoding algorithm that is capable of identifying
the MU firing events from a wide range of MU types, by
extracting both low-force motor units from quasi-isometric
contractions and high-force motor units in walking data [16].
This study focused on MUAPs from the m. soleus, which
undergoes minimal fiber length changes during the push-
off phase, minimizing the MUAP shape changes during
activation. [24], [25]. However, this study used a static
decomposition approach, which does not cover the non-
stationairy nature of sMUAPs during dynamic conditions
[16]. Another big limitation was the lack of validation at a
motor unit level with iEMG benchmarks, as this is a reliable
approach for validating decomposition accuracy, because it
is a direct and high-selectivity method to identify individual
motor unit spike trains (Section II-B).

To overcome these limitations, recent advancements pro-
posed adaptive approaches in which filters are adapted in
real-time to changing measurement conditions. In these al-
gorithms, decomposition parameters are updated based on

new data to adapt to changes in sMUAP shapes over time.
However, current implementations have only tried this ap-
proach in slow dynamic contractions [26], [27] or isometric
conditions [28] making them less relevant in decoding MU
activity in dynamic movements such as walking. Also, these
models are either validated on hybrid data, in which simu-
lated and experimental HD-EMG recordings are used, or with
signal-based metrics without acquiring iEMG benchmarks
for comparison. Only Yeung et al. [28] did acquire iEMG
benchmarks; however, their study was limited to isometric
trials performed at varying force levels and joint angles.

Therefore, the aim of this thesis was to extend the
methodology to address variations in MUAP shapes during
locomotion by proposing an adaptive algorithm and validat-
ing its accuracy using intramuscular EMG (iEMG) as the
benchmark for decomposition. This thesis (1) applies offline-
initialized filters in an adaptive online framework to estimate
MU activity, (2) validates this MU activity against an iEMG
benchmark to obtain a conservative estimation of accuracy
and (3) combines the MU spike trains in combination with
twitch properties to determine overall muscle activation
patterns [16]. This approach enables more accurate estimates
of MU firing patterns in dynamic contractions, which has
the potential to transform the development of assistive de-
vices. Through real-time adaptability and intergration with
personalised muscoloskeletal models this will allow for a
personalized and effective rehabilitation experience for every
user.

II. BACKGROUND

A. EMG generation model

The generation model of multi-channel surface EMG
signals can be described as a convolutive mixture of impulses
with their corresponding sMUAPs. These sMUAPs have a



finite duration [11] and therefore the mixing process can be
presented as:

xi(k) =

L−1∑
l=0

n∑
j=1

hij(l)sj(k − l) + ωi(k) (1)

where i = 1, ...,m with m the number of observa-
tions/channels, so xi represents one surface EMG channel i,
k = 1, ..., Dr with Dr the total number of samples , hij is the
action potential of motor unit j in EMG channel i, sj is the
j-th source (motor unit spike train). ωi(k) is additive noise
regarded as stationary and a zero-mean Gaussian process, L
is the total duration of the sMUAP, and n the total number
of active motor units [11], [12].

This mixing model is a multiple-input-multiple-output
(MIMO) system with m observations (EMG channels) and n
sources (motor unit spike trains (MUSTs)). This convolutive
mixing model can be rewritten in a matrix notation by repre-
senting it as an instantaneous mixture of an extended vector
containing the sources sj and their delayed versions [12].
The observations xi are also extended to keep the ratio
between observations and sources as high as possible. This
creates the following matrix notation:

x(k) = Hs(k) + ω(k) (2)

where both the source s(k) and observation x(k) vectors
must be extended with delayed versions of themselves and
H contains all the sMUAP shapes and their delayed ver-
sions of the motor units across all channels. The resulting
observation, source, and noise vectors are [12]:

xi(k) = [xi(k), ..., xi(k −R)], i = 1, ...,m (3)

sj(k) = [sj(k), ..., sj(k − (L+R− 1)], j = 1, ..., n. (4)

ωi(k) = [ωi(k), ...ωi(k −R)], i = 1, ...,m. (5)

with R the extension factor for the observations. A visual
representation of this matrix mixing model can be seen in
Figure 1.C.

B. iEMG decomposition

As the introduction states, traditional methods to de-
compose single motor unit activity involve intramuscular
electromyogram (iEMG) recordings using fine-wire or needle
electrodes [6]. Template matching algorithms have been
proposed as a method for decomposing the iEMG signals,
enabling full decomposition that provides insight into sin-
gle motor unit behavior [7], [8]. This technique identifies
iMUAPs by segmentation and classification of action poten-
tials present in the recordings. In all decomposition algo-
rithms, each motor unit must have a unique action potential
(AP) for successful decomposition, as distinguishing between
two motor units with identical APs is impossible [29]. iEMG
ensures this uniqueness due to its high bandwidth, since its
location close to the source. This minimizes the low-pass
filtering effect caused by the tissue separating the fibers
(sources) from the recording site, which is known as the
’volume conductor’ [12], [30], which makes it a highly

selective method. However, the main limitation of iEMG de-
composition is its inability to resolve superimposed iMUAPs
often resulting in incomplete action potential trains and the
low amount of motor units that can be identified/detected [6].
Thereby, it is an invasive and fragile method that can cause
discomfort for some subjects and during certain movements.

C. HD-EMG

Recording from the surface of the muscle can help over-
come the limitations of iEMG recordings. In surface EMG
(sEMG), the recording site is farther from the source than
in iEMG, leading to two major differences. First, sEMG
captures signals from a larger number of motor units due
to the spatial distribution of signals caused by the volume
conductor [12]. This reduces selectivity, as multiple motor
units contribute to recordings at a specific location. Second,
the volume conductor acts as a low-pass filter, decreasing the
signal bandwidth which removes information from individual
sMUAPs [12]. This makes sMUAPs from different motor
units appear similar in surface recordings [31]. As mentioned
earlier (section II-B), successful decomposition requires each
motor unit to have a unique action potential (AP) in the
recording [29], which poses a significant challenge for sEMG
recordings. To improve discrimination of action potentials
of different motor units, high-density EMG (HD-EMG) sys-
tems have been proposed [32]. These systems use multiple
electrodes distributed across the muscle surface to enhance
spatial resolution, capturing variations in sMUAPs across
different locations. The multi-channel EMG model of section
II-A represents the generation of recordings with such HD-
EMG systems. With the use of convolutive filters, this model
can be inverted to identify the sources from the observations.

D. Blind source seperation

To find the sources based on the observations, the sources
can be extracted by estimating convolutive filters with blind
source separation (BSS) techniques. Independent component
analysis (ICA) is a BSS technique that does not require
knowledge about the sources s(k) or mixing matrix H , but
two requirements must be satisfied;

• The first requirement is that there are no more sources
than channels/observations [12], [33]. This requirement
is in principle not satisfied as, on average, there are
more identifiable motor units than electrodes on HD-
EMG grids. However, if it is accepted that only a
subpart of motor units - those contributing the majority
of the energy to the observations - can be identified,
the requirement is satisfied. In this way, the motor units
that can not be identified contribute to the noise of the
model [12]

• The second requirement is that all sources should be
independent from each other [12].

Recent algorithms combine aspects of both FastICA [34]
and convolutive kernel compensation (CKC) algorithms [11],
[35] to find the underlying sources.

