
EPG: AUTOMATING MODEL-TO-CODE
TRANSLATION FOR MICRO-ROS AND ROS 2

D.V. (Daniël) Huiskes

MSC ASSIGNMENT

Committee:
dr. ir. J.F. Broenink
dr. ir. G. van Oort
dr. ir. P.T. de Boer

March, 2025

015RaM2025
Robotics and Mechatronics

EEMCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

ii EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Daniël Huiskes University of Twente

iii

Summary

Robotics, as a multidisciplinary field, requires expertise in control design, system modelling,
software development, and mechatronics, and often lacks integrated tools that combine these
domains efficiently. Existing tools address specific aspects, but no comprehensive solution
exists.
To bridge this gap, this thesis introduces the Embedded-Project Generator (EPG), a
model-driven development (MDD) software tool designed to automate the creation of
microcontroller-based projects. These EPG-generated projects are configured for real-time
management of model-based mechatronic control software, and enable network connectivity
between a robot, controlled by a microcontroller that uses micro-ROS to facilitate communic-
ation with ROS 2 on a coordinating single-board computer.
The goals of this thesis are to design a method to automate the translation from a robot-
controller model to code that uses the ROS 2 ecosystem and supports real-time control; design
and implement a software tool based on the automation method; test the performance of
code, generated by the software tool, with a robot; and test the performance and stability of a
distributed network with multiple robots using code generated by the software tool.
The designed automation method is implemented in the EPG software tool with a GUI that
guides users through selecting a target configuration and connecting model ports to target
ports. The EPG combines model-generated code, user inputs, and the target configuration to
create a microcontroller project.
Six target configurations are implemented and tested for the EPG. The targets include bare-
metal, FreeRTOS, and Zephyr on the Raspberry Pi Pico; bare-metal and FreeRTOS on the
Raspberry Pi Pico 2; and Zephyr on the STM32 Nucleo-H743ZI. All targets are tested in a
ping-pong round-trip message passing application that is used to determine the performance
of the micro-ROS communication. Subsequently, EPG-target implementations are tested on
JIWY, a 2-DoF robot. JIWY is used to perform micro-ROS communication and control loop
performance measurements. Besides that, a motion profile is used to steer both the simulation
model of the robot as the actual robot, enabling a comparison of their behaviour. The tests
confirm that the EPG-generated projects function as intended and demonstrate the EPG’s abil-
ity to generate projects that meet the 1 ms firm real-time control loop and 33 ms soft real-time
communication requirement.
Additionally, network tests are conducted with a ping-pong test confirming stable commu-
nication between nodes with consistent round-trip times. Furthermore, the performance and
stability of a distributed ROS 2 network incorporating four JIWYs, controlled by EPG-targets,
as ROS 2 nodes is tested. The conducted tests demonstrate the effectiveness of a distributed
system using EPG-generated projects deployed on EPG-targets, in achieving stable motion
tracking, real-time synchronisation, and teleoperation.
In addition to testing on the JIWY robot, an EPG-target implementation is tested on the RELbot,
a 2-DoF robot, demonstrating the EPG’s compatibility with a different mechatronic system.
Three RELbots are tested in a distributed network, performing motion profile tracking and
teleoperation, with the setup developed through rapid prototyping in one day.
The goals are achieved with the implementation of the designed automation method in the
EPG software tool. Testing confirms the EPG’s effectiveness, ensuring stable communication,
control loop performance, and enabling robots to operate within a distributed network.
For future work, it is recommended to test the EPG on various robots, to identify possible
limitations and optimisation opportunities. Additionally, evaluating it in a distributed system,
like the Production Cell, is also recommended to assess adaptability and robustness.

Robotics and Mechatronics Daniël Huiskes

iv EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Daniël Huiskes University of Twente

CONTENTS v

Contents

1 Introduction 1

1.1 Context . 1

1.2 Goals . 2

1.3 Report outline . 2

2 Background 3

2.1 Introduction . 3

2.2 Component-based software . 3

2.3 Robotic software architectures . 4

2.4 Modelling and simulation tool 20-sim . 6

2.5 Device tree . 7

3 Analysis 8

3.1 Introduction . 8

3.2 Requirements . 8

3.3 Selection of the software/hardware configuration 10

4 Design 18

4.1 Introduction . 18

4.2 Automation method . 19

4.3 Software tool implementation . 22

4.4 EPG-target configurations . 27

4.5 Verification of the requirements . 33

5 Testing 35

5.1 Introduction . 35

5.2 Performance testing . 35

5.3 Network testing . 49

5.4 Test compatibility with a different mechatronic system 59

6 Conclusions and Recommendations 62

6.1 Conclusion . 62

6.2 Recommendations . 63

A EPG user guide 64

A.1 Software installation . 64

A.2 Using the EPG . 66

A.3 Demos . 76

Robotics and Mechatronics Daniël Huiskes

vi EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

B Micro-ROS communication 78

C Active engagement with open-source developers 80

D Literature study 82

D.1 Key aspects of a component-based design methodology 82

D.2 State-of-the-art in robotic software architectures 83

D.3 Real-time robotic software . 88

D.4 Networking within a robotic software architectures 91

E Ping-pong measurements 95

E.1 Data distribution round-trip times . 95

E.2 Bare-metal control loop measurements . 98

E.3 FreeRTOS control loop measurements . 114

E.4 Zephyr control loop measurements . 130

F JIWY control loop measurements 146

F.1 Bare-metal control loop measurements . 148

F.2 FreeRTOS control loop measurements . 152

F.3 Zephyr control loop measurements . 156

G JIWY communication measurements 159

G.1 Bare-metal . 159

G.2 FreeRTOS . 161

H JIWY motion tracking 163

References 164

Daniël Huiskes University of Twente

CHAPTER 1. INTRODUCTION 1

1 Introduction

1.1 Context

Robotics is a multidisciplinary field requiring expertise in control design, system modelling,
software development, and mechatronics. Developers often specialize in one area, complic-
ating the integration of various system components. The wide range of available tools and
techniques makes it difficult for engineers to assess compatibility and find optimal combina-
tions across system levels.
Developing robot software with requirements such as real-time performance, distributed con-
trol, and networking can be complex and time-consuming. Transitioning from model devel-
opment to implementation in a robotic system is challenging, as there is currently no com-
prehensive software tool that seamlessly integrates model development, networking, real-time
execution, and direct deployment for robotic systems.
There are software tools that address some of these challenges. For example, OROCOS (Soetens,
2024) supports real-time control, but lacks model-driven development (MDD) integration. Pa-
pyrus for robotics (The Eclipse Foundation, 2023), a high-level modelling tool, SMARTMDSD
(Stampfer et al., 2016), a system composition tool, and ReApp (Wenger et al., 2016), a ROS-
based framework with tools for modelling, all focus on software modelling instead of physical-
system modelling. They offer tools for component assembly, but lack direct robotic system de-
ployment, and have limited support for real-time performance. 20-sim 4C (Controllab, 2025)
enables rapid prototyping but lacks networking support for ROS 2 and is incompatible with the
latest real-time Linux versions needed for real-time execution. Additional examples are shown
in Appendix D.
This thesis presents the Embedded-Project Generator (EPG), a MDD software tool developed
in this project to integrate solutions addressing these challenges. The EPG generates fully con-
figured directly deployable microcontroller-software projects. The generated project includes
real-time management of model-based mechatronic control software and establishes network
connectivity with a coordinating single-board computer to steer and monitor a robot. Fig-
ure 1.1 illustrates the functional context of the EPG. In this report, the colour green is used to
show the elements developed in this thesis when presented alongside existing ones.

Setpoint Control robot model

robot

Control System

Simulation model

microcontroller

Setpoint commands
& Monitoring

Single-board computer
Generated project

Control

Legend
signal

method
Embedded-Project

Generator

Figure 1.1: Embedded-Project Generator functional context. Green blocks show thesis work.

To provide a preview of the outcomes of this thesis, this video presents a demonstration of the
EPG in action.

Robotics and Mechatronics Daniël Huiskes

https://cloud.ram.eemcs.utwente.nl/index.php/s/biaqtQodAESz3ZZ

2 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

1.2 Goals

The main goal of this thesis is to develop an MDD software tool to automate the translation
from a robot-controller model to code for an embedded device, enabling both real-time control
of a mechatronic system and integration within the ROS 2 ecosystem for networking.

The goals of this thesis are therefore as follows:

• Design a method to automate the translation from a robot-controller model to code that
uses the ROS 2 ecosystem and supports real-time control.

• Design and implement a software tool based on the automation method.
• Test the performance of code, generated by the software tool, with a robot.
• Test the performance and stability of a distributed network with multiple robots using

code generated by the software tool.

The project constraints of this thesis are as follows:

• The code, generated by the software tool, uses the ROS 2 ecosystem for networking.
• The code, generated by the software tool, must support a robot setup that uses a Rasp-

berry Pi single-board computer.
• The software tool must support direct implementation of 20-sim model-generated code.

1.3 Report outline

Chapter 2, presents essential background information for this thesis. Subsequently, Chapter 3
presents an analysis in which design requirements are derived from a use case to realise the
goals stated in Section 1.2. The requirements lead to a design-space exploration systematic-
ally showing the trade-off between design options to substantiate the chosen setup. Chapter 4
shows the design of the EPG, a component-based software tool for networked robot systems
that incorporates all analysis outcomes. In Chapter 5 the performance of different test setups
is evaluated. The thesis is concluded with Chapter 6, which combines conclusions and recom-
mendations.

Daniël Huiskes University of Twente

CHAPTER 2. BACKGROUND 3

2 Background

2.1 Introduction

This chapter provides background information needed to understand the concepts that are
used in this thesis. As part of this thesis an extensive literature study is conducted on software
development methodologies, software tools, and software architectures relevant for this thesis.
This chapter discusses the directly relevant aspects of this study, while the complete literature
study, including all results, is added to Appendix D.

2.2 Component-based software

Component-based software methodologies facilitate the re-use of code and aim to provide
convenient system assembly by combining several components.
According to Szyperski (2002) the definition of a software component is as follows: “A software
component is a unit of composition with contractually specified interfaces and explicit context
dependencies only. A software component can be deployed independently and is subject to
composition by third parties.”. In other words, this implies that a component functions as a
black box that incorporates all the functionality, referring to the internal operations, processes,
and algorithms that define the component’s behaviour, within the box. The box can have mul-
tiple inputs and outputs with pre-defined data formats. Figure 2.1 shows a general high-level
component description with multiple inputs and outputs. The functionality within the com-
ponent can operate stand-alone.
The components that result from a component-based methodology can therefore be combined
just like building blocks to quickly build a software architecture. Since the components can op-
erate independently, they can also be conveniently re-used in different software structures.

Inputs Outputs

Component

Functionality

Figure 2.1: Diagram of a component

Brugali and Scandurra (2009) state that “a robot–software architecture describes the decom-
position of the robot control system into a collection of software components, the encapsula-
tion of functionality and control activities into components, and the flow of data and control
information among components.”. The advantage of describing a robot-software architecture
in this component-based way is that the functional and non-functional requirements of the
robot system can be realised by mapping the requirements on parts of the component. The
functional requirements of the robotic system can for example be implemented within the
functionality of the component. Non-functional requirements, such as how communication
within the system should take place can be implemented by specifying the input and output
data formats of the component. More literature on this topic is discussed in Section D.2.6.

Robotics and Mechatronics Daniël Huiskes

4 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

2.3 Robotic software architectures

2.3.1 ROS 2

The Robot Operating System (ROS 2) (Macenski et al., 2022) is a set of software libraries and
tools that can be used to build robot applications.
ROS 2 uses the Data Distribution Service (DDS). This is an open standard for communication
and enables security, embedded and real-time support, multi-robot communication, and op-
erations in non-ideal networking environments (Macenski et al., 2022).
ROS 2 uses nodes, which can be considered as components, as discussed in Section 2.2. A node
has functionality that performs a certain task and uses a publisher-subscriber communication
model, where publishers send data to a topic, making the data available to all nodes with
subscribers to the topic.
Figure 2.2 shows an example in which node Coordinator publishes setpoints on topic /Setpoint
to steer node Robot, which subscribes to topic /Setpoint. Similarly, the node Robot publishes
position data on topic /Position for monitoring, received by the subscriber of node Coordin-
ator.

 node Coordinator

subscriber /Position

publisher /Setpoint
topic /Setpoint

Message

topic /Position
Message

node Robot

publisher /Position

subscriber /Setpoint

Functionality Functionality

Figure 2.2: ROS 2 node communication example - Node Coordinator publishes setpoints on topic Set-
point to steer node Robot, which subscribes to topic Setpoint. The node Robot subsequently publishes
position data on topic /Position for monitoring, received by the subscriber of node Coordinator.

Although ROS 2 claims to have real-time support, achieving real-time performance requires
the use of additional real-time middleware. While ROS 2 provides the necessary infrastructure
and features for real-time communication, the integration of dedicated real-time middleware
is essential to fully achieve deterministic and predictable behaviour in real-time applications.

2.3.2 Micro-ROS

Micro-ROS (Belsare et al., 2023) is a real-time framework designed to bring ROS 2 functionalit-
ies to resource-constraint microcontroller devices.

The most important aspects of micro-ROS are:

• Microcontroller-optimised client API supporting all major ROS 2 concepts.
• Extremely resource-constrained but flexible middleware.
• Seamless integration with ROS 2.
• Multi-RTOS support.

Micro-ROS makes use of the DDS-XRCE protocol, which stands for DDS For Extremely Re-
source Constrained Environments. This resource constraint variant of the DDS protocol can
directly be used within the ROS 2 architecture and seamlessly integrates with DDS.
Micro-ROS can be used in combination with a real-time operating system (RTOS), such as
FreeRTOS or Zephyr, or with a bare-metal implementation. The advantage of using micro-ROS
in combination with an RTOS is that different scheduling algorithms can be used to obtain real-
time performance.
Micro-ROS follows the same node-based architecture of ROS 2 that makes use of message
passing between the nodes by subscribing and publishing on topics.

Daniël Huiskes University of Twente

CHAPTER 2. BACKGROUND 5

The architecture overview of micro-ROS is shown in Figure 2.3. This figure shows that micro-
ROS runs on a microcontroller on top of an RTOS. The Micro XRCE-DDS client integrated in
micro-ROS can connect to a ROS 2 agent that runs on another device such as a Raspberry Pi.
By doing this, a connection can be established over which messages can be sent between nodes.
The ROS 2 agent connects micro-ROS nodes (i.e. components) on MCUs seamlessly with stand-
ard ROS 2 systems. This allows accessing micro-ROS nodes with the known ROS 2 tools and
APIs just as normal ROS nodes.

Figure 2.3: Architecture of the micro-ROS stack. Adapted from Belsare et al. (2023)

The seamless integration of micro-ROS with ROS 2 enables microcontrollers to fully participate
in a distributed network. Figure 2.4 shows the operation of micro-ROS within the OSI network
stack. The figure depicts a multi-device network configuration in which two single-board com-
puters (SBCs) are interconnected via an Ethernet switch and communicate using ROS 2 Fast
DDS, which operates over UDP/IP. Each single-board computer is connected to a microcon-
troller unit (MCU) running micro-ROS, allowing the microcontrollers to function as integral
components of the ROS 2 ecosystem.
Micro-ROS communication between a micro-ROS client on the Raspberry Pi Pico, Pico 2, and
Nucleo H743ZI, and a micro-ROS agent on a single-board computer uses serial USB 2.0, but is
limited to speeds of 12 Mbps. The process of sending data involves serialising the data, apply-
ing HDLC framing, and packaging into a USB 2.0 package before transmission, while receiving
data follows the reverse order. The package being transmitted follows a layered structure where
the USB 2.0 protocol handles communication with a 7-byte overhead, the HDLC frame encap-
sulates the XRCE-DDS message with an additional 7-byte overhead, and the XRCE-DDS mes-
sage itself carries micro-ROS topic data with a 12-byte overhead. The transmitted data consists
of an 8-byte double-precision floating-point number, and the total overhead is 26 bytes, res-
ulting in a final package size of 34 bytes and an estimated transmission time of about 23 µs. It
should be noted that this is only the transmission time, without taking into account additional
overheads, such as serialisation and deserialisation of the packages. More details about the
micro-ROS communication are provided in Appendix B.

Robotics and Mechatronics Daniël Huiskes

6 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

7

6

5

4

3

2

1

Services
Layer

Middleware
Layer

Operating System
Layer

Hardware Layer

ROS2 and micro-ROS in OSI network stack

Serial USB
2.0

ROS Client Libarary (rcl)

micro-ROS
agent

Fast
DDS

UDP

ROS 2 (SBC 1)

ROS Nodes

Ethernet
switchEthernet

IPv4/IPv6

 ROS Client Libarary (rcl)

micro-ROS
agent

Fast
DDS

UDP

Serial USB
2.0

ROS 2 (SBC 2)

ROS Nodes

Ethernet

ROS Client Libarary (rcl)

micro-ROS XRCE-
DDS client

 Serial USB 2.0

micro-ROS (MCU 2)

ROS Nodes

ROS Client Libarary (rcl)

micro-ROS XRCE-
DDS client

Serial USB 2.0

micro-ROS (MCU 1)

ROS Nodes

 IPv4/IPv6

ROS middleware interface
(rmw)

ROS middleware interface
(rmw)

ROS middleware interface
(rmw)

ROS middleware interface
(rmw)

Figure 2.4: Micro-ROS and ROS 2 in OSI network stack

2.3.3 Xenomai/EVL

Xenomai adds real-time functionalities to non-real-time operating systems, such as Linux.
Xenomai/EVL is a companion core that can be used in combination with a Linux kernel form-
ing a dual kernel architecture (EVL Project, 2023).
It is possible to communicate with the real-time kernel from the Linux kernel by using the
Dovetail interface. Figure 2.6 shows how the different layers stack on each other.
Communication between the real-time EVL core and the non-real-time general purpose kernel
is possible by means of a cross-buffer as shown in Figure 2.6. This buffer connects the in-band
and out-of-band contexts with each other and makes it possible to use the general read() and
write() functions on the inbound side and similar oob_write() and oob_read() functions on the
outbound side.

Hardware

Dovetail interface

General purpose
kernel Real-Time core

Figure 2.5: Xenomai Linux kernel

oob_write() Real-Time
coreread() oob_read()

Cross-buffer

write()General
purpose
kernel

Figure 2.6: Cross-buffer

2.4 Modelling and simulation tool 20-sim

20-sim is a modelling and simulation tool for mechatronic systems (Controllab, 2025). It en-
ables multi-domain modelling using energy-based bond graphs, supports simulation, and has
a C-Code generation functionality to generate C or C++ code from model elements that can be
run on microcontrollers or single-board computers.
The Targets.ini file is the starting point of the 20-sim code generation process. In 20-sim you
can create a new target for code generation by defining a Targets.ini configuration file. It spe-
cifies which template files should be used for code generation. Within the template files, 20-sim
tokens act as placeholders for information about the models such as variable names, equa-
tions, and inputs/outputs. During the 20-sim code generation step, the tokens are replaced by
the corresponding model information, and the resulting generated code is placed in a destina-
tion folder, which is specified before the code generation process starts.

Daniël Huiskes University of Twente

CHAPTER 2. BACKGROUND 7

Besides template files, additional commands can be executed using preCommand and post-
Command, which make it possible to run a terminal command in the target directory before
or after the C-Code is generated. This option adds flexibility to the 20-sim code generation
process by enabling the execution of pre- and post-processing software.

2.5 Device tree

Device trees are a concept for representing hardware configurations. They are particularly used
in the context of Linux-based operating systems (Linux Foundation, 2025), but are also essen-
tial in Real-Time operating systems such as Zephyr (Zephyr Project, 2025). Device trees are
used to allow for flexible and modular hardware configurations without having to hardcode
the configuration for each individual device.
According to Gibson (2006) “The device tree consists of nodes representing devices or buses.
Each node contains properties, name-value pairs that give information about the device. The
values are arbitrary byte strings, and for some properties, they contain tables or other struc-
tured information.”. This means the device tree is a hierarchical data structure, where each
node holds configuration information of a hardware element, such as hardware settings and
data ports.

Robotics and Mechatronics Daniël Huiskes

8 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

3 Analysis

3.1 Introduction

This chapter presents an analysis of the requirements needed to reach the goals of this thesis
and determines the best software/hardware configuration to be used for the EPG.
First a use case is formulated from which functional and non-functional requirements are
derived. Subsequently the requirements are used in a design-space exploration that evalu-
ates two software/hardware configurations. The configurations are Xenomai on a single-board
computer with an FPGA for robot communication and bare-metal/RTOS software on a micro-
controller using micro-ROS for communication with a single-board computer, while hardware
I/O handles communication with the robot. After the best configuration is determined several
hardware options are evaluated to determine the optimal setup.

3.2 Requirements

3.2.1 Use case

The software tool is aimed towards students, researchers, and engineers that want to cre-
ate real-time networked robotic systems following a model-driven development methodology,
while minimizing the complexities involved with deploying the model on an embedded device.
An example scenario is a student tasked to get a robot in the RaM laboratory operational using
ROS 2 for command and monitoring.
The robot is a 2-DoF manipulator that receives PWM input signals for motor control and has
encoder output signals to determine the robot position. The robot hardware and its I/O are
known, but robot code should be developed and implemented for the robot functionality.
The student starts with creating a model of the robot in 20-sim. The model incorporates the
control software, hardware I/O, and the dynamic system behaviour.
After simulations to verify model correctness, the student uses C-Code generation to generate
code for the control software. Transitioning from model to deployment reveals several chal-
lenges:

1. Hardware interfaces: The 20-sim control software must be used to control the robot.
Since the robot only has hardware I/O interfaces, the student needs an embedded device
that can implement the control software and has functionality to interact with the hard-
ware I/O. The student integrates the hardware I/O with the control software by config-
uring device GPIO pins with implementations for PWM signals to steer the robot and
quadrature encoders to get the current position information. Because the student wants
to minimize delays between the control software and hardware I/O they are tightly integ-
rated.

2. Firm real-time control: For correct functioning the control software is bound to firm
real-time constraints (occasional deadline misses are acceptable, but frequent misses
degrade performance and can lead to system failure) and performs calculations using
double-precision floating-point numbers. Consequently, the student must ensure that
the embedded device supports real-time processing and double-precision floating-point
calculations.

3. Soft real-time ROS 2 communication: Furthermore, the robot must use ROS 2 for com-
mand and monitoring. Therefore, the student must create a link between the control
software and ROS 2 to establish soft real-time (occasional deadline misses are allowed
without causing critical failure, but reduce the usefulness of the result) communication.

4. Testing and debugging: After implementing the hardware interfaces, firm real-time con-
trol, and ROS 2 communication, while ensuring each functions without interfering with

Daniël Huiskes University of Twente

CHAPTER 3. ANALYSIS 9

the others the student can start with testing and debugging.
The student makes sure that the code running on the embedded device can be debugged
in a development environment. Setpoint commands are sent using ROS 2 publishers and
ROS 2 subscribers are used to monitor the current robot position to verify correct beha-
viour.

5. Refinement: If the robot does not behave as expected, the student must refine the code.
This refinement can include remodelling parts of the robot system or improving the em-
bedded device operations. Through multiple development iterations, the student ulti-
mately gets the robot working as intended.

The goals in Section 1.2 form the basis for the use case, which outlines a scenario addressing
these goals. From the complexities identified in the use case, as well as additional require-
ments not directly covered in the scenario but necessary for the development of the EPG, the
functional and non-functional requirements of the software tool are derived. These require-
ments, explained in Section 3.2.2 and Section 3.2.3, are structured to support the achievement
of the goals and are prioritized using the MoSCoW convention, starting with musts, followed
by shoulds, and concluding with coulds.

3.2.2 Functional requirements

1. The EPG-generated project must use the ROS 2 ecosystem.
ROS 2 is currently one of the most popular open-source robotic frameworks. There are
already numerous ROS 2 software packages, offering functionality that can be directly
used to support development. To ensure a seamless integration, the EPG-generated pro-
ject must be designed to use the ROS 2 ecosystem.

2. The EPG-generated project must support a robotic setup that uses a Raspberry Pi
single-board computer.
The Raspberry Pi is a small but powerful single-board computer making use of an ARM
processor. This computer is widely used and supported within the robotics industry.
Besides that, the RaM robotics laboratory makes use of the Raspberry Pi. The EPG-
generated project must support a robotic setup that uses a Raspberry Pi single-board
computer.

3. 20-sim model-generated code of embedded control software must be directly imple-
mentable on mechatronic systems.
The EPG directly implements mechatronic control software following from a modelling
tool. Because of the intensive use of 20-sim at the University of Twente in education
and research along with its functionality for multi-domain modelling, simulation, and
C-Code generation from model elements, 20-sim must be supported by the EPG.

4. The EPG-generated project must have real-time capabilities.
Both soft real-time and firm real-time constraints must be supported. The EPG-
generated project must support the robots in the RaM laboratory. Some of the robots use
a webcam that provides images at 30 fps (33 ms), with the images used for setpoint gener-
ation and system monitoring at the same rate. Therefore, soft real-time communication
for transmitting setpoint and monitoring data is required with a 33 ms time interval. The
robot control software must run in a loop with a 1 ms time interval, which is a typical rate
used by the robots that balances responsiveness and computational efficiency. Because
of that, firm real-time performance is required with a 1 ms time interval.

5. There should be compatibility with different mechatronic systems.
The EPG should be functional for different mechatronic systems, which makes it import-
ant to make the system general and not to design it specifically for a single application.

6. Support for networking between robotic components should be implemented.
Support for networking between robotic systems should be implemented. Robotic sys-
tems often consist of components that work together to achieve the desired system beha-

Robotics and Mechatronics Daniël Huiskes

10 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

viour. Multiple robotic components should be able to collaborate within this distributed
control system.

7. There should be support for double-precision floating-point calculations.
Double-precision floating-point calculations are often used in control software. When
available, hardware support for double-precision floating-point numbers should be
used. Otherwise, floating-point calculations should be performed in software, which is
less efficient.

3.2.3 Non-functional requirements

1. Minimal user input should be required.
Minimal user input should be required, to enable a smooth transition from model to
deployment with as much automation as possible.

2. The EPG should have good maintainability.
The EPG should be easy to maintain. When software is difficult to maintain or when cer-
tain parts are quickly outdated, this will result in a short lifespan for the EPG. Therefore,
the following aspects should be taken into account:

• Limit EPG complexity
When the EPG is complex, this will make it difficult to get a good overview of how it
can be maintained.

• Limit custom software
Custom software solutions often make it difficult to maintain a software tool in the
long term. These solutions do not have an active developer community and a small
number of users, which makes the developer solely responsible for maintenance
and further developments. Therefore, it is preferred to use active open-source initi-
atives. This involves several developers who actively help develop and improve the
software.

3. There should be support for the use of software components.
There is a trend within robotics in which software components are increasingly used.
The advantage of using software components is that they can be reused by the end user
within different projects. It is therefore desirable that reusable software can be used.

4. The EPG and EPG-generated project could use common programming languages.
Using uncommon programming languages complicates the simplicity with which the
EPG and EPG-generated projects can be used. The 20-sim generated software is written
in C/C++, which could be used for EPG-generated projects to ensure consistency. The
EPG user primarily interacts with the EPG-generated project, however for convenience
in maintainability the EPG could also use a common programming language.

3.3 Selection of the software/hardware configuration

3.3.1 Introduction

A design-space exploration is used to select the best software/hardware configuration for the
EPG. Best configuration implies that the configuration has the most potential to meet the pre-
viously mentioned requirements.
The design-space exploration is performed by creating decision matrices. The scores in the
decision matrices are given by using the symbols −−, −, −/+, + and ++, which represent a lin-
ear range between -2 and 2. For each alternative the scores of the criteria are multiplied with
a weight representing the importance of the criteria. These multiplications are subsequently
summed to get a final score for each of the alternatives in the decision matrix.

Daniël Huiskes University of Twente

CHAPTER 3. ANALYSIS 11

3.3.2 Configurations

For the design of the EPG both software and hardware should be taken into consideration, since
a choice for one constraints the options for the other. The most common software/hardware
combinations supporting real-time performance are:

• Custom VHDL/Verilog software running on an FPGA.
• Real-time patched Linux software with C/C++ code running on single-board computer

hardware optionally in combination with an FPGA for hardware I/O.
• Bare-metal/RTOS software with C/C++ code running on microcontroller hardware.

Only the last two combinations are considered in this analysis. The first option is not con-
sidered, because of the following complications:

• 20-sim must be used for generating the embedded control software. 20-sim only has
options for generating C/C++ code and not VHDL/Verilog code. A workaround could be
to create a High-Level Synthesis (HLS) solution that converts C/C++ to FPGA code. This
would however result in combining multiple programming languages, creating a vendor-
specific solution, and shifting from sequential software thinking to parallel hardware,
which adds complexity.

• Using an FPGA for networking with ROS 2 is not straightforward and would require an
FPGA-specific bridge between the FPGA logic and ROS 2 implementation.

• FPGA development requires special expertise, making an FPGA-based software tool
harder to maintain.

The result would be a complex, difficult-to-maintain software tool.

Single-board computer with real-time Linux and FPGA hardware I/O

Previous projects at RaM supporting real-time networked robotic software used Xenomai
patched Linux with custom ROS 2 networking solutions, running on a Raspberry Pi 4B single-
board computer with an IcoBoard FPGA for hardware I/O (Meijer, 2021; Raoudi, 2024). Meijer
(2021) showed that Xenomai is the preferred real-time Linux patch for single-board computer
implementations, as it offers better timing performance compared to other patches, while us-
ing identical programming interfaces.
Figure 3.1 shows a preliminary mapping of the embedded control system layers within this
setup. All tasks are performed on the Raspberry Pi using a combination of ROS 2 and Xenomai.
The soft real-time ROS 2 tasks use the normal Linux kernel on three separate cores. The firm
real-time tasks are executed using the Xenomai patched kernel on the remaining core. Since
the kernels run on separate processing cores a cross-buffer is needed to enable communica-
tion between both execution environments. For hardware I/O the Raspberry Pi communicates
with an Ico-Board FPGA over SPI to steer actuators and read sensors. A user interface can be
added to the system to monitor the system state by communicating with ROS 2.

U
se

r I
nt

er
fa

ce

Raspberry Pi
Non real-time

Embedded Control System Layers Xenomai

Control
Cross-
buffer

Actuators

Robot

Sensors

Plant

Ico-board

I/O
HardwareXenomai/EVL

Processor core 0

ROS 2
Processor core 1, 2, 3

Setpoint
commands
Monitoring

SP
I

Firm real-timeSoft real-time

Figure 3.1: Embedded Control System Layers Xenomai

Robotics and Mechatronics Daniël Huiskes

12 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Single-board computer and microcontroller with bare-metal/RTOS

The alternative proposed in this thesis is to use micro-ROS on a microcontroller with a bare-
metal or RTOS implementation for real-time performance to control a robot and using a Rasp-
berry Pi 4B single-board computer for non-real-time processing. Micro-ROS is established as
the standard for ROS 2 based microcontroller communication and extends the ROS 2 concepts
to resource constraint microcontroller devices while ensuring compatibility with all ROS 2 con-
cepts, making it the most suitable option for a microcontroller based software tool.
Figure 3.2 shows a preliminary mapping of the embedded control system layers using a micro-
ROS setup. This figure shows the same elements as Figure 3.1, but mapped at different loc-
ations and hardware. The non real-time and soft real-time processing are still present at the
Raspberry Pi. The firm real-time and I/O are however mapped on the microcontroller. Micro-
ROS communication between the Raspberry Pi and the microcontroller takes place within the
ROS framework. The microcontroller can be connected to the Raspberry Pi making use of the
XRCE-DDS protocol. The microcontroller has functionalities to create PWM signals and read
encoders. Real-time performance is guaranteed by making use of an RTOS or a bare-metal
solution on the microcontroller.