The first step is to extend and whiten the observations
also known as ’convolutive sphering’ [36]. To satisfy the



first requirement for ICA in the presented extension model
(eq. 2), the product between the extension factor R and the
number of available channels m should be approximately
equal or greater than the number of identifiable sources n
multiplied by the duration of the sMUAPs (L) in samples
resulting in the following condition [12].:

mR ≥ n(L) or R ≥ nL

m
. (6)

Therefore the extension factor R must satisfy equation
6. Whitening is performed to decorrelate the observations
and ensure they have unit variance to satisfy the second
requirement for ICA [33]. After, a fixed-point algorithm
estimates the sources by maximizing their sparseness through
a contrast function [18], [36]. The sources are estimated by
applying a transformation matrix that maps the observations
to their corresponding sources [12]. This transformation is
expressed as:

sj(k) = wjz(k) (7)

with wj the filter that transforms the observations into the
spike train sj of the j-th motor unit. The filter wj is
refined by enhancing the non-Gaussianity of the resulting
source sj by using a cost function g(s) [12]. Since each
source (motor unit spike train) is assumed to be independent,
the seperation vector creates a linear combination of the
whitened observations z. This linear combination isolates
one single source sj , which supresses the contribution of
other sources and thereby maximizes the non-Gaussianity
of the extracted source [12]. The cost functions g(s) are
all measures for non-Gaussianity, e.g. g(s) = log(cosh(s))
or g(s) = exp( s

2

2 ) [33]. This is done with the following
equations:

wnew(n) = E
[
g
(
wT

oldz
)
z
]
−Awold, (8)

with
A = E

[
g′
(
wT

oldz
)]

, (9)

where g is a cost function that maximizes the sparsity
of the resulting source wj . An additional Gram-Schmidt
orthogonalization step is used to maximize the number of
estimated unique sources [33]. A second refinement step
was proposed as FastICA may converge to unreliable sources
[12], [37]. This step uses the CKC algorithm to refine the
found separation filters through an iterative scheme. Instead
of estimating the separation vector directly, CKC refines the
cross-correlation vector csj ,z between the j-th source sj and
the whitened extended observations z, with the following
equation:

sj = cTsjzC
−1
zz z, (10)

where wj = cTsjzC
−1
zz . The separation vector csjz is the

correlation vector between the source sj and the whitened
extended signals z. Czz is the covariance matrix of the
whitened extended signals z and calculated as Czz =
E[z(k)zT (k)] İn the case of whitened observations, Czz = I

for the white matrix z, so wj = csj ,z . The initial estimate of
csj ,z is made with

csj ,z =
1

J

I∑
i−1

z(ti), (11)

where J is the number of peaks the Fast-ICA algorithm
found and ti the indices at which spikes occurred. Every
iteration, a peak detection algorithm gets applied to the
squared of the source (MUST) and K-means classification
divides the identified peaks into either noise or spikes [18],
[38].The algorithm iteratively updates the separation vectors
by minimizing the covariance of the spike train (CoVISI )
intervals through gradient-based optimization methods [12],
[18].

After, Negro et al. proposed to minimize the CoVISI given
by

CoVISI =
std(ISI)

mean(ISI)
. (12)

This favors regular spike trains, which is why it can used
to exclude multiple mixed motor unit spike trains [18]. A
summary of the pseudo-code of this algorithm is given in
table I [18].

E. Evaluation of decomposition accuracy

To ensure accurate decomposition, several different met-
rics have been proposed. A classic approach to valuating
accuracy is the ’two source’ validation comparing iEMG and
HD-EMG decomposition against each other. This provides a
conservative estimate, as it is unlikely that both methods will
make the same mistake. [12]. For this type of comparison
the rate of agreement (RoA) between iEMG and HD-EMG
decomposition is used and computed as:

RoA =
C

C + I +O
, (13)

where C represents the number of discharges identified by
both iEMG and HD-EMG decomposition within a tolerance
window of ±0.5 ms, I is the number of spikes detected
solely by iEMG, and O is the number of spikes identified
solely by HD-EMG decomposition.

A second metric introduced by Holobar et al. is the
pulse-to-noise ratio (PNR), which showed a high correlation
with decomposition accuracy, [39]. It is computed directly
from the estimated spike trains, allowing accuracy estimation
without the need for external validation.

Negro et al. introduced the silhouette value (SIL), a metric
similar to the PNR but normalized and directly related to the
RoA in isometric conditions [18]. The SIL is calculated as
SIL = b−a

max(b,a) , where b is the distance between the spike
points and the noise cluster center, and a is the distance
between spike points and the spikes cluster center.

F. Online Decomposition

The CKC method can also be applied directly to non-
whitened extended observations x. In this case, the algorithm
can be presented in the following way:

sj = cTsjxC
−1
xx x, (14)



TABLE I
PSEUDO-CODE FOR OFFLINE DECOMPOSITION [40]

Algorithm: Offline decomposition of MU activity
1. Convolutive sphering: extend and whiten observations x
2. Initialize vector wj(0) and wj(−1)
3. Fixed-point algorithm
while |wj(n)

T (n)wj(n− 1)− 1| < tol|
3a. Fixed point algorithm:

wj(n) = E
[
g
(
wT

j (n− 1)z
)
z
]
−Awj(n− 1)

with
A = E

[
g′

(
wT

j (n− 1)z
)]

3b. Orthogonalization
wj(n) = wj(n)−BBTwj(n)

3c. Normalization
wj(n) =

wj(n)

||wj(n)||
3d. Set n = n+1

4. Initialize CoVn−1 and CoVn

5. CKC algorithm
while CoVn < CoVn−1

5a. Estimate the j-th source with eq. 10 .
sj = csj ,zC

−1
zz z

5b. Apply peak detection and classify peaks with
K-means classification
5c. Set CoVn−1 < CoVn−1

5d. Recalculate wj(n) with newfound spikes with eq. 11.
6. Quality check
if SIL >0.9

6a. Accept the source estimate sj

with csjx the cross correlation vector (i.e. dewhitened vector
wj) and Cxx the covariance matrix of the extended ob-
servations x [12]. This approach is frequently utilized in
real-time or online applications due to the need for rapid
computation [26]. The idea behind online decomposition is
to reuse decomposition parameters obtained during an offline
session and applying them to live data collection [41]. These
decomposition parameters include the separation filter bank
w, spike and noise centroids, and spike train normalization
factors. For every batch of data in online decomposition, a
source estimate with eq. 14 is made. After normalization
and peak detection, the peaks are classified as either spike
or noise based on their Euclidean distance to either of the
centroids.

G. Applications of Motor Unit Spike Trains

The individual motor unit spike trains resulting from
either iEMG or HD-EMG decomposition provide valuable
insights into force generation mechanisms of muscles during
isometric contractions [13]. Due to the low-pass filtering
effect of muscle fiber twitches and the non-linearity of motor
units, the low-frequency component of common synaptic
input to all motor units regulates the muscle force production
[13], [14]. These working mechanisms were captured using
cumulative spike trains (CSTs), which is a sum of individual
motor unit spike trains resulting from decomposition [14].
Additionally, analysis of individual MU spike trains has
revealed changes in MU characteristics due to fatigue [42],
pain [43], and exercise [44].

The CKC algorithm proposed by Holobar et al. [3] has
been shown to give reliable results even with highly syn-

chronized sources. This enables this technique to be used
in impaired individuals such as tremor patients, who suffer
from higher motor-unit synchronization than healthy subjects
[3], [12]. The CKC algorithm already has been shown to
be effective for analyzing the mechanisms behind essential
tremor. Analysis of CSTs showed a common input at the
tremor frequency across motor unit pools [15].

Also, motor unit spike trains have already been used
to validate rehabilitation techniques in vivo. Research on
incomplete spinal cord injury (SCI) patients has shown a
decrease in coherence between motor unit pools after trans-
spinal electrical stimulation, which may indicate a reduction
in the strength of common synaptic input to these pools [4].

Further insight into the behavior of individual motor units
in movement can also be used in Human-Machine Interfacing
(HMI). Current methods for the control of wearable robotics
are focused on the use of EMG envelopes that also suffer
from changes in MUAP shape and changing measurement
conditions [17]. New methods have been proposed that focus
on the use of motor unit spike trains to extract neural activity
from HD-EMG recordings and have shown to be better
predictors for muscle force and joint torque than conventional
EMG envelopes [16], [17], [45].

H. Dynamic conditions and adaptive algorithms

Tracking activation patterns of motor units online and in
real time remains challenging. For the decomposition algo-
rithm to work in real-time, it is essential that the underlying
sMUAP shapes of a motor unit stays consistent, i.e., station-
ary, throughout a measurement. While it is generally true
that sMUAP shapes can remain relatively consistent during
isometric contractions, this consistency has limitations as
even in isometric conditions, sMUAP shapes are influenced
by fatigue and changes in firing patterns over time [22], [46].
On top of that, to unlock the potential of BSS techniques
for rehabilitation strategies or prosthetic control (described
in section II-G), these findings need to be generalized to
dynamic conditions. In dynamic movements such as walking
or hand motions, sMUAP shapes continuously change due to
factors like fatigue [22], the relative position of the electrode
with respect to the innervation zone (IZ) and tendon [20], and
fluctuations in volume conduction between the source and
the electrodes. Studies have shown that sMUAP shapes vary
with changes in joint angles [21], primarily because the elec-
trode’s position relative to the muscle’s IZ and tendon shifts,
changing the signal characteristics and sMUAP shapes [19],
[20]. This effect is significant during dynamic movements,
where muscle shortening causes uneven shifts in tendon and
IZ positions relative to the recording sites, leading to changes
in sMUAP shapes [20]. To adapt to changing measurement
conditions, recent studies have proposed adaptive algorithms
that update the separation filters and covariance matrices in
real-time based on new data. Chen et al. have shown superior
performance of an adaptive approach in both isometric and
slow dynamic contraction in both simulated as experimental
data [26]. Yeung et al. showed differences in sMUAP and
iMUAP shapes and superior performance of their adaptive



Fig. 2. Study overview. HD-EMG and iEMG signals from the m. soleus are recorded during walking and sub-maximal push-off trials. HD-EMG data
is split (50/50) into training and test sets. Offline decomposition extracts MU firing properties and online decomposition parameters from training data,
which are then applied to test data in a pseudo-online approach. Static and adaptive algorithms are compared to benchmark iEMG spike trains (template
matching). MU activation patterns and the EMG envelope are evaluated against ankle joint moments derived from inverse dynamics. RT , DR, Ac, and
Tc represent recruitment threshold, discharge rate, twitch amplitude, and contraction time, respectively.

algorithms across varying joint angles and force levels with
validation through iEMG benchmarks [28]. Mendez et al.
proposed an adaptive algorithm with optimized parameters
that is generalizable across multiple subjects [27]. However,
all of these studies apply the adaptive algorithm to slow
dynamic hand movements, which limits their generalisability
to walking and their application in fast dynamic movements.
To date, only one study has tried HD-EMG decomposi-
tion during walking, in which only an offline and static
approach was used for decomposition [47]. In summary,
adaptive algorithms have shown promise in static and slow
dynamic conditions. However, further research is needed to
adapt these methods for real-time motor unit tracking during
dynamic movements like walking.

III. METHODS

Overview of the framework

This thesis proposes a framework that comprises three
main components (Fig. 2). The first component is an offline
procedure that uses a training dataset comprising low-force
isometric and walking trials to determine decomposition
parameters and optimal twitch characteristics (Section III-
B.1). The second component uses the offline-acquired de-
composition parameters and implements them in an online-
ready framework using static and adaptive algorithms. Both
approaches use the derived twitch characteristics to produce
MU-specific activation dynamics (Section III-C). The last
component validates the results by comparing HD-EMG
decoded firing patterns with their iEMG benchmark and com-
pares the total activation dynamics to their respective ankle
moments (Section III-D). An overview of the processing
pipeline can be found in appendix -A.

A. Data Collection

In total, four healthy subjects were participants were
measured for this thesis. However, in only two subjects
common motor units were found. Therefore, these will
only be included in the results. The measurement procedure
for every subject is described below. All procedures were
approved by the ethical committee CMO region Arnhem-
Nijmegen (protocol ID: NL73230.091.20).

1) Participant preparation: The skin of the soleus muscle
was prepped by shaving and abbreviating the site at which
the HD-EMG grid was going to be placed. To maximize the
likelihood of detecting common motor units between iEMG
and HD-EMG recordings, a bipolar fine-wire electrode was
inserted superficially into the medial soleus ( 1 cm under
the skin’s surface) to record the activation of superficial
muscle fibers. The iEMG recordings were made using a
TMSi REFA amplifier (TMS International B.V., Oldenzaal,
The Netherlands) with a sampling frequency of 17295 Hz.
An 8x8 HD-EMG electrode grid (4.5mm of inter-electrode
distance) was placed over the area where the tip of the fine
wire electrode was located. The HD-EMG recordings were
made using the TMSi SAGA 64-channel EMG amplifier with
a sampling rate of 4000 Hz. After the feet, lower legs, upper
legs, pelvis and torso were covered with markers to track
their motion in time.

2) Motion analysis: The motion capture data and ground
reaction forces (GRFs) were simultaneously recorded using
a motion tracking system (Qualisys, Goteborg, Sweden, 100
Hz) and a force plate threadmill (Bertec Co., Columbus, OH,
USA, 2000 Hz). OpenSim was used to retrieve ankle angles
and moments from marker trajectories and GRFs via inverse
kinematics and inverse dynamics [48].



3) Experiment protocol: First, a static trial was recorded
for calibration and scaling of the OpenSim model. After,
the participant was instructed to do 3 walking trials of 1
minute at different speeds. In the first trial, the participants
were instructed to walk at their preferred ’normal’ speed (∼
0.6 m/s). After, the participants were instructed to walk at
a slow speed (≤0.4 m/s). The second participant was also
instructed to walk at a fast speed (1.0 m/s). During the
walking measurements, a metronome was used to maintain a
consistent cadence to ensure a steady walking pattern. After,
sustained push-off trials were done at sub-maximal force
levels (∼30% MVC) intended for extracting low-threshold
MUs.

4) Signal Processing: To eliminate noise, all of the data of
HD-EMG and iEMG was filtered. A signal quality check was
done for all HD-EMG channels and poor-quality channels
(low signal-to-noise) were excluded using a mask. After,
a 10-500 Hz fourth-order Butterworth bandpass filter was
applied. To ensure distinctive iMUAPs, the iEMG signals
were first re-referenced (average re-referencing) and then
filtered using a first-order high-pass Butterworth filter at
1000 Hz [8]. A signal quality check was performed to see
if identifiable MUAPs were present and to assess whether
excessive superimposed MUAPs could hinder decomposi-
tion. If a trial did not meet these criteria, it was excluded.
Further details on iEMG decomposition can be found in III-
D.1 [8]. Each walking trial was split 50/50 into training
and test datasets. The training data was used to estimate
decomposition parameters including MU filters, centroids,
and EMG masks through an offline procedure (described
in Section III-B.1). In this offline approach, decomposition
parameters were derived from a low-force push-off trial
( 30 % MVC) and the walking train data. These offline-
initialized decomposition parameters were then applied to
the test data of the same trial to assess the pseudo-online
decomposition, comparing the performance of the static and
adaptive algorithms against iEMG benchmarks.