U
se

r I
nt

er
fa

ce

Setpoint
commands

Monitoring

ROS2 Actuators

Robot
Encoder

PlantRaspberry Pi
Non real-time Soft real-time

Microcontroller
Firm real-time

PWM

Encoder

micro-ROS

Embedded Control System Layers micro-ROS

XR
C

E-
D

D
S

Control

RTOS/bare-metal

I/O hardware

Figure 3.2: Embedded Control System Layers micro-ROS

Evaluation of Xenomai and micro-ROS

This exploration compares a setup using Xenomai with a setup using micro-ROS running on a
microcontroller to discover the strengths and limitations of each.
Xenomai and micro-ROS are both software frameworks that greatly impact the design of a soft-
ware tool. They are not directly comparable. Xenomai is a real-time patch for Linux, while
micro-ROS is a framework for enabling ROS 2 communication on microcontrollers. They do
however have in common that using them creates constraints on real-time behaviour, the avail-
ability of system resources, and the way in which robotic applications can be designed. A ro-
botic application is built on the functionality the software framework provides, and solutions
must be developed for any shortcomings. Therefore, it is important to evaluate the influence
of the functionality and imposed constraints of these frameworks on the design requirements.
The software frameworks are evaluated on the following points:

• ROS 2 compatibility: Xenomai does not have ROS 2 support for software that runs real-
time. Therefore, a custom solution is needed to enable communication from tasks run-
ning real-time to non-real-time tasks running ROS 2. Micro-ROS is developed to be fully
compatible with all ROS 2 concepts and is tightly integrated.

• Modularity: System modularity makes it possible to flexibly adjust and scale a robotic
system. When the setup is represented as a component that contains all functionality,
multiple independent components can be composed to create a distributed control sys-
tem.
Xenomai performs all processing on the Raspberry Pi, with different tasks mapped to the
cores of the Raspberry Pi. There are however restrictions when creating a distributed
system. Preferably one processing core is used for each control task to have a clear sep-

Daniël Huiskes University of Twente

CHAPTER 3. ANALYSIS 13

aration of concerns.
Besides that, the IcoBoard has a limited amount of I/O coverage. The work of In ’t Veld
(2023) implemented a Xenomai approach for a production cell application containing
six units, each equipped with a motor and encoder controlled by a control loop. The
research showed that the ideal mapping required one Raspberry Pi 4B with IcoBoard for
every two units resulting in a total of three Raspberry Pis with Icoboards. While this setup
can be effective for smaller systems, it becomes increasingly complex for larger systems,
requiring multiple Raspberry Pis with IcoBoards.
Using micro-ROS all functionality to control a plant runs on a microcontroller perform-
ing the computations. Multiple microcontrollers controlling plants can be connected to
the Raspberry Pi, creating a multicomponent distributed computing system with a sep-
aration of concerns. The Raspberry Pi only has to steer and monitor the system compon-
ents by publishing and subscribing on ROS 2 topics, while most computational power
can be used to perform other tasks. In this setup the Raspberry Pi handles intensive
computations, while microcontrollers manage the control tasks making efficient use of
powerful hardware.

• Real-time performance: Xenomai is designed for real-time performance with low laten-
cies making it suitable for real-time applications. A micro-ROS setup, on the other hand,
uses bare-metal interrupt timers or a micro-ROS compatible RTOS to obtain real-time
performance. The expectation is that both solutions will have firm real-time perform-
ance meeting the requirements. Xenomai uses a co-kernel architecture, where the Linux
kernel might interfere with real-time tasks in heavy load situations, though the higher
processing speed at which Xenomai processes real-time tasks might reduce jitter. The
RTOS implementation is more minimalistic and deterministic, operates without inter-
ference from non-real-time tasks, and offers simplified management of real-time tasks.

• Hardware I/O support: The Xenomai setup uses the IcoBoard FPGA for hardware I/O.
The Raspberry Pi communicates over SPI to set the PWM and read encoder values. The
SPI communication can however be a performance bottleneck and is problematic with
some Linux kernels patched with Xenomai that cripple USB and SPI functionality.
Using micro-ROS all hardware I/O on the microcontroller and single-board computer is
available without restrictions. A plant is directly controlled by the microcontroller which
immediately executes the control software.

• Processing power: Both Xenomai and micro-ROS setups make use of a Raspberry Pi 4B.
The Xenomai setup performs all computation on the Raspberry Pi 4B. On the other hand,
the micro-ROS setup includes a microcontroller to control plants, distributing the work-
load over different devices. Therefore, while the Xenomai setup has more processing
power available to control the plant, the micro-ROS setup better distributes the power
where it is needed.

• Independence from custom software: Xenomai offers a real-time framework, but needs
custom solutions for enabling networking in ROS and communicating with the FPGA
for hardware I/O. Therefore, multiple custom solutions are needed. Using a micro-ROS
implementation requires no dependence on custom software. All elements are present
for networking and real-time performance. The challenge is to efficiently use resource
constraint hardware and optimise performance.

• Development complexity and maintainability: Using Xenomai is not straightforward.
Xenomai is implemented by building a Linux kernel enabling the Xenomai core. Since
Xenomai is not compatible with all Linux kernels and the provided kernels are often not
up-to-date with the latest Linux kernel, older Linux kernel versions are used limiting the
implementation of new features, security patches, and operating system updates. When
a Xenomai patch is available for a new version of the Linux kernel, problems can arise, be-
cause not all functionalities provided by the kernel work yet, requiring additional patches

Robotics and Mechatronics Daniël Huiskes

14 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

and solutions. Micro-ROS can be used by adding the micro-ROS module to a microcon-
troller project using CMake. Micro-ROS is up-to-date with the latest ROS 2 version and
uses the same concepts as ROS 2. Additionally, a bare-metal or RTOS implementation is
needed for firm real-time performance, with multiple up-to-date solutions available.

• Documentation: Having a good documentation of the software framework is essential
for being able to develop applications. The documentation of Xenomai is limited and
does not keep a good separation between different Xenomai versions. Micro-ROS doc-
umentation is up-to-date, contains all information needed to create applications, and
builds forward on the extensive ROS 2 documentation by using the same concepts.

• Cost: Both Xenomai and micro-ROS setups use a Raspberry Pi 4B. Using Xenomai re-
quires an IcoBoard, while micro-ROS needs a microcontroller. Table 3.1 lists example
hardware and costs. Using these costs, Table 3.2 lists the cost of a base configuration
showing that the Xenomai base setup costs about twice as much as the micro-ROS setup,
and about five times as much for the production Cell case. Overall, the cost of a Xenomai
setup will be significantly more compared to a setup using micro-ROS.

Table 3.1: Hardware prices at 17-11-2024

Raspberry Pi 4B 8GB IcoBoard Raspberry Pi Pico (microcontroller)
Price (€) 82,27 100,39 3,95
Vendor Kiwi electronics DigiKey Kiwi electronics

Table 3.2: Cost comparison base setup

Case Setup #Raspberry Pi 4B #IcoBoard #Raspberry Pi Pico Total Cost (€)
Base Xenomai 1 1 0 183
Base micro-ROS 1 0 1 86
Production Cell Xenomai 3 3 0 548
Production Cell micro-ROS 1 0 6 106

All evaluation points are summarised in Table 3.3.

Table 3.3: Comparison setups

Xenomai/Evl micro-ROS
ROS 2 compatibility Custom solutions Tightly integrated

Modularity
Increasingly complex for larger
systems, requiring multiple
Raspberry Pis with IcoBoards

Raspberry Pi handles intensive
computations, while microcontrollers
manage control tasks efficiently
using powerful hardware

Real-time performance Firm real-time co-kernel Firm real-time RTOS/bare-metal
Hardware I/O support I/O using IcoBoard FPGA over SPI All microcontroller I/O available

Processing power
More processing power for
robotic plant control

Better distribution of power
where it is needed

Independence from
custom software

Custom solutions for ROS 2
and FPGA communication

No dependence on
custom solutions

Development complexity
and maintainability

Complex patched Linux kernel
Add micro-ROS and
firm real-time software
to microcontroller project

Documentation Limited Adequate
Cost High Low

Daniël Huiskes University of Twente

CHAPTER 3. ANALYSIS 15

In order to qualitatively compare the setups, a decision matrix is created as shown in Table 3.4.
The matrix covers the evaluation points shown in Table 3.3. The weights are assigned to the
table such that the elements that are most important for meeting the design requirements have
the highest weight. This gives an estimate on how the elements are represented in the setups.

Table 3.4: Qualitative Comparison setups

Weight Xenomai/EVL micro-ROS
ROS 2 compatibility 3 - ++
Modularity 3 -/+ ++
Real-time performance 3 ++ +
Hardware I/O support 2 + ++
Processing power 2 + +
Independence from custom software 2 - - ++
Development complexity and maintainability 2 - ++
Documentation 1 - +
Cost 1 - - ++
Total: -2 32

Conclusion evaluation

The results in Table 3.4 show that using micro-ROS for the development of the EPG has benefits
over using Xenomai/EVL. Therefore, it can be concluded that using micro-ROS on a microcon-
troller in combination with a Raspberry Pi creates the best setup to reach the design require-
ments. However, it is not yet clear which microcontroller is most convenient to use within this
setup.

micro-ROS compatible hardware

Several microcontrollers are micro-ROS compatible. Therefore, it is investigated which micro-
controller is most suited to meet the design requirements by comparing the different options
and investigate their strengths and weaknesses. The microcontrollers that are taken into con-
sideration are shown in Table 3.5.

Table 3.5: Comparison micro-ROS compatible hardware

STM32-F767ZI STM32-H743ZI RPi Pico RPi Pico 2 Teensy 4.0/4.1 Portenta H7

Clock speed 216 MHz 480 MHz 133 MHz 150 MHz 600 MHz
480 MHz +
240 MHz

Double-precision FPU Yes Yes No No Yes Yes
Dual core No No Yes Yes Yes Yes

Processor (Arm Cortex) M7 M7 2X M0+ 2X M33 M7
M7 +
M4

Flash memory 2MB 2MB 2MB 4MB 8MB 16MB
(S)RAM 512 Kbyte 1 Mbyte 264 Kbyte 520 Kbyte 1 Mbyte 8MB

Operating system
FreeRTOS,
Zephyr

bare-metal,
FreeRTOS,
Zephyr

bare-metal,
FreeRTOS,
Zephyr

bare-metal,
FreeRTOS

Arduino OS Arduino OS

Approximate price (€) 30 30 4 6 40 100
Programming language C/C++ C/C++ C/C++ C/C++ Arduino C Arduino C
Debugging ST-LINK ST-LINK Serial Wire Serial Wire No debugging Serial Wire
Extensive Development
community

Active Active Very active Very active Niche Niche

When considering the hardware in Table 3.5 the following considerations can be made for each
of the microcontroller types:

• STM32: The STM32-F767ZI and STM32-H743ZI are boards from the STM32 microcon-
troller family, both featuring a double-precision FPU, powerful processor, and I/O cap-

Robotics and Mechatronics Daniël Huiskes

16 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

abilities, making them interchangeable for many applications. However, the STM32-
H743ZI offers more powerful hardware. The boards are compatible with both FreeRTOS
and Zephyr RTOS, and are priced at approximately €30,-.

• Raspberry Pi Pico: The Raspberry Pi Pico supports micro-ROS and can be used bare-
metal, with FreeRTOS and Zephyr RTOS. The Pico lacks a double-precision FPU, so
double-precision calculations happen in software optimised by the compiler. It does
however have two ARM Cortex-M0+ cores clocked at 133MHz, enabling efficient mul-
titasking. The Raspberry Pi Pico, priced at about €4, is one of the most powerful cheap
microcontrollers.

• Raspberry Pi Pico 2: At the beginning of this thesis the Raspberry Pi Pico 2 was not yet
available, but because of its interesting properties it has been added to the analysis. The
Raspberry Pi Pico 2 is the more powerful successor of the Raspberry Pi Pico. It retains the
same compatibility as the Pico, with a more powerful dual-core processor running at 150
MHz and a single precision FPU. The Pico 2 has a similar price as the Pico of about €6,-.

• Teensy 4.0/4.1: This is a powerful microcontroller board featuring an ARM Cortex-M7 at
600 MHz and supports double-floating precision. The price is about €40,-. This board
makes use of the Arduino framework. Therefore, it is uncertain if the 20-sim generated
C/C++ code can run on the microcontroller without modifications. Teensy is an interest-
ing project, but there are some downsides. Debugging is for example difficult, because
there is no option to directly connect a debugger to the device. There are some options
to debug using commercial software on Windows such as Visual Micro, but this is incon-
venient. Also, there is little documentation about running an RTOS such as FreeRTOS on
the Teensy. These limitations make development difficult. The Teensy is a niche product
and therefore does not have a large development community, which can complicate find-
ing solutions to issues.

• Arduino Portenta H7: This board uses a dual-core version of the STM32H747. It is quite
expensive at €100,- and there are not a lot of advantages compared to the regular STM32
boards. The disadvantages are comparable to the Teensy. The Portenta is also an Arduino
product, which raises uncertainty about whether the 20-sim generated C/C++ code will
work without modifications. It is an Arduino product and therefore enjoys support from
that community, but within the Arduino world it is a niche product.

Taking these aspects and the design requirements into account a comparison matrix has been
created, which is shown in Table 3.6. In this comparison the following evaluation criteria are
taken into consideration:

• Clock speed: The microcontroller needs to have sufficient speed to run control loops,
while simultaneously performing other tasks, such as communication.

• Double-precision FPU: A double-precision floating-point unit performs double-
precision calculations in specialized hardware instead of using processing cycles ac-
celerating these types of calculations.

• Dual-core processor: Having two processing cores enables multitasking by dividing
workload over both processor cores. Therefore, even with a lower clock speed of each
core the same performance can be reached as a single-core microcontroller running at a
higher clock speed.

• RTOS support: RTOS support ensures firm real-time performance by task scheduling
and resource management, providing advantages in multi-task situations.

• Programming language support: Programming language support is important, since
the programming language has a large influence on how convenient the framework is to
work with. The STM32 and Pico are known for their good support of C/C++. The other
microcontrollers should also support this, but because they are niche products more
complications can arise.

Daniël Huiskes University of Twente

CHAPTER 3. ANALYSIS 17

• Approximate price: The price is taken into account to create a trade-off between per-
formance and price. Since this setup can conveniently use multiple microcontrollers to
create a distributed system it is desirable that adding additional microcontrollers is not
too expensive.

• Debugging: Debugging capabilities are needed to quickly resolve issues during code de-
velopment.

• Flash memory and (S)RAM: Sufficient flash memory and (S)RAM are needed to flash
the compiled program, for micro-ROS to function, and to smoothly run code without
running out of memory.

• Extensive development community: An extensive development community provides a
platform to discuss hardware specific problems and quickly find solutions. In an active
community, many users work with the same hardware improving its support and func-
tionality. Joining an active community directly provides benefits from the collective effort
and expertise.

This qualitative comparison shows that the STM32 Nucleo-H743ZI and Raspberry Pi Pico 2
are the best options considering the requirements, followed by the STM32 Nucleo-F767ZI and
Raspberry Pi Pico. Both the Pico 2 and STM32 Nucleo-H743ZI are interesting boards that can be
used for the EPG. The STM32 Nucleo-F767ZI is also good, but has little added value compared
to the STM32 Nucleo-H743ZI. The Raspberry Pi Pico 2 has no double-precision FPU, which
decreases its quality in the comparison, but does on the other hand have a powerful dual-core
processor allowing for multitasking designs.

Table 3.6: micro-ROS compatible microcontroller qualitative comparison

Weight STM32-F767ZI STM32-H743ZI RPi Pico RPi Pico 2 Teensy 4.0/4.1 Portenta H7
Clock speed 3 -/+ + -/+ -/+ + +
Double-precision FPU 3 + + - - + +
Dual core 3 - - + + + +
RTOS support 3 ++ ++ ++ ++ -/+ -/+
Programming language 3 + + + + -/+ -/+
Approximate price 2 + + ++ ++ - - -
Debugging 2 ++ ++ + + - - -/+
Flash memory 1 - - - -/+ + ++
(S)RAM 1 -/+ + - -/+ - ++
Extensive development
community

1 + + ++ ++ - -/+

Total: 15 19 15 17 2 9

Robotics and Mechatronics Daniël Huiskes

18 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

4 Design

4.1 Introduction

This chapter presents the design and design considerations of the Embedded-Project Gener-
ator (EPG). The EPG is a software tool for the transition from 20-sim model-generated code to
a deployable EPG-generated project.
The diagram of the design context in Figure 4.1 provides insight into the outcomes of this
chapter. From an EPG user perspective, this can be summarised as follows:

• In the 20-sim C-Code generator the user selects the Embedded-Project Generator. By doing
so, 20-sim generates C-Code from the control component of the 20-sim model and starts the
EPG.

• The EPG takes the 20-sim generated C-Code as input and follows the EPG steps:
1. Select target: The user selects a target configuration, which defines the microcontroller

and its I/O target ports.
2. Connect ports: The user connects 20-sim model ports with target ports.
3. Code generation: The user starts EPG code generation resulting in an EPG-generated

project.
• After EPG code generation, the user compiles the EPG-generated project and flashes the res-

ulting binary directly on a microcontroller target.
• The microcontroller target is ready to be used with command & monitoring from a single-

board computer running ROS 2 to control the robot.

Embedded-Project Generator

Code generationConnect ports

Target ports
Target configuration

Select target

Robot model

20-sim model

Control

20-sim model-
generated C-Code

Model ports

Robot

microcontroller targetSingle-board computer

Commands &
monitoring

micro-ROSROS 2

Functionality

EPG-generated project Code compilation flash

Model ports Target
ports

Control Target
ports

Figure 4.1: Embedded-Project Generator design context

The chapter begins by addressing the first thesis goal: Design a method to automate the trans-
lation from a robot-controller model to code that uses the ROS 2 ecosystem and supports real-
time control. To provide insight into the expected output of the EPG, the structure of an EPG-
generated project is explained. In addition to the code generated by 20-sim, the EPG needs
to know how to connect the 20-sim model ports to the corresponding microcontroller target
ports. The information about the target ports is described in the target configuration file. The
microcontroller embedded I/O target ports are connected with the robot and the network I/O
target ports are, via micro-ROS, connected with a single-board computer.
With all necessary information now available, the EPG steps are discussed, outlining the pro-
cess from EPG input to output, including selecting a target configuration, connecting model
ports with target ports, and generating the code.
With the first goal elaborated, the second thesis goal is addressed: Design and implement
a software tool based on the automation method. The implementation of the automation
method in the software tool involves determining the appropriate programming language, de-
fining how the EPG steps are executed, structuring an EPG software tool package, and specify-
ing how different parts of the automation method will be realised.
Subsequently, the EPG implementation of targets selected in Analysis Chapter 3 is discussed.
The EPG software tool is already addressed, but needs target configurations to demonstrate
that it functions as expected. This discussion highlights how the targets can be configured to

Daniël Huiskes University of Twente

CHAPTER 4. DESIGN 19

align with the system requirements for real-time processing, micro-ROS communication with
a single-board computer, and hardware I/O for robot control.
The chapter concludes with a verification of the functional and non-functional requirements.
In this chapter topics are used to present design considerations or motivations. For each design
consideration topic, the pros and cons are evaluated alongside a decision and realisation.
When a decision is made, the pros and cons guide the choice, and the realisation describes
its implementation. Similarly, for each design motivation topic, a motivation explains why a
particular approach is used, and the realisation outlines how it is implemented.

4.2 Automation method

The automation method for translating a robot-controller model to code using the EPG is struc-
tured by starting with the final output: the EPG-generated project. To ensure compatibility with
20-sim control software, an RTOS, and micro-ROS, first the design of the EPG-generated pro-
ject is established. Subsequently, the necessary steps to achieve this output are outlined. The
target configuration has to be constructed and saved, leading to the decision whether this con-
figuration is selected within 20-sim or the EPG. Finally, the EPG steps, a sequence for target
selection, port connection and project generation are defined.

4.2.1 EPG-generated project

Design motivation topic: Design the structure of the EPG-generated project so that 20-sim
control software operates together with an RTOS and micro-ROS to achieve the desired func-
tionality of the target.
Motivation: Since support for software components is required, the EPG-generated project is
organised as a component that implements all target functionality and I/O interfaces. This im-
plies implementing control software with an RTOS in the component functionality and using
micro-ROS network I/O and embedded I/O interfaces to interact with the component func-
tionality. There are no other alternatives that meet this requirement.
Realisation: The EPG-generated project deployed on a microcontroller, enables the micro-
controller to function as a component that can interact with a single-board computer and a
robot using component I/O. This component integrates all functionality to work stand-alone
and uses both networking and embedded interfaces to handle component I/O, simplifying sys-
tem assembly and maintenance.
After the EPG-generated project is compiled, the resulting binary is directly flashed on a micro-
controller as shown in Figure 4.2. The microcontroller uses embedded I/O for hardware-level
interaction with a robot, while network I/O using micro-ROS integrates the component into
the ROS 2 ecosystem for command and monitoring.
Real-time management of the 20-sim control software is realised by implementing support for
micro-ROS compatible open-source RTOSes FreeRTOS, Zephyr, and bare-metal implementa-
tions.
The microcontroller is now a component that integrates functionality, including real-time
management, micro-ROS for resource constrained communication, and 20-sim control soft-
ware for controlling the robot. Seen from ROS 2 the component is a node with all system com-
plexities abstracted away, leaving only the node’s subscriber and publisher topics for steering
and monitoring the robot.

Robotics and Mechatronics Daniël Huiskes

20 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Robot

MicrocontrollerSingle-board
computer

Commands
&

monitoring

micro-ROS
Control

RTOS/bare-metal
ROS 2 Embedded

I/O

Functionality

Component

Network
I/O

EPG-generated project Code compilation flash

Figure 4.2: EPG project deployment
4.2.2 Target configuration

The target configuration is the process of defining and storing the setup of a target, which de-
scribes how the 20-sim control software on the microcontroller communicates via embedded
I/O ports with the robot and network I/O ports with a single-board computer.
Before configuring the EPG target, it is essential to determine whether the EPG target is selected
within 20-sim or in the EPG itself.

Design consideration topic: Determine how the target configuration is constructed and stored.
Options:

• Create a user interface to handle the entire configuration and store user choices.
Pros: The user does not have to prepare the configuration in advance but is assisted by the
GUI.
Cons: Requires user expertise of the configurable parameters of the target. Also, it is difficult
to account for all possible configuration choices during the development of the GUI, which
may require the GUI to be expanded and redesigned at a later stage for a new target.

• Use a device-tree approach where all configuration takes place in a target configuration file.
Pros: Predefined configurations can be created for targets requiring less user expertise. A
predefined configuration structure makes it easier to add new targets, because it can be flex-
ibly extended.
Cons: A device tree requires manual adjustments when adding or updating a target.

Decision: Users with minimal knowledge should be able to use the tool, which is why a device-
tree approach is chosen. Pre-configured target configuration files can be used without any
knowledge of mechatronics.
Realisation: A target is defined by a target configuration file (.tcf), which is structured like a
device tree (see Section 2.5). Each .tcf file describes, for a specific microcontroller, the embed-
ded I/O ports used to interact with a particular robot and the network I/O ports for communic-
ation with a single-board computer.
Figure 4.3 shows an example, where two components are used to pass a setpoint from a ROS
2 topic to the motor of a robot. The yellow/blue squares in the figure represent input/output
ports. A micro-ROS subscriber target component, subscribed to a ROS 2 topic, receives set-
points. The setpoints are provided via the output port of this component to the input port of
the model-based control software. Via the output port an updated PWM value is set to an input
port of a PWM target component, resulting in signals controlling the motor of the robot.
In this way, target functionality can be composed by combining multiple target components.
Each target component instance can be distinguished using customisation settings in the .tcf
file. In the .tcf file, each component instance is defined by its name, port name, EPG-module,
and EPG-module parameters. The EPG-module is a code template file with tokens that serve as
placeholders. During code generation, the placeholders are replaced with component-specific
information, such as names and settings derived from EPG-module parameters in the .tcf file.
This process produces component-specific code defining the component’s functionality.

Daniël Huiskes University of Twente

CHAPTER 4. DESIGN 21

micro-ROS subscriber PWMControlROS 2 topic Motor

 Target configuration filemicro-ROS subscriber
target component

 PWM
 target component

Microcontroller

Figure 4.3: Example target component functionality

Design consideration topic: Determine where the EPG-target configuration is selected: in 20-
sim or in the EPG.
Options:

• Select the EPG-target configuration in the 20-sim C-Code generation menu.
Pros: There is no need to make 2 choices, because choosing the EPG is combined with se-
lecting the EPG-target configuration.
Cons: By choosing the EPG-target configuration in 20-sim, the clear separation between
modelling and target-specific implementation is broken.

• In 20-sim, the EPG is selected, and after code generation, the EPG starts automatically, allow-
ing the EPG-target configuration to be selected.
Pros: Maintains a clear separation of concerns. 20-sim focuses on modelling, while the EPG
handles target-specific functionality. This aligns with 20-sim’s existing approach, where gen-
eral, non-target-specific C-Code is generated and imported into 20-sim 4C for target-specific
execution.
Cons: In 20-sim, the EPG is selected, followed by selecting the target in EPG, making it a
two-step process.

Decision: It is chosen to select the EPG in 20-sim and the EPG-target configuration in the EPG.
This maintains a clear separation of concerns between the tasks. 20-sim remains focused on
modelling and simulation, and the EPG is responsible for generating the functionality required
for a target.

4.2.3 EPG steps

The EPG takes 20-sim model-generated code and a .tcf file as input. The output is an EPG-
generated project, which after compilation is deployed on a microcontroller. The microcon-
troller interacts with the robot through embedded I/O ports and communicates with a single-
board computer via network I/O ports.
To achieve the desired output from the given input, the following EPG steps must be executed:

• Select target - Identify the target by selecting the appropriate .tcf file: Define the target
system, including the microcontroller, RTOS, and available I/O ports.

• Connect ports - Connect the 20-sim model ports with the target ports: Establish con-
nections between the 20-sim model ports and the microcontroller’s embedded and net-
work I/O ports.

• Code generation - Combine all information and generate an EPG project: Integrate the
control code, port connections, and target configuration into a complete project ready
for deployment.

Design motivation topic: Ensure an efficient sequence of EPG steps for select target, connect
ports, and code generation.
Motivation: The order of the EPG steps has been chosen to ensure a logical and efficient se-
quence for configuring and generating the EPG project. Figure 4.4 shows a schematic of the
sequence of steps, which is motivated as follows:

Robotics and Mechatronics Daniël Huiskes

22 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

1. Select target: This step is performed first because the .tcf file defines the specific mi-
crocontroller configuration for a given robot. Without this, it is not possible to proceed
with connecting ports or generating a project, as the microcontroller’s functionality and
hardware interactions depend on the target definition.

2. Connect ports: After the target is identified, the next logical step is to connect the 20-sim
model ports to the microcontroller’s I/O ports. This connecting ensures that the control
software can interact with the robot through embedded I/O ports and communicate with
the single-board computer via network I/O ports. This step depends on the information
in the .tcf file, as it defines the available ports and their functionalities.

3. Code generation: Once the target is identified and the ports are connected, the final step
is to combine the port connection information, control code, and the target configura-
tion to generate the EPG project. This ensures that the generated project is complete and
ready for deployment on the specific target system.

Connect ports Generated projectSelect target Code generation

Figure 4.4: EPG steps

4.3 Software tool implementation

The implementation of the EPG software tool is based on the automation method. To realise
the translation from a robot-controller model to deployable code, first a programming lan-
guage is selected for developing the EPG. Subsequently, the implementation of the EPG steps,
which include target selection, port connection, and code generation, is outlined. Then, the
structure of the EPG package is addressed, which is designed to reflect the EPG steps while
maintaining modularity and clarity. Finally, the code generator used in the EPG’s code genera-
tion step is discussed. It generates a project that, after compilation, can be directly flashed on
a microcontroller.

4.3.1 EPG programming language

Design consideration topic: Determine the programming language for developing the EPG.
Options:

• A C/C++ program implementing the code generation method.
Pros: The C language is used in both 20-sim generated code and the microcontroller project
code. Developers only need knowledge of C/C++.
Cons: Developing a software tool in C/C++ has a high development time. It is difficult to
manage cross-platform compatibility.

• A Python package implementing the code generation method.
Pros: Python is a cross-platform programming language that enables structured develop-
ment of the EPG. Python standard libraries allow building the EPG without external depend-
encies. Python is easy to use, allowing for rapid development.
Cons: By using Python an additional programming language is used.

Decision: Python is used to develop the EPG. Although it involves the use of an additional pro-
gramming language, the benefits of cross-platform support, flexible standard Python libraries,
and rapid development outweigh this drawback. By structuring the EPG as a Python package,
it can be conveniently installed with one command and requires minimal user actions to get
everything up and running.

Daniël Huiskes University of Twente

CHAPTER 4. DESIGN 23

4.3.2 EPG steps

Design consideration topic: Determine how to select the target and connect the 20-sim model
ports to the target ports.
Options:

• Text file with target selection and port connections.
Pros: Low development overhead.
Cons: Error-prone and not user-friendly.

• Command-line tool.
Pros: Low development overhead.
Cons: Error-prone and not user-friendly.

• GUI.
Pros: User friendly and intuitive.
Cons: Requires more development effort.

Decision: A GUI is used to select a target and connect the ports, because it is user friendly.
Realisation: The EPG steps result in a generated project for a target. An overview of the EPG
steps is shown in Figure 4.5:

model-based
mechatronic

control software

model ports Target configuration file
.tcf

target
portsConnect ports GUI

Target

code generator

Generated project

Select target GUI

EPG-modules
Code generation

EPG steps

Figure 4.5: EPG steps overview

The following sequence of actions is executed in the EPG steps:

1. Select target GUI: The EPG steps start with a select target step using EPG GUI, a graphical
user interface designed to facilitate the project generation process. The GUI displays all
available .tcf files, allowing the user to select the desired configuration. This is shown in
Figure 4.6.

Figure 4.6: Target selection EPG GUI

Robotics and Mechatronics Daniël Huiskes

24 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

2. Connect ports GUI:
After target selection, the EPG GUI shows all model ports, obtained from the metadata of
the model-based mechatronic control software, along with all target ports defined in the
.tcf file for each target component, in order to connect the ports together. This is shown
in Figure 4.7, where Figure 4.7a shows the empty GUI with a dropdown menu for selecting
target ports, and Figure 4.7b shows the GUI with all ports connected.

(a) Select target port from dropdown menu (b) All model ports connected with target ports

Figure 4.7: Connect model ports with target ports by selecting target ports from EPG GUI dropdown
menu

3. Code generation: In the final EPG step, the port connection information, control code, and
the target configuration are provided to the EPG code generator (discussed in Section 4.3.4).
This step combines all the information to generate a complete project, which is ready for
compilation.

4.3.3 EPG software package

Design motivation topic: Develop an EPG package structure.
Motivation: The EPG package structure is designed to closely follow the previously discussed
EPG steps to ensure organised and maintainable code. To achieve this, the EPG steps are
implemented in separate Python files. The main.py file coordinates the EPG steps by us-
ing connect_gui.py to handle the GUI for the select target and connect ports steps, and
code_generation.py to manage the final code generation step. Communication between the
separate Python files takes place using config.py, which functions as a centralised database to
store and retrieve data.

Daniël Huiskes University of Twente

CHAPTER 4. DESIGN 25

All EPG targets, which are stored in the Target folder, follow the target description from Sec-
tion 4.2.3. Each target includes a .tcf file, Python EPG-modules, and a pre-configured base pro-
ject. Generated code is integrated into the base project, resulting in the EPG-generated project.
To enable 20-sim to create code for use by the EPG, the EPG must be registered as a target in the
20-sim C-Code Generation Target List. This is done by providing a file called Targets.ini. It con-
figures the 20-sim C-Code Generation process and specifies the main.py file, which is triggered
after 20-sim generates the C-Code. It is important to note that the Targets.ini file is not related
to the EPG targets themselves, but rather serves as a configuration file for integrating the EPG
with 20-sim.
Realisation: The structure of the EPG Python package is shown in Figure 4.8. The following
elements are part of the package:

• main.py: is the starting point of the Python package, which coordinates the EPG. The
file contains 20-sim tokens, which are replaced by the 20-sim C-Code generation process
with 20-sim metadata of the model name, all model inputs/outputs, and the destination
folder for the generated code.

• connect_gui.py: The connect_gui.py is started by main.py to manage the EPG GUI as ex-
plained in Section 4.2.3 to connect the model with the target. It uses a Connection Python
class, whose objects are used by connect_gui.py to create and connect the model/target
ports in the GUI and store the user selections in config.py.