B. Offline Procedures

1) Offline parameter estimation: The HD-EMG record-
ings were extended with an extension factor of 16 and
the extended signals were whitened using singular value
decomposition. The described fixed-point algorithm (section
II-D) [18] was then applied to increase the sparsity of each
source (sj) with the update rules of equation 8 and 9. For
the first iteration, the initial separation vector (wj(0)) was
defined as the point with the maximum squared sum of
the whitened extended signals (z) across all time points.
This represents the instance with the highest signal activity,
which may correspond to one or more MU discharges [11].
The g(s) = log(cosh(s)) contrast function was used to
measure the level of sparsity of each source and the sparsity
was iteratively maximized until convergence was reached
(tolerance: 10−4). This process is described in Step 3 of
table I.

As described in Section II-D, the fixed-point algorithm
may converge to unreliable sources [37]. To address this, a

refinement algorithm was employed to improve the estima-
tion of the MU spike trains. The initial separation vector (wj)
for this refinement step was calculated using Eq. 11. In this
equation, the vector (wj) is initialized as the mean of the
whitened signals (z) at the time indices (ti) corresponding
to detected spikes, with J representing the number of peaks
identified by the Fast-ICA algorithm.

Following this initialization, MU spike trains were esti-
mated by squaring the source signals obtained from Eq.10,
followed by identifying peaks with a minimum separation
of 20 ms (equivalent to 50 Hz). These identified peaks
were then classified as either spikes or noise using K-means
clustering [18], [38], [49]. The source refinement process
was iteratively performed until the maximum silhouette value
(SIL) was achieved [16]. The SIL value was chosen because
maximizing CoVISI would lead to regular discharge patterns.
However, in our recorded data, a high discharge variability
is expected due to the rapid rate of force development in
the m. soleus during push-off. 75 iterations of this offline
decomposition were run on each training dataset.
To decode a wide range of MU types, this thesis adopted
a previous developed methodology to detect low threshold
MUs. Motor units were decomposed on a isometric low
force-push off trial [16] by minimizing the CoVISI of the
spike trains [18]. MUs were accepted if CoVISI ≤ 0.5 and
SIL ≥ 0.87. After, the filters were optimized through the
refinement algorithm on the walking data, where the SIL
was maximized. The resulting spike trains were compared to
those found in walking trails and duplicates were removed
(common discharges > 30%) and the spike train with the
highest SIL was kept. The final step involved visually in-
specting the motor unit estimates, and any noisy estimates
were removed from the results.

This offline initialization decomposition parameters
yielded a set of MU filters, classification centroids, covari-
ance matrix, extension factor, EMG mask (with good-quality
channels), and normalization factors for each speed.

2) MU twitch properties estimation: To model the twitch
responses of each MU, the second-order system approach
from Fuglevand et al. [50] was used. The model is repre-
sented as

a0(t) =
Ac

Tc
t exp

1− t

Tc
∗ u(t) (15)

where Ac is the peak amplitude, Tc is the contraction time
and u(t) is the MU spike train. The peak amplitude (Ac)
and contraction time (Tc) were initially estimated based on
previous work that classified various MU types and their
twitch properties [45], [51]. In this way, initial estimates of
the twitch properties and activation dynamics of every MU
can be made. However, since this methodology was only
tested on isometric data, it might not estimate the twitch
responses of the MUs in dynamic movements accurately.
Therefore, an extra step was employed which maximized the
correlation between the modeled MU-specific activation and
the corresponding ankle moment. The twitch responses were
iteratively optimized by reducing the contraction times (Tc)
and adjusting the sparseness of the peak amplitudes so that



Fig. 3. Validation of HD-EMG decoded spike trains and iEMG benchmarks for both static and adaptive decomposition (representative example, subject
2, walking speed: 0.4 m/s)

the delay between ankle moment and activation decreased
and the correlation improved. In this way, the responsiveness
of the twitch model was enhanced while maintaining a strong
correlation with the ankle moment [16].

C. Online procedures

In the online procedure, decomposition parameters initial-
ized offline were applied to the test data to estimate spike
trains. Two decomposition approaches static and adaptive
were used, and their performance was compared against
iEMG benchmarks. To simulate an online setting, the test
data was divided into batches of varying sizes and processed
using the online decomposition algorithm. Each batch over-
lapped with the previous one by 20 ms (80 samples at (fs =
4000 Hz) to ensure the required 20 ms peak separation.

1) Adaptive decomposition: Due to the variation of
sMUAP shapes both between and within measurements, this
thesis introduces an adaptive algorithm that updates the
decomposition parameters in real-time to adjust to these
changes. While several adaptive methods have been pro-
posed [26]–[28], none have been applied to walking trials or
highly dynamic movements. This thesis’ approach combines
elements from the algorithms of Chen et al. and Yeung et al.,
integrating their strengths to ensure robust performance. The
adaptive algorithm works with the non-whitened version of
the CKC (eq. 14) and introduces changes to the covariance
matrix and separation vectors described in section II-F.

The first step in each batch is to update the covariance
matrix with [28] (16):

C∗
xx = (1− λ) · Cxx + λ · C∆x∆x, (16)

in which λ is the learning rate and ∆x̄ the extended EMG
signals in the new batch. Next, every motor unit spike train is
iteratively estimated with Eq. 14 where the new covariance
matrix C∗

xx is used. After peak detection, the peaks were
classified based on their Euclidean distance to either the
spike or noise centroids. If any spikes are detected, they
are added to the spike set Ψi. Now, the filter was updated
with (17), which is essentially a weighted average of the
original separation filter and the contribution of the data in

TABLE II

Algorithm: Real-time adaptation of MU filters
1. Update C∗

xx with eq. 16
C∗

xx = (1− λ)Cxx + λC∆x∆x

2. Adaptive source extraction
For every j − th seperation filter sj

2a. Do source estimation with eq. 14
sj,win = csjCxx∆x

3. Peak detection
4. Calculate Euclidian distance to spike and noise centroids Tij

if any spikes are detected
4a. Update csj based on the new spikes Ψi

csjx = (1− λ) · csj ,x + λ · 1
card(Ψi)

∑
nk∈Ψi

x(nk).

4b. Update the centroids Tij

4c. Accept the updated covariance matrix
Cxx = C∗

xx

the incoming batch:

csjx = (1− λ) · csj ,x + λ · 1

card(Ψi)

∑
nk∈Ψi

x̄(nk), (17)

where the card represents the number of spikes in the set. The
centroids were updated with the following weighted average
calculation adopted from Chen et al. [26](18):

T ∗
ij =

w1Tij + w2T
′

ij

w1 + w2
, i = 1, 2, (18)

where Tij is the centroid of the previous iteration with (i=1)
the spike and (i=2) noise the noise centroid for the jth
spike train, the T

′

ij the mean of new spikes and T ∗
ij the

new weighted average which is saved for the next iteration.
The weights w1 and w2 are the weighting factors for the
old and new centroids respectively. Weighting factor w1 is
set to 5 empirically and w2 as the number of new spikes
in the current batch [26]. λ was set at 0.05 empirically.
Table II shows the pseudo-code of the updating policy for
the adaptive algorithm.

2) Static decomposition: To compare the performance
of the adaptive approach, the offline-determined MU filters
were re-used to estimate the sources using Eq. (10). In this
static approach, sources were normalized with the previously
identified normalization factors, and spike classification was



Fig. 4. A comparison of RoA between static and adaptive decomposition for all common motor units in both subjects. The left figure presents the RoA
of common motor units when applying offline-initialized filters to test data at their respective speeds. The right figure illustrates the RoA of common
motor units by comparing iEMG and HD-EMG decomposition, applying offline-initialized filters across test data from all speeds within a subject. To use
the filters across all speeds, a common mask was used to mask the bad channels in the data. The * indicates a statistical icates a significant difference
(p<0.05)

performed using the centroids obtained from the offline
procedure.

3) MU-specific activation dynamics: To compute MU
activation profiles online, the activation was discretized [52]
to filter each spike train with its offline-estimated twitch
model. The combined contributions of all MUs were summed
to define the overall muscle activation.

D. Validation procedures

1) iEMG template matching: A benchmark decomposi-
tion was done on the iEMG recordings using EMGlab [8].
This algorithm can decompose superimposed MU waveforms
by using template matching. Automatic decomposition was
run on the iEMG recordings. Due to the dynamic nature
of walking, the iMUAP of a MU might vary in amplitude
and waveform throughout a gait cycle. Therefore, a reviewer
visually inspected each spike and iMUAP to ensure accurate
classification. Additionally, the spike instances between HD-
EMG and iEMG were compared to confirm that no spikes
detected in HD-EMG were overlooked. The resulting spike
trains were downsampled to 4000 Hz to match the spike
trains resulting from HD-EMG decomposition.

2) MU firing validation: To assess the accuracy of the
static and adaptive algorithms, the spike trains produced by
both methods were compared to the iEMG decomposition
results. The spike trains from iEMG and the static/adaptive
algorithms are considered to originate from the same MU
only if their corresponding spike trains share more than
50% common discharges (C). The performance of both
decomposition approaches was assessed using the following
metrics; Rate of Agreement (RoA), as defined in eq. 13, is
used to get a conservative estimate of the accuracy of both
static and adaptive algorithms.

Also, the false negatives (FN ) and false positives (FP )
were computed as follows (19, 20):

FN =
I

I + C
· 100%, (19)

FP =
O

O + C
· 100%, (20)

3) Using MU filters across trials: To compare the perfor-
mance of the static and adaptive algorithms across different
conditions, each set of offline-initialized filters was applied to
test data from other trials. This approach allows us to assess
whether the adaptive algorithms can effectively compensate
for significant variations in decomposition conditions, such
as changes in sMUAP shapes [28]. It also assesses if the use
of MU filters initialized in a different trial can be used to
accurately estimate the sources in a new trial. To determine
statistical significance, differences between the performance
metrics in static and adaptive algorithms were evaluated
using the Wilcoxon signed-rank test, with a CI = 95%

4) MU-specific activation assessment: The coefficients of
determination (R2) were calculated per gait cycle as the
square of the maximum normalized correlation between mus-
cle activation estimates (from static and adaptive approaches,
as well as EMG envelopes) and right ankle joint moments ob-
tained via inverse dynamics. Statistical significant differences
between static and adaptive algorithms were tested using the
Wilcoxon signed-rank test with CI = 95%.

5) Real-time assessment: To evaluate the real-time readi-
ness of the adaptive approach, computational times per
batch were recorded for both static and adaptive algorithms
and their medians were calculated. All data processing and
decomposition were performed using MATLAB R2024b,
with the computations run with an Intel Core i7-9750H CPU
(2.60 GHz) and 16 GB RAM.



Fig. 5. Accuracy (RoA, FP, FN) across batch sizes for subject 2. the dotted
line indicates the static approach and the solid line indicates the adaptive
approach. Different colors indicate different walking speeds.

IV. RESULTS

The data of both subjects suffered from synchronization
issues. Therefore, the results of subject 1 only include offline
initialization and validation. MU activation dynamics were
only calculated for subject 2. Also, the computational times
and metrics across batchsizes (fig. 5 and fig.6) are only based
on the results of subject 2 as these results were synced and
analyzed first.

A total of six walking trials were analyzed. Subject 1
completed two trials at a slow speed (0.3 m/s) (referred to
as 0.31 and 0.32) and one at normal speed (0.6 m/s), while
subject 2 performed trials at slow (0.4 m/s), normal (0.6 m/s)
and fast (1.0 m/s) speeds.

During post-processing, channels 23 and 24 of HD-EMG
in subject 2 were found to be too noisy by visual inspection.
In Subject 1, different noisy channels across measurements
were observed. As a result, a unique mask was applied
to each measurement. However, for cross-use of filters, a
common mask was determined, which excluded channels 1
and 58.

In table III, the results of offline-initialization of MUfilters
are shown for every trial in every subject. The walking MUs
indicate how many MUs were identified in the train data of
the walking trial. The low-force MUs indicate how many
MUs were identified in the low-force isometric trial. The
Extra Refined MUs indicate how many extra MUs were
identified by refining the low-force MUs on the train data
of the walking trial. In subject 1, the amount of identified
low-force MUs between trials differed, as different masks
were used for every trial in decomposition. The mean SIL
indicates the average and standard deviation of the SIL values
of the found motor units. Lastly, the common MUs indicate
how many common MUs were found between HD-EMG and
iEMG within the trial.

Figure 3 shows a representative example are the spike
trains of static and adaptive decomposition in the slow-
speed measurement of subject 2 with the ground truth

iEMG decomposition as reference. Figure 4 shows the
distribution of RoA for all common motor units identified in
both subjects, grouped into two categories. The left boxplot
represents the RoA of common motor units when offline-
initialized MU filters were applied to test data from the same
trial. The right boxplot shows the RoA when the MU filters
were used across all trials, demonstrating the performance in
varying conditions.

Different batch sizes were tested with predetermined learn-
ing factors to analyze the effect on the accuracy of the
adaptive algorithms. A summary of the results can be seen
in figure 5, where the RoA, FP, and FN over different
batchsizes are plotted. The adaptive algorithm outperforms
the static algorithm in the slow and normal speeds for
batchsizes greater than 200 ms in terms of RoA and false
positives. For slow to normal speeds (≤ 0.6 m/s), RoAs >
89% were found for both static and adaptive algorithms. To
assess the real-time applicability of the adaptive algorithm
the computational times were Fig. 6 shows the median
computational times for both static and adaptive algorithms
across batch sizes. The median computation times of adaptive
algorithms exceed 250 ms for all batch sizes.

Figure 7 shows the cross-use of all offline-initialized filter
sets across the test data of all the trials with both the static
and adaptive algorithms. It shows a significant improvement
of RoA by the adaptive algorithm compared with the static
algorithm (p < 0.05). No significant differences were found
between FP and FN between adaptive and static algorithms.
In the appendix, these figures can be found for subject 1.
Figure 12 and figure 13 summarize the cross-use of filters
for subject 1. An extensive review of the results of subject
1 is given in the appendix -B.

Figure 8 illustrates a comparison between the MU activa-
tion estimates and the joint ankle moment, along with the
R2 values for the test trial (1.0 m/s speed). The R2 values
of the adaptive and static algorithms were both higher than
those of the EMG envelope (P < 0.001).

V. DISCUSSION

This thesis aimed to extend the methodology to address
variations in MUAP shapes during locomotion by proposing
an adaptive algorithm and validating its accuracy using
intramuscular EMG (iEMG) as the benchmark for decom-
position. The results (see figure 4) show that the adaptive
decomposition is static decomposition both within and across
trials. This approach holds significant potential for real-
world applications, paving the way for improved motor unit
decomposition in everyday movement scenarios.

A. Adaptive Algorithm implementation

1) Rationale: This thesis proposes an adaptive algorithm
that updates the covariance matrix (Cxx) and the separation
vector (csj ,x) in real time by incorporating new incoming
data. This enables the algorithm to adapt to changes in
MUAP shapes both within and across measurements.
Building on prior work that has demonstrated better
performance of adaptive approaches over static ones,



TABLE III
OFFLINE INITIALIZATION OF MU FILTERS

Subject Speed (m/s) Walking MUs Low-Force MUs Extra Refined MUs Mean SIL (SD) Common MUs

Subject 2 Slow (0.4 m/s) 11 12 2 0.920 (0.0294) 1
Normal (0.6 m/s) 14 12 2 0.920 (0.0394) 1

Fast (1.0 m/s) 11 12 6 0.920 (0.0344 1

Subject 1 Slow1 (0.3 m/s) 10 12 1 0.910 (0.0362) 2
Slow2 (0.3 m/s) 6 12 6 0.891 (0.0392) 1

Normal (0.6 m/s) 8 12 0 0.93 (0.0234) 1

Fig. 6. Computational time (ms) across batch sizes for subject 2. The dotted
line indicates the static approach and the solid line indicates the adaptive
approach. Different colors indicate different walking speeds.

we initially considered Chen et al.’s summation-based
update method [26] for both the covariance matrix and
the separation vector. However, when applied to walking
data, this approach encountered stability issues, likely
due to covariance and filter inflation resulting from noise
contamination in small data batches with minimal muscle
activation.