• code_generation.py: After connect_gui.py, main.py starts code_generation.py to com-
bine the GUI user selections with the target information to create a generated project. A
detailed explanation of this process can be found in Section 4.3.4.

• config.py: The config.py is used by the EPG as a centralised database. It is used by all
other Python files to store and retrieve EPG GUI choices, model information, and the
selected .tcf file.

• Target: All EPG targets are stored in the Target folder. The targets use the target concept
as explained in Section 4.2.2. Each target has a .tcf file, Python EPG-modules for the func-
tionality of the target components, and a base project which is a pre-configured target
project to which the generated code is added.

• Targets.ini: A Targets.ini file is implemented in the EPG directory, enabling that the EPG
can be added as a target in the 20-sim C-Code Generation Target List and is automat-
ically started by the 20-sim C-Code Generation process when the EPG target is selected
from the Target List. The Targets.ini file, specifies the 20-sim C-Code template files that
are used to generate 20-sim C-Code files before the EPG is started. Additionally, the Tar-
gets.ini file specifies that the EPG main.py Python file is called using a postCommand
after 20-sim generates the C-Code files, which starts the EPG. The generated 20-sim C-
Code files serve as input to the EPG.

main.py code_generation.py Generated project

Target

Python modulesTarget configuration file

Targets

Base project

connect_gui.py

EPG Python package

20-sim C-Code files

Targets.ini

connections_dictionary tcf_dictionary
config.py

20-sim metadata

Figure 4.8: EPG Python package

Robotics and Mechatronics Daniël Huiskes

26 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

4.3.4 Code generator

Design consideration topic: Determine how microcontroller code is generated based on the
target configuration file.
Options:

• Create a separate C-Code template with tokens for each target component. The tokens are
placeholders that are filled with component-specific information from the .tcf file during
code generation, resulting in C-Code snippets being placed in the appropriate sections of
the main.c file.
Pros: Each component has its own template, making it easy to implement modifications and
to add additional components. Templates with similar functionality can be re-used.
Cons: Since all templates are separated it can be difficult to keep an overview of the resulting
main.c file.

• Create one C-Code template with tokens for all target components that are filled with com-
ponent specific information from the .tcf during code generation. After filling the tokens, the
template functions as a main.c file.
Pros: The entire template is in one file making it easier to keep an overview of the resulting
main.c file.
Cons: When the template implements a lot of target components it becomes difficult to
maintain. Adding new target components to the template is difficult, since the right loca-
tion for the target component has to be manually determined.

Decision: A separate C-Code template with tokens for each target component is used. This
provides a flexible approach allowing for easy modifications and a separation of concerns
between different target components.
Realisation: The code_generation.py script manages the code generator, which follows a series
of steps with the goal of creating a main.c file with all the target functionality. The code gener-
ator follows the following steps:

• First, a list is created of all target components in the .tcf file of the chosen target. Each
Python EPG module specified in a target component contains multiple functions with
C-Code that together represent the functionality of the target component. The functions
return a structured string with this code. The code resulting from all target components
is combined in a main.c file.

• Code is generated taking into account the structure of a main.c file. The main.c file
structure includes libraries and headers, global declarations, function prototypes, a main
function for initialization, and looping. Therefore, a code generation order has been cre-
ated. The code generation order defines function names that can be used by the Python
EPG modules. The function name determines the location in the main.c file where the
generated code will be placed.
The code is generated based on the pseudocode shown in Algorithm 1. This process is
illustrated in Figure 4.9 showing both the pseudocode and the information used in each
step of the pseudocode. The illustration uses the same example situation as discussed in
Section 4.2.2.
The algorithm shows two nested loops. The outer loop iterates over the function names
defined in code generation order. For each function name the inner loop iterates over
all target components defined in the .tcf file and checks if the Python module belong-
ing to the target component has the specific function. If the module has the function,
it is executed and the returned string containing C-Code is placed at the corresponding
location in the main.c file, otherwise the function is skipped.

• The base project is first copied to the target directory. A base project is a pre-
configured project that serves as the foundation for the generated project. It contains
a CMakeLists.txt file for compilation and when needed additional files required for the

Daniël Huiskes University of Twente

CHAPTER 4. DESIGN 27

execution of a specific target. Each target has a setup Python module to finalize the con-
figuration of the generated project. This setup Python module adds the generated main.c
file, along with all additional required files, to the base project, creating the final project.

Algorithm 1 Code generator

for function in code_generation_order do
for target_component in target_configuration_file do

if function in target_component.python_module then
code_string← run(function)
main_c.write(code_string)

end if
end for

end for

Python modules

.tcf file

Target component

Python module:
micro_ros_subscriber.py

Target component

Python module:
pwm.py

micro_ros_subscriber.py

create_callback_functions

create_variable_initalization

pwm.py

create_device_initalization

create_variables

create_includes

create_variables

create_callback_functions

create_devices

create_timer_callback_input

create_timer_callback_output

create_device_initialization

create_variable_initialization

create_mros_initialization

Code generation order

Loop over all functions in code generation order list
for function in code_generation_order:

 # Loop over all target component in .tcf
for target_component in tcf file:

 # Run function when in component Python module
 if function in target_component.python_module:

 run function()

create_timer_callback_output

create_mros_initialization

code_generation.py

Figure 4.9: Code generation

4.4 EPG-target configurations

Target configurations have been created for the Raspberry Pi Pico, Raspberry Pi Pico 2, and
STM32 Nucleo H743ZI as shown in Table 4.1. The Raspberry Pi Pico is compatible with bare-
metal, FreeRTOS, and Zephyr. The Raspberry Pi Pico 2 is compatible with bare-metal and
FreeRTOS. However, it is a new platform and has not yet been implemented in Zephyr, so it is
currently not supported. The STM32 Nucleo H743ZI lacks a bare-metal implementation com-
patible with micro-ROS. While it should be FreeRTOS compatible, the existing implementation
appears to be non-functional. The issue has been reported to micro-ROS, which is discussed
in more detail in Appendix C. This Appendix discusses all active engagement with open-source
developers that took place during this thesis. The Zephyr implementation is fully functional
and consequently used.

Robotics and Mechatronics Daniël Huiskes

28 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Table 4.1: Target configurations

Raspberry Pi Pico Raspberry Pi Pico 2 STM32 Nucleo H743ZI
Bare-metal Implemented & tested Implemented & tested not available
FreeRTOS Implemented & tested Implemented & tested not working

Zephyr Implemented & tested not (yet) available Implemented & tested

4.4.1 Bare-metal

The bare-metal implementation is used by the Raspberry Pi Pico and the Raspberry Pi Pico 2.
A diagram of this mapping is shown in Figure 4.10.

1BA1E2
ControlMicro-ROS

Shared
memory

Processor core 1Processor core 0

User
Interface

ROS2

Raspberry Pi

PWM

PIO
Encoder

Actuators

Robot

Encoder

Plant

Process

Microcontroller
Raspberry Pi Pico

Embedded Control System Layers micro-ROS

micro-ROS timer repeating rpi pico timerSetpoint commands

Monitoring

XR
C

E-
D

D
S

Figure 4.10: Bare-metal target mapping

Dual-core processing

Both microcontrollers have two cores that can be used to perform processing. The Raspberry
Pi Pico Software Development Kit (SDK) has an option to run a task on a specific core.

Design consideration topic: Efficiently use both cores for processing.
Options:

• Create a producer-consumer separation, where one core produces data by retrieving sensor
data and micro-ROS subscriber information and use another core for processing the data by
running the control loop and driving outputs.
Pros: There is a clear distinction between a core producing data and handling all system
inputs and a core consuming the produced data resulting in system outputs.
Cons: Retrieving and processing sensor input data happens on separate cores resulting in
delays. This design does not consider the real-time constraints of different tasks.

• Separate the soft real-time and firm-real time tasks on two different cores. One core takes
care of the soft real-time communication, and the other core handles the firm real-time con-
trol loop.
Pros: Real-time constraints are considered. The soft real-time core manages all external
communication mitigating the impact of communication delays. The firm real-time core
only runs time critical code to guarantee the timing constraints are met.
Cons: Because on one core only the firm real-time task is executed, this core may be under-
utilized.

Decision: The approach with soft real-time and firm-real time tasks running on two different
cores is used. This approach is chosen since firm-real time performance is essential for the
correct functioning of the target. Having a strict separation of input/output data is less of a
concern.
Realisation: The core running the soft real-time communication is responsible for receiving
information from ROS 2 subscribers and publishing information for monitoring using micro-
ROS publishers. Publishing data happens using a micro-ROS timer that publishes data at a

Daniël Huiskes University of Twente

CHAPTER 4. DESIGN 29

fixed rate.
Micro-ROS is not thread-safe by default and can therefore only run on one core, otherwise
memory may become corrupted. Since micro-ROS is needed for communication, it is used on
the soft real-time core.
The firm real-time core uses the Pico SDK repeated timer, which is an interface to use the hard-
ware interrupt timer on the Pico. The repeated timer is configured such that the specified timer
interval determines the time between the starts of the timer callback function.

Inter-task communication

Design consideration topic: The target needs inter-task communication for communication
between the soft real-time and firm real-time tasks running on two different microcontroller
cores.
Options:

• Atomic operations guarantee that setting/getting data happens safely by taking care of this
in low level instructions.
Pros: Atomic operations are efficient for handling memory protection.
Cons: The data communicated in shared memory uses double precision for setpoint and
position data. Atomic operations are however not available on the Pico for double precision.
Therefore, this option is not viable.

• The Pico has FIFOs that can be used for communication between cores.
Pros: Simple ordered inter-task communication method.
Cons: The FIFOs available on the Pico can only use single-precision numbers. Because of
that, the double-precision data cannot directly be communicated using FIFOs. Therefore,
this option is not viable.

• Semaphore mechanisms can be used to protect access to a single shared memory resource.
Mutex is the most suitable semaphore due to its inherent ownership model, ensuring that
only the task that locks the mutex can unlock it. This prevents accidental resource release by
other tasks.
Pros: Mutexes can handle the protection of double-precision data.
Cons: Mutexes are less efficient to alternatives such as atomic operations and FIFOs.

Decision: Considering all options, only using shared memory protected by mutexes seems to
be a viable option for inter-task communication. It might be possible to use atomic operations
or FIFOs, but this would introduce additional complexity and overhead in code by having to
perform transformations for the double-precision data to realise compatibility. Using mutexes
does not require any custom implementations, which is preferred.

Design motivation topic: Synchronise access to shared memory between tasks with different
timing constraints.
Motivation: The shared memory is implemented as a single-slot buffer to ensure that only the
most recent data is shared between both tasks. When new data becomes available the buffer is
overwritten. The buffer is protected by mutexes.
The firm real-time loop is completely non-blocking to ensure firm real-time loop performance.
It attempts to lock the buffer once per loop iteration, and if unsuccessful retries the next loop
iteration.
The soft real-time task accesses the data at a lower rate compared to the firm real-time task.
Because of the timing differences, it is likely that the data is already blocked when the soft real-
time task tries to access it. To handle this, the mutex tries to access the memory for a maximum
time of 10 ms, before continuing other operations.
Since the firm real-time control loop, locking and releasing the same data, runs with 1 ms inter-
vals, the release of memory is guaranteed to happen within that time frame. The 10 ms timeout
serves as a safety margin for unexpected delays.

Robotics and Mechatronics Daniël Huiskes

30 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Hardware I/O

The Raspberry Pi Pico microcontrollers have hardware timers that can be used for generating
PWM signals to control the speed of a motor via a H-bridge. The advantage of using hardware
timers is that they operate independently from the processor, allowing the signal to switch at
the right moment without consuming processing time.
The microcontrollers do however not have hardware timers that can be used to keep the count
of quadrature encoders. Quadrature encoders are used to determine the position of robot com-
ponents.
Design consideration topic: Implement quadrature encoder counting.
Options:

• The quadrature encoder count can be tracked in software, by using hardware interrupts that
adjust a counter variable upon changing signals.
Pros: Simple approach for keeping track of quadrature encoder signals.
Cons: Using hardware interrupts would lead to disturbances on the processor. Especially for
the firm real-time task it is desired to run with minimal disturbances.

• The Raspberry Pi Pico has PIO (programmable Input/Output) units. The PIO units can be
programmed with state machines that function as small processors with a limited instruction
set. The state machines run in parallel with the main processor, executing instructions at the
same speed, without disturbing its operations.
Pros: The PIO units can be programmed to read quadrature encoders and update the en-
coder count in a register without disturbing the processor. When needed the current encoder
value can be read from that register. The PIO’s run at the same clock speed as the main pro-
cessor ensuring high performance tracking of high frequency quadrature encoder signals.
Cons: Requires using the PIO assembly instruction set.

Decision: The PIO units are used to track quadrature encoder signals. This allows to offload
this task from the processor, enabling parallel processing. The control loop can directly read
the current encoder count from the PIO register.

Realisation: The control loop directly interacts with the hardware I/O to steer the system to
certain positions. By using hardware solutions for all hardware I/O, the control loop can run
without any disturbances caused by managing hardware I/O. The control loop is only respons-
ible for setting PWM values and reading encoder counts from PIO registers, while the hardware
handles all functionality.

Deployment and debugging

Design motivation topic: Enable easy deployment and debugging for EPG-generated projects.
Motivation: EPG-generated projects should be easy to deploy. Therefore, each base project, the
pre-configured project that serves as the foundation for the generated project, for the Pico and
Pico 2 has a CMakelists.txt file that fully configures the project. The CMakelists.txt file fetches
all external dependencies, such as micro-ROS libraries, and contains compilation instructions
for the project. The CMakelists.txt is configured such that EPG-generated projects are directly
compatible with the Raspberry Pi Pico Visual Studio Code extension with the functionality to
compile, deploy, and debug EPG-generated projects.

4.4.2 FreeRTOS

A FreeRTOS implementation has been created for the Raspberry Pi Pico and the Raspberry Pi
Pico 2 using FreeRTOS-Kernel V11.1.0. The implementation is similar to the bare-metal imple-
mentation in terms of inter-task communication, hardware I/O, and deployment and debug-
ging. The dual-core processing is however different. A diagram of this mapping is shown in
Figure 4.11.

Daniël Huiskes University of Twente

CHAPTER 4. DESIGN 31

Dual-core processing

With FreeRTOS it is also possible to use both cores of the microcontroller. The difference is
however that the FreeRTOS scheduler determines on which core a task is going to run. This is
implemented using the Symmetric Multiprocessing (SMP) implementation in FreeRTOS that
schedules tasks over multiple identical processor cores that share the same memory.
The setup is similar as in the bare-metal case where one task is used for soft real-time micro-
ROS communication, and another task is used for firm real-time control loop.
In contrast to the bare-metal case it is possible to create more than 2 tasks. FreeRTOS uses pree-
mption, where tasks with a higher priority can interrupt lower priority tasks and use Round-
robin for equal priority tasks. Since only two tasks are created and two cores are available for
processing this will not be a problem.
The firm real-time control loop is managed by a FreeRTOS timer. The Timer Task is set to run
with maximum priority, ensuring it always gets precedence over other tasks.

ControlMicro-ROS

Shared
memory

Processor core 1Processor core 0

User
Interface

Setpoint commands

Monitoring

ROS2

Raspberry Pi

XR
C

E-
D

D
S

PWM

PIO
Encoder

Actuators

Robot

Encoder

Plant

Process

Microcontroller
Raspberry Pi Pico

Embedded Control System Layers micro-ROS

FreeRTOS task FreeRTOS timer

micro-ROS timer

Figure 4.11: FreeRTOS target mapping

4.4.3 Zephyr

The Zephyr implementation is used by the Raspberry Pi Pico and the Nucleo H743ZI. A diagram
of this mapping is shown in Figure 4.12.

U
se

r I
nt

er
fa

ce

Setpoint
commands

Monitoring

ROS2 Actuators

Robot
Encoder

PlantRaspberry Pi
Non real-time Soft real-time

Microcontroller
Firm real-time

PWM

Encoder

micro-ROS

Embedded Control System Layers micro-ROS

XR
C

E-
D

D
S

Control

RTOS/bare-metal

I/O hardware

Figure 4.12: Embedded Control System Layers micro-ROS (repetition Figure 3.2)

Single-core processing

Unlike the bare-metal and FreeRTOS implementations Zephyr does not support SMP for the
targets. Therefore, the Pico and Nucleo use a single core to perform both the soft real-time
micro-ROS communication and the firm real-time control loop, leaving the other core idle.
Design consideration topic: Process all tasks using the single core.
Options:

• In the Zephyr implementation all execution can take place in one task. Because of that, the
micro-ROS timer can be used to perform the firm real-time control loop management. An-
other micro-ROS timer can be used for publishing monitoring data.
Pros: All processing can take place in one Zephyr task.

Robotics and Mechatronics Daniël Huiskes

32 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Cons: Using micro-ROS timers can have higher latency compared to alternatives such as a
Zephyr timer.

• Use two Zephyr tasks, where the firm real time task makes use of a Zephyr timer.
Pros: More control of the timing and priorities of the tasks.
Cons: Potentially increases overhead caused by context switches between the tasks. Using
multiple tasks would introduce additional complexity, as both tasks need sufficient execution
time on a single-core system without starving the other task.

Decision: The micro-ROS timers are used, because all processing takes place in a single task
limiting complexity and task switching overhead.

Hardware I/O

In Zephyr, hardware I/O functionality is defined in device drivers, and has to be registered in
the Zephyr device tree. This makes it possible to use device drivers modular and add devices
for the functionality of the target.
Both the Raspberry Pi Pico and the Nucleo H743ZI have hardware timers to create PWM sig-
nals and have Zephyr device drivers supporting this functionality. This is however not the case
for reading quadrature encoder signals. As previously mentioned, the Raspberry Pi Pico does
not have hardware timers that can read quadrature encoders and needs a PIO implementation
for this functionality. The Nucleo H743ZI does have hardware timers capable of reading quad-
rature encoder signals and a Zephyr device driver for this purpose, but there is an error in the
driver code making it non-functional.
Design consideration topic: Implementing quadrature encoder functionality in Zephyr.
Options:

• Develop a Zephyr quadrature encoder device driver supporting both the Raspberry Pi Pico
and the Nucleo H743ZI. On the Raspberry Pi Pico, the device driver employs PIO logic to
read quadrature encoders, while on the Nucleo H743ZI, it includes functionality needed to
configure the hardware timers to read quadrature encoder signals.
Pros: Zephyr typically uses drivers for adding functionalities to a device. All other function-
alities are registered in device drivers. Creating a device driver for the quadrature encoder
makes it possible to keep this consistency and integrate it with Zephyr interfaces. Using
device drivers enables easy reusability of code.
Cons: Creating a device driver is time consuming and requires expertise in how Zephyr
device drivers work.

• Directly implement quadrature encoder code in the main code.
Pros: Simple solution that is easy to deploy.
Cons: A direct implementation would not be consistent with the way other device function-
alities are handled in Zephyr.

Decision: It was chosen to create a Zephyr device driver for implementing the functionality of
the quadrature encoder. Although this takes more development effort the result is a solution
that fits well within the Zephyr ecosystem.

Deployment and debugging

Design motivation topic: Enable easy deployment and debugging for EPG-generated projects.
Motivation: EPG-generated projects should be easy to deploy. For Zephyr the base project is
configured according to the Zephyr project layout. A west.yml is configured to directly import
EPG-generated projects in the Zephyr development environment that can be used to compile,
deploy, and debug EPG-generated projects using Zephyr.

Daniël Huiskes University of Twente

CHAPTER 4. DESIGN 33

4.5 Verification of the requirements

This section verifies the functional and non-functional requirements outlined in Chapter 3.
These requirements are summarised as:

• Functional Requirements: Use ROS 2, use a Raspberry Pi 4B, direct implementation of
20-sim model-generated code on mechatronic systems, firm real-time capabilities, com-
patibility with different mechatronic systems, networking support robotic components,
double-precision floating-point calculations.

• Non-Functional Requirements: Minimal user input, good maintainability, support for
software components, and use of common programming languages.

The verification of functional requirements is discussed in Section 4.5.1 and the verification of
non-functional requirements is discussed in Section 4.5.2.

4.5.1 Functional requirements

1. The EPG-generated project must use the ROS 2 ecosystem. The EPG implements mi-
crocontroller targets with micro-ROS Jazzy support for communication with ROS 2 Jazzy
on Ubuntu server 24.04 running on both the Raspberry Pi 4B and Raspberry Pi 5. This
implementation is verified by the ping-pong performance test in Section 5.2.2.

2. The EPG-generated project must support a robotic setup that uses a Raspberry Pi
single-board computer.
Verified. See item 1 - The EPG-generated project must use the ROS 2 ecosystem.

3. 20-sim model-generated code of embedded control software must be directly imple-
mentable on mechatronic systems.
A 20-sim model of JIWY is created and simulated for the JIWY performance test. The
JIWY_Control implementation of the 20-sim model is deployed on microcontroller tar-
gets using the EPG. The motion tracking test in Section 5.2.3 demonstrates consistency
between the simulation and real-world results, verifying the direct implementation of
20-sim generated code in a real-world application.

4. The EPG-generated project must have real-time capabilities.
EPG-target must fulfil the requirement for soft real-time micro-ROS communication with
a 33 ms time interval and firm real-time control loop execution with a 1 ms time interval.
Both are verified in tests using the JIWY robot in Section 5.2.3.

5. There should be compatibility with different mechatronic systems.
The design and implementation of the EPG ensures compatibility with different mechat-
ronic systems. The implemented EPG-target components enable flexible configuration
of PWM components to control motor drivers and quadrature encoders to read encoder
signals. Tests have been conducted with both the JIWY robot (Section 5.2; Section 5.3)
and the RELbot robot (Section 5.4) present in the RaM laboratory verifying compatibility
with different mechatronic systems.

6. Support for networking between robotic components should be implemented.
The networking capabilities of the microcontroller implementations are tested, demon-
strating reliable communication using micro-ROS. The microcontroller is implemented
as a node in ROS 2, verifying the ability of the EPG-target to participate in a robot net-
work. The tests confirmed effective command execution and monitoring in a multi-node
environment. Because the networking capabilities of ROS 2 make it possible to flexibly
add multiple microcontrollers and single-board computers and the EPG-target is integ-
rated and tested in ROS 2, support for networking between robotic components is imple-
mented. This is verified by the networking tests using four robots in Section 5.3.

7. There should be support for double-precision floating-point calculations.
The JIWY tests in Section 5.2.3 uses JIWY_Control software on all targets. This software
implements 20-sim model-generated C-Code that performs double-precision floating-

Robotics and Mechatronics Daniël Huiskes

34 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

point calculations. The correct functioning of this software is shown in the control loop
and motion profile tracking tests, verifying that double-precision floating-point calcula-
tions are supported.

4.5.2 Non-functional requirements

1. Minimal user input should be required.
The EPG automatically collects 20-sim metadata and displays it in the GUI. The user se-
lects the EPG-target and connects model ports with target ports, providing the necessary
data for project generation. The GUI is tested by generating the EPG-generated project
used for the JIWY tests in Section 5.2.3, which supports the verification of this require-
ment.

2. The EPG should have good maintainability.
According to the IEEE Software Engineering Glossary “Software maintainability is
defined as the ease with which a software system or a component can be modified,
to correct faults, improve performance or other attributes, or adapt to a changed envir-
onment.” (Chen et al., 2017).
To optimise maintainability, the following strategies are used in the implementation of
the EPG:

• Using a component-based implementation ensures easier modification of software
components and modularity for extending the tool.

• Using open-source software when possible, reducing individual maintenance effort
by benefiting from community support.

• Minimizing custom software implementations, which increase the complexity.
The Maintainability Index (MI) quantifies code maintainability based on complexity,
volume, and size, with higher scores indicating easier maintenance. Radon, a Python
tool for computing code metrics, is used to assess the MI score of the EPG Python pack-
age (Radon Developers, 2025). The result shows that the EPG package is "very high main-
tainable" with an average MI score of 94.

3. There should be support for the use of software components.
Support for software components is implemented in the EPG. The EPG-target uses EPG-
target components to configure the target configuration file. The use of the EPG-target
components is verified in the JIWY tests discussed in Section 5.2.3.
Furthermore, the EPG-generated project deployed on a microcontroller is implemented
such that it can be used as a ROS 2 node component within a ROS 2 system, which is also
verified in Section 5.2.3.

4. The EPG and EPG-generated project could use common programming languages.
The EPG implementation uses Python, while the EPG-generated projects use C, both
of which are common programming languages. The functioning of the EPG and EPG-
generated projects is verified in Section 5.2.3.

Daniël Huiskes University of Twente

CHAPTER 5. TESTING 35

5 Testing

5.1 Introduction

This chapter evaluates the performance and network stability of micro-ROS communication
and distributed control using tests with varying EPG-targets and multiple robots connected in
a network, to demonstrate the effectiveness of EPG-generated projects in real-world applica-
tions. While the EPG itself is not explicitly tested, its extensive use in generating EPG-projects
for numerous tests inherently serves as a validation of its functionality.
The chapter begins with performance testing in Section 5.2, which addresses the third thesis
goal: Test the performance of code, generated by the software tool, with a robot. The tests eval-
uate micro-ROS communication and real-time execution of control loops. Two test setups are
used to explore different hardware and RTOS configurations and their impact on system per-
formance. One is a ping-pong round-trip measurement to assess micro-ROS communication
without interference from other tasks, and the other is a robot test to analyse real-time control
and communication in a real-world application, as well as the ability to match the behaviour
of a simulated model.
Network testing in Section 5.3 addresses the fourth thesis goal: Test the performance and sta-
bility of a distributed network with multiple robots using code generated by the software tool.
The tests investigate the integration of multiple EPG-generated projects as ROS 2 nodes in a dis-
tributed network. Round-trip time measurements assess communication performance, while
motion profile tracking tests are used to evaluate the scalability and stability of distributed con-
trol. Additionally, the tests explore the feasibility of teleoperation with mirrored robots.
Test compatibility with a different mechatronic system in Section 5.4, discusses a test that fur-
ther evaluates the applicability of the EPG on a robot different from the one used in the previous
tests. This test has three objectives: First, it aims to demonstrate that the EPG can be applied to
a mechatronic system other than the one used in the other tests. Second, it shows the feasibility
of rapid prototyping by using the EPG to generate an EPG project for another robot within one
day. Third, by accomplishing this, the test implicitly demonstrates the ease of use of the EPG.
Together, these sections provide insight into the applicability of EPG-generated projects in net-
worked real-time robot systems. The objective of these tests is to demonstrate that the gener-
ated projects meet the requirements and can be effectively used for robot setups, rather than
pushing the limits of the test setup.

5.2 Performance testing

5.2.1 Introduction

In this section tests are discussed that provide insight into the performance of EPG-generated
projects deployed on multiple EPG-targets. Performance implies in this context the responsive-
ness of micro-ROS communication, the real-time execution of a control loop running concur-
rently on the same system as micro-ROS, and the ability of a robot, controlled by an EPG-target,
to match the behaviour of a simulated model.
Since it is unclear in advance which targets meet the requirement of a 1 ms firm real-time con-
trol loop and 33 ms soft real-time communication, a wide variety of performance tests are con-
ducted to gain insight into the strengths and weaknesses of the different targets.
The first test setup is a ping-pong test used to obtain micro-ROS communication perform-
ance metrics with no other tasks running on the system. In Section 2.3.2 the data transmission
between the micro-ROS agent and micro-ROS client is estimated to be 23 µs. However, this
estimate does not account for overheads, such as serialisation and deserialisation. To obtain
a realistic estimate, measurements are necessary to verify the actual communication perform-
ance of EPG-targets.

Robotics and Mechatronics Daniël Huiskes

36 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

The second test setup uses a robot for both micro-ROS communication and control loop per-
formance measurements. This provides insight into a realistic case and the applicability of
micro-ROS in real-time robot systems. Since the performance is also dependent on the used
hardware and RTOS, different hardware and software combinations are used for the tests. The
section concludes with a robot motion profile tracking test, where an EPG-generated project
is deployed on an EPG-target to follow a motion profile. This test aims to compare simulated
performance with real-world results, which evaluates the functionality of the EPG-generated
project.

5.2.2 Ping pong

Setup

The ping-pong measurement setup is a round-trip message passing application that is used to
determine the performance of the micro-ROS communication and to determine which EPG-
targets can perform soft real-time communication within the required 33 ms time interval with
no other tasks running on the system.
The performance variables of interest are:

• Round-trip time (RTT): The time a package takes to be transmitted round-trip through the
setup.

• Latency distribution: The distribution of latency across different stages of the round-trip.
• Jitter: The variability in round-trip times.

A diagram of the setup is shown in Figure 5.1. The figure shows a Raspberry Pi single-board
computer running ROS 2 Jazzy on Ubuntu server 24.04 LTS and a microcontroller running
micro-ROS Jazzy, which communicate via a serial USB 2.0 connection using micro-ROS XRCE-
DDS. The Raspberry Pi and the microcontroller have separate clocks and the microcontroller
has a limited amount of memory to log data. Therefore, a logic analyser is used that logs data
from the GPIO pins of both devices, enabling synchronised measurements. Each measurement
consists of 500·106 samples, taken at a rate of 1 MHz, which corresponds to a measurement dur-
ation of 8.33 min. The use of 500 ·106 samples enables the observation of long-term behaviour
in the logged data. Sampling at a frequency of 1 MHz provides sufficient accuracy to reliably
detect all signal changes. The sequence of actions and measurements is shown in Table 5.1.

Table 5.1: Ping pong measurement steps

GPIO # Platform Action GPIO toggle
1 Raspberry Pi Start of ping-pong measurement Before publish function is called.

2 Raspberry Pi
ROS2 publisher sends
message on /topic ping

Directly after publish
function completes.

3 Microcontroller
micro-ROS subscriber callback
receives message on /topic ping

Directly at the beginning of
the callback function.

4 Microcontroller
micro-ROS subscriber callback
publishes message on /topic pong

Directly after the publish
function is finished.

5 Raspberry Pi
ROS2 subscriber callback receives
message on /topic pong

Directly at the beginning
of the callback function.

Daniël Huiskes University of Twente

CHAPTER 5. TESTING 37

microcontroller

Subscriber /topic ping

Publisher /topic pong

bare-metal/RTOS
micro-ROS

subscriber_callback()

GPIO
3

publish()

GPIO
4

Raspberry Pi

ROS 2

Subscriber /topic pong

Ubuntu server

GPIO
2

GPIO
1start Publisher /topic pingpublish()

subscriber_callback() micro-ROS agent

GPIO
5

Figure 5.1: Ping pong setup

The transmitted message is a double-precision floating-point number, which is increased with
each iteration. Doubles are used because robot controllers often require double-precision set-
points, and monitoring data is usually represented in double precision as well.
The callback function at the Raspberry Pi checks if the received message content is equal to the
previously sent message content. If not, the logic analyser measurements at the different GPIO
toggle points will be out of sequence corrupting the measurements. Only when the check is
successful a new message is published starting a new round-trip.
Micro-ROS offers best effort and default quality of service settings for the subscribers and pub-
lishers. The quality of service (QoS) settings give a guarantee for the reliability of the com-
munication. The default setting has reliable delivery and provides checking mechanisms to
guarantee that messages are delivered. The best effort setting does not have a checking mech-
anism, and therefore if something goes wrong during transmission the message is lost. The
configurations shown in Table 5.2 are used during testing. Four QoS configurations are tested
to determine the impact on performance.

Table 5.2: Quality of service configurations

QoS config Subscriber Publisher
1 best effort best effort
2 best effort default (reliable delivery)
3 default (reliable delivery) best effort
4 default (reliable delivery) default (reliable delivery)

The ping-pong test is conducted for each target in Table 4.1. The micro-ROS agent and ROS
2 run on a Raspberry Pi 4B or Raspberry Pi 5 single-board computer. The Raspberry Pi 5 is
more powerful than the Raspberry Pi 4B. Since the micro-ROS agent and ROS 2 also affect the
round-trip time, both single-board computers are used to investigate their impact.