In contrast, Yeung et al. introduced a weighted averaging
strategy [28] that balances the influence of new data with
prior information, which showed to be less susceptible
to numerical instabilities. Consequently, our algorithm
adopts this weighted averaging approach to ensure robust
and reliable updates under dynamic conditions. For peak
classification, preliminary analysis showed that the weighted
average from Chen et al. [26]performed better than the
z-score buffer approach proposed by Yeung et al. [28].
By combining Yeung’s weighted updating mechanism
with Chens peak classification method, the proposed
adaptive algorithm showed enhanced stability and accuracy
in dynamic conditions, making it a robust solution for
real-time applications.

2) Stability analysis : Figure 5 shows that for small batch
sizes (< 100 ms) the current combination of λ = 0.05 and
w1 = 5 results in really low RoA. The explanation for this
lies in the stability of spike train estimation. For small batch

sizes, noise gets added to the cross-correlation vector and
covariance matrix, which results in noisy estimates. A visual
example of such a noisy estimate of spike trains be found in
appendix -C. For bigger batch sizes (≥ 100 ms), the chosen
parameters were able to estimate the spike trains reliably and
accurately. Further investigation into the optimal parameter
values for smaller batchsizes is preferred, as this would allow
the adaptive algorithm to cover intra-step changes in the
sMUAP, i.e MUAP shape changing within a gait cycle. Chen
et al. [26] show good performance of 200 ms batches across
multiple rates of change for sMUAP shapes, which might be
a good starting point.

B. Static versus adaptive algorithms in changing MUAP
shapes

The left plot of figure 4 shows the results of applying
the offline-initialized filters to their corresponding test data.
Although not statistically significant, the difference between
static and adaptive decomposition is mainly positive, which
indicates a superior performance of the adaptive approach
compared to the static approach. For subject 2, the static
algorithm showed RoAs ≤ 89% in both slow (≤ 0.4 m/s) and
normal (0.6 m/s) walking speeds (see figure 7). For subject
1, the static algorithm also showed high RoAs ≤ 85% in
both slow trials (≤ 0.4 m/s) (see figure 11). This shows that
even static decomposition performs well in slow walking
movements for the m. soleus. This is supported by other
studies that already applied traditional BSS methods to slow
dynamic movements [53]. Yokoyama et al. [54] reported
high RoA and SIL for static decomposition in dynamic ankle
dorsiflexion movements with a range of motion (ROM) of
up to 30° in the m. tibialis anterior (TA) and later used it to
characterize MU firing patterns during slow-speed walking
trials [47]. They argued that static decomposition remains
accurate in slow walking trials, as the ankle joint’s ROM
stays within 25° [55]. This thesis’ findings support this
reasoning for the m. soleus at slow walking speeds, since
the RoA of static algorithms remains high at walking speeds
up to 0.6 m/s.

One possible explanation for this result is the minimal
fiber length variation of the m. soleus during the push-
off phase [24], [25]. It is known that surface motor unit
action potential (sMUAP) shapes change with varying joint
angles [21], due to shifts in electrode positioning relative to
the innervation zone and tendon (IZ), changes in volume



Fig. 7. Cross-comparison in Subject 2: All offline-initialized filters were tested across all speeds to assess their performance. The left and middle columns
display the RoA, FP, and FN for the static and adaptive decomposition methods, respectively. The right column shows the differences in RoA, FP, and FN
between the two approaches (Adaptive - Static), with green indicating better performance for the adaptive method and red indicating better performance for
the static method. NaN values represent cases where no common motor units were identified between the HD-EMG and iEMG decomposition (common
discharge < 50%). The diagonal elements of each heatmap reflect the performance of using the offline-initialized MU filters on their corresponding test
data. Asterisks (**) indicate a statistically significant difference between static and adaptive decomposition (p<0.05).

conduction and changes due to fatigue [22], [46]. Due
to the small fiber length variation of the soleus muscle,
no significant changes in the relative position of IZ and
tendons with respect to the surface electrodes or changing
volume conductor effects were expected, leading to only
minor variations in sMUAP shapes. This may explain the
strong performance of the static approach in terms of RoA,
false positives (FP), and false negatives (FN) for all batch
sizes (see Figure 5). Furthermore, the adaptive algorithm
performed the best with a lower value of λ (0.05 rather than
the 0.10 used by Yeung et al. [28]), which might further
confirm that sMUAP shape variations over time are minimal.

For the fast speed in subject 2 (1.0 m/s) and the normal
speed in subject 1 (0.6 m/s) , the RoA (<75%) is significantly
lower for both static and adaptive approaches even though
the training SIL-value for the filters did reach the threshold
of 0.87. This would suggest that a high SIL does not always
correlate with a high RoA in dynamic movements. This is in
line with the findings of Yokohama et al., which showed a
poor correlation between the SIL and RoA of discontinuously
identified MUs [54]. However, since this study’s MUs were

continuously identified, this discrepancy suggests a more
complex correlation between SIL and RoA in walking trials.
Additionally, the algorithm responsible for removing dupli-
cates did not always select the best-performing MU filters.
This may be due to the complex relationship between SIL
and RoA in dynamic movements. Alternatively, for subject 1
it could be a result of challenging decomposition conditions
as it exhibited more movement artifacts, which made the
decomposition process more difficult.

The validation of the framework with iEMG benchmarks
demonstrated superior performance of the adaptive approach
compared to the static approach for all metrics in the slow
and normal speeds, particularly for windows larger than
200 ms (see figure 5 and 11). Chen et al. support these
findings, as they reported a great increase in precision and
sensitivity between static and adaptive algorithms in dynamic
contractions in simulated data [26]. They even showed that
the rate of change in sMUAP shapes did not influence
the accuracy of the adaptive algorithm, which shows the
robustness of the method. It should be remarked that the
gains between adaptive and static algorithms are marginal as



Fig. 8. Comparison between normalized activation estimates and ankle moments. Left panel: Calculated activation versus joint moment for 1.0 ms speed.
Right panel: Coefficients of determination between activation estimates and ankle moments per gait cycle. * indicates significant differences (p<0.001).

the static algorithm already performed well at these speeds.
At a fast speed in subject 2 (1.0 m/s), the adaptive algorithm
performs even worse than the static approach, likely due
to amplitude cancellation at higher force levels [23], which
significantly complicates the decomposition process.

C. Static versus adaptive algorithms across conditions

Using offline-initialized filter sets across all speeds signifi-
cantly improves the RoA of the adaptive algorithm compared
to the static algorithm (p < 0.05) (see right plot of figure
4). While no significant differences in FP and FN were
observed between the two algorithms, figures??, 12 and 13
indicate that the adaptive algorithm consistently matches or
outperforms the static approach, particularly when applying
filters derived from different speeds. This indicates that the
adaptive approach is more effective when generalizing filters
across different speeds conditions. The cross-comparison
plots for both subjects suggest that applying MU filters from
a higher-speed trial to a lower-speed trial performs worse
than the other way around. Therefore it seems that initializing
MU filters should always be done on a lower of equal speed
to ensure high decomposition performance (see Figure 13).