Result round-trip time

Figure 5.2 shows the mean round-trip times, along with the standard deviation showing the
variability. Each target is represented by four bars, corresponding to the QoS configurations
listed in the same order as in Table 5.2. The bars are coloured following a heatmap colour
scheme, with dark blue representing tests with a low RTT and dark red indicating those with a
high RTT.

Robotics and Mechatronics Daniël Huiskes

38 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

0 2 4 6 8
RTT(ms)

baremetal_pico_rpi4

baremetal_pico_rpi5

baremetal_pico_2_rpi4

baremetal_pico_2_rpi5

freertos_pico_rpi4

freertos_pico_rpi5

freertos_pico_2_rpi4

freertos_pico_2_rpi5

zephyr_pico_rpi4

zephyr_pico_rpi5

zephyr_nucleo_rpi4

zephyr_nucleo_rpi5

be sub & be pub

be sub & be pub

be sub & be pub

be sub & be pub

be sub & be pub

be sub & be pub

be sub & be pub

be sub & be pub

be sub & be pub

be sub & be pub

be sub & be pub

be sub & be pub

be sub & dflt pub

be sub & dflt pub

be sub & dflt pub

be sub & dflt pub

be sub & dflt pub

be sub & dflt pub

be sub & dflt pub

be sub & dflt pub

be sub & dflt pub

be sub & dflt pub

be sub & dflt pub

be sub & dflt pub

dflt sub & be pub

dflt sub & be pub

dflt sub & be pub

dflt sub & be pub

dflt sub & be pub

dflt sub & be pub

dflt sub & be pub

dflt sub & be pub

dflt sub & be pub

dflt sub & be pub

dflt sub & be pub

dflt sub & be pub

dflt sub & dflt pub

dflt sub & dflt pub

dflt sub & dflt pub

dflt sub & dflt pub

dflt sub & dflt pub

dflt sub & dflt pub

dflt sub & dflt pub

dflt sub & dflt pub

dflt sub & dflt pub

dflt sub & dflt pub

dflt sub & dflt pub

dflt sub & dflt pub

Mean round-trip time with standard deviation per target

2

3

4

5

6

7

8

9

RT
T(

m
s)

Figure 5.2: Mean round-trip time with standard deviation per target

Discussion round-trip time

Figure 5.2 shows that the bare-metal implementations overall have the lowest RTT. This is likely
because these implementations have the least amount of overhead. The FreeRTOS and Zephyr
implementations depend on RTOS task management using a scheduler to allocate time to the
micro-ROS task. Although no other tasks were running during the test, meaning the scheduler
should give all available time to the micro-ROS task, the overhead of the RTOS is still notice-
able.
When looking at the QoS configurations, Figure 5.2 shows that for all cases best effort for both
subscribing and publishing results in the lowest RTTs. This is expected, since this configuration
has the lowest amount of overhead for verifying successful message delivery. When consider-
ing the other QoS results, it often seems that especially using the default subscriber setting
causes a significant increase in RTT. This increase can probably be explained by the message
acknowledgement process of the micro-ROS subscriber. Using default QoS for the micro-ROS
publisher also results in a higher RTT.
Considering the different EPG-targets, the Raspberry Pi Pico 2 has the lowest RTTs, followed
by the Raspberry Pi Pico. This is surprising, since the specifications indicate that the Nucleo
H743ZI has a more powerful single-core processor and only a single core is used for commu-
nication.
The best performing combination is bare-metal Raspberry Pi Pico 2 with the Raspberry Pi 5. To

Daniël Huiskes University of Twente

CHAPTER 5. TESTING 39

demonstrate the extent to which the mean roundtrip time has been improved by new hardware,
the comparison begins with the Raspberry Pi Pico and Raspberry Pi 4. Replacing the Pico with
the Pico 2 results in a gain of 24%. Subsequently, replacing the Raspberry Pi 4 with the Rasp-
berry Pi 5 provides an improvement of 5%. Overall, the mean roundtrip time has decreased
from 2.67 ms to 1.91 ms. All round-trip times stay within 10 ms. Therefore, from this test it
follows that all EPG-targets can perform soft real-time communication within the required 33
ms time interval with no other tasks running on the system.

Result latency distribution and jitter

The Raspberry Pi Pico 2 bare-metal implementation using a best-effort publisher and sub-
scriber and a Raspberry Pi 5 showed the best RTT results. Therefore, the RTT for this configur-
ation is investigated in more detail with respect to the latency distribution and jitter. Detailed
results of the other situations are also available in Appendix E.
Figure 5.3 shows a histogram of the RTTs, from which the jitter can be observed. The 100 worst
RTTs are shown in Figure 5.4 along with the latency distribution showing what stages of the
round-trip transmission take most of the time.

2 4 6 8 10
RTT(ms)

100

101

102

103

104

105

lo
g(

Oc
cu

rre
nc

es
)

Round-trip times

Figure 5.3: RTT jitter

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

La
te

nc
y

(m
s)

100 worst round-trip times
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

Figure 5.4: 100 worst RTTs

Figure 5.5 shows latency histograms for each of the different stages of a round-trip. The mean
round-trip latency distribution is shown in Figure 5.6.

101

103

105

pong C to pong pi

Latency histograms

102

104
ping C to pong C

101

103

105

ping pi to ping C

0 2 4 6 8 10
Latency (ms)

102

104
Call ping pi to ping pi

Figure 5.5: Latency histograms

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.032

ping pi to ping C: 0.995

ping C to pong C: 0.307

pong C to pong pi: 0.581

Latency distribution

Figure 5.6: Mean latency distribution

Robotics and Mechatronics Daniël Huiskes

40 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Discussion latency distribution and jitter

The measurements were conducted to gain insight into the communication process. The histo-
gram in Figure 5.3 shows that the majority of all RTTs are about 2 ms. There are some incidental
outliers of which the 100 worst RTTs are highlighted in Figure 5.4. The outliers do not happen at
a particular moment, but seem to be randomly distributed over the entire measurement. The
largest outliers are in most cases caused by the communication from the Pico 2 to the Rasp-
berry Pi 5. In Figure 5.5 the histograms of the different communication stages are shown. The
histograms show that most of the outliers are from ping pi to ping µC and pong µC to pong pi.
The mean latency distribution in Figure 5.6 shows that the majority of the round-trip time is
spent in the communication from the Raspberry Pi 5 (GPIO 2) to the Pico 2 (GPIO 3). This
can be explained, because this latency contains both serialization of the message by the micro-
ROS agent as deserialization on the Pico 2. The latency from ping Pico 2 (GPIO 3) to pong Pico
2 (GPIO 4) only contains a serialization step and the transmission from Pico 2 (GPIO 4) to Pi
5 (GPIO 5) only contains a deserialisation step by the micro-ROS agent. Therefore to compare
transmission to and from the Pico 2 it is more accurate to compare the sum of the times from Pi
5 GPIO 1 to Pico 2 GPIO 3 resulting in 1.027 ms and from Pico 2 GPIO 3 to Pi 5 GPIO 5 resulting
in 0.888 ms, which has a difference of about 14%. Therefore, the latency distribution shows that
the transmission from the Raspberry Pi 5 to the Raspberry Pi Pico 2 takes about the same time
as the reverse path. Compared to the previously mentioned estimated theoretical transmission
time of 23 µs between the micro-ROS agent and the micro-ROS client, these times are much
higher. As already mentioned, the theoretical estimation did not account for overhead, such as
serialisation, deserialisation, and scheduling overhead, but only gives an estimate of the time
spend on the physical transmission.
The results of the measurements provide no indication that micro-ROS usage could lead to
system instability.

5.2.3 JIWY robot

Setup

JIWY, a robot used in the RaM laboratory for educational purposes, is used for performance
measurements of micro-ROS communication, the control-loop, and motion profile tracking.
JIWY is a 2-DoF pan/tilt robot with a 30 fps webcam, as shown in Figure 5.8. JIWY contains typ-
ical elements of a robot system, such as PWM-driven motors and quadrature encoders, making
it well-suitable for demonstrating an EPG-generated project.
The performance variables of interest are:

• Control-loop cycle times: The variation of measured control-loop cycle times from the
set cycle time of 1 ms.

• Control-loop computation time: The time the control loop spends on calculations and
setting/getting signals.

• Round-trip communication: The communication time a ROS package takes to be trans-
mitted round-trip through the setup.

• Latency distribution: Latency at different stages of the communication process.
• Motion profile tracking: Position monitoring of tracking motion profile setpoints.

A 20-sim model of JIWY is created and simulated. The model overview is shown in Figure 5.7.
The model contains motion profiles providing setpoints, an embedded controller steering the
system, I/O hardware, and a robot plant.

Daniël Huiskes University of Twente

CHAPTER 5. TESTING 41

Figure 5.7: JIWY 20-sim model Figure 5.8: JIWY plant

The 20-sim JIWY_Control block is the embedded controller used for code generation. The im-
plementation is shown in Figure 5.9. JIWY_Control includes two position controllers for the
pan and tilt, as shown in Figure 5.9a. The details of these position controllers are shown in
Figure 5.9b. The position controller uses a modified implementation of the continuous simple
state machine provided by 20-sim to create a state controller that can switch between a hom-
ing sequence and PID control. Before JIWY can be operated, a homing sequence must be per-
formed, during which JIWY is directed to a known reference position. Once initialized, PID
controllers control the pan and tilt movements.

setpoint_tilt

setpoint_pan pwm_pan
encoder_reset_pan
position_pan

pwm_tilt
encoder_reset_tilt
position_tilt

(a) JIWY position controllers

Position
Setpoint

pwm
encoder_reset

(b) Position controller implementation

Figure 5.9: JIWY_Control implementation

For this test the JIWY_Control implementation is deployed on all configurations shown in
Table 5.2. Each measurement consists of 500 ·106 samples, taken at a rate of 1 MHz.
An example of such an implementation applied to JIWY is shown in Figure 5.10. This example
uses a target containing the Raspberry Pi Pico 2, running FreeRTOS. The entire setup is con-
figured in a .tcf file.
A Raspberry Pi 5 single-board computer is used to run ROS 2 Jazzy with a micro-ROS agent.
The Raspberry Pi Pico 2 distributes the workload of soft real-time communication and firm
real-time control of the system using FreeRTOS SMP, with both tasks being allocated across the
two cores to optimise performance.
On the Raspberry Pi 5 the setpoints are published on the ROS 2 topics /pan_subscriber and
/tilt_subscriber, which are received by the microcontroller task running micro-ROS. Commu-
nication takes place via a serial USB 2.0 connection using micro-ROS XRCE-DDS.
On the Raspberry Pi Pico 2 a FreeRTOS task is dedicated to handling all micro-ROS com-
munication, receiving setpoints and publishing monitoring data at a fixed rate. The FreeR-
TOS timer task ensures firm real-time execution of JIWY_Control at 1 ms, which is a typical
rate used for robots because it balances responsiveness and computational efficiency. Shared
memory is used for communication between the tasks. Using shared memory, the setpoints
received by the communication task are provided to the FreeRTOS timer task running the
JIWY_control control loop. After the controller calculations are completed the setpoint data
is set as monitoring data by the control loop. Again, using shared memory, the monitoring data
is provided to the task running micro-ROS. The microcontroller uses topics /pan_publisher

Robotics and Mechatronics Daniël Huiskes

42 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

and /tilt_publisher to publish the monitoring data. The data is subsequently received on those
topics by the Raspberry Pi 5 to monitor the current position completing a round-trip of the
data. The PWM channels on the Pico 2 steer the motors and a PIO encoder implementation
reads the encoder values. The sequence of actions and measurements is shown in Table 5.3.

Table 5.3: Ping pong measurements

GPIO # Platform Action GPIO toggle

1 → 2
From Raspberry Pi 5 to
Raspberry Pi Pico 2

Publish message on
topic /pan_subscriber

Before publishing message (GPIO 1)
and in callback function (GPIO 2).

3 → 4
From Raspberry Pi Pico 2
to Raspberry Pi 5

Publish message on
topic /pan_publisher

Before publishing message (GPIO 3)
and in callback function (GPIO 4).

5 → 6
From Raspberry Pi 5 to
Raspberry Pi Pico 2

Publish message on
topic /tilt_subscriber

Before publishing message (GPIO 5)
and in callback function (GPIO 6).

7 → 8
From Raspberry Pi Pico 2
to Raspberry Pi 5

Publish message on
topic /tilt_publisher

Before publishing message (GPIO 7)
and in callback (GPIO 8).

A → A Raspberry Pi Pico 2

Control loop cycles are
measured by comparing the
time between consecutive
toggles of GPIO A

At the beginning of
the control loop.

A → B Raspberry Pi Pico 2
Get input signals
(Encoders and setpoints)

Before controller calculations (GPIO B)
and directly after
controller calculations (GPIO C).

B → C Raspberry Pi Pico 2 Controller calculations
Directly at the beginning
of the callback function.

C → D Raspberry Pi Pico 2
Set output signals
(PWM and monitoring)

Before setting output signals (GPIO C)
and directly after
setting output signals (GPIO D).

1 → 4
Measurements on Raspberry Pi 5.
Message crosses GPIOS:
1 → 2 → A → B → C → D → 3 → 4

Roundtrip message pan

Before publishing message on
topic /pan_subscriber (GPIO 1)
and in callback of
topic /pan_publisher (GPIO 4).
At the measurement points messages
are also logged to a .CSV file.

5 → 8
Measurements on Raspberry Pi 5.
The message crosses GPIOS:
5 → 6 → A → B → C → D → 7 → 8

Roundtrip message tilt

Before publishing message on
topic /tilt_subscriber (GPIO 5)
and in callback of
topic /tilt_publisher (GPIO 8).
At the measurement points messages
are also logged to a .CSV file.

JIWY control

Shared
memory

Processor core 1Processor core 0ROS2

Raspberry Pi 5

PWM

Encoder

Microcontroller
Raspberry Pi Pico 2

JIWY test setup

FreeRTOS task FreeRTOS timer

 /pan_subscriber

 /tilt_subscriber

/pan_publisher

/tilt_publisher

/pan_subscriber

/tilt_subscriber

/pan_publisher

/tilt_publisher

GPIO
5

GPIO
1

GPIO
4

GPIO
8

GPIO
2

GPIO
6

GPIO
3

GPIO
7

Get input signals
(Encoders/setpoints)

Controller calculations

Set output signals
(PWM/monitoring data)

GPIO
A

GPIO
B

GPIO
C

GPIO
D

micro-ROS

JIWY plant

Setpoints node

Monitoring node

JIWY node

Figure 5.10: JIWY test setup

Daniël Huiskes University of Twente

CHAPTER 5. TESTING 43

Result control loop cycle times

Figure 5.11 shows histograms of control loop cycle times for targets running JIWY_control code
at 1 ms while communicating with a Raspberry Pi 5 single-board computer as shown in Fig-
ure 5.10. The time in the figures indicates the communication time interval used by the ROS
publishers. This is therefore the interval used by both the Raspberry Pi 5 for publishing set-
point data on subscriber topics and the microcontroller target for publishing monitoring data
on publisher topics.
Measurements are taken with publishing time intervals of 1000 ms (1 Hz), 100 ms (10 Hz), 10
ms (100 Hz), and 33 ms (30 Hz). The first three time intervals evaluate performance across
different time scales, while 33 ms matches the setpoint generation rate of the JIWY webcam.
Figure 5.11a shows all measurements with outliers lower than 2 ms. These are the situations
that have most practical use case in a robot setup. Figure 5.11b shows all targets with outliers
larger than 2 ms.

102
105

Bare-metal Pico

Histograms control loop cycle times

1000 ms

102
105

Bare-metal Pico 2

1000 ms

102
105

100 ms

102
105

FreeRTOS Pico

1000 ms

102
105

100 ms

102
105

33 ms

102
105

10 ms

102
105

FreeRTOS Pico 2

1000 ms

102
105

100 ms

102
105

33 ms

0.6 0.8 1.0 1.2 1.4
Time (ms)

102
105

10 ms

lo
g(

Oc
cu

rre
nc

es
)

Micro-ROS message publishing time interval
1000 ms 100 ms 33 ms 10 ms

(a) Histograms control loop cycle times < 2 ms

102
105

Bare-metal Pico

Histograms control loop cycle times

100 ms

102
105

33 ms

102
105

10 ms

102
105

Bare-metal Pico 2

33 ms

102
105

10 ms

102

105
Zephyr Pico

1000 ms

102

105
100 ms

102
105

Zephyr Nucleo

1000 ms

102
105

100 ms

102

105
33 ms

0 5 10 15 20 25 30
Time (ms)

102

105

10 ms

lo
g(

Oc
cu

rre
nc

es
)

Micro-ROS message publishing time interval
1000 ms 100 ms 33 ms 10 ms

(b) Histograms control loop cycle times > 2 ms

Figure 5.11: Control loop cycle times at 1 ms with varying ROS publishing time intervals

Discussion control loop cycle times

The results show that the bare-metal implementations overall have the best firm real-time per-
formance for high micro-ROS communication time intervals of 1000 ms for the Pico, and 1000

Robotics and Mechatronics Daniël Huiskes

44 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

ms and 100 ms for the Pico 2.
However, when the communication time interval is lowered, occasional jitter spikes occur. Be-
fore this happens, the control loop completes successfully, and micro-ROS on the other core re-
mains functional, indicating the Pico operates normally except for the repeated interrupt timer.
So, the jitter spikes are caused by the Raspberry Pi SDK repeated interrupt timer that temporar-
ily stops operating. The jitter spikes, occurring at high communication rates, are likely caused
by interference between the interrupt timer and the Raspberry Pi Pico’s USB interface, which
relies on an interrupt-driven task that, under high load, consumes more processing time, dis-
rupting the control loop’s interrupt timer.
All targets using FreeRTOS are stable under all communication load conditions without any
spikes. When the communication time interval is lowered the jitter increases and the outliers,
become slightly larger. The performance of the Pico is comparable to the Pico 2.
The Zephyr targets all perform worse compared to the bare-metal and FreeRTOS targets. Us-
ing the Pico, it was only possible to perform measurements with rates of 1000 ms and 100 ms.
On the Nucleo, measurements could be done with all communication time intervals, but these
lower time intervals significantly affected the cycle time.
Only the EPG-targets with FreeRTOS on the Pico and Pico 2 fulfil the 1 ms firm real-time control
loop and 33 ms soft real-time communication requirement.

Result control loop cycle times Pico 2: 100 ms bare-metal and 33 ms FreeRTOS

The 100 ms Pico 2 bare-metal implementation does not meet the 33 ms soft real-time require-
ment, but offers strong firm real-time performance with low jitter. Therefore, this target is in-
vestigated alongside the 33 ms Pico 2 FreeRTOS. The control loop cycle time, 400 worst control
loop cycles, and control loop computation times are investigated in more detail for those situ-
ations. Detailed results of the other situations are also available in Appendix F.
The Pico 2 bare-metal situation with 100 ms micro-ROS communication is shown in Fig-
ure 5.12, Figure 5.13, and Figure 5.14. The Pico 2 FreeRTOS situation with 33 ms micro-ROS
communication is shown in Figure 5.15, Figure 5.16, and Figure 5.17.

Daniël Huiskes University of Twente

CHAPTER 5. TESTING 45

Bare-metal Pico 2 - 100 ms

0.925 0.950 0.975 1.000 1.025 1.050 1.075
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

rre
nc

es
)

Control loop cycle times

Figure 5.12: Control loop cycle times

0 2 4 6 8
Sample moment (minutes)

0.075

0.050

0.025

0.000

0.025

0.050

0.075

Jit
te

r (
m

s)

400 worst control loop cycles

Positive jitter
Negative jitter

Figure 5.13: 400 worst control loop cycles

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Ti
m

e
(m

s)

Set output signals: 0.005

Control loop calculations: 0.022

Get input signals: 0.004

Mean time control loop cycle phases

Figure 5.14: Control loop computation
time

FreeRTOS Pico 2 - 33 ms

0.6 0.8 1.0 1.2 1.4
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

rre
nc

es
)

Control loop cycle times

Figure 5.15: Control loop cycle times

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0.4

0.2

0.0

0.2

0.4

Jit
te

r (
m

s)

400 worst control loop cycles
Positive jitter
Negative jitter

Figure 5.16: 400 worst control loop cycles

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ti
m

e
(m

s)

Set output signals: 0.016

Control loop calculations: 0.038

Get input signals: 0.012

Mean time control loop cycle phases

Figure 5.17: Control loop computation
time

Discussion control loop cycle times Pico 2: 100 ms bare-metal and 33 ms FreeRTOS

Figure 5.12 shows the control-loop cycle times for the Pico 2 bare-metal with micro-ROS com-
munication with a time interval of 100 ms. The figure shows a minimal amount of jitter at the
cycle time of 1 ms with maximum fluctuations of about 0.075 ms. The repeated Pico timer
works with hardware interrupts that enable strict timing. Figure 5.15 shows the cycle times for
the FreeRTOS situation with micro-ROS communication at 33 ms. This figure shows more jitter
with maximum fluctuations of about 0.4 ms. The histogram has a bell-shape, which suggests
a normal distribution with occasional fluctuations. This situation uses the FreeRTOS sched-
uler with a FreeRTOS timer for handling the cycles. Since this runs in software, it is less strict
compared to hardware interrupt-based timing, as it can be affected by scheduling delays and
context switches.
Figure 5.13 shows the 400 worst cycle times for the bare-metal situation. Both the positive and
negative jitter are plotted. This shows that a positive jitter is directly followed by a negative

Robotics and Mechatronics Daniël Huiskes

46 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

jitter. For the bare-metal situation this is caused by the behaviour of the repeated Pico timer.
The timer constantly tries to keep the control loop time at 1 ms. If in one cycle the control
loop started too late this is compensated by starting the next cycle earlier. The same behaviour
is shown in Figure 5.16 for the FreeRTOS situation. In this situation the FreeRTOS scheduler
is responsible for the real-time loop and compensates for delays. Figure 5.14 shows the con-
trol loop computation time for the bare-metal situation, which takes about 0.031 ms. In the
FreeRTOS situation shown in Figure 5.17 the computation takes about 0.066 ms. As expected,
most time of the computation is spent on doing the control loop calculations. Both situations
provide sufficient safety margin for the control loop calculations, which consume about 3% of
the cycle time using bare-metal and about 7% of the cycle time using FreeRTOS, which is re-
quired for high-speed loops. Although the 100 ms Pico 2 bare-metal implementation provides
strong firm real-time performance with low jitter and may be a good candidate for scenarios
where 100 ms communication is sufficient, it does not meet the 33 ms soft real-time require-
ment. The 33 ms Pico 2 FreeRTOS implementation fully meets the requirements for the control
loop.

Results round-trip communication Pico 2: 100 ms bare-metal and 33 ms FreeRTOS

The round-trip communication times for the bare-metal Pico 2 with a publishing time interval
of 100 ms are shown for the pan in Figure 5.18a and tilt in Figure 5.18b. The same plots for the
FreeRTOS Pico 2 situation with a publishing time interval of 33 ms are shown in Figure 5.19a
and Figure 5.19b. Additional measurement results are shown in Appendix G.

72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5
Time (ms)

100

101

102

lo
g(

Oc
cu

rre
nc

es
)

Round-trip times pan

(a) Round-trip times pan

72.5 73.0 73.5 74.0 74.5 75.0
Time (ms)

100

101

102

lo
g(

Oc
cu

rre
nc

es
)

Round-trip times tilt

(b) Round-trip times tilt

Figure 5.18: Bare-metal Raspberry Pi Pico 2 at 100 ms

Daniël Huiskes University of Twente

CHAPTER 5. TESTING 47

5 10 15 20 25 30 35 40
Time (ms)

100

101

102

lo
g(

Oc
cu

rre
nc

es
)

Round-trip times pan

(a) Round-trip times pan

5 10 15 20 25 30 35 40
Time (ms)

101

102

lo
g(

Oc
cu

rre
nc

es
)

Round-trip times tilt

(b) Round-trip times tilt

Figure 5.19: FreeRTOS Raspberry Pi Pico 2 at 33 ms

Discussion round-trip communication Pico 2: 100 ms bare-metal and 33 ms FreeRTOS

The histograms in Figure 5.18a and Figure 5.18b show the round-trip times for bare-metal Pico
2 communication, where both the Raspberry Pi 5 and microcontroller publish data every 100
ms. The measurement begins when the Raspberry Pi 5 publishes the message. There is some
overhead as the message is received by micro-ROS, passed via shared memory to the control
loop, and passed back before being published by the Pico 2. The figure shows that all messages
have a round-trip time between 72 ms and 76 ms. This implies that there are no significant
delays within the round-trip and new data is available within the 100 ms timeslot the micro-
controller uses to publish data.
The same histograms are shown in Figure 5.19a and Figure 5.19b for the FreeRTOS Pico 2, where
data is published every 33 ms. This situation shows that it takes between 3 ms and 45 ms for
the round-trip to complete. If a message is not passed back within the 33 ms timeframe, it will
be passed in the next one. However, this is not an issue, as it is not expected that the message
will always be passed back within the Pico 2 publisher’s time interval, due to the overhead of
the round-trip communication. The timing between the message’s arrival and when the next
timeframe is ready to send it back, along with the overhead, determines the overall round-trip
time. As the communication time intervals lowers and the timeframes shorten, small delays
in the round-trip communication become more noticeable. When a timeframe is missed, the
message is passed in the following cycle.
In both situations micro-ROS communication and control loop computation takes place. The
RTT plots show no large outliers, which indicates communication is stable within the set time
interval. The results therefore provide no indication that micro-ROS usage could lead to system
instability.

Result motion profile tracking

To compare the behaviour of the JIWY model and the real-world JIWY target deployment, a
20-sim simulation was conducted. In the simulation JIWY receives setpoints from a motion
profile, which has also been implemented in a ROS 2 Setpoints node on the Raspberry Pi 5
for real-world comparison. The node publishes setpoints simultaneously on the pan and tilt
subscriber topics with a time interval of 33 ms.
The Pico 2 publishes messages simultaneously on both publisher topics at a time interval of 33
ms, which are logged by a separate Monitoring node on the Raspberry Pi 5.
Figure 5.20 shows motion profile setpoints along with the simulation and real position for the
pan in Figure 5.20a and tilt in Figure 5.20b.

Robotics and Mechatronics Daniël Huiskes

48 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Po
sit

io
n

(ra
d)

JIWY position pan
setpoint pan
simulation position pan
real position pan

(a) Motion profile tracking pan

0 5 10 15 20 25 30 35 40
Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Po
sit

io
n

(ra
d)

JIWY position tilt
setpoint tilt
simulation position tilt
real position tilt

(b) Motion profile tracking tilt

Figure 5.20: JIWY following motion profile

Discussion motion profile tracking

The motion profile tracking test, using the FreeRTOS with Pico 2 EPG-target, combines both
micro-ROS communication and control loop performance to execute the tracking task. Fig-
ure 5.20 shows motion profile setpoints for the pan and tilt, along with the simulation and real
position. The figure shows consistency between the simulation and real-world results for both
the pan and the tilt demonstrating the applicability of the EPG-generated project in a real-
world application.

5.2.4 Conclusion

For the use of the EPG-generated project with the robots in the RaM laboratory, the require-
ments of 1 ms firm real-time control loop and 33 ms soft real-time communication must be
met.
The bare-metal EPG-targets using the Raspberry Pi Pico and Raspberry Pi Pico 2 offer the best
performance for micro-ROS communication in the ping-pong test. In the JIWY control-loop
measurements it appears that the bare-metal implementations have the best firm real-time
performance for high micro-ROS communication time intervals of 1000 ms for the Pico, and
1000 ms and 100 ms for the Pico 2. However, the bare-metal EPG-targets do not meet the 33 ms
soft real-time communication requirement, because when the communication time interval is
lowered, occasional jitter spikes occur.
The FreeRTOS EPG-targets using the Raspberry Pi Pico and Raspberry Pi Pico 2 had slightly
lower performance compared to the bare-metal implementations, but in all cases the perform-
ance was good. The FreeRTOS implementations remain stable with low micro-ROS commu-
nication time intervals. With lower time intervals the control loop jitter increases, but no high
jitter spikes were measured.
The Zephyr EPG-targets using the Raspberry Pi Pico and STM32 Nucleo-H743ZI performed
overall worse compared to the bare-metal and FreeRTOS EPG-targets. The Zephyr EPG-targets
do not fulfil the 1 ms firm real-time control loop and 33 ms soft real-time communication re-
quirements.
Overall, FreeRTOS on the Pico and Pico 2 are the only EPG-targets that fully meet the 1 ms firm
real-time control loop and 33 ms soft real-time communication requirements.

Daniël Huiskes University of Twente

CHAPTER 5. TESTING 49

5.3 Network testing

5.3.1 Introduction

This section conducts tests to evaluate the use of multiple EPG-generated projects as ROS 2
nodes in a distributed network. A round-trip time test and a motion profile tracking test are
conducted to assess whether performance remains stable in a distributed network, while also
exploring the flexibility of adding multiple EPG-targets in a ROS 2 system.

5.3.2 Ping pong

Setup

The ping-pong measurement setup is a round-trip message-passing application that is used
to determine the performance of the communication. This setup is an extension of the ping-
pong application discussed in Section 5.2.2. The performance variables of interest are again
the round-trip time, latency distribution, and the jitter. A diagram of the setup is shown in Fig-
ure 5.21. The figure shows two Raspberry Pi single-board computers (Pis) and two Raspberry
Pi Pico microcontrollers (Picos). A Pico 2 is connected to a Pi 5 and a Pico is connected to a Pi
4. The Pi 5 and Pi 4 are connected to each other via an Ethernet switch. The communication
between the Pi 5 and Pi 4 happens over Ethernet using Fast DDS, which operates over UDP/IP.
The communication between the Pis and Picos happens serial over USB 2.0 using XRCE-DDS
(explained in Section 2.3.2), with a micro-ROS agent running on the Pis to facilitate commu-
nication with the Pico micro-ROS clients. All communication happens with best-effort QoS.
The round-trip consists of three segments. A message is sent from the Pi 5 to the Pico 2, fol-
lowed by the Pico 2 sending a message to the Pico, and the Pico sends a message back to the Pi
5, completing the round-trip. The callback function at the Pi 5 checks if the received message
content is equal to the previously sent message content. Only when the check is successful a
new message is directly published starting a new round-trip.
The sequence of actions and measurements is shown in Table 5.4. Each measurement consists
of 500 ·106 samples, taken at a rate of 1 MHz. The ping-pong tests are conducted in two sep-
arate scenarios, one where both Picos run bare-metal and another where they operate using
FreeRTOS. From performance testing Section 5.2 it appeared that EPG-targets with FreeRTOS
on the Pico and Pico 2 fully meet the requirements. Furthermore, the bare-metal implementa-
tion performed best for 100 ms soft real-time micro-ROS communication. It did not meet the
requirement of 33 ms, but it can still be useful for situations with less demanding communica-
tion making it also interesting to investigate.

Table 5.4: Ping pong measurement steps

GPIO # Platform Action GPIO toggle
1 Raspberry Pi 5 Start of ping-pong measurement Before publish function is called.

2 Raspberry Pi 5
ROS2 publisher sends
message on /topic ping_pico_2

Directly after publish
function completes.

3 Pico 2 microcontroller
micro-ROS subscriber callback
receives message on /topic ping_pico_2

Directly at the beginning of
the callback function.

4 Pico 2 microcontroller
micro-ROS subscriber callback
publishes message on /topic ping_pico.
The message goes via the Pi 5, Ethernet switch, and Pi 4 to the Pico.

Directly after the publish
function is finished.

5 Pico microcontroller
micro-ROS subscriber callback
receives message on /topic ping_pico

Directly at the beginning of
the callback function.

6 Pico microcontroller
micro-ROS subscriber callback
publishes message on /topic pong_pico.
The message goes via the Pi 4 and Ethernet switch to the Pi 5.

Directly after the publish
function is finished.

7 Raspberry Pi 5
ROS2 subscriber callback receives
message on /topic pong_pico.

Directly at the beginning
of the callback function.

Robotics and Mechatronics Daniël Huiskes

50 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Raspberry Pi 4

micro-ROS agent

Raspberry Pi Pico

Subscriber /topic ping_pico Publisher /topic pong_pico

subscriber_callback

GPIO
5 publish() GPIO

6

micro-ROS

FreeRTOS

Ubuntu server

ROS 2

Ethernet
switch

Raspberry Pi 5

Raspberry Pi Pico 2

Publisher /topic ping_pico_2

Subscriber /topic ping_pico_2

micro-ROS agent

Subscriber /topic pong_pico

Publisher /topic ping_pico

GPIO
1

subscriber_callback

GPIO
3

publish() GPIO
4

startpublish()

GPIO
2

micro-ROS

FreeRTOS

ROS 2

Ubuntu server

subscriber_callback()

GPIO
7

Figure 5.21: Ping-pong setup

Results

The ping-pong tests are conducted in two separate scenarios, one where both Picos run bare-
metal and another where they operate using FreeRTOS. The round-trip times, 100 worst round-
trips, mean latency distribution, and latency histograms are investigated for those scenarios.
The bare-metal results are shown in Figure 5.22, Figure 5.23, Figure 5.24, and Figure 5.25. The
FreeRTOS situation is shown in Figure 5.26, Figure 5.27, Figure 5.28, and Figure 5.29.

Daniël Huiskes University of Twente

CHAPTER 5. TESTING 51

Bare-metal

4 6 8 10
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

rre
nc

es
)

Round-trip times

Figure 5.22: RTT

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
te

nc
y

(m
s)

Pi 5(GPIO 1) Pi 5(GPIO 2): 0.036
Pi 5(GPIO 2) Pico 2(GPIO 3) : 0.784

Pico 2(GPIO 3) Pico 2(GPIO 4) : 0.343

Pico 2(GPIO 4) Pico(GPIO 5): 1.405

Pico(GPIO 5) Pico(GPIO 6): 0.908

Pico(GPIO 6) Pi 5(GPIO 7)} : 0.511

Latency distribution

Figure 5.23: Mean latency distribution

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

La
te

nc
y

(m
s)

100 worst latencies
Pi5(1) Call pub ping_pico_2 Pi5(2) pub ping_pico_2
Pi5(2) pub ping_pico_2 Pico2(3) sub ping_pico_2
Pico2(3) sub ping_pico_2 Pico2(4) pub ping_pico
Pico2(4) pub ping_pico Pico(5) sub ping_pico
Pico(5) sub ping_pico Pico(6) pub pong_pico
Pico(6) pub pong_pico Pi5(7) sub pong_pico

Figure 5.24: 100 worst round-trips

102Pico(6) Pi5(7)
Latency histograms

103

105
Pico(5) Pico(6)

102

105
Pico2(4) Pico(5)

103
104
105

Pico2(3) Pico2(4)

102

105
Pi5(2) Pico2(3)

0 1 2 3 4 5 6 7
Latency (ms)

102

105
Pi5(1) Pi5(2)

Figure 5.25: Latency histograms

FreeRTOS

7 8 9 10 11 12 13 14
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

rre
nc

es
)

Round-trip times

Figure 5.26: RTT

0

2

4

6

8

La
te

nc
y

(m
s)

Pi 5(GPIO 1) Pi 5(GPIO 2): 0.041
Pi 5(GPIO 2) Pico 2(GPIO 3) : 1.458

Pico 2(GPIO 3) Pico 2(GPIO 4) : 0.995

Pico 2(GPIO 4) Pico(GPIO 5): 2.483

Pico(GPIO 5) Pico(GPIO 6): 3.174

Pico(GPIO 6) Pi 5(GPIO 7)} : 0.471
Latency distribution

Figure 5.27: Mean latency distribution

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

12

14

La
te

nc
y

(m
s)

100 worst latencies
Pi5(1) Call pub ping_pico_2 Pi5(2) pub ping_pico_2
Pi5(2) pub ping_pico_2 Pico2(3) sub ping_pico_2
Pico2(3) sub ping_pico_2 Pico2(4) pub ping_pico
Pico2(4) pub ping_pico Pico(5) sub ping_pico
Pico(5) sub ping_pico Pico(6) pub pong_pico
Pico(6) pub pong_pico Pi5(7) sub pong_pico

Figure 5.28: 100 worst control loop cycles

102Pico(6) Pi5(7)
Latency histograms

102

104

Pico(5) Pico(6)

102Pico2(4) Pico(5)

102
103
104

Pico2(3) Pico2(4)

101

103
Pi5(2) Pico2(3)

0 1 2 3 4 5 6 7 8
Latency (ms)

102Pi5(1) Pi5(2)

Figure 5.29: Latency histograms

Robotics and Mechatronics Daniël Huiskes

52 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Discussion

Figure 5.22 and Figure 5.26 show histograms of the round-trip times. The histograms show
that with bare-metal the round-trips take about 4 ms to complete and with FreeRTOS about
9 ms to complete. According to the soft real-time communication requirement, transmitting
setpoint and monitoring data should occur within a 33 ms time interval. Since the round-trip
includes multiple communication paths for which this requirement applies, and as the meas-
ured round-trip times are below this threshold, no issues are expected.
The results of the latency distribution in Figure 5.23 and Figure 5.27 are consistent with the
corresponding segments of the latency distribution discussed in Section 5.2.2. Additionally
in this setup data is also sent from the Pico 2 (GPIO4) to the Pico (GPIO 5) via the Pis, which
takes 1.4 ms with bare-metal and 2.5 ms with FreeRTOS. This is comparable to the communic-
ation times obtained in the performance tests discussed in Section 5.2. The 100 worst latencies
in Figure 5.24 and Figure 5.28 also show that incidental outliers do not appear at a particular
moment, but randomly. The histograms of Figure 5.25 and Figure 5.29 show the different com-
munication stages. The histograms show that there are few outliers, and the outliers that are
present are not high.
The test results provide no indication to expect that introducing multiple nodes in a distributed
network will cause any limitations.

5.3.3 Motion profile tracking

Motion profile tracking tests are performed to assess whether performance remains stable in a
distributed network, while also exploring the flexibility of adding multiple EPG targets as nodes
in a ROS 2 system.
In accordance with the requirements, motion profile tracking is conducted with a soft real-time
communication time interval of 33 ms. Therefore, EPG-targets with FreeRTOS on the Pico and
Pico 2 are used.
The setup includes two Pis, a Pi 4 and a Pi 5, connected through an Ethernet switch, with both
running Ubuntu server 24.04 with ROS 2 Jazzy. Each Pi is also connected to a Pico and a Pico
2, which communicate via a serial USB 2.0 connection using micro-ROS XRCE-DDS. The Pi-
cos are connected to JIWY robots, enabling distributed control and coordination of the robots
through ROS 2 and micro-ROS. Similar as in Section 5.2.3, motion profiles from 20-sim are used
as setpoints to steer four JIWY robots. This setup is tested in three different situations to provide
insight in how multiple robots can be managed in networked conditions.

Situation 1 - Motion profile tracking with a shared motion profile

A diagram of situation 1 is shown in Figure 5.31. In this situation the Pi 5 sends four identical
motion profiles to all connected Picos, causing the JIWY robots to perform the same move-
ments simultaneously. This test is conducted to investigate the system’s capability to syn-
chronise multiple robots through distributed control. It demonstrates that the communica-
tion between the Raspberry Pi and the Picos via ROS 2 and micro-ROS is effective, enabling
coordinated actions across all robots. The Setpoints node on the Pi 5 publishes the setpoints
with a time interval of 33 ms, which mimics the setpoint generation time interval of the JIWY
webcam. The Monitoring node is subscribed to topics that receive the current position of all
JIWY robots. The Picos publish monitoring data at a time interval of 33 ms. All communica-
tion happens with best-effort QoS. Since all Picos are nodes, together with the Setpoints and
Monitoring node, the ROS 2 system has 6 nodes in total.

Daniël Huiskes University of Twente

CHAPTER 5. TESTING 53

Raspberry Pi 4

micro-ROS
agent Pico

Pico 2

ROS2
Ethernet
switch

/pan_pub_pico_pi4

/tilt_pub_pico_pi4

En
c

Pico 2

ROS2

Raspberry Pi 5

micro-ROS
 agent

PW
M

En
c

PW
M

Pico

Monitoring node

/pan_pub_pico2_pi5

/tilt_pub_pico2_pi5

/pan_pub_pico2_pi4

/tilt_pub_pico2_pi4

/pan_pub_pico_pi5

/tilt_pub_pico_pi5

/pan_subscriber

/tilt_subscriber

Setpoints node

JIWY plant 2

En
c

PW
M

En
c

PW
M JIWY plant 3

JIWY plant 4

JIWY plant 1

Figure 5.30: Situation 1 - Motion profile tracking with a shared motion profile

Results situation 1 - Motion profile tracking with a shared motion profile

The results of the motion profile tracking test are shown in Figure 5.31, where Figure 5.31a
shows motion profile tracking for the pan movement and Figure 5.31b motion profile tracking
for the tilt movement. A demo showing the setup in action is provided in the following video of
situation 1.

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Po
sit

io
n

(ra
d)

JIWY position pan
setpoint pan
real pan pico pi4
real pan pico pi5
real pan pico 2 pi4
real pan pico 2 pi5

(a) Motion profile tracking pan

0 5 10 15 20 25 30 35 40
Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Po
sit

io
n

(ra
d)

JIWY position tilt
setpoint tilt
real tilt pico pi4
real tilt pico pi5
real tilt pico 2 pi4
real tilt pico 2 pi5

(b) Motion profile tracking tilt

Figure 5.31: Motion profile tracking

Discussion situation 1 - Motion profile tracking with a shared motion profile

The results in Figure 5.31 show consistency between the motion profile and real-world results
for both the pan and the tilt.
This test uses ROS 2 for collecting measurement data. The data is logged asynchronously by
the Setpoint node and Monitoring node at the moment data becomes available, which is ap-
proximately every 33 ms. The exact time between the publishing of a Setpoint by the Pi 5 and
the movement of the JIWYs belonging to the different Picos and Pico 2s can therefore not be
determined. It is however possible to estimate this time by first interpolating the target dataset
(the Picos and Pico 2s following the setpoints) to align its time scale with the reference dataset

Robotics and Mechatronics Daniël Huiskes

https://cloud.ram.eemcs.utwente.nl/index.php/s/6swYRfYwJwroXNo
https://cloud.ram.eemcs.utwente.nl/index.php/s/6swYRfYwJwroXNo

54 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

(the provided setpoints), followed by cross-correlation to determine the lag between the data-
sets. The calculated cross-correlations are shown in Table 5.5. It should be noted that these
cross-correlations include both the networking time needed to transmit setpoint and monit-
oring data between nodes, as well as the settling time needed for the JIWY to adjust to the
given setpoint. The cross-correlation is only a match when the setpoint and JIWY positions
fully align. The results indicate that the lags are approximately multiples of the communica-
tion time interval of 33 ms. This is expected, as this time interval was used to collect the data
and therefore determined the resolution of the lags in the cross-correlation. The Pico Pi 4 and
Pico Pi 5 have approximately the same position for the pan as the provided setpoint after about
66 ms. The tilt of the Pico Pi 4 has the same position after about 66 ms, while the Pico Pi 5 takes
99 ms, probably because of mechanical differences between JIWYs. The determined values of
the Pico 2s are overall higher, which can also be explained by mechanical differences between
the JIWY robots. Under steady-state conditions, there is a small error between the setpoint and
the actual position. These errors are larger and less consistent for the Pico 2s, influencing the
accuracy of the cross-correlation and making those results less reliable. Small issues, such as a
slipping gear belt, can cause such errors. These errors are further investigated in situation 2.

Table 5.5: Cross-correlation

Pan (lag in ms) Tilt (lag in ms)
Pico Pi 4 66 99
Pico Pi 5 66 66
Pico 2 Pi 4 99 133
Pico 2 Pi 5 99 99

The results suggest that communication within the distributed network does not cause signific-
ant delays in motion profile tracking. The test shows that the system is capable to synchronise
multiple robots through distributed control.

Situation 2 - Split motion profile tracking using two independent motion profiles

This test is conducted to investigate whether, in addition to synchronised control of JIWYs, it is
also possible to flexibly control each JIWY node separately while maintaining synchronisation
properties. From the results in situation 1 it appeared that the mechanical deviations occurred
at the JIWYs connected to Pico 2. Situation 2 is almost similar to situation 1. The difference is
that the setpoint node uses two distinct motion profiles to separately control the JIWYs connec-
ted to the Pico microcontroller and those connected to the Pico 2 microcontroller. The JIWYs
connected to the Pico 2 were then swapped with those connected to the Pico to investigate
whether the errors in motion profile tracking are caused by the JIWYs. A diagram of situation 2
is shown in Figure 5.32.

Daniël Huiskes University of Twente

CHAPTER 5. TESTING 55

Ethernet
switch

Raspberry Pi 4

micro-ROS
agent

Pico

Pico 2

ROS2

/pan_pub_pico_pi4

/tilt_pub_pico_pi4

En
c

Pico 2

ROS2
Raspberry Pi 5

micro-ROS
 agent

PW
M

En
c

PW
M

Pico

Monitoring node

/pan_pub_pico2_pi5

/tilt_pub_pico2_pi5

/pan_pub_pico2_pi4

/tilt_pub_pico2_pi4

/pan_pub_pico_pi5

/tilt_pub_pico_pi5

/pan_sub_pico2

/tilt_sub_pico2

/pan_sub_pico

/tilt_sub_pico

Setpoints node

JIWY plant 1

JIWY plant 2

En
c

PW
M

En
c

PW
M

JIWY plant 4

JIWY plant 3

Figure 5.32: Situation 2 - Split motion profile tracking using two independent motion profiles

Results situation 2 - Split motion profile tracking using two independent motion profiles

The results of the motion profile tracking for pan are shown in Figure 5.33, with Figure 5.33a
showing the motion profile tracking for the JIWYs connected to the Pico and Figure 5.33b for
JIWYs connected to the Pico 2. Similarly, Figure 5.34 shows the pan motion profile tracking for
the swapped JIWYs, where Figure 5.33a shows JIWYs connected to the Pico and Figure 5.33b
shows JIWYs connected to the Pico 2. Similar measurements are shown for the tilt in Ap-
pendix H. A demo showing the setup in action is provided in the following video of situation
2.

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Po
sit

io
n

(ra
d)

JIWY position pan - Pico
setpoint pan
real pan pico pi4
real pan pico pi5

(a) Motion profile tracking Pico

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Po
sit

io
n

(ra
d)

JIWY position pan - Pico 2
setpoint pan
real pan pico 2 pi4
real pan pico 2 pi5

(b) Motion profile tracking Pico 2

Figure 5.33: Motion profile tracking pan

Robotics and Mechatronics Daniël Huiskes

https://cloud.ram.eemcs.utwente.nl/index.php/s/iCwYknsFXc7Cztc
https://cloud.ram.eemcs.utwente.nl/index.php/s/iCwYknsFXc7Cztc

56 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Po
sit

io
n

(ra
d)

JIWY position pan - Pico
setpoint pan
real pan pico pi4
real pan pico pi5

(a) Motion profile tracking Pico swapped JIWYs

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Po
sit

io
n

(ra
d)

JIWY position pan - Pico 2
setpoint pan
real pan pico 2 pi4
real pan pico 2 pi5

(b) Motion profile tracking Pico 2 swapped JIWYs

Figure 5.34: Motion profile tracking pan swapped JIWYs

Discussion situation 2 - Split motion profile tracking using two independent motion profiles

This test shows that in addition to synchronised control of JIWYs, it is also possible to flexibly
control each JIWY node separately while maintaining synchronisation properties.
Furthermore, Figure 5.33 shows that the motion profile tracking with JIWYs connected to the
Pico 2, shown in Figure 5.33b, has noticeable steady-state errors compared to the JIWYs con-
nected to the Pico in Figure 5.33a. In Figure 5.34 the JIWYs are swapped, which shows that the
errors now occur with JIWYs connected to the Pico in Figure 5.34a. These test results show that
the steady-state errors are caused by the mechanical errors in the JIWYs and the distributed
control functions as expected.

Situation 3 - Teleoperation with mirrored robots

This situation investigates whether teleoperation with motion replication, a demanding net-
working application, can be achieved using the networking capabilities of EPG-generated pro-
jects. Teleoperation involves real-time control of a remote robot by a human operator. This
often involves the operator performing physical movements on a passive device that are rep-
licated by an active robot. Teleoperation requires a low-latency network to enable real-time
manipulation. If teleoperation works well, this demonstrates that an EPG-target can control
another ROS 2 node within the distributed network, which increases the usability of these pro-
jects in distributed systems.
A diagram of situation 3 is shown in Figure 5.35. Two JIWYs are used to create a teleoperation
setup. One JIWY acts as a passive robot that is used by the operator to provide physical inputs
by manually adjusting the pan and tilt. Another JIWY acts as an active robot that replicates the
exact movements of the passive JIWY. To demonstrate the scalability of EPG-generated pro-
jects, two pairs of JIWYs are used instead of one.
In this setup, the Pico connected to the Pi 4 publishes the current position of the connected
JIWY robot as monitoring data. The Pico connected to the Pi 5 uses this monitoring data as set-
point, causing the connected JIWY to mirror the same position. This also applies to the JIWYs
with a Pico 2.
To obtain clear measurements, without disturbances from manual movements, a motion pro-
file is used. The Pi 5 Setpoints node publishes a motion profile to the Picos connected to the Pi
4 that steers the JIWYs to the desired position, which mimics the manipulation of passive JIWYs
by a remote operator. These Picos publish their current position as monitoring data. The Picos
connected to the Pi 5 use this monitoring data as setpoints, causing the JIWYs connected to
them to mirror the same position.
Teleoperation, by manual manipulation of the passive JIWY, is shown in the demo video linked

Daniël Huiskes University of Twente

CHAPTER 5. TESTING 57

in the results. The motors of the passive JIWYs connected to the Pi 4 were turned off, while the
encoders stayed functional for sending position monitoring data to the active JIWYs connec-
ted to the Pi 5. Manually manipulating the passive JIWY results in the active JIWY mirroring its
movements.

ROS2
Raspberry Pi 5

micro-ROS
 agent

/pan_subscriber

/tilt_subscriber

Setpoints node

En
c

Pico 2

PW
M

JIWY plant 2

/pan_pub_pico2_pi5

/tilt_pub_pico2_pi5

/pan_pub_pico2_pi4

/tilt_pub_pico2_pi4

/pan_pub_pico_pi5

/tilt_pub_pico_pi5

/pan_pub_pico_pi4

/tilt_pub_pico_pi4

Monitoring node

Ethernet
switch

Raspberry Pi 4

micro-ROS
agent Pico

Pico 2

ROS2

En
c

PW
M

En
c

PW
M JIWY plant 3

JIWY plant 4

En
c

PW
M

Pico

JIWY plant 1

Figure 5.35: Situation 3 - Motion profile tracking with mirrored robot pairs for teleoperation

Results situation 3 - Teleoperation with mirrored robots

For the Pico the results are shown in Figure 5.36, where Figure 5.36a shows motion profile track-
ing for the pan movement and Figure 5.36b motion profile tracking for the tilt movement. The
figures show how the JIWY with Pico connected to the Pi 5 mirrors the JIWY with Pico connec-
ted to the Pi 4. The results for the Pico 2 are shown in Figure 5.37, where Figure 5.37a shows
motion profile tracking for the pan movement and Figure 5.37b motion profile tracking for the
tilt movement. Similarly to the Pico, these figures show how the JIWY with Pico 2 connected to
the Pi 5 mirrors the JIWY with Pico 2 connected to the Pi 4. The JIWYs with mechanical errors
are connected to the Pico 2.
A demo showing the setup in action is provided in the video of situation 3. This demonstrates
that the setup allows one robot to control another and is an example of teleoperation with mo-
tion replication.

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Po
sit

io
n

(ra
d)

JIWY position pan
setpoint pan
real pan pico pi4
real pan pico pi5

(a) Motion profile tracking pan

0 5 10 15 20 25 30 35 40
Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Po
sit

io
n

(ra
d)

JIWY position tilt
setpoint tilt
real tilt pico pi4
real tilt pico pi5

(b) Motion profile tracking tilt

Figure 5.36: Motion profile tracking Pico

Robotics and Mechatronics Daniël Huiskes

https://cloud.ram.eemcs.utwente.nl/index.php/s/aRkHEnPF966bc6i

58 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Po
sit

io
n

(ra
d)

JIWY position pan
setpoint pan
real pan pico 2 pi4
real pan pico 2 pi5

(a) Motion profile tracking pan

0 5 10 15 20 25 30 35 40
Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Po
sit

io
n

(ra
d)

JIWY position tilt
setpoint tilt
real tilt pico 2 pi4
real tilt pico 2 pi5

(b) Motion profile tracking tilt

Figure 5.37: Motion profile tracking Pico 2

Discussion situation 3 - Teleoperation with mirrored robots

The results are shown in Figure 5.36 and Figure 5.37. Figure 5.36 shows how the JIWY with a
Pico connected to the Pi 5 mirrors the JIWY with a Pico connected to the Pi 4.
This discussion considers both the deviations in steady state as in transient state.
When considering the steady-state in Figure 5.36, the JIWY connected to the Pi 5 shows a lar-
ger deviation from the setpoint, as it not only accounts for its own error but also mirrors the
error of the JIWY connected to the Pi 4. Similarly, Figure 5.37 shows how the JIWY with Pico 2
connected to the Pi 5 mirrors the JIWY with Pico 2 connected to the Pi 4. In this figure, due to
the aforementioned mechanical errors, the steady-state errors are larger compared to the Pico
situation.
When considering the transient state, the delay between the Picos is investigated. To determ-
ine the delay between the movement of the JIWY belonging to the Pico connected to the Pi 4
and the movement of the JIWY belonging to the Pico 2 connected to the Pi 5, the 3 measure-
ment points shown in Figure 5.38 can be used. Figure 5.38 is a simplified representation of
Figure 5.35 with measurement points:

1. Setpoint node, which logs setpoint data published by the Pi 5.
2. Monitoring node, which logs position data published by the Pico connected to the Pi 4.
3. Monitoring node, which logs position data published by the Pico connected to the Pi 5.

This test uses ROS 2 for collecting measurement data. The data is logged asynchronously by the
Setpoint node and Monitoring node at the moment data becomes available, which is approx-
imately every 33 ms. The exact time between the movement of the JIWY belonging to the Pico
connected to the Pi 4 and the movement of the JIWY belonging to the Pico 2 connected to the
Pi 5 can therefore not be determined. Similarly to situation 1, it is however possible to estimate
this time by first interpolating the target dataset (the Pico following the setpoints) to align its
time scale with the reference dataset (the provided setpoints), followed by cross-correlation
to determine the lag between the datasets. The result of this cross-correlation is shown in
Table 5.6. The results indicate that the lags are approximately multiples of the communication
time interval of 33 ms. This is expected, as this time interval was used to collect the data and
therefore determined the resolution of the lags in the cross-correlation. The cross-correlation
lag of measurement points 2 → 3 for both the pan and tilt is 0. Since this lag is 0, it can be es-
timated that the delay between JIWYs following each other is at most 33ms. This is supported
by subtracting cross-correlation 1 → 2 from 1 → 3 to approximate the cross-correlation 2 → 3,
which results in 33ms. So, the delay between the movement of the JIWY belonging to the Pico
connected to the Pi 4 and the movement of the JIWY belonging to the Pico connected to the Pi

Daniël Huiskes University of Twente

CHAPTER 5. TESTING 59

5 is at most 33 ms. The cross-correlation is only determined for the Picos, because the meas-
urements using the Pico 2s have deviations caused by mechanical errors of the JIWYs, which
makes the cross-correlation method unsuitable for these measurements.

Table 5.6: Cross-correlation

Pan (lag in ms) Tilt (lag in ms)
1 → 2 66 100
2 → 3 0 0
1 → 3 99 133

JIWY Pico Pi 4

JIWY Pico Pi 5

1

2

3
Monitoring node

Setpoint node

Figure 5.38: Situation 3 simplified

This test demonstrates that each node using an EPG-generated project can function as an in-
dependent component within the ROS 2 system, capable of being controlled by another node,
while also controlling other nodes, enhancing the system’s flexibility.

5.3.4 Conclusion

The conducted tests demonstrate the effectiveness of a distributed system using EPG-
generated projects deployed on EPG-targets, which function as ROS 2 nodes, in achieving
stable motion tracking, real-time synchronisation, and teleoperation. The results indicate that
network delays are small, with round-trip time measurements demonstrating consistent com-
munication performance using bare-metal and FreeRTOS EPG-targets. The motion tracking
tests confirm that the system can reliably coordinate multiple robots using a shared motion
profile. The teleoperation tests established that the system supports real-time motion replic-
ation with low-latency communication, enabling robots to mirror movements synchronously
without significant delays.

5.4 Test compatibility with a different mechatronic system

5.4.1 Introduction

In the previous sections all tests are executed using the JIWY robot. One of the requirements
of this thesis is ‘There should be compatibility with different mechatronic systems.’, which is
investigated by testing the EPG compatibility with the RELbot, a differential-drive robot shown
in Figure 5.39. The RELbot is intensively used in assignments of courses of the MSc Robotics
programme.

Figure 5.39: RELbot plant

Based on a 20-sim model of the RELbot an EPG-project is generated, which is made operational
for the RELbot within a single day to demonstrate the flexibility of the EPG and explore what
functionality could be achieved within this limited timeframe.

Robotics and Mechatronics Daniël Huiskes

60 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

As this robot has not been previously used, this represents a complete walkthrough of the EPG.
The EPG-project is flashed on a Raspberry Pi Pico 2, which controls the RELbot, demonstrating
the EPG as a software tool for rapid prototyping. The aim is not to evaluate performance, but
to validate the EPG’s compatibility with another mechatronic system.
In addition to the three networking situations in Section 5.3, two additional distributed net-
working situations are discussed that were achieved within the timeframe. A motion profile
situation in which three RELbots are synchronously steered by a common motion profile and
a teleoperation situation where two RELbots are directly steered by another RELbot.

5.4.2 Situation 4: Motion profile tracking with shared motion profile

A diagram of situation 4 is shown in Figure 5.40. The setup includes two Pis, a Pi 4 and a Pi 5,
connected through an Ethernet switch, with both running ROS 2 Jazzy. The Pi 5 is connected
to a Pico 2, which communicates via a serial USB 2.0 connection using micro-ROS XRCE-DDS.
The Pi 4 is connected to two Pico 2s. The Pico 2s are connected to RELbot robots, enabling
distributed control and coordination of the robots through ROS 2 and micro-ROS. All Pico 2s
are flashed with an EPG-generated project.
In this situation the Pi 5 sends three identical motion profiles to all connected Pico 2s, causing
the RELbot robots to perform the same movements simultaneously. This test is conducted to
investigate the system’s capability to synchronise multiple robots through distributed control.
The Setpoints node on the Pi 5 publishes the setpoints with a time interval of 33 ms, which
mimics the setpoint generation time interval of the RELbot webcam. All communication hap-
pens with best-effort QoS. Since all Pico 2s are nodes, together with the Setpoints node, the
ROS 2 system has 4 nodes in total.

Raspberry Pi 4
Pico 2

Pico 2

ROS2
Ethernet
switch

En
c

PW
M

En
c

PW
M

RELbot plant 3

RELbot plant 2

micro-ROS
agent

ROS2

Raspberry Pi 5

Pico 2
/left_subscriber

/right_subscriber

Setpoints node

micro-ROS
agent

En
c

PW
M

RELbot plant 1

Figure 5.40: Situation 4 - Motion profile tracking with shared motion profile

5.4.3 Situation 5: Mirrored robots by teleoperation

This situation uses almost the same setup as in situation 4. The difference is however that the
setpoints are not from the Setpoints node, but from the RELbot with Pico 2 connected to Pi 5.
The PWM signals have been disabled, leaving only the encoders functional. The encoder data
is provided as setpoints to the RELbots with Pico 2s connected to the Pi 4. This setup is a 3 node
ROS 2 system, where each node is present on a Pico 2. The setup is therefore an example of a
Pico 2 node steering other Pico 2s.

Daniël Huiskes University of Twente

CHAPTER 5. TESTING 61

Raspberry Pi 4
Pico 2

Pico 2

ROS2
Ethernet
switchROS2

Raspberry Pi 5

En
c

Pico 2

En
c

PW
M

En
c

PW
M

RELbot plant 3

RELbot plant 2

RELbot plant 1

micro-ROS
agent

micro-ROS
agent

Figure 5.41: Situation 5 - Mirrored robots by teleoperation

5.4.4 Results and discussion situation 4 and situation 5

The implementation of the RELbot is completed within a single day, demonstrating the EPG’s
flexibility of integration with another mechatronic system. The EPG-project is successfully
flashed onto multiple Pico 2s, enabling the RELbot robots to operate as intended. This con-
firms the compatibility of the EPG with another robotic platform beyond JIWY.
In Situation 4, a distributed control setup is tested, where a Pi 5 sends identical motion profiles
to all connected Pico 2s, causing the three RELbot robots to move synchronised. This is shown
in video of situation 4.
In Situation 5, a single RELbot provides encoder data as setpoints to other RELbots, demon-
strating a Pico 2 node steering other Pico 2 nodes, showing teleoperation with RELbots. This is
shown in video of situation 5.
Both situations are successfully executed, validating the compatibility of the EPG with different
mechatronic systems.

Robotics and Mechatronics Daniël Huiskes

https://cloud.ram.eemcs.utwente.nl/index.php/s/gqtWTHof7QKeyAr
https://cloud.ram.eemcs.utwente.nl/index.php/s/NLc75QxzqxzJQ5g

62 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

6 Conclusions and Recommendations

6.1 Conclusion

The first goal of this thesis is: Design a method to automate the translation from a robot-
controller model to code that uses the ROS 2 ecosystem and supports real-time control. This
goal is achieved by designing an automation method based on micro-ROS running on a mi-
crocontroller with a Raspberry Pi single-board computer using ROS 2. The EPG uses 20-sim
model-based C-Code as input and follows the EPG steps: select target, connect ports, and code
generation, which results in an EPG-generated project that, when compiled, can be flashed
onto a microcontroller, ensuring seamless deployment and real-time control.
The second goal is: Design and implement a software tool based on the automation method.
This goal is achieved by implementing the automation method in an EPG software tool with a
GUI that guides users through the EPG steps. The EPG has been extensively used for generating
EPG projects for numerous tests, thereby providing a validation of its functionality.
The third goal is: Test the performance of code, generated by the software tool, with a robot.
This goal is achieved by testing the EPG on six target configurations on the Raspberry Pi Pico,
Raspberry Pi Pico 2, and STM32 Nucleo-H743ZI. Tests determine the performance of micro-
ROS communication using a ping-pong round-trip message passing application. Configura-
tions are deployed on the JIWY robot, to assess communication, control loop performance,
and motion tracking behaviour in both simulation and real deployment. Overall, FreeRTOS on
the Pico and Pico 2 are the EPG-targets that fully meet the 1 ms firm real-time control loop and
33 ms soft real-time communication requirements.
The fourth goal is: Test the performance and stability of a distributed network with multiple
robots using code generated by the software tool. This goal is achieved by testing the perform-
ance and stability of a distributed ROS 2 network incorporating four JIWY robots, controlled
by EPG-targets, as ROS 2 nodes. The conducted tests demonstrate the effectiveness of a dis-
tributed system using EPG-generated projects deployed on EPG-targets, in achieving stable
motion tracking, real-time synchronisation, and teleoperation.
An EPG-target implementation is also tested on three RELbot robots, performing motion pro-
file tracking and teleoperation, with the setup developed through rapid prototyping in one day.
All thesis requirements to achieve the goals are verified, as summarised in Table 6.1. The re-
quirements in the table include a hyperlink to the corresponding verification.

Table 6.1: Verification of requirements

Requirement Verified
The EPG-generated project must use the ROS 2 ecosystem. ✓

The EPG-generated project must support a robotic setup
that uses a Raspberry Pi single-board computer.

✓

20-sim model-generated code of embedded control software
must be directly implementable on mechatronic systems.