This finding aligns with Yeung et al., who also reported
superior performance of the adaptive algorithm in isometric
contractions across different joint angles and force levels
in forearm muscles [28]. The observed consistency across
conditions highlights the robustness of the adaptive algorithm
and its ability to cope with MUAP shape changes across
measurements.

D. Computational time

The adaptive algorithms computation time exceeds 250
ms for all batch sizes (see Figure 6), primarily because of
the high 4000 Hz sampling frequency required to capture
detailed temporal information in the HD-EMG recordings.
However, this computational time is too high for Human
Machine Interfacing (HMI), where total computation, so
recording of data and processing, should occur within the
neuromechanical delay of around 200 ms [56].

The major computational bottleneck is the repeated inver-
sion of the covariance matrix Cxx in each iteration, which
is necessary for adaptive decomposition. The size of Cxx

is determined by the number of channels multiplied by
the extension factor R. In this study, we used 62 channels
(excluding two due to poor quality) and R = 16, resulting

in a 992 × 992 matrix, which is computationally expensive
to invert.

For comparison, Chen et al. [26] used a sampling fre-
quency of 2048 Hz with R = 10, yielding a 640 × 640
covariance matrix and an average inversion time of approxi-
mately 50 ms per 200 ms batch. Similarly, Yeung et al. [28]
reported an average computation time of 57.1 ± 14 ms with
a sampling frequency of 2048 Hz and R = 16. These results
show that smaller covariance matrices can help to lower the
total computation time considerably.

E. Translation into MU specific activation patterns

The correlations between activation patterns estimated
with the static and adaptive MU spike trains and estimated
joint moments were not statistically significant from each
other (p > 0.05). One explanation might be that MU-derived
activation and joint torque are not linearly related due to
non-linear characteristics of musculoskeletal function [57],
so linearly comparing them with correlation does not take
this relation into account. However, they both outperformed
the EMG envelope in terms of R2 value (p < 0.05), which
might be an indication of better performance of MU-specific
approaches.

One major limitation of Fuglevand’s model is its inability
to control the decay or relaxation phase of activation [50].
This can also be seen in our MU-specific activation patterns,
where activation gradually decreases after reaching its max-
imum (see Figure 8). Despite this limitation, Fuglevand’s
model was chosen for its efficiency, as it can be discretized
which makes it computationally much less expensive [52]. In
contrast, models like Raikova et al. require more processing
power, making them less suitable for real-time use [51].

Integrating the proposed framework with personalized
neuro-musculoskeletal (NMS) models can help to further
advance the [45], [48], [58]. A previous study has already
linked MU-specific activation with their contractile and
twitch properties to estimate ankle joint torques in isometric
contractions by measuring both m. soleus and m. tibialis
anterior [45]. This study found greater generalization of the
MU-specific approach across conditions compared to EMG-
driven models. Furthermore, this MU-specific can provide
deeper insights into the neural mechanisms underlying force
generation. This thesis’s findings extend this methodology by
directly validating the decomposition results at a MU level
in dynamic contractions, a step that paves the way toward



real-time control applications, such as wearable prosthetics
using human-machine interfaces (HMIs). Recent advance-
ments support this as they proposed a real-time framework
that uses personalized NMS models for control of wearable
robotics [59].

F. Limitations and recommendations

The thesis’s primary limitation is its small sample size.
Although in total four subjects were measured, only the data
of two subjects could be used due to synchronization issues
between measurements in two subjects and the inability to
identify common motor units between HD-EMG and iEMG
despite multiple attempts in the other subjects. Therefore,
future research should include more participants to assess the
generalizability of the method across subjects. Additionally,
increasing the number of common motor units between HD-
EMG and iEMG decompositions by using multiple fine-
wire electrodes under the HD-EMG grid could improve the
reliability of estimates, as demonstrated by Yeung et al [28].

As we used the m. soleus, it is important to test our
method on other, more ’dynamic’ muscles during walking.
The TA, for example, shows larger relative fiber length
variations in its activated state [25], which probably shows
more pronounced changes in MUAP shapes throughout a gait
cycle. As discussed earlier, Yokoyama et al. demonstrated
that even with static decomposition both high RoA and SIL
could be achieved in the tibialis anterior during dynamic
ankle dorsiflexion ROM up to 30° [54]. They used these
results to characterize MU firing patterns in slow walking
trials [47]. However, while their work confirms that static
decomposition is feasible across varying joint angles, it
lacked validation at the MU level with iEMG benchmarks
in walking like this thesis did. Given the high force and
rapid force buildup in the TA during walking, which likely
increases MUAP non-stationarity, applying the adaptive al-
gorithm could improve accuracy over static decomposition.
To investigate such sMUAP shapes changes within a gait
cycle, the MUAPs could be averaged according to their
specific phase within the gait cycle to analyze whether
temporal variations in MUAP shape across gait are present.
However, to obtain reliable MUAP estimates through spike
train averaging usually 30-100 spiks are averaged [60].
This requires long measurements which are susceptible to
temporal changes in sMUAP shape due to fatigue or long
term changes in firing patterns [22], [46], which can interfere
with the accurate estimation of the MUAP shapes.

Additionally, investigating the TA might provide valuable
insight into how the parameter λ affects the accuracy of the
adaptive algorithm. Since λ essentially controls the algo-
rithms responsiveness to new data or changing conditions,
a muscle with greater fiber length variability may require a
higher λ value. Previous adaptive algorithms have reported
using λ = 0.10, but these studies primarily focused on
forearm muscles [26] and wrist flexors [28] that experi-
ence greater normalized fiber length changes than the m.
soleus [25], [61]. Therefore, muscles with greater fiber length
variability, such as the TA, may require a higher λ to

better account for the larger MUAP shape variations during
walking.

Another advantage of measuring the TA is its role as
an antagonist to the soleus, which allows for a more ac-
curate estimation of ankle joint torque. When combined
with personalized neuromusculoskeletal (NMS) models, this
approach can further refine torque estimations. This has
already been demonstrated in previous work as it found
greater generalization of the MU-specific approach across
conditions compared to EMG-driven models [45]. To extend
this methodology, additional time-dependent properties of
the NMS system should be included, such as potentiation
effects and fatigue dynamics [46], [62], to further enhance
the accuracy and applicability of these models in sustained
and repeated contractions.

Furthermore, this thesis has multiple implications for
rehabilitation strategies and insights into the pathological
mechanisms behind neuromuscular disorders. First of all, the
adaptive decomposition enables the characterization of MU
firing patterns in dynamic and nonstationary conditions such
as walking. With the use of CSTs, the common synaptic
input in multiple motor unit pools and muscles can be
estimated in dynamic movements, as adaptive decomposition
improves the decomposition accuracy [13] An example of
such application in pathology is tremor suppression in tremor
patients. Currently, models have been proposed that rely on
general sEMG analysis of tremor frequencies [63]. However,
further analyzing the tremor synaptic input to motor pools
via CSTs can refine FES approaches. This is particularly
interesting in essential tremor, as symptoms are mainly
present during movement [15], [64].

It also helps to enhance personalized rehabilitation ther-
apies. With the use of CSTs, it can be investigated what
the effect of trans-cranial/functional electrical stimulation on
motor unit pools in patients that suffer from SCI [4], as
mentioned earlier (Section II-G). Adapting the stimulation
parameters in a real-time fashion based on the spike trains
resulting from this stimulation, can help to tailor rehabil-
itation strategies towards personalized treatments. Adaptive
decomposition can help to adapt to changing conditions after
stimulation in such measurements to keep the accuracy of the
estimated spike trains high.