✓

The EPG-generated project must have real-time capabilities. ✓

There should be compatibility with different mechatronic systems. ✓

Support for networking between robotic components should be implemented. ✓

There should be support for double-precision floating-point calculations. ✓

Minimal user input should be required. ✓

The EPG should have good maintainability. ✓

There should be support for the use of software components. ✓

The EPG and EPG-generated project could use common programming languages. ✓

Daniël Huiskes University of Twente

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 63

The main goal of this thesis is to develop an MDD software tool to automate the translation
from a robot-controller model to code for an embedded device, enabling both real-time con-
trol of a mechatronic system and integration within the ROS 2 ecosystem for networking. In
conclusion, the main goal is achieved by the EPG, which enables seamless integration of robots
within the ROS 2 ecosystem by deploying EPG-generated projects on EPG-targets that control
the robots. These EPG-targets function as ROS 2 nodes, abstracting system complexity while
ensuring soft real-time communication (33 ms) using micro-ROS, and firm real-time control
loop management (1 ms) using 20-sim model-based control software.

6.2 Recommendations

Testing the EPG for improvements

To further evaluate the usability of the EPG, it is recommended that students test it with vari-
ous robot platforms in different operational scenarios. This can help identify potential limit-
ations and opportunities for optimisation. Based on the results, improvements that enhance
the EPG’s functionality can be implemented.

Test the EPG on a distributed system with inhomogeneous robots

Test the EPG in a distributed scenario involving multiple inhomogeneous robots to evaluate
its adaptability and robustness in real-world scenarios. For example, the Production Cell avail-
able in the RaM laboratory. The Production Cell is a setup that simulates a plastic injection
moulding machine. It has six automated units that transport blocks.

Investigate control loop jitter spikes in bare-metal implementations

The Pico and Pico 2 bare-metal implementations do not meet the 33 ms soft real-time require-
ment, but offer strong firm real-time performance with low jitter for 1000 ms and 100 ms micro-
ROS communication time intervals.
Tests with the bare-metal Raspberry Pi Pico and Raspberry Pi Pico 2 implementation showed
spikes in the control loop times with low micro-ROS communication time intervals.
The suspected cause is a problem in the way the Raspberry Pi SDK repeated interrupt timer is
implemented in the SDK. The cause of these outliers under high loads could be investigated in
future research.

Robotics and Mechatronics Daniël Huiskes

64 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

A EPG user guide

This chapter provides instructions on how the EPG can be used. The EPG is a Python
package that enables a rapid prototyping process from modelling and simulation in 20-sim
to direct target deployment for a networked real-time mechatronic setup with full support
for micro-ROS and ROS2. The project directory can by found at: https://git.ram.
eemcs.utwente.nl/huiskesdv/embedded_project_generator, which includes
README.md files with instructions for setting up the EPG and using the different targets. This
appendix provides an overview of those instructions.
This package provides an architecture to efficiently generate embedded code projects target-
ting the Raspberry Pi Pico (bare-metal, FreeRTOS and Zephyr), Raspberry Pi Pico 2 (bare-metal,
FreeRTOS) and Nucleo H743ZI (Zephyr). The package is designed to be easily extendable for
new targets. This user guide primarily focuses on the bare-metal and FreeRTOS targets, as they
are considered most practical. Additional instructions for using the Zephyr targets are provided
in the README.md files located in the EPG directory.

A.1 Software installation

A.1.1 Installing the EPG

These instructions have been tested on a Windows 11 machine with Python 3.12.4 installed.
The EPG Python package has no special dependencies related to this Python version and is
therefore usable with equal or higher versions of Python. For use of the EPG Python package,
Python has to be installed globally on the system or be added to the system PATH.
In order to use the EPG the entire repository has to be cloned and implemented within 20-sim.
The target is shown directly in 20-sim when the directory is cloned in the C:\Program
Files (x86)\20-sim xx\Ccode folder. Another option is to add the path of the folder
by clicking in 20-sim on "Tools ⇒ Options ⇒ Folders⇒ C-Code Folders" and adding the path
to the cloned folder. The EPG directory can be cloned by running:

git clone https://git.ram.eemcs.utwente.nl/huiskesdv/embedded_project_generator.git

After cloning the repository an "Embedded-Project generator" target is listed in the 20-sim C-
Code Generation Target List. The EPG is implemented in a Python package to avoid any path-
related issues, allowing the repository to be placed at each desired location, enabling easy in-
stallation. The EPG can be installed using pip by running the following command:

pip install -e /path/to/package

This can for example be done as follows when the terminal is opened in the directory where the
EPG was cloned:

pip install -e .\embedded_project_generator

By using the -e option, changes made to the package code are directly available without having
to re-install the package, which is convenient for developement. After following these steps the
EPG is ready for use.

Daniël Huiskes University of Twente

https://git.ram.eemcs.utwente.nl/huiskesdv/embedded_project_generator
https://git.ram.eemcs.utwente.nl/huiskesdv/embedded_project_generator
https://www.python.org/

APPENDIX A. EPG USER GUIDE 65

A.1.2 Installing micro-ROS agent on single-board computer

In order to use micro-ROS a micro-ROS agent should be installed in ROS 2. These steps have
been tested with ROS 2 Jazzy on a Raspberry Pi 4 (Ubuntu server 24.04), Raspberry Pi 5 (Ubuntu
server 24.04) and a laptop (Ubuntu 24.04 desktop). These steps assume that ROS 2 is already
installed. The build steps can be found on the following page: https://micro.ros.org/
docs/tutorials/core/first_application_linux/
Summary of the build steps:

• Source the ROS 2 installation:

source /opt/ros/$ROS_DISTRO/setup.bash

• Create a workspace and download the micro-ROS tools:

mkdir microros_ws
cd microros_ws
git clone -b $ROS_DISTRO https://github.com/micro-ROS/micro_ros_setup.git
src/micro_ros_setup

• Update dependencies using rosdep:

sudo apt update && rosdep update
rosdep install --from-paths src --ignore-src -y

• Install pip:

sudo apt-get install python3-pip

• Build micro-ROS tools and source them:

colcon build
source install/local_setup.bash

• Download micro-ROS-Agent packages

ros2 run micro_ros_setup create_agent_ws.sh

• Build step

ros2 run micro_ros_setup build_agent.sh
source install/local_setup.bash

A.1.3 Running micro-ROS agent on single-board computer

After installation the micro-ROS agent can be run with the following commands:

• First source ROS2 within the terminal:

source /opt/ros/$ROS_DISTRO/setup.bash

Robotics and Mechatronics Daniël Huiskes

 https://micro.ros.org/docs/tutorials/core/first_application_linux/
 https://micro.ros.org/docs/tutorials/core/first_application_linux/

66 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

• Within the micro_ROS workspace source local_setup.bash to source the micro-ROS
agent:

source install/local_setup.bash

• Start the micro-ROS agent (note that the baudrate specified after the -b option has no
influence on the actual data transmission speeds. The targets always operate at USB
2.0 speeds. However, this command aligns with the micro-ROS documentation. When
leaving it out default settings are used.):

ros2 run micro_ros_agent micro_ros_agent serial -b 115200 --dev /dev/ttyACM0

In this command /dev/ttyACM0 defines the USB port to which the microcontroller is connec-
ted. On most devices this is by default /dev/ttyACM0, but when the microcontroller appears
on another port this should be adjusted accordingly.

A.2 Using the EPG

A.2.1 EPG-project - generation, compilation and flashing

Generate an EPG-project from a 20-sim model (General explanation with JIWY example).

These instructions explain how the EPG can be generate an EPG-generated project for a 20-sim
model using JIWY as example. Also a demo video is available showing these steps.

• The EPG enables the translation from model-to-code. Therefore, a JIWY 20-sim model
is needed to generate code. In the embedded_project_generator folder there is a DE-
MO/JIWY folder with a JIWY.emx file. The JIWY.emx file contains a 20-sim model, which
has been tested in 20-sim 5.1. After opening the file in 20-sim the model shown in Fig-
ure A.1 is opened. The JIWY_Control part of this model is going to be used for C-Code
generation. Open the 20-sim simulator (click on the icon with a red square shown in
Figure A.2) and open C-Code Generation in the simulator (click on icon with red square
shown in Figure A.3). When the EPG is installed it is shown in the target list as Embedded-
Project Generator (as shown in Figure A.4). Select the Embedded-Project Generator in
the target list, the JIWY_control submodel and an output directory where the resulting
project should be created. Then click on OK, which opens the EPG GUI.

Figure A.1: JIWY 20-sim model

Daniël Huiskes University of Twente

https://cloud.ram.eemcs.utwente.nl/index.php/s/biaqtQodAESz3ZZ

APPENDIX A. EPG USER GUIDE 67

Figure A.2: Open 20-sim simluation window

Figure A.3: Open C-Code generation window

Figure A.4: C-Code generation window

• The EPG GUI shown in Figure A.5 shows a list with all available targets. From this list
select the desired target.

Figure A.5: Target selection EPG GUI

• After selecting the target the GUI shows all model ports along with the target ports avail-
able in the target, which is shown in Figure A.6a. Connect all the model ports to the
corresponding target ports as shown in Figure A.6b. After having connected all ports
click on Generate code. This generates an EPG-project in the previously selected output
directory.

Robotics and Mechatronics Daniël Huiskes

68 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

(a) Select target port from dropdown menu (b) All model ports connected with target ports

Figure A.6: Connect model ports with target ports by selecting target ports from EPG GUI dropdown
options

Generate an EPG-project from a RELbot 20-sim model.

Generating an EPG-project for the RELbot follows the same steps as generating an EPG-
generated project for JIWY. However, now the RELbot.emx 20-sim model in the DEMO/RELbot
folder has to be used instead of the JIWY.emx model. The RELbot 20-sim model is shown in
Figure A.7.

Figure A.7: RELbot 20-sim model

Daniël Huiskes University of Twente

APPENDIX A. EPG USER GUIDE 69

In the 20-sim C-Code Generation Target list select the Embedded-Project Generator and as
submodel select RELbot control as shown in Figure A.8

Figure A.8: C-Code generation window RELbot

The RELbot has been implemented for the EPG as an EPG target for the Raspberry Pi Pico 2
using FreeRTOS. Therefore, select the rpi_pico2_freertos_relbot.tcf file in the EPG and connect
all model ports to the target ports as shown in Figure A.9.

Robotics and Mechatronics Daniël Huiskes

70 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Figure A.9: EPG GUI RELbot

Compile and flash an EPG-generated project (bare-metal and FreeRTOS)

The EPG-generated project is a fully configured project that is ready for compilation.
These instructions are for the rpi_pico_bare_metal_jiwy.tcf, rpi_pico_freertos_jiwy.tcf,
rpi_pico2_bare_metal_jiwy.tcf, and rpi_pico2_freertos_jiwy.tcf EPG-targets.
The generated project is created such that it can be conveniently used within the Visual Studio
Code text editor. The projects are fully compatible with the free official Raspberry Pi Pico
Visual Studio Code extension. After installing and opening the extension it is possible to im-
port a project by clicking on "Import Project" as shown in Figure A.10. This opens the menu
in Figure A.11, which makes it possible to select a project and import it. Subsequently the
project can be compiled, flashed and debugged by clicking on the corresponding options in
the extension. The Visual studio code extension automatically fetches all dependencies, but
on Windows PC’s it might be needed to install GCC for compilation.
It is possible to run the project on the Pico with or without debugger. After the compilation
step a .uf2 executable is generated in the build folder that has to run on the Pico. It is now

Daniël Huiskes University of Twente

https://code.visualstudio.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=raspberry-pi.raspberry-pi-pico
https://marketplace.visualstudio.com/items?itemName=raspberry-pi.raspberry-pi-pico
https://code.visualstudio.com/docs/cpp/config-mingw

APPENDIX A. EPG USER GUIDE 71

possible to drag and drop this file on the Pico. Note that without debugger it is not possible to
use the flash project and debug project options in the VS Code extension.

• Flash without debugger:
– Hold the bootsel button on the Pico for 2 seconds while plugging in the usb cable in

your pc. The Pico will appear as a thumbdrive on your pc.
– After the compilation step a .uf2 executable is generated in the build folder that has

to run on the Pico. It is now possible to drag and drop this file on the Pico.
– The Pico project is now ready to be used!

• Flash with debugger: The advised debugger is the official Raspberry Pi Debug Probe. It
is however also possible to flash another Pico to function as a debugger by flashing the
pico with the debugprobe .uf2 or configuring pins on a Raspberry Pi 4B/5 to function as
SWD interface.

– Connect the debugger to the SWD interface of the Pico.
– Use "Flash Project (SWD)" in the VS extension to only flash the project and "Debug

project" to both flash and debug the project.

The Pico project is now ready to be used! Start the micro-ROS agent on your device and connect
the USB cable of the flashed Pico. The Pico is now a node within the ROS 2 system.

Figure A.10: VScode Pico extension

Robotics and Mechatronics Daniël Huiskes

https://www.raspberrypi.com/documentation/microcontrollers/debug-probe.html
https://github.com/raspberrypi/debugprobe/releases/tag/debugprobe-v2.0.1

72 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Figure A.11: Import EPG project

A.2.2 Updating software versions

Each EPG-generated project is configured with a CMakeLists.txt which is used to import and
configure the project in VSCode. It also contains the compile instructions of the project. This
file also automatically fetches micro-ROS code, aswell as the FreeRTOS-Kernel code for FreeR-
TOS targets, from remote repositories. The projects are now coded to always fetch micro-ROS
Jazzy and a specific version of FreeRTOS, which is the latest version at the time of writing this
thesis. The same versions are always fetched to ensure the EPG-generated projects remain
functional, even when changes are made to the remote repositories that may not directly be
compatible.
When it is desired to use newer versions of micro-ROS or FreeRTOS this can be accomplished
by looking for the FetchContent_Declare statement in the CMakeLists.txt file and update the
GIT_TAG to the desired version. By setting the GIT_tag to "main" the latest version of the re-
mote repository is automatically fetched.

A.2.3 EPG-target wiring

Connecting the Pico/Pico 2 to JIWY

All Picos follow the same wiring scheme to connect to the JIWY. The pins present on the JIWY
are shown in Figure A.12. Table A.1 shows the connections from the JIWY to the Pico/Pico 2 for
the Yaw/Pan and Table A.2 shows those connections for the Pitch/Tilt. The Pico has multiple
GNDs and both the 3V3_EN and 3V3(OUT) can be used for powering the JIWY. The 3V3_EN
pin is a pin that is by default 3.3V, but when pulled to ground disables the Pico. It can there-
fore be used as voltage source, but it is better to use 3V3(OUT). In total four 3V3 pins of JIWY
need to be connected and only two are by default available. Therefore using a breadboard is
recommended.

Daniël Huiskes University of Twente

APPENDIX A. EPG USER GUIDE 73

1 PWM DIR A 3 PWM VAL 5 ENC A 7 ENC B GND 3V3

2 PWM DIR B 4 6 8 GND 3V3

1 PWM DIR A 3 PWM VAL 5 ENC A 7 ENC B GND 3V3

2 PWM DIR B 4 6 8 GND 3V3

Pins Yaw/Pan Pins Pitch/Tilt

Figure A.12: Pins on JIWY robot

Table A.1: Connection wiring JIWY to Pico
Yaw/Pan

JIWY PIN Pico/Pico 2 GPIO pin
ENC A 10
ENC B 11
PWM VAL 2
PWM DIR A 7
PWM DIR B 8
GND GND
GND GND
3V3 3V3(OUT)
3V3 3V3(OUT)

Table A.2: Connection wiring JIWY to Pico
Pitch/Tilt

JIWY PIN Pico/Pico 2 GPIO pin
ENC A 12
ENC B 13
PWM VAL 4
PWM DIR A 5
PWM DIR B 6
GND GND
GND GND
3V3 3V3(OUT)
3V3 3V3(OUT)

Connecting Pico 2 to RELbot

The Pico 2 can directly be connected to the RELbot via the PMOD cables on the RELbot. Fig-
ure A.13 shows a schematic of the PMOD cable header layout. Table A.4 shows the connections
from RELbot PMOD P1 to the Pico 2 and Table A.3 shows the connections from RELbot PMOD
P2 to the Pico 2.

3.3V

3.3V

GND

GND

ENC BENC APWM VALPWM A

PWM B

PMOD1

3.3V

3.3V

GND

GND

ENC BENC APWM VALPWM A

PWM B

PMOD2

Figure A.13: Pins on RELbot robot

Robotics and Mechatronics Daniël Huiskes

74 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Table A.3: Connection wiring RELbot PMOD P2 to
Pico

RELbot PIN Pico/Pico 2 GPIO pin
ENC A 10
ENC B 11
PWM VAL 2
PWM DIR A 7
PWM DIR B 8
GND GND
GND GND
3V3 3V3(OUT)
3V3 3V3(OUT)

Table A.4: Connection wiring RELbot PMOD P1 to
Pico

RELbot PIN Pico/Pico 2 GPIO pin
ENC A 12
ENC B 13
PWM VAL 4
PWM DIR A 5
PWM DIR B 6
GND GND
GND GND
3V3 3V3(OUT)
3V3 3V3(OUT)

A.2.4 Use EPG-target deployments in ROS 2

JIWY EPG-target deployment

After having:

• Installed micro-ROS
• Flashed the Pico or Pico 2 with an EPG-generated project.
• Connected the JIWY to the Pico or Pico 2

JIWY can be directly controlled from ROS 2. Using micro-ROS JIWY is completely integrated in
ROS 2 as a ROS 2 node, just like other ROS 2 nodes.
First make sure that the micro-ROS agent is running on the single-board computer (i.e. Rasp-
berry Pi 4). This is done by running:

• First source ROS2 within the terminal:

source /opt/ros/$ROS_DISTRO/setup.bash

• Within the micro_ROS workspace source local_setup.bash to source the micro-ROS
agent:

source install/local_setup.bash

• Start the micro-ROS agent:

ros2 run micro_ros_agent micro_ros_agent serial -b 115200 --dev /dev/ttyACM0

Then the Pico or Pico 2 can be connected to the single-board computer via USB. The EPG-target
is automatically recognised by the micro-ROS agent and ready for use.
At the moment no EPG-target is connected the micro-ROS agent will repeatedly show "Serial
port not found". After connection the micro-ROS client (EPG-target) is initialised as shown in
Figure A.14.

Daniël Huiskes University of Twente

APPENDIX A. EPG USER GUIDE 75

Figure A.14: Establishing connection

By running "ROS 2 node list" it can be verified that the JIWY_node is now available in ROS 2.
And by subsequently running "ROS 2 topic list" all topics of JIWY_node are displayed as shown
in Figure A.15.

Figure A.15: JIWY_node and topics

JIWY has 4 topics. Two subscriber topics (/pan_subscriber and /tilt_subscriber) that can be
used to steer the pan and tilt of JIWY by providing setpoints. Setpoints are given in radians.
There are also two publisher topics (/pan_publisher and /tilt_publisher) that publish monitor-
ing data. For bare-metal targets monitoring data is published every 1000 ms and for FreeRTOS
targets every 33 ms. This is specified in the target configuration file and can be adjusted when
desired. Published data can be seen by running for example "ros2 topic echo /pan_publisher",
which will show the current pan position in radians.
The JIWY can also be directly steered from the terminal by running a topic pub command to
steer to a certain angle. For example steer the pan to 2 radians:

ros2 topic pub /pan_subscriber std_msgs/msg/Float64 "{data:"2"}"

RELbot EPG-target deployment

The RELbot target deployment follows the same steps as the JIWY target deployment. First
make sure the micro-ROS agent is running:

• First source ROS2 within the terminal:

source /opt/ros/$ROS_DISTRO/setup.bash

• Within the micro_ROS workspace source local_setup.bash to source the micro-ROS
agent:

Robotics and Mechatronics Daniël Huiskes

76 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

source install/local_setup.bash

• Start the micro-ROS agent:

ros2 run micro_ros_agent micro_ros_agent serial -b 115200 --dev /dev/ttyACM0

Then after connecting the Pico 2 USB cable to the single-board computer the "RELbot_node"
will be available in the ROS 2.
RELbot has 4 topics. Two subscriber topics (/left_subscriber and /right_subscriber) that can
be used to steer the left and right of RELbot wheel by providing setpoints. Position setpoints
are given in radians. There are also two publisher topics (/left_publisher and /right_publisher)
that publish monitoring data every 33 ms. This is specified in the target configuration file and
can be adjusted when desired.

A.3 Demos

A.3.1 Motion profiles

The motion profiles used for the networking tests in this thesis are all present in: https://
git.ram.eemcs.utwente.nl/huiskesdv/epg_demos. For both the JIWY and REL-
bot folders are present for each situation. Each folder contains a ROS 2 package that includes
the motion profile.

The repository can be cloned by running:

git clone https://git.ram.eemcs.utwente.nl/huiskesdv/epg_demos

All ROS 2 packages can be separately compiled and run using the same steps:

• First source ROS 2

source /opt/ros/$ROS_DISTRO/setup.bash

• Use colcon build for building the package

colcon build --packages-select cpp_pubsub

• Within the micro_ROS workspace source local_setup.bash to source the micro-ROS
agent:

source install/setup.bash

• Each package has a launch file that starts the package.

ros2 launch networking.launch

A.3.2 EPG target configurations

In the DEMO folder within the EPG directory there are different subfolders for each test situ-
ation. Each subfolder contains target configuration files for the EPG-targets used in the test.
The .tcf files are not present in the EPG menu by default to avoid clouding the GUI target over-
view, but they can be added to the menu by going to the target directory in the EPG and copying

Daniël Huiskes University of Twente

https://git.ram.eemcs.utwente.nl/huiskesdv/epg_demos
https://git.ram.eemcs.utwente.nl/huiskesdv/epg_demos

APPENDIX A. EPG USER GUIDE 77

the file in the right target directory. For example the "rpi_pico_freertos_jiwy_PLANT_1.tcf" file
can be used by copying it to the "/target/rpi_pico/freertos folder". After copying, the .tcf file is
automatically picked up by the EPG and shown in the GUI.
The target configuration files assume the same setups for EPG-targets as discussed in the re-
port. Therefore when for example PLANT_1 is mentioned in the target configuration file, this
represents the EPG-target used for PLANT 1 in the test. The figures of the different network
tests can be used as schematic for the setup.
When desired it it possible to manually adjust the .tcf file to use for example 4 Pico 2s. It is
advised to look at the structure of a Pico 2 .tcf file and adjust the Pico .tcf file accordingly.
Note that for the teleoperation demos the device that is used as reference device should have
its motors disabled, while the encoders stay active. For the JIWY this can be done by turning off
the power switch, which leaves the encoders enabled. For the RELbot this can be achieved by
disconnecting PWM_VAL, PWM A, and PWM B or by putting the PWM value to 0 in the EPG-
generated project.

A.3.3 ROS 2 agents

Most setups require ROS 2 agents running on the single-board computers. Often the USB ports
"/dev/ttyACM0" and "/dev/ttyACM1" are used for this. Two micro-ROS agents can be started
by running the micro-ROS agent command twice in different terminals or togehter with an &:
Agent 1:

ros2 run micro_ros_agent micro_ros_agent serial -b 115200 --dev /dev/ttyACM0

Agent 2:

ros2 run micro_ros_agent micro_ros_agent serial -b 115200 --dev /dev/ttyACM1

A.3.4 Picotool

The Raspberry Pi Pico and Raspberry Pi Pico 2 do not have a reset button. Therefore, when it
is desired to reset a Pico this can be done by unplugging the USB cable from the single-board
computer. The Picos are however also configured with the functionality to be reset over the USB
connection. This can conveniently be managed using the official Raspberry Pi Pico Picotool.
With a single Pico or Pico 2 connected this can conveniently be done by running:

sudo picotool reboot -f

This does however not work with multiple Picos connected. The Picos then need to be uniquely
addressable. This can best be done using the iSerial number of the Pico, since it stays the same
over reboots.
When the Pico is connected to the single-board computer the "lsusb -v" command can be used
to get information about the Pico as a USB device. In this information the iSerial number is
present. Using the iSerial number a Pico can be rebooted by running:

sudo picotool reboot -f --ser iSerial_number

Robotics and Mechatronics Daniël Huiskes

https://github.com/raspberrypi/picotool

78 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

B Micro-ROS communication

The micro-ROS communication on the Raspberry Pi Pico and Raspberry Pi Pico 2 is via USB.
Both devices have an integrated USB 1.1 PHY (Physical layer), handling the electrical transmis-
sion of data, and a USB 2.0 controller that manages the communication protocol. While the
USB 2.0 protocol is used for the communication, the data transfer speed is limited to USB 1.1
speeds, which are limited to a maximum of 12 Mbps Full-Speed. Similarly, the Nucleo H743ZI
also features a USB 2.0 controller with at maximum speeds of 12 Mbps.
When sending or receiving micro-ROS topic data, the data is packaged in multiple layers ac-
cording to the USB 2.0 (USB Implementers Forum, 2000) and XRCE-DDS (eProsima, 2024; Ob-
ject Management Group, 2020) standards as shown in Figure B.1. The different elements of this
package are:

• USB 2.0 layer: The communication between a micro-ROS client running on a microcon-
troller and a micro-ROS agent running on a single-board computer happens using the
USB 2.0 protocol. This protocol forms the outermost layer of the micro-ROS data packet
structure.
When sending a micro-ROS package the USB 2.0 protocol first sends a token packet to
announce a USB transaction followed by a data packet with a PID(packet identifier),
HDLC frame payload, CRC(Cyclic Redundancy Code check) field, finalised by a hand-
shake packet. The USB 2.0 protocol overhead is 7 bytes.

• HDLC frame: The payload of a USB 2.0 data packet is an HDLC frame. XRCE-DDS
uses the HDLC stream framing protocol to ensure compatibility with all general stream-
oriented transports, including those that do not support packet-based communication.
The HDLC frame starts with a flag indicating the start of the frame, followed by a source
address of the device sending the message and a remote address of the device receiving
the message. The LEN field specifies the length of the payload, which contains the XRCE-
DDS message. A CRC is used to ensure message integrity. The HDLC frame overhead is 7
bytes.

• XRCE-DDS message: The payload of the HDLC frame is the XRCE-DDS message. This
message contains the actual micro-ROS topic data that is transmitted. The message con-
sists of a header and a submessage. The header specifies metadata about the commu-
nication, while the submessage carries the actual data. The submessage ID specifies the
payload type of the submessage. A write data message is used when data is sent from a
micro-ROS client to a micro-ROS agent and a read data message is received when data is
sent from a micro-ROS agent to a micro-ROS client. Both data messages carry serialized
data that, in the tests performed in this report, consists of an 8-byte double-precision
floating-point number. The additional XRCE-DDS message overhead is 12 bytes.

By adding the overhead from USB 2.0, the HDLC frame, and the XRCE-DDS message, the total
estimated overhead for sending and receiving a double-precision floating-point topic message
is 26 bytes, resulting in a total packet size of 34 bytes. This implies that the transmission time
for a single message between a micro-ROS client and a micro-ROS agent is about 23 µs.
There is however additional protocol overhead. The different steps needed for sending a data
message are shown in Figure B.2. The figure shows the process of packaging the topic data in
the previously discussed layers. The client library first serialises the topic data into an XRCE-
DDS message, which is placed in an output stream buffer. The client library then applies the
HDLC framing on the XRCE-DDS message, after which the resulting HDLC frame is put in a
framing buffer. The framing buffer is eventually written into the device buffer, and USB 2.0
framing is applied to package the data in a USB 2.0 package. Finally, the data is transferred to

Daniël Huiskes University of Twente

APPENDIX B. MICRO-ROS COMMUNICATION 79

the micro-ROS agent via USB. Figure B.3 shows the steps of receiving data, which are similar to
the steps of sending data, but in reverse order.

3B

Handshake packet

PID

1B

Data packet

Payload

HDLC frame

CRC

2B 1B

Token packet

HDLC frame

Flag

1B

Source adress

1B

Remote
adress

1B

Len

2B

Payload

XRCE-DDS message

CRC

2B

USB 2.0

Header Submesage
XRCE DDS message

Session ID

1B

Stream ID

1B

Sequence Nr

2B

submsg ID

1B

flags

1B

submsg
length

2B

payload

write data || read data

Read data

Request ID

2B

Object ID

2B

Serialized data
8B (double-precision
floating-point data)

Request ID

2B

Write data

Object ID

2B

Serialized data
8B (double-precision
floating-point data)

Figure B.1: Micro-ROS data package

Output stream
bufferTopic XRCE-DDS messageSerialize

Send serialized message HDLC framing HDLC frame Framing buffer

Write to device buffer Device buffer USB 2.0 framing USB 2.0 package USB transfer

Sending a topic from micro-ROS client (microcontroller) to micro-ROS agent (single-board computer)

start

micro-ROS
agent

Microcontroller - send data response Single-board
computer

Figure B.2: Sending a micro-ROS topic message

Receiving a topic from micro-ROS agent (single-board computer) to micro-ROS client (microcontroller)

micro-ROS
agent

Device buffer USB 2.0 unframing USB 2.0 package USB receiveRead from device
buffer

Unframing buffer HDLC unframing Receive serialized
message

Input stream
buffer

Deserialize Topic

Microcontroller - receive data response Single-board
computer

start

Figure B.3: Receiving a micro-ROS topic message

Robotics and Mechatronics Daniël Huiskes

80 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

C Active engagement with open-source developers

Throughout this thesis, developers from various open-source projects were contacted on mul-
tiple occasions to resolve issues or contribute to solutions. This appendix provides an overview
of those interactions.

Contributing to micro-ROS Zephyr (10-1-2024 closed issue)

During this thesis Zephyr made an update to version 3.5.99, which had adjustments that made
micro-ROS incompatible with the latest version of Zephyr. The micro-ROS developers were
informed about this issue but reported back that only an old version (v3.1.0) is supported,
but are open to suggestions on how to solve the issue. Since it is desired to work with re-
cent software the issue was investigated, and a solution was created in the form of a pull re-
quest (PR). The micro-ROS developers accepted the proposed solution and it is now imple-
mented in the micro-ROS Zephyr source code. Therefore, this thesis directly contributed to the
development micro-ROS. (https://github.com/micro-ROS/micro_ros_zephyr_
module/issues/134)

Resolving Quadrature Encoder issue on Raspberry Pi Pico 2 (18-9-2024 closed issue)

On the Raspberry Pi Pico the PIO unit is used to function as a quadrature encoder. By do-
ing this the hardware on the Raspberry Pi Pico is optimally used, because no processing
time of the main processor is spent by handling quadrature encoders. The quadrature en-
coder implementation did however not function on the Raspberry Pi Pico 2. Since the Rasp-
berry Pi Pico 2 was just released nobody had yet experienced this issue and no information
could be found about it. Not solving this issue would make the Pico 2 unusable as an EPG-
target, because the alternative solution of handling quadrature encoder interrupts would dis-
turb the processor cores too much. After thoroughly investigating the issue the Raspberry
Pi development community was contacted to resolve the issue. Eventually the issue was re-
solved, which made it possible to use the Raspberry Pi Pico 2 as EPG-target in this project.
(https://github.com/raspberrypi/pico-examples/issues/550)

Using create_firmware_ws.sh to flash Nucleo F767ZI (28-3-2023 open issue)

In an early stage of this thesis it was attempted to use the create_firmware_ws.sh package to
flash a Nucleo F767ZI microcontroller, which was used for early tests, but offers no technical
advantages over the Nucleo H743ZI. This did however not work and the micro-ROS developers
recommended an alternative approach. (https://github.com/micro-ROS/micro_
ros_setup/issues/623)

Testing EPG-Target with FreeRTOS on Nucleo H743ZI (8-9-2023 open issue)

It was desired to test an EPG-target using FreeRTOS on the Nucleo H743ZI. The FreeRTOS
version was however non-functional. Therefore, this issue was reported to the micro-ROS
developers to resolve it. Multiple people have experienced the same problem and have
pinpointed in the direction of a solution, but the issue does still not appear to be fully
resolved. (https://github.com/micro-ROS/micro_ros_stm32cubemx_utils/
issues/119)

Attempt to Enable SMP on Raspberry Pi Pico in Zephyr (10-4-2024 open issue)

It was desired to use both cores of the Raspberry Pi Pico in the Zephyr implementation us-
ing SMP. This was however not supported. On 28-6-2023 another developer already opened
an issue to implement this support, but there was no solution and the discussion became

Daniël Huiskes University of Twente

https://github.com/micro-ROS/micro_ros_zephyr_module/issues/134
https://github.com/micro-ROS/micro_ros_zephyr_module/issues/134
https://github.com/raspberrypi/pico-examples/issues/550
https://github.com/micro-ROS/micro_ros_setup/issues/623
https://github.com/micro-ROS/micro_ros_setup/issues/623
https://github.com/micro-ROS/micro_ros_stm32cubemx_utils/issues/119
https://github.com/micro-ROS/micro_ros_stm32cubemx_utils/issues/119

APPENDIX C. ACTIVE ENGAGEMENT WITH OPEN-SOURCE DEVELOPERS 81

unactive. Therefore, the issue was revamped by involving several Zephyr developers. Even-
tually the outcome was that SMP is not yet implemented, because the processor of the Pico
lacks a needed monitor implementation. Therefore, this issue was not resolved. (https:
//github.com/zephyrproject-rtos/zephyr/issues/59826)

Long micro-ROS publishing times with Zephyr on Nucleo H743ZI (19-6-2024 open issue)

While using Zephyr with the Nucleo H743ZI, long micro-ROS publishing times were ex-
perienced. The issue is still open. https://github.com/micro-ROS/micro_ros_
zephyr_module/issues/140

Rebuilding micro-ROS static library for Raspberry Pi Pico (2-10-2024 open issue)

It was desired to rebuild the pre-build micro-ROS static library that is used for the Rasp-
berry Pi Pico. This would enable the functionality of some custom functions that are not
enabled by default. An example is multithreading support. Micro-ROS has a function to en-
able multi-threading support. In an initial version of the bare-metal Pico EPG-target it was
planned to manage the timing of the soft real-time and firm real-time task with the micro-
ROS timer implementation and giving priority to the firm real-time task. This would how-
ever require micro-ROS to operate on two separate cores simultaneously, which by default
corrupts memory and crashes the system. The static library builder did however not work.
Attempts on Linux, Windows, and Docker all crashed. Therefore, the micro-ROS developers
were contacted to report the issue an find a solution. (https://github.com/micro-
ROS/micro_ros_raspberrypi_pico_sdk/issues/1274)
The issue has still not been fully fixed. Eventually for this thesis it was chosen to only use the
micro-ROS timer for soft real-time communication and the rpi pico interrupt timer for the firm
real-time control loop, running micro-ROS only on a single core. This is also the preferred solu-
tion after all, as the interrupt timer of the RPI pico has strict interrupt based timing with low
overhead compared to the micro-ROS timer.

Robotics and Mechatronics Daniël Huiskes

https://github.com/zephyrproject-rtos/zephyr/issues/59826
https://github.com/zephyrproject-rtos/zephyr/issues/59826
https://github.com/micro-ROS/micro_ros_zephyr_module/issues/140
https://github.com/micro-ROS/micro_ros_zephyr_module/issues/140
https://github.com/micro-ROS/micro_ros_raspberrypi_pico_sdk/issues/1274
https://github.com/micro-ROS/micro_ros_raspberrypi_pico_sdk/issues/1274

82 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

D Literature study

This literature study appendix consists of literature on software development methodologies,
software tools and software architectures relevant for this thesis. The background information
is ordered by collecting literature that forms an answer on the following questions:

• What are the key aspects of a component-based design methodology?
• What is the state-of-the-art in robotic software architectures?
• What solutions are available for real-time robotic software?
• How can networking be applied within a robotic software architecture?

D.1 Key aspects of a component-based design methodology

D.1.1 Component-based software

Component-based software methodologies facilitate the re-use of code and aim to provide
convenient system assembly by combining several components.

According to Szyperski (2002) the definition of a software component is as follows: “A soft-
ware component is a unit of composition with contractually specified interfaces and explicit
context dependencies only. A software component can be deployed independently and is sub-
ject to composition by third parties.”. In other words this implies that a component functions
as a black box that incorporates all the functionality within the box. The box can have mul-
tiple inputs and outputs that receive a pre-defined data format. A schematic that illustrates
this description is shown in Figure D.1. The components that result from a component-based
methodology can therefore be combined just like building blocks to quickly build a software
architecture. Since the components can operate independently, they can also be conveniently
re-used in different software structures.

Inputs Outputs

Component

Functionality

Figure D.1: Schematic of a component - This figure shows a general high-level general description of
a component that can have multiple inputs and outputs. Within the component there is functionality
that can operate stand-alone.

Brugali and Scandurra (2009) state that “a robot–software architecture describes the decom-
position of the robot control system into a collection of software components, the encapsula-
tion of functionality and control activities into components, and the flow of data and control
information among components.”. The advantage of describing a robot-software architecture
in this component-based way is that there is a convenient way in which the functional and non-
functional requirements of the robotic system can be realized by mapping the requirements on
parts of the component. The functional requirements of the robotic system can for example be
implemented within the functionality of the component. Non-functional requirements, such
as how communication within the system should take place can be implemented by specifying
the input and output data formats of the component.

Daniël Huiskes University of Twente

APPENDIX D. LITERATURE STUDY 83

D.2 State-of-the-art in robotic software architectures

D.2.1 Xenomai/EVL

The purpose of Xenomai is to add real-time functionalities to non-real-time operating systems,
such as Linux. Linux itself does not have a real-time capable kernel. As a consequence real-
time performance of applications is not guaranteed. Xenomai/EVL is a companion core that
can be used in combination with a Linux kernel forming a dual kernel architecture. (EVL Pro-
ject, 2023). It becomes more common to use devices, such as a Raspberry Pi 4B, within robotic
projects. Often these devices make use of a Linux based operating system. Xenomai makes it
therefore possible to also execute real-time tasks on those devices. It is possible to communic-
ate with the real-time kernel from the Linux kernel by using the Dovetail interface. Figure D.3
shows how the different layers stack on each other.

Communication between the EVL core and the general kernel is possible by means of a cross-
buffer as shown in Figure D.3. This buffer connects the in-band and out-of-band contexts with
each other and makes it possible to use the general read() and write() functions on the inbound
side and similar oob_write() and oob_read() functions on the outbound side.

Hardware

Dovetail interface

General purpose
kernel Real-Time core

Figure D.2: Xenomai Linux kernel

oob_write() Real-Time
coreread() oob_read()

Cross-buffer

write()General
purpose
kernel

Figure D.3: Cross-buffer

D.2.2 ROS 2

The Robot Operating System (ROS) is a set of software libraries and tools that can be used to
build robot applications. The latest version of ROS is ROS 2, which has improvements in Com-
munication Middleware, real-time support and scalability compared to its predecessor.

Some of the key ROS 2 design principles are distribution, abstraction, asynchrony, and modu-
larity (Macenski et al., 2022).

ROS is not an actual operating system, but an abstraction layer that runs on top of a host oper-
ating system and has a set of tools and services for building robotic applications.

ROS 2 is based on the Data Distribution Service (DDS). This is an open standard for commu-
nication and enables security, embedded and realtime support, multi-robot communication,
and operations in non-ideal networking environments (Macenski et al., 2022).

ROS 2 has different communication methods that can be used. These communication patterns
are shown in Figure D.4. The communication patterns are topics, services and actions. These
communication patterns can be used within the context of a node. The node is an entity that
can be created within ROS to perform certain tasks and communicate with other nodes.

Robotics and Mechatronics Daniël Huiskes

84 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Figure D.4: ROS 2 node interfaces: topics, services, and actions.(Macenski et al., 2022)

An overview of the client library API stack is shown in Figure D.5. The client library forms an
abstraction layer to make use of the different ROS 2 functionality. Therefore, to have access to
the communication API’s the client library can be used. There are different ros client libraries
(rcl) for different operating systems that all depend on a rcl that is written in C. Also there is a
middleware abstraction layer rmw (ROS Middleware) that provides the communication inter-
faces.

Figure D.5: ROS 2 Client Library API Stack. (Macenski et al., 2022)

Although ROS 2 claims to have real-time support, achieving real-time performance requires
the use of additional real-time middleware. While ROS 2 provides the necessary infrastructure
and features for real-time communication, the integration of dedicated real-time middleware
is essential to fully achieve deterministic and predictable behaviour in real-time applications.

Daniël Huiskes University of Twente

APPENDIX D. LITERATURE STUDY 85

D.2.3 micro-ROS

Micro-ROS is a real-time framework designed to bring functionalities of the Robot Operating
System (ROS) to microcontrollers (Belsare et al., 2023). ROS is often used on more powerful
hardware such as the Raspberry Pi. By using micro-ROS it is therefore possible to extend the
existing ROS framework to microcontrollers.

The most important aspects of micro-ROS are :

• Microcontroller-optimized client API supporting all major ROS concepts
• Extremely resource-constrained but flexible middleware
• Seamless integration with ROS 2
• Multi-RTOS support

Micro-ROS makes use of DDS-XRCE protocol, which stands for DDS For Extremely Resource
Constrained Environments. This resource constraint variant of the DDS protocol can directly
be used within the ROS 2 architecture and seamlessly integrates with DDS.

Micro-ROS can be used in combination with a real-time Operating System (RTOS), such a
FreeRTOS, or bare-metal. The advantage of using micro-ROS in combination with a RTOS is
that different scheduling algorithms can be used to obtain real-time performance.

Micro-ROS follows the same node-based architecture of ROS 2 that makes use of message
passing between the nodes by subscribing and publishing on topics.

The architecture overview of micro-ROS is shown in Figure D.6. This figure shows that micro-
ROS runs on a microcontroller on top of a RTOS. The Micro XRCE-DDS client integrated in
micro-ROS can connect to a ROS 2 agent that runs on another device such as a Raspberry Pi.
By doing this, a connection can be established over which messages can be sent between nodes.

The micro-ROS agent connects micro-ROS nodes (i.e. components) on MCUs seamlessly with
standard ROS 2 systems. This allows accessing micro-ROS nodes with the known ROS 2 tools
and APIs just as normal ROS nodes.

Figure D.6: Architecture of the micro-ROS stack (Belsare et al., 2023)

Robotics and Mechatronics Daniël Huiskes

86 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

D.2.4 20-sim

20-sim is a modelling and simulation software package for mechatronic systems (Controllab,
2025). It can be used to create graphic models. The behaviour of the dynamic systems rep-
resented by these models can be analyzed, and control systems can be designed. Using the
C-Code generation function in 20-sim models it is possible to export 20-sim models to C or
C++ code such that it can be run on microcontrollers or microprocessor devices.

D.2.5 Development of an Onboard Robotic Platform for Embedded Programming Educa-
tion

In the research of Lee and Yi (2021) a robotic platform is proposed that can be used to teach
embedded programming. This platform makes use of STM32CubeIDE, OpenCV, and MATLAB
for the development environment. A STM32F micro-controller in combination with a Rasp-
berry Pi was used as the cyber part of the mechatronic system.
In Figure D.7 the communication architecture of the robotic platform is shown. The setup
shows a connection between the microcontroller and the Raspberry Pi. The robotic platform
makes use of a vision application, which is executed on the Raspberry Pi. Subsequently, in-
formation from the vision system is communicated to the microcontroller using serial com-
munication. The microcontroller is in control of the physical system and controls the different
motors and reads the sensors.
The platform offers both soft real-time programming for basic level programming courses and
firm real-time programming for advanced level courses.

Figure D.7: Entire communication architecture of the developed platform. (Lee and Yi, 2021)

D.2.6 A Model Based Engineering Tool for ROS Component Compositioning, Configuration
and Generation of Deployment Information

The ReApp project is a workbench created by Wenger et al. (2016). The workbench is based on
ROS. The central part of this framework is the skill and solution modelling tool. This tool can
be used for model-based design of robot applications composed of reusable components. The
entire workbench consists of five parts:

• Component Modelling Tool (CMT)Software- and Hardware-Access-Components are
created using the CMT

• Skill and Solution Modelling Tool (SSMT) The SSMT is used to assemble applications.
These applications are obtained from a repository where they are stored. The SSMT

Daniël Huiskes University of Twente

APPENDIX D. LITERATURE STUDY 87

forms an abstraction layer for ROS, such that familiarity with ROS is not needed. It also
has a graphical tool that can be used for the composition and configuration ROS nodes.

• Integration Platform & Development Environment (IPDE) The IPDE contains the ex-
ecutables needed to run the ReApp App

• Cloud-based semantic repository The cloud store is used to share work created by the
SSMT.

Figure D.8 shows the interconnection of the different components that together form the
framework.

Figure D.8: The Skill and Solution Modelling Tool (SSMT) and its connections to the Component Mod-
elling Tool (CMT), the ReApp Store and the Integration Platform & Development Environment (IPDE)
(Wenger et al., 2016)

ReApp is an interesting framework. The framework is designed specifically for ROS 1. ReApp
makes use of a graphical editor for the SSMT tool. Such a graphical editor can be convenient
to connect different components. The framework currently creates locations were code can be
implemented at specific locations, but is not able to create code itself. Therefore, an additional
tool such as 20-sim must be used to create models.

The example discussed in the framework was directed towards a robot arm that can be used by
car manufacturer BMW, one of the sponsors of this project. The project does not seem to be
active.

D.2.7 Microcontroller for 20-sim-generated C code

The work of Visser (2020) investigates the Arduino Due as a bare-metal platform for C-Code
generated with 20-sim. The Arduino Due board makes use of an ARM-M3 microcontroller.
In this work it was found that the microcontroller could run a PID controller making use of
a 10th-order low-pass filter at a loop frequency of 100 Hz and a maximum combined latency
of 0.6ms. The limiting factor for the sampling frequency is that there is no double-precision
floating-point unit present on the microcontroller.
Because of that, the floating-point calculations have to be performed in software, which re-
duces performance. The software framework that is used for this implementation is shown in
Figure D.9.
This research shows interesting results for implementing 20-sim models on a relatively low-
power microcontroller. Making use of more powerful hardware and better optimized software
protocols might significantly improve the results.

Robotics and Mechatronics Daniël Huiskes

88 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Figure D.9: Overview of functions the software framework has to perform. (Visser, 2020)

D.3 Real-time robotic software

D.3.1 Robot software framework using Xenomai and ROS 2

The research conducted by Meijer (2021) considers creating a real-time robot software frame-
work that makes use of Xenomai and ROS 2. The goal of the thesis was to develop a framework
that integrates real-time tasks and ROS 2 to control physical robots. Therefore, this thesis had
similar objectives as discussed in this project plan.

When deciding on what hardware to use a decision had to be made between a dual device and
single device. It was argued that the use of a microcontroller such as the ESP32 or an Arduino
would only be possible in combination with a companion device, because of the limited pro-
cessing power. From a weighted decision table it was eventually concluded that making use
of the Raspberry Pi would be the best option. The consequence is however that the choice of
software is limited when real-time operation is desired. There has been chosen to make use
of Xenomai. In this research Xenomai 3 was used, which makes use of the XDDP protocol for
cross-kernel connection for communication between a non-real-time and a real-time task.

The layout that follows from this combination of choices is shown in Figure D.10. This figure
shows that there is a separation between real-time and non-real-time tasks by the Linux ker-
nel and the regular Xenomai kernel. In practice this does not only have to be a separation in
software, but it is also possible to make this a separation in hardware, which is shown by the
example layout in Figure D.11. In this example layout the real-time tasks run on 2 separate
cores of the Raspberry Pi quad-core processing unit. The non-real-time tasks run on the other
2 cores.

Figure D.10: Hardware and software
layout. (Meijer, 2021)

Figure D.11: Example setup of the complete framework architec-
ture. (Meijer, 2021)

In this research the choice has been made to implement the framework functionality in a set of
C++ classes.

Daniël Huiskes University of Twente

APPENDIX D. LITERATURE STUDY 89

The functionality of the framework was at the time of this research on a base level. It was pos-
sible to do some in software experiments, but the framework is not mature enough yet to be
used with a real plant. Also, an additional device in the form of an FPGA is used to be able to
communicate from the Raspberry Pi with a setup making it effectively a dual device setup after
all. The FPGA produces PWM signals and reads encoders. Communication between the FPGA
and Raspberry Pi takes place using the SPI protocol.

The framework has been applied in another thesis by In ’t Veld (2023) to control a production
cell. In this setup the six different production cell units are mapped to three Raspberry Pi 4Bs.
Each Raspberry Pi controls two units. Communication between the boards takes place using
ROS 2.

D.3.2 Embedded software architecture for a mobile education robot with Real-Time con-
trol

The work of Vinkenvleugel (2022) investigates the use of a Raspberry Pi 4 and an icoBoard for a
mobile education robot. This work follows partly from the work of Figure D.11 and also makes
use of Xenomai. In total there were three bachelor student projects involved in working on
elements of the mobile education robot, but this projects main focus is the embedded software
architecture, which is relevant for this thesis.

The objective of this thesis is “to design an embedded software architecture for an education
robot that is expandable in both software and hardware features, provides open access to the
complete software stack and utilizes a Raspberry Pi 4 and an icoBoard.”(Vinkenvleugel, 2022).

There has been chosen to use Xenomai, because it has a lower latency compared to alternat-
ives such as PREEMPT-RT and there is already an SPI driver that can be used with Xenomai
to communicate with the icoBoard. The indicated disadvantages for Xenomai are however
that Xenomai does not have good support for different hardware platforms and a custom ker-
nel build is required for the Raspberry Pi 4. Also, a concern with using Xenomai was that
drivers needed to be rewritten to make use of the real-time capabilities of the kernel. Beside
this Xenomai, code has to be adapted to make use of POSIX like functions that are created by
Xenomai to schedule tasks in a high-priority execution stage. This was not seen as a disadvant-
age, since POSIX functions are well documented, so their use is known. It does however imply
that code has to be adjusted using these functions.

A potential bottleneck for performance within this work seemed to be the communication
between the Raspberry Pi and the icoBoard making use of the SPI protocol. Vinkenvleugel
(2022) and Raoudi (2023) conducted an investigation that resulted in valuable insights into the
factors that affect communication latency and how this latency can be optimized.

D.3.3 20-sim Template for Raspberry Pi 3

It is possible to use 20-sim-4C for implementation of 20-sim code on a target device. An imple-
mentation of 20-sim-4C targeted for the Raspberry Pi 3 has been developed by Dokter (2016).
It was desired to make use of Xenomai in order to have real-time guarantees, but implement-
ing this was not successful. Xenomai was only supported by distinct Linux kernels. Therefore,
a match had to be found between a Linux kernel that is both supported by Xenomai and the
Raspberry Pi. The problem was however that for the version were there was a match no Linux
headers were available for the kernel version. Beside that Xenomai missed functions that were
needed to run models on Xenomai. Because of these complications it has been concluded that
using Xenomai is not feasible.

Experiments showed that it is possible to keep up with a 1 kHz sample rate for simple control
applications developed in 20-sim. The Raspberry Pi has a powerful processor and therefore also
performs good without having real-time guarantees. Therefore, the platform can be used for a

Robotics and Mechatronics Daniël Huiskes

90 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

lot of control applications that do not have Hard real-time guarantees. There were still some
problems with the 20-sim-4C implementation of the Raspberry Pi such as a communication
problem with logging. This work does however clearly show the power of the Raspberry Pi for
running control applications.

D.3.4 OROCOS

The work of Bruyninckx (2002) describes the design of the OROCOS framework. OROCOS
(Open Robot Control Software) is an open-source software framework designed for real-time
control of robotic systems. It provides a modular and flexible platform for developing control
algorithms and managing complex robotic systems. The OROCOS framework has grown over
the years and now consists of a set of portable C++ libraries for advanced machine and robot
control. The Ocoros real-time Toolkit (RTT) and the Orocos Component Library (OCL)are the
most important parts of this framework.

The idea behind the framework is that it can be used as an application generating code base
from which robotic systems can be constructed. The code base consists of components that
can be used for this construction.

The RTT is created for the implementation of (realtime and non-realtime) control systems (So-
etens, 2024). The general principle behind the RTT is shown in Figure D.12. From the real-time
toolkit different components can be build. The control components that follow from this can
be used to build control applications that can run on common-of-the-shelf hardware.

The OROCOS components are built upon the real-time Toolkit Application Stack as shown in
Figure D.13. The different elements of the RTT in combination with native OS libraries can be
used to build components.

The OCL contains the necessary components to start an application and interact with it at run-
time.

Initially the OROCOS framework only made use of the CORBA standard for communication
functionality. However, since the popularity of the ROS framework increased also functionality
for ROS has been introduces into the OROCOS framework.

To make use of the real-time capabilities of the OROCOS framework it is important that the
underlying operating system makes use of a real-time extension such as Xenomai to guarantee
Real-Time performance.

The idea behind the OROCOS framework is interesting, but the framework has multiple de-
pendencies on other frameworks. Therefore, OROCOS is not up-to-date with the latest devel-
opments. For example the latest version of Xenomai that is supported by the OROCOS frame-
work is Xenomai 3.

This implies that if it is desired to use OROCOS with Xenomai the implementation would be
dependent on an old version of Xenomai that is no longer supported. The OROCOS framework
is still in use by different parties, but the development of the framework does not seem to be
active at the moment.

Daniël Huiskes University of Twente

APPENDIX D. LITERATURE STUDY 91

Figure D.12: Real Time Toolkit (Soetens,
2024)

Figure D.13: real-time toolkit application stack. (So-
etens, 2024)

D.4 Networking within a robotic software architectures

D.4.1 Zoro: A robotic middleware combining high performance and high reliability

Zoro is a robotic middleware proposed by Liu et al. (2022). The aim of Zoro is to provide a
data transmission method that has both high performance and high reliability. The proposed
method brings an improvement of up to 41% in communication latency compared to sim-
ilar middleware such as ROS 2. A combination of shared memory for performance improve-
ment and socket-based communication for improved reliability is used for the communication
mechanism. Robotic middleware often makes use of socket communication, because it is re-
liable. However, there is a linear relation between an increase in message size and communic-
ation latency. Shared memory usage can therefore be used to improve the performance, since
by using shared memory the data can be accessed from the same location by multiple users.
Making use of shared memory can however often lead to safety problems. Some examples of
these problems are:

• Crash Safety Issue - A crash of a process that holds a read-write lock can have as a result
that the shared memory is destroyed unexpectedly. This can result in other processes
being blocked that make use of the same shared memory.

• Data Reliability Issue - It is not ensured that all processes that make use of the shared
data can read the data before it is replaced.

• Memory Protection Issue - Shared memory can be directly accessed and modified by
multiple processes, which can lead to invalid memory access and data corruption.

Service discovery is important for high performance and high reliability. ROS 2 makes use of
a decentralized method. This implies that all nodes receive the messages, which is good for
safety. When there is a crash somewhere in the system this does not directly result in a total
system crash. The disadvantage is however that at the moment that the number of nodes that
send messages increases also the number of resources that is used within the system increases
rapidly.

To solve the previously mentioned problems socket based communication control algorithm
is proposed. The socket is used to sent a control message with for example the data location,
while shared memory is used to transport the real data. In this method it is assumed that the
control message has a smaller data size then the real data. When this is not the case the socket
based communication can still be used to transport the real data.

Robotics and Mechatronics Daniël Huiskes

92 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

A weak centralized service discovery mechanism is proposed. This is a hybrid between cent-
ralized and decentralized approaches. A centralized node stores information of the nodes, but
the node lifecycle is managed by the nodes themselves.

Figure D.14 shows an overview of how Zoro can be used. In this figure there is a publisher and a
subscriber. Both are connected to a network where a notifier of the publisher sends the location
of the data to the notifier of a subscriber. The shared memory is used by the publisher to store
the data and by the subscriber to read the data.

Figure D.14: The overview of Zoro. (Liu et al., 2022)

The work of Zoro tries to create the best of both worlds. It does this by combining shared
memory with sockets, but also by combining aspects of the centralized and decentralized ap-
proaches. It is interesting that the methods are decoupled just enough to get rid of disadvant-
ages. An example is that in cases that a small amount of data is send there is chosen for a
socket approach instead of using the shared memory. The work is extensive, and the developers
have thoroughly thought about different problems that might hinder performance and reliab-
ility. There is a trade-off between hardware and performance. More hardware (in this case
the shared memory) is used in order to achieve the lower latency’s and less processor usage.
Since shared memory is used this approach might be less effective in multi-machine use cases
and distributed systems since there is no directly shared memory between those distributed
systems.

D.4.2 Distributed Robotic Systems

The increasing popularity of cloud services and IoT has also had its influence on robotics. The
work of Zhang et al. (2022) shows a comprehensive overview of the latest developments within
the field of distributed robotic systems. These technologies enable for direct communication
with each other using a communication protocol such as DDS, but also for containerized ro-
botic applications to run on the edge or in the cloud. For these applications to be relevant it
is important to have a tight integration with other popular robotic frameworks such as ROS.
Common way in which distribution can take place are as follows:

• Using the DDS protocol middleware it is possible for different devices that run ROS to
communicate with each other.

Daniël Huiskes University of Twente

APPENDIX D. LITERATURE STUDY 93

• Containers create an environment where applications, such as ROS, can run with all re-
quired dependencies. Containers make use of a lightweight form of virtualization. Con-
tainers can be build with a tool like Docker and orchestrated with tools such as Kuber-
netes.

• Computational offloading can be used to perform remote teleoperation of robots, run
a part of different computations in the cloud or do both of these tasks. Important for
offloading orchestration are real-time latency and bandwidth.
Edge computing solutions are gaining popularity as a means to reduce communication
latency, in addition to the widespread popularity of cloud computing.
By using computational offloading it is for example possible to create ROS 2 nodes on the
cloud or the edge and perform computational extensive tasks in those nodes. By doing
this it is still possible to make use of the ROS ecosystem for communication, but system
resources can be extended as desired.

Vulcanexus is an example of a tool set that can be used as an extension to the ROS 2 envir-
onment to add additional convenient features (Vulcanexus, 2023). Examples of these features
are

• ROS 2 monitor : graphical desktop application to monitor ROS 2 communications
• ROS 2 Router: application that enables the connection of distributed ROS 2 environ-

ments.
• Webots: Robot simulator

A docker image of Vulcanexus is available that contains the Vulcanexus tool with all the de-
pendencies needed to run Vulcanexus.

It is interesting to note that also a docker image of ROS 2 is available. Therefore, it is possible
to conveniently run ROS 2 in a distributed way. When a device has a docker installation it is
possible to run the application on that device and further extend the ROS 2 environment over
a networked system.

D.4.3 Designing a communication component

The work of Kempenaar (2014) is involved with designing a communication component that
can be used for connecting different computing platforms. Algorithms that run on the different
platforms should be able to exchange data using this communication component. The com-
munication is realized by means of a communication server running on a computing platform.
Using Inter Process Communication the server can interact with an application. Communica-
tion between Communication Servers takes place over Ethernet. A schematic overview of this
system is shown in Figure D.15. The communication component was implemented in LUNA
(Bezemer, Wilterdink and Broenink, 2011) and XML was used for configuration information.

Robotics and Mechatronics Daniël Huiskes

94 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Figure D.15: Abstract system overview, for the Communication Component. (Kempenaar, 2014)

The idea behind the communication component is interesting. It also has some resemblance
with the principle behind micro-ROS to create communication between different devices by
means of a server that handles communication. In the report it was however also mentioned
that it is difficult to use the Communication Component together with other frameworks and
to get a tool-chain up and running. It is suggested that interfaces should be created within
the OROCOS framework or for 20-sim. By doing this the component should become more
flexible to be used within other frameworks. Since the implementation of the Communication
Component is custom work it does not have support of a large developer community, which
makes integration into different components and development more difficult. It is the sole
responsibility of the maintainers.

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 95

E Ping-pong measurements

E.1 Data distribution round-trip times

Figure E.1 shows boxplots of the different targets. In this figure, only targets with outliers lower
than 25ms have been plotted for readability. Figure E.2 shows a boxplot of all targets.

Figure E.1: Latency boxplots per target

Comparing the different boxplots in Figure E.1 shows that most targets have outliers of at least
10 ms. The outliers are concentrated on the right side of the boxplot, indicating a right skew
in the data distribution. The bare-metal implementations using the Raspberry Pi Pico 5 show
comparatively the least amount of outliers.

Robotics and Mechatronics Daniël Huiskes

96 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Figure E.2: Latency boxplots complete

Table E.1 shows a table with statistics of the round-trip communication within the ping-pong
setup. The table presents the mean, standard deviation, percentual deviation, minimum, max-
imum, and median. The percentual deviation represents the percentage of difference in the
mean round-trip time of all targets compared to the target with the lowest round-trip time. In
this case, the baseline is the bare-metal Pico 2 with an RPi5 using a best-effort publisher and
subscriber.

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 97

Table E.1: Round-trip time statistics

Target Mean (ms) Standard Deviation (ms) Percentual Deviation (%) Minimum(ms) Maximum (ms) Median (ms)

bare-metal Pico RPi4 best/best 2.67 0.26 39.48 2.17 16.19 2.60
bare-metal Pico RPi4 best/default 2.75 0.25 43.56 2.27 14.08 2.69
bare-metal Pico RPi4 default/best 3.37 0.32 75.86 2.70 13.08 3.32
bare-metal Pico RPi4 default/default 3.46 0.30 80.52 2.75 15.51 3.42
bare-metal Pico RPi5 best/best 2.91 0.07 52.04 2.39 10.79 2.91
bare-metal Pico RPi5 best/default 3.57 0.47 86.40 2.56 12.83 3.87
bare-metal Pico RPi5 default/best 2.91 0.09 52.11 2.37 10.22 2.91
bare-metal Pico RPi5 default/default 3.91 0.07 104.09 2.43 9.08 3.90
bare-metal Pico 2 RPi4 best/best 2.02 0.30 5.49 1.58 13.29 1.94
bare-metal Pico 2 RPi4 best/default 2.11 0.28 9.99 1.63 14.48 2.04
bare-metal Pico 2 RPi4 default/best 2.41 0.25 25.71 1.97 15.67 2.35
bare-metal Pico 2 RPi4 default/default 2.51 0.27 30.92 2.06 19.03 2.46
bare-metal Pico 2 RPi5 best/best 1.92 0.05 0.00 1.42 10.79 1.92
bare-metal Pico 2 RPi5 best/default 2.47 0.45 28.83 1.44 11.46 2.76
bare-metal Pico 2 RPi5 default/best 1.92 0.06 0.10 1.38 12.42 1.92
bare-metal Pico 2 RPi5 default/default 2.91 0.07 52.15 1.43 10.98 2.92
FreeRTOS Pico RPi4 best/best 5.57 0.38 190.76 4.54 21.76 5.58
FreeRTOS Pico RPi4 best/default 6.02 0.40 214.26 4.91 15.25 5.95
FreeRTOS Pico RPi4 default/best 7.92 0.56 313.53 6.35 15.29 7.81
FreeRTOS Pico RPi4 default/default 8.38 0.63 337.66 6.78 18.26 8.31
FreeRTOS Pico RPi5 best/best 4.30 0.48 124.73 3.39 10.56 3.97
FreeRTOS Pico RPi5 best/default 5.16 0.43 169.59 3.58 10.70 4.93
FreeRTOS Pico RPi5 default/best 5.42 0.50 182.86 4.40 13.00 5.76
FreeRTOS Pico RPi5 default/default 6.38 0.51 233.16 5.19 11.37 6.01
FreeRTOS Pico 2 RPi4 best/best 4.66 0.30 143.14 3.65 22.34 4.69
FreeRTOS Pico 2 RPi4 best/default 4.81 0.30 150.98 3.76 15.76 4.77
FreeRTOS Pico 2 RPi4 default/best 6.64 0.49 246.61 5.04 13.73 6.64
FreeRTOS Pico 2 RPi4 default/default 6.81 0.49 255.53 5.34 17.93 6.76
FreeRTOS Pico 2 RPi5 best/best 3.55 0.48 85.12 2.46 12.83 3.85
FreeRTOS Pico 2 RPi5 best/default 3.98 0.27 107.79 2.54 12.36 3.91
FreeRTOS Pico 2 RPi5 default/best 4.59 0.44 139.65 3.41 11.66 4.85
FreeRTOS Pico 2 RPi5 default/default 4.96 0.24 159.04 3.61 10.72 4.90
Zephyr Pico RPi4 best/best 3.55 0.48 85.12 2.46 12.83 3.85
Zephyr Pico RPi4 best/default 3.56 0.19 86.10 2.77 16.87 3.55
Zephyr Pico RPi4 default/best 3.55 1.37 85.34 3.17 203.63 3.52
Zephyr Pico RPi4 default/default 4.35 0.27 127.11 3.57 36.66 4.33
Zephyr Pico RPi5 best/best 3.32 0.48 73.29 2.48 5.05 2.96
Zephyr Pico RPi5 best/default 4.14 0.45 116.22 2.63 37.71 3.94
Zephyr Pico RPi5 default/best 4.93 2.01 157.46 3.28 203.03 3.94
Zephyr Pico RPi5 default/default 5.67 1.32 196.15 3.41 10.30 4.93
Zephyr Nucleo RPi4 best/best 6.26 0.06 226.82 5.81 7.43 6.26
Zephyr Nucleo RPi4 best/default 7.36 0.10 284.35 6.28 8.54 7.37
Zephyr Nucleo RPi4 default/best 8.00 0.12 317.75 7.41 9.82 8.00
Zephyr Nucleo RPi4 default/default 9.02 0.12 370.85 8.07 10.76 9.01
Zephyr Nucleo RPi5 best/best 5.39 0.31 181.38 5.09 19.99 5.29
Zephyr Nucleo RPi5 best/default 7.48 0.16 290.84 5.25 21.92 7.50
Zephyr Nucleo RPi5 default/best 7.02 0.13 266.68 6.82 9.11 7.04
Zephyr Nucleo RPi5 default/default 9.17 0.09 378.67 7.17 9.80 9.17

Robotics and Mechatronics Daniël Huiskes

98 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

E.2 Bare-metal control loop measurements

E.2.1 Raspberry Pi 4B

Bare-metal Rasberry Pi Pico µC - best effort publisher and best effort subscriber

0.0

0.5

1.0

1.5

2.0

2.5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.101

ping pi to ping C: 1.008

ping C to pong C: 0.905

pong C to pong pi: 0.657

Latency distribution

(a) Latency distribution

2 4 6 8 10 12 14 16
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

0 1 2 3 4 5 6 7 8
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

0.75 0.80 0.85 0.90 0.95 1.00 1.05
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency C to pong C

(e) ping µC to pong µC (3 → 4)

0 2 4 6 8 10
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

10

12

14

16

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.3: Raspberry Pi 4B with bare-metal Rasberry Pi Pico µC with - best effort publisher and best
effort subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 99

Bare-metal Rasberry Pi Pico µC - default publisher and best effort subscriber

0.0

0.5

1.0

1.5

2.0

2.5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.102

ping pi to ping C: 0.995

ping C to pong pi: 1.653

Latency distribution

(a) Latency distribution

2 4 6 8 10 12 14
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

2 0 2 4 6 8
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

2 4 6 8 10 12
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

6 4 2 0 2 4
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

4 2 0 2 4 6
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

10

12

14

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.4: Raspberry Pi 4B with bare-metal Rasberry Pi Pico µC

- default publisher and best effort subscriber

Robotics and Mechatronics Daniël Huiskes

100 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Bare-metal Rasberry Pi Pico µC - best effort publisher and default subscriber

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.123

ping pi to ping C: 1.746

ping C to pong C: 0.812

pong C to pong pi: 0.687

Latency distribution

(a) Latency distribution

4 6 8 10 12
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

0 1 2 3 4 5 6 7
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

0.6 0.7 0.8 0.9 1.0
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0 2 4 6 8 10
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

10

12

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.5: Raspberry Pi 4B with bare-metal Rasberry Pi Pico µC - best effort publisher and default
subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 101

Bare-metal Rasberry Pi Pico µC - default publisher and default subscriber

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.126

ping pi to ping C: 1.75

ping C to pong pi: 1.582

Latency distribution

(a) Latency distribution

4 6 8 10 12 14 16
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1 2 3 4 5 6 7 8 9
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

2 4 6 8 10
Latency (ms)

100

101

102

103

104
lo

g(
Oc

cu
re

nc
es

)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

2 0 2 4 6
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

6 4 2 0 2
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

12

14

16

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.6: Raspberry Pi 4B with bare-metal Rasberry Pi Pico µC - default publisher and default sub-
scriber

Robotics and Mechatronics Daniël Huiskes

102 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Bare-metal Rasberry Pi Pico 2 µC - best effort publisher and best effort subscriber

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.096

ping pi to ping C: 0.755

ping C to pong C: 0.488

pong C to pong pi: 0.682

Latency distribution

(a) Latency distribution

2 4 6 8 10 12
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

0 1 2 3 4 5 6 7
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
Latency (ms)

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0 2 4 6 8 10 12
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 1 2 3 4 5 6 7
Sample moment (minutes)

0

2

4

6

8

10

12

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.7: Raspberry Pi 4B with bare-metal Rasberry Pi Pico 2 µC with - best effort publisher and best
effort subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 103

Bare-metal Rasberry Pi Pico 2 µC - default publisher and best effort subscriber

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.097

ping pi to ping C: 0.754

ping C to pong pi: 1.256

Latency distribution

(a) Latency distribution

2 4 6 8 10 12 14
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0 2.5
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

2 0 2 4 6 8 10
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

1 2 3 4 5 6 7 8
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

2 1 0 1 2 3
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

3 2 1 0 1 2
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

10

12

14

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.8: Raspberry Pi 4B with bare-metal Rasberry Pi Pico 2 µC

- default publisher and best effort subscriber

Robotics and Mechatronics Daniël Huiskes

104 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Bare-metal Rasberry Pi Pico 2 µC - best effort publisher and default subscriber

0.0

0.5

1.0

1.5

2.0

2.5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.12

ping pi to ping C: 1.182

ping C to pong C: 0.505

pong C to pong pi: 0.6

Latency distribution

(a) Latency distribution

2 4 6 8 10 12 14 16
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

0 1 2 3 4 5 6 7
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0 2 4 6 8 10 12
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

1 2 3 4 5 6 7
Sample moment (minutes)

0

2

4

6

8

10

12

14

16

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.9: Raspberry Pi 4B with bare-metal Rasberry Pi Pico 2 µC - best effort publisher and default
subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 105

Bare-metal Rasberry Pi Pico 2 µC - default publisher and default subscriber

0.0

0.5

1.0

1.5

2.0

2.5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.124

ping pi to ping C: 1.203

ping C to pong pi: 1.179

Latency distribution

(a) Latency distribution

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

0 1 2 3 4 5 6 7
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

2 4 6 8 10 12
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

3 2 1 0 1 2 3 4 5
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

5 4 3 2 1 0 1 2 3
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.10: Raspberry Pi 4B with bare-metal Rasberry Pi Pico 2 µC - default publisher and default
subscriber

Robotics and Mechatronics Daniël Huiskes

106 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

E.2.2 Raspberry Pi 5

Bare-metal Rasberry Pi Pico µC - best effort publisher and best effort subscriber

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.034

ping pi to ping C: 1.243

ping C to pong C: 0.637

pong C to pong pi: 0.998

Latency distribution

(a) Latency distribution

2 4 6 8 10
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1 2 3 4 5 6
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

0.60 0.62 0.64 0.66 0.68 0.70
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

1 2 3 4 5 6 7 8 9
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

1 2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

10

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.11: Raspberry Pi 5 with bare-metal Rasberry Pi Pico µC with - best effort publisher and best
effort subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 107

Raspberry Pi 5 with bare-metal Rasberry Pi Pico µC - default publisher and best effort sub-
scriber

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.033

ping pi to ping C: 2.125

ping C to pong pi: 1.412

Latency distribution

(a) Latency distribution

4 6 8 10 12
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.05 0.10 0.15 0.20 0.25 0.30
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1 2 3 4 5 6 7
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

2 3 4 5 6 7 8 9 10
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0 2 4 6 8
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

8 6 4 2 0
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

12

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.12: Raspberry Pi 5 with bare-metal Rasberry Pi Pico µC

- default publisher and best effort subscriber

Robotics and Mechatronics Daniël Huiskes

108 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Bare-metal Rasberry Pi Pico µC - best effort publisher and default subscriber

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.039

ping pi to ping C: 1.667

ping C to pong C: 0.505

pong C to pong pi: 0.702

Latency distribution

(a) Latency distribution

2 3 4 5 6 7 8 9 10
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

1 2 3 4 5 6 7 8
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

10

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.13: Raspberry Pi 5 with bare-metal Rasberry Pi Pico µC - best effort publisher and default
subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 109

Bare-metal Rasberry Pi Pico µC - default publisher and default subscriber

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.039

ping pi to ping C: 2.637

ping C to pong pi: 1.233

Latency distribution

(a) Latency distribution

3 4 5 6 7 8 9
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

2 3 4 5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

2 3 4 5 6 7 8
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.14: Raspberry Pi 5 with bare-metal Rasberry Pi Pico µC - default publisher and default sub-
scriber

Robotics and Mechatronics Daniël Huiskes

110 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Bare-metal Rasberry Pi Pico 2 µC - best effort publisher and best effort subscriber

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.032

ping pi to ping C: 0.995

ping C to pong C: 0.307

pong C to pong pi: 0.581

Latency distribution

(a) Latency distribution

2 4 6 8 10
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.05 0.10 0.15 0.20 0.25 0.30
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

0.30 0.32 0.34 0.36 0.38 0.40
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

2 4 6 8
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 2 4 6 8
Time (minutes)

0

2

4

6

8

Oc
cu

re
nc

es

Worst latencies distribution over time

(h) 100 worst latencies

Figure E.15: Raspberry Pi 5 with bare-metal Rasberry Pi Pico 2 µC with - best effort publisher and best
effort subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 111

Raspberry Pi 5 with bare-metal Rasberry Pi Pico 2µC - default publisher and best effort sub-
scriber

0.0

0.5

1.0

1.5

2.0

2.5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.03

ping pi to ping C: 1.311

ping C to pong pi: 1.125

Latency distribution

(a) Latency distribution

2 4 6 8 10
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.0 0.2 0.4 0.6 0.8
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1.0 1.5 2.0 2.5 3.0
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

2 3 4 5 6 7 8 9
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

1.0 0.5 0.0 0.5 1.0 1.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

1.5 1.0 0.5 0.0 0.5 1.0
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

10

12

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.16: Raspberry Pi 5 with bare-metal Rasberry Pi Pico 2 µC

- default publisher and best effort subscriber

Robotics and Mechatronics Daniël Huiskes

112 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Bare-metal Rasberry Pi Pico 2 µC - best effort publisher and default subscriber

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.036

ping pi to ping C: 1.216

ping C to pong C: 0.279

pong C to pong pi: 0.386

Latency distribution

(a) Latency distribution

2 4 6 8 10 12
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0 2 4 6 8 10
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

12

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.17: Raspberry Pi 5 with bare-metal Rasberry Pi Pico 2 µC - best effort publisher and default
subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 113

Bare-metal Rasberry Pi Pico 2 µC - default publisher and default subscriber

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.038

ping pi to ping C: 1.575

ping C to pong pi: 1.301

Latency distribution

(a) Latency distribution

2 4 6 8 10
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1.0 1.5 2.0 2.5 3.0
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

2 3 4 5 6 7
Latency (ms)

100

101

102

103

104

105
lo

g(
Oc

cu
re

nc
es

)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

10

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.18: Raspberry Pi 5 with bare-metal Rasberry Pi Pico 2 µC - default publisher and default sub-
scriber

Robotics and Mechatronics Daniël Huiskes

114 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

E.3 FreeRTOS control loop measurements

E.3.1 Raspberry Pi 4B

FreeRTOS Rasberry Pi Pico µC - best effort publisher and best effort subscriber

0

1

2

3

4

5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.105

ping pi to ping C: 1.644

ping C to pong C: 3.19

pong C to pong pi: 0.63

Latency distribution

(a) Latency distribution

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

0 2 4 6 8 10
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

2.0 2.5 3.0 3.5 4.0 4.5
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0 2 4 6 8 10 12 14 16
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

5

10

15

20

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.19: Raspberry Pi 4B with FreeRTOS Rasberry Pi Pico µC with - best effort publisher and best
effort subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 115

FreeRTOS Rasberry Pi Pico µC - default publisher and best effort subscriber

0

1

2

3

4

5

6

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.113

ping pi to ping C: 1.947

ping C to pong pi: 3.958

Latency distribution

(a) Latency distribution

6 8 10 12 14
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0 2.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1 2 3 4 5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

4 5 6 7 8 9 10 11
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

3 2 1 0 1 2 3 4 5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

5 4 3 2 1 0 1 2 3
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

10

12

14

16

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.20: Raspberry Pi 4B with FreeRTOS Rasberry Pi Pico µC

- default publisher and best effort subscriber

Robotics and Mechatronics Daniël Huiskes

116 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

FreeRTOS Rasberry Pi Pico µC - best effort publisher and default subscriber

0

1

2

3

4

5

6

7

8

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.138

ping pi to ping C: 4.285

ping C to pong C: 2.833

pong C to pong pi: 0.663

Latency distribution

(a) Latency distribution

6 8 10 12 14
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

4 5 6 7 8
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0 1 2 3 4 5 6 7 8
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

10

12

14

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.21: Raspberry Pi 4B with FreeRTOS Rasberry Pi Pico µC - best effort publisher and default
subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 117

FreeRTOS Rasberry Pi Pico µC - default publisher and default subscriber

0

1

2

3

4

5

6

7

8

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.144

ping pi to ping C: 4.582

ping C to pong pi: 3.655

Latency distribution

(a) Latency distribution

8 10 12 14 16 18
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0 2.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

4 5 6 7 8 9 10
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

3 4 5 6 7 8 9
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

4 3 2 1 0 1
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

1 0 1 2 3 4
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.22: Raspberry Pi 4B with FreeRTOS Rasberry Pi Pico µC - default publisher and default sub-
scriber

Robotics and Mechatronics Daniël Huiskes

118 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

FreeRTOS Rasberry Pi Pico 2 µC - best effort publisher and best effort subscriber

0

1

2

3

4

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.099

ping pi to ping C: 1.299

ping C to pong C: 2.592

pong C to pong pi: 0.667

Latency distribution

(a) Latency distribution

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

2 4 6 8 10
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

1.5 2.0 2.5 3.0 3.5
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

5

10

15

20

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.23: Raspberry Pi 4B with FreeRTOS Rasberry Pi Pico 2 µC with - best effort publisher and best
effort subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 119

FreeRTOS Rasberry Pi Pico 2 µC - default publisher and best effort subscriber

0

1

2

3

4

5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.101

ping pi to ping C: 1.405

ping C to pong pi: 3.3

Latency distribution

(a) Latency distribution

4 6 8 10 12 14 16
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1 2 3 4 5 6 7
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

3 4 5 6 7 8 9 10 11
Latency (ms)

100

101

102

103

104
lo

g(
Oc

cu
re

nc
es

)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

4 2 0 2 4
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

4 2 0 2 4
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

12

14

16

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.24: Raspberry Pi 4B with FreeRTOS Rasberry Pi Pico 2 µC

- default publisher and best effort subscriber

Robotics and Mechatronics Daniël Huiskes

120 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

FreeRTOS Rasberry Pi Pico 2 µC - best effort publisher and default subscriber

0

1

2

3

4

5

6

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.147

ping pi to ping C: 3.569

ping C to pong C: 2.291

pong C to pong pi: 0.632

Latency distribution

(a) Latency distribution

6 8 10 12 14
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0 2.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

3 4 5 6 7
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

1.0 1.5 2.0 2.5 3.0 3.5
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0 1 2 3 4 5 6 7 8
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

10

12

14

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.25: Raspberry Pi 4B with FreeRTOS Rasberry Pi Pico 2 µC - best effort publisher and default
subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 121

FreeRTOS Rasberry Pi Pico 2 µC - default publisher and default subscriber

0

1

2

3

4

5

6

7

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.148

ping pi to ping C: 3.653

ping C to pong pi: 3.007

Latency distribution

(a) Latency distribution

6 8 10 12 14 16 18
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

3 4 5 6 7 8 9 10
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

3 4 5 6 7 8 9
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

2 0 2 4 6
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

6 4 2 0 2
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.26: Raspberry Pi 4B with FreeRTOS Rasberry Pi Pico 2 µC - default publisher and default sub-
scriber

Robotics and Mechatronics Daniël Huiskes

122 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

E.3.2 Raspberry Pi 5

FreeRTOS Rasberry Pi Pico µC - best effort publisher and best effort subscriber

0

1

2

3

4

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.035

ping pi to ping C: 1.823

ping C to pong C: 1.583

pong C to pong pi: 0.862

Latency distribution

(a) Latency distribution

4 5 6 7 8 9 10
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.05 0.10 0.15 0.20 0.25 0.30
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0 1 2 3 4 5 6 7
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.27: Raspberry Pi 5 with FreeRTOS Rasberry Pi Pico µC with - best effort publisher and best
effort subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 123

FreeRTOS Rasberry Pi Pico µC - default publisher and best effort subscriber

0

1

2

3

4

5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.037

ping pi to ping C: 2.787

ping C to pong pi: 2.339

Latency distribution

(a) Latency distribution

4 5 6 7 8 9 10 11
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

4 5 6 7 8
Latency (ms)

100

101

102

103

104
lo

g(
Oc

cu
re

nc
es

)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

1.75 1.50 1.25 1.00 0.75 0.50 0.25
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

0.25 0.50 0.75 1.00 1.25 1.50 1.75
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.28: Raspberry Pi 5 with FreeRTOS Rasberry Pi Pico µC

- default publisher and best effort subscriber

Robotics and Mechatronics Daniël Huiskes

124 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

FreeRTOS Rasberry Pi Pico µC - best effort publisher and default subscriber

0

1

2

3

4

5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.046

ping pi to ping C: 3.085

ping C to pong C: 1.321

pong C to pong pi: 0.965

Latency distribution

(a) Latency distribution

4 6 8 10 12
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

2.5 3.0 3.5 4.0 4.5 5.0 5.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0 2 4 6 8
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

12

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.29: Raspberry Pi 5 with FreeRTOS Rasberry Pi Pico µC - best effort publisher and default sub-
scriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 125

FreeRTOS Rasberry Pi Pico µC - default publisher and default subscriber

0

1

2

3

4

5

6

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.046

ping pi to ping C: 4.129

ping C to pong pi: 2.205

Latency distribution

(a) Latency distribution

5 6 7 8 9 10 11
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

3.5 4.0 4.5 5.0 5.5 6.0
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

3 4 5 6 7
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

3 2 1 0 1 2
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

2 1 0 1 2 3
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.30: Raspberry Pi 5 with FreeRTOS Rasberry Pi PicoµC - default publisher and default subscriber

Robotics and Mechatronics Daniël Huiskes

126 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

FreeRTOS Rasberry Pi Pico 2 µC - best effort publisher and best effort subscriber

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.033

ping pi to ping C: 1.525

ping C to pong C: 0.99

pong C to pong pi: 0.997

Latency distribution

(a) Latency distribution

2 4 6 8 10 12
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.05 0.10 0.15 0.20 0.25 0.30
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1.0 1.5 2.0 2.5 3.0
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

0.9 1.0 1.1 1.2 1.3 1.4
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0 2 4 6 8 10
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

12

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.31: Raspberry Pi 5 with FreeRTOS Rasberry Pi Pico 2 µC with - best effort publisher and best
effort subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 127

FreeRTOS Rasberry Pi Pico 2 µC - default publisher and best effort subscriber

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.033

ping pi to ping C: 2.221

ping C to pong pi: 1.726

Latency distribution

(a) Latency distribution

4 6 8 10 12
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1.25 1.50 1.75 2.00 2.25 2.50 2.75
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

4 6 8 10
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

1.6 1.4 1.2 1.0 0.8 0.6
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

0.6 0.8 1.0 1.2 1.4 1.6
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

10

12

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.32: Raspberry Pi 5 with FreeRTOS Rasberry Pi Pico 2 µC

- default publisher and best effort subscriber

Robotics and Mechatronics Daniël Huiskes

128 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

FreeRTOS Rasberry Pi Pico 2µC - best effort publisher and default subscriber

0

1

2

3

4

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.042

ping pi to ping C: 2.411

ping C to pong C: 1.036

pong C to pong pi: 1.101

Latency distribution

(a) Latency distribution

4 6 8 10 12
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.05 0.10 0.15 0.20 0.25 0.30
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

2.0 2.5 3.0 3.5 4.0
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

0.9 1.0 1.1 1.2 1.3 1.4
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0 1 2 3 4 5 6 7 8
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

12

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.33: Raspberry Pi 5 with FreeRTOS Rasberry Pi Pico 2 µC - best effort publisher and default
subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 129

FreeRTOS Rasberry Pi Pico 2 µC - default publisher and default subscriber

0

1

2

3

4

5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.043

ping pi to ping C: 3.22

ping C to pong pi: 1.697

Latency distribution

(a) Latency distribution

4 5 6 7 8 9 10 11
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

3 4 5 6 7 8
Latency (ms)

100

101

102

103

104
lo

g(
Oc

cu
re

nc
es

)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

2.0 1.5 1.0 0.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

0.5 1.0 1.5 2.0
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

10

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.34: Raspberry Pi 5 with FreeRTOS Rasberry Pi Pico 2 µC - default publisher and default sub-
scriber

Robotics and Mechatronics Daniël Huiskes

130 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

E.4 Zephyr control loop measurements

E.4.1 Raspberry Pi 4B

Zephyr Rasberry Pi Pico µC - best effort publisher and best effort subscriber

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.101

ping pi to ping C: 1.563

ping C to pong C: 0.749

pong C to pong pi: 0.496

Latency distribution

(a) Latency distribution

2 4 6 8 10 12 14 16
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.2 0.4 0.6 0.8 1.0 1.2
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1 2 3 4 5 6 7
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

0.70 0.75 0.80 0.85 0.90
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0 2 4 6 8 10 12
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

12

14

16

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.35: Raspberry Pi 4B with Zephyr Rasberry Pi Pico µC with - best effort publisher and best effort
subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 131

Zephyr Rasberry Pi Pico µC - default publisher and best effort subscriber

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.108

ping pi to ping C: 1.991

ping C to pong pi: 1.465

Latency distribution

(a) Latency distribution

4 6 8 10 12 14 16
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0 2.5
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1 2 3 4 5 6 7 8
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

2 4 6 8 10 12 14
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

3 2 1 0 1 2 3 4 5
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

5 4 3 2 1 0 1 2 3
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

12

14

16

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.36: Raspberry Pi 4B with Zephyr Rasberry Pi Pico µC

- default publisher and best effort subscriber

Robotics and Mechatronics Daniël Huiskes

132 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Zephyr Rasberry Pi Pico µC - best effort publisher and default subscriber

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.126

ping pi to ping C: 2.336

ping C to pong C: 0.606

pong C to pong pi: 0.481

Latency distribution

(a) Latency distribution

0 25 50 75 100 125 150 175 200
Latency (ms)

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0 1 2 3 4
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

0 25 50 75 100 125 150 175 200
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0 2 4 6 8 10 12
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

25

50

75

100

125

150

175

200

La
te

nc
y

(m
s)

100 worst latencies

Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.37: Raspberry Pi 4B with Zephyr Rasberry Pi Pico µC - best effort publisher and default sub-
scriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 133

Zephyr Rasberry Pi Pico µC - default publisher and default subscriber

0

1

2

3

4

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.128

ping pi to ping C: 2.85

ping C to pong pi: 1.371

Latency distribution

(a) Latency distribution

5 10 15 20 25 30 35
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

0 2 4 6 8 10
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

5 10 15 20 25 30
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

4 2 0 2 4
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

4 2 0 2 4
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

5

10

15

20

25

30

35

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.38: Raspberry Pi 4B with Zephyr Rasberry Pi Pico µC - default publisher and default subscriber

Robotics and Mechatronics Daniël Huiskes

134 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Zephyr Rasberry Pi Nucleo H743ZI µC - best effort publisher and best effort subscriber

0

1

2

3

4

5

6

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.089

ping pi to ping C: 3.201

ping C to pong C: 2.161

pong C to pong pi: 0.808

Latency distribution

(a) Latency distribution

5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.1 0.2 0.3 0.4 0.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0.7 0.8 0.9 1.0 1.1 1.2
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

2 3 4 5 6 7 8
Sample moment (minutes)

0

1

2

3

4

5

6

7

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.39: Raspberry Pi 4B with Zephyr Nucleo H743ZI µC with - best effort publisher and best effort
subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 135

Zephyr Nucleo H743ZI µC - default publisher and best effort subscriber

0

1

2

3

4

5

6

7

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.088

ping pi to ping C: 4.257

ping C to pong pi: 3.015

Latency distribution

(a) Latency distribution

6.5 7.0 7.5 8.0 8.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.1 0.2 0.3 0.4 0.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

3.0 3.5 4.0 4.5 5.0
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

5.40 5.45 5.50 5.55 5.60 5.65 5.70
Latency (ms)

100

101

102

103

104
lo

g(
Oc

cu
re

nc
es

)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

1

2

3

4

5

6

7

8

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.40: Raspberry Pi 4B with Zephyr Nucleo H743ZI µC

- default publisher and best effort subscriber

Robotics and Mechatronics Daniël Huiskes

136 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Zephyr Nucleo H743ZI µC - best effort publisher and default subscriber

0

1

2

3

4

5

6

7

8

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.107

ping pi to ping C: 4.808

ping C to pong C: 2.298

pong C to pong pi: 0.788

Latency distribution

(a) Latency distribution

7.5 8.0 8.5 9.0 9.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.1 0.2 0.3 0.4
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

4.5 5.0 5.5 6.0
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

2.30 2.35 2.40 2.45 2.50 2.55
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

La
te

nc
y

(m
s)

100 worst latencies

Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.41: Raspberry Pi 4B with Zephyr Nucleo H743ZI µC - best effort publisher and default sub-
scriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 137

Zephyr Rasberry Pi Pico µC - default publisher and default subscriber

0

1

2

3

4

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.128

ping pi to ping C: 2.85

ping C to pong pi: 1.371

Latency distribution

(a) Latency distribution

5 10 15 20 25 30 35
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

0 2 4 6 8 10
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

5 10 15 20 25 30
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

4 2 0 2 4
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

4 2 0 2 4
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

5

10

15

20

25

30

35

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.42: Raspberry Pi 4B with Zephyr Rasberry Pi Pico µC - default publisher and default subscriber

Robotics and Mechatronics Daniël Huiskes

138 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

E.4.2 Raspberry Pi 5

Zephyr Rasberry Pi Pico µC - best effort publisher and best effort subscriber

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.027

ping pi to ping C: 2.121

ping C to pong C: 0.664

pong C to pong pi: 0.507

Latency distribution

(a) Latency distribution

2.5 3.0 3.5 4.0 4.5 5.0
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

1.5 2.0 2.5 3.0 3.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

0.60 0.65 0.70 0.75 0.80 0.85
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0.0 0.5 1.0 1.5 2.0
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

1

2

3

4

5
La

te
nc

y
(m

s)
100 worst latencies

Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.43: Raspberry Pi 5 with Zephyr Rasberry Pi Pico µC with - best effort publisher and best effort
subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 139

Raspberry Pi 5 with Zephyr Rasberry Pi PicoµC - default publisher and best effort subscriber

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.034

ping pi to ping C: 2.734

ping C to pong pi: 1.373

Latency distribution

(a) Latency distribution

5 10 15 20 25 30 35
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

2 3 4 5 6
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

2 4 6 8 10
Latency (ms)

100

101

102

103

104
lo

g(
Oc

cu
re

nc
es

)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

5 0 5 10 15 20 25 30
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

30 25 20 15 10 5 0 5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

5

10

15

20

25

30

35

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.44: Raspberry Pi 5 with Zephyr Rasberry Pi Pico µC

- default publisher and best effort subscriber

Robotics and Mechatronics Daniël Huiskes

140 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Zephyr Rasberry Pi Pico µC - best effort publisher and default subscriber

0

1

2

3

4

5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.031

ping pi to ping C: 3.573

ping C to pong C: 2.198

pong C to pong pi: -0.872

Latency distribution

(a) Latency distribution

0 25 50 75 100 125 150 175 200
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.02 0.04 0.06 0.08 0.10 0.12 0.14
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

0 25 50 75 100 125 150 175 200
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

1 2 3 4 5 6
Latency (ms)

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

4 2 0 2 4 6
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

25

50

75

100

125

150

175

200

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.45: Raspberry Pi 5 with Zephyr Rasberry Pi Pico µC - best effort publisher and default sub-
scriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 141

Zephyr Rasberry Pi Pico µC - default publisher and default subscriber

0

1

2

3

4

5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.031

ping pi to ping C: 4.25

ping C to pong pi: 1.39

Latency distribution

(a) Latency distribution

4 5 6 7 8 9 10
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.02 0.04 0.06 0.08 0.10 0.12
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

3 4 5 6 7 8
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

2 3 4 5 6 7 8
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

6 4 2 0 2 4
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

4 2 0 2 4 6
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

10

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.46: Raspberry Pi 5 with Zephyr Rasberry Pi Pico µC - default publisher and default subscriber

Robotics and Mechatronics Daniël Huiskes

142 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Zephyr Nucleo H743ZI µC - best effort publisher and best effort subscriber

0

1

2

3

4

5

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.036

ping pi to ping C: 2.727

ping C to pong C: 2.151

pong C to pong pi: 0.474

Latency distribution

(a) Latency distribution

6 8 10 12 14 16 18 20
Latency (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

3 4 5 6 7 8 9
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

2.15 2.20 2.25 2.30 2.35 2.40
Latency (ms)

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

0 2 4 6 8 10 12 14
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

La
te

nc
y

(m
s)

100 worst latencies
Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.47: Raspberry Pi 5 with Zephyr Nucleo H743ZI µC with - best effort publisher and best effort
subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 143

Raspberry Pi 5 with Zephyr Nucleo H743ZI µC - default publisher and best effort subscriber

0

1

2

3

4

5

6

7

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.036

ping pi to ping C: 4.797

ping C to pong pi: 2.652

Latency distribution

(a) Latency distribution

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.05 0.10 0.15 0.20 0.25 0.30
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

3 4 5 6 7 8 9
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

4 6 8 10 12 14 16 18 20
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

6 4 2 0
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

0 2 4 6
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

5

10

15

20

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.48: Raspberry Pi 5 with Zephyr Nucleo H743ZI µC

- default publisher and best effort subscriber

Robotics and Mechatronics Daniël Huiskes

144 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

Zephyr Nucleo H743ZI µC - best effort publisher and default subscriber

0

1

2

3

4

5

6

7

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.033

ping pi to ping C: 4.296

ping C to pong C: 2.295

pong C to pong pi: 0.399

Latency distribution

(a) Latency distribution

7.0 7.5 8.0 8.5 9.0
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip times

(b) Round-trip times

0.02 0.04 0.06 0.08 0.10 0.12
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

4.0 4.5 5.0 5.5 6.0 6.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

2.30 2.35 2.40 2.45 2.50 2.55
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping Cto pong C

(e) ping µC to pong µC (3 → 4)

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
Latency (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

(g) Latency boxplots

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8
La

te
nc

y
(m

s)

100 worst latencies

Ping Pi call to Ping Pi
Ping Pi to Ping C
Ping C to Pong C
Pong C to Pong Pi

(h) 100 worst latencies

Figure E.49: Raspberry Pi 5 with Zephyr Nucleo H743ZI µC - best effort publisher and default subscriber

Daniël Huiskes University of Twente

APPENDIX E. PING-PONG MEASUREMENTS 145

Zephyr Nucleo H743ZI µC - default publisher and default subscriber

0

2

4

6

8

La
te

nc
y

(m
s)

call ping pi to ping pi: 0.033

ping pi to ping C: 6.434

ping C to pong pi: 2.699

Latency distribution

(a) Latency distribution

7.5 8.0 8.5 9.0 9.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Round-trip-times

(b) Round-trip times

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency call ping pi to ping pi

(c) Call ping pi to ping pi (1 → 2)

4.5 5.0 5.5 6.0 6.5
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency ping pi to ping C

(d) ping pi to ping µC (2 → 3)

4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8
Latency (ms)

100

101

102

103

104
lo

g(
Oc

cu
re

nc
es

)

Latency ping C to pong C

(e) ping µC to pong µC (3 → 4)

2.8 2.6 2.4 2.2 2.0 1.8 1.6
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C to pong pi

(f) pong µC to pong pi (4 → 5)

1.6 1.8 2.0 2.2 2.4 2.6 2.8
Latency (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Latency pong C publisher callback overhead

(g) Callback overhead (h) Latency boxplots