Furthermore, it can enhance the control of wearable
robotics via MU-specific modeling in dynamic conditions.
MU-specific approaches towards neuro-musculoskeletal
modeling have already shown superior performance in iso-
metric conditions compared to the use of conventional EMG
envelopes [16], [17], [45]. However, adaptive decompositon
could enable the accurate decomposition in dynamic condi-
tions, opening up alleys towards control of exoskeletons .

However, before this framework can be applied to real-
time control systems for prostheses or wearable robotics, it
must be validated across a more diverse participant pool.
Although the current adaptive algorithm performs well in two
healthy individuals, it has not yet been validated in popula-
tions with neurological impairments such as tremor or SCI.
Such validation is crucial as impairments can alter motor



unit behavior, as they exhibit persistent inward currents and
abnormal muscle synergies. [65], [66]. Moreover, integrating
this approach with motor unit tracking methodologies could
enable longitudinal studies offering valuable insights into
the remodeling effects of rehabilitation strategies over time
[67]. This could also help tailor rehabilitation towards more
patient-specific approaches. However, this should be inter-
preted with caution, as neuromuscular impairments likely
pose greater decomposition challenges that must first be
addressed.

VI. CONCLUSION

In conclusion, this thesis presents an online-capable adap-
tive framework for motor unit decomposition from HD-EMG
during walking. The approach integrates offline parameter
extraction with an online adaptive algorithm to address the
challenges of MUAP variations during walking, providing a
robust basis for future applications in movement analysis,
rehabilitation, and real-time assistive wearable robotics in
dynamic conditions.
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APPENDICES

A. Processing Pipeline

Fig. 9. In the upper blue section, recordings of HD-EMG, iEMG, and motion capture are collected. Once recorded, the iEMG and HD-EMG data undergo
preprocessing, as depicted in the yellow ”Preprocessing” area. This involves re-referencing and filtering. After preprocessing, both iEMG and HD-EMG
data are checked for excessive noise. If no reliable decomposition can be done on either of them, the trial is excluded. Motion capture data follows a
separate processing pathway. Marker labeling is performed using Qualisys, and inverse kinematics and dynamics are computed using the BioMechPro
toolbox in MATLAB, which uses OpenSim [48]. Following preprocessing, HD-EMG data is divided into a training set (50%) and a test set (50%). Training
data usage is indicated by red arrows while testing data usage is marked with blue arrows. In the green ”Decomposition” section, the decomposition of
both iEMG and HD-EMG data takes place. iEMG data is manually decomposed using EMGLab [8]. Concurrently, offline decomposition is applied to the
training data to extract decomposition parameters for pseudo-online decomposition. The spike trains derived from the offline decomposition of training data
are also used to initialize amplitude and time constants for activation dynamics (Purple Section). For the decomposition of test data, the data is split into
batches to simulate an online setting. The decomposition parameters initialized offline are applied using both static and adaptive approaches, producing
spike trains. These spike trains are then compared with iEMG-derived benchmarks to evaluate the performance of different decomposition methods.



The most important MatLab functions for analysis of the data are listed below.
• Preprocessing HD-EMG

– EMGfilter.m: Applies bandpass filtering to HD-EMG signals and generates an EMG mask to identify noisy
channels.

– re referencing.m: Rereferences HD-EMG data using an average reference across reliable channels.
• Preprocessing iEMG

– rereferencing iEMG.m: Performs average rereferencing on iEMG data.
– main iEMG.m: Allows selection of an iEMG file for decomposition and launches EMGLab [8]. Once all motor

unit spikes are detected and exported, this function automatically generates spike trains and saves the decomposition
results.

• Offline Decomposition
– decompFastICA v2.m: Runs offline decomposition of the HD-EMG training data.
– extractOnlineDecompParams.m: Extracts decomposition parameters from the offline results for subsequent

pseudo-online processing.
• Pseudo-Online Decomposition

– pseudoAdaptDecompOverlap.m: Segments the test data into batches and runs decomposition using offline-
extracted parameters. Depending on the selected settings, it implements either the static or adaptive decomposition
approach.

• Spike Train Comparison
– CompareResults.m: Compares spike trains obtained from iEMG and HD-EMG decomposition. To address

synchronization issues, this script aligns HD-EMG and iEMG data using cross-correlation based on EMG envelopes
and spike trains.

• Synchronization of HD-EMG and Motion Capture Data
– Qual HDEMG Sync.m: Computes the lag between motion capture and HD-EMG data through cross-correlation

between torque and EMG envelopes.
– Sync Train Test Split.m: Synchronizes the decomposition results of training and test datasets with ankle

torque obtained via inverse dynamics.
• Activation Dynamics

– ActivationR2.m: Integrates offline initialization of activation parameters with real-time activation estimation. It
uses training spike trains to optimize activation constants Ac and Tc (described in section III-B.2).These parameters
are later applied to estimate activation in real time based on spike trains from both static and adaptive decomposition
methods.



B. Results Subject 1

In the offline decomposition of subject 1’s trials, a total of four common motor units were identified across all trials
(see Table III). However, some of these MUs fired in different trials. This is shown in Figure 10, where the iMUAPs from
different trials are compared. Specifically, MU1 from the Slow1 and Normal speed trials correspond to the same motor unit,
as the iMUAP shape are alike (R2 = 0.9851). Likewise, MU2 from both Slow1 and the Slow2 trials are originated from the
same motor unit (R2 = 0.9677). Essentially, this means that only two distinct motor units were identified in this subject.
These will be grouped in the following plots to make the comparison easier.

Fig. 10. Grouping of MU based on their iMUAP shape.

1) Using MU filters within a trial: Figure 11 shows the performance when the offline-initialized MU filters were applied
to their corresponding test data. In between trials, the quality of some channels of the HD-EMG grid got worse. Therefore,
to maximize the decomposition accuracy, a unique mask was used for every trial.

Fig. 11. Results of applying offline-initialized MU filters on their corresponding test data; MU’s are grouped based on the NaN values are shown when
no common motor units between the HD-EMG and iEMG decomposition were found in static and adaptive decomposition (common discharge < 50%).
** indicates a significant difference (p<0.05).).



2) Using MU filters across conditions/trials: Figures 12 and 13 show the results of applying offline-initialized MU filters
to test data of different trials. A common mask was used during the offline procedure for each trial to ensure the resulting
MU filters could be applied consistently across different test sets.

At the Slow1 speed, as depicted in Figure 13, the MU filter for MU2 was not identified in the offline decomposition. This
may be due to the use of an incorrect mask, which could introduce noise into the offline estimation of MU filters.

Fig. 12. Cross-comparison of MU1 in Subject 1; The left and middle columns display the RoA, FP, and FN for the static and adaptive decomposition
methods, respectively. The right column shows the differences in RoA, FP, and FN between the two approaches (Adaptive - Static), with green indicating
better performance for the adaptive method and red indicating better performance for the static method. The diagonal elements of each heatmap reflect the
performance of using the offline-initialized MU filters on their corresponding test data.

Fig. 13. Cross-comparison of MU2 in Subject 1; The left and middle columns display the RoA, FP, and FN for the static and adaptive decomposition
methods, respectively. The right column shows the differences in RoA, FP, and FN between the two approaches (Adaptive - Static), with green indicating
better performance for the adaptive method and red indicating better performance for the static method. NaN values represent cases where no common
motor units were identified between the HD-EMG and iEMG decomposition (common discharge < 50%). The diagonal elements of each heatmap reflect
the performance of using the offline-initialized MU filters on their corresponding test data.



C. Unstable Decomposition

Fig. 14. An example of an unstable adaptive decomposition. The spike train estimate becomes noisy, leading to a significant increase in false positives.
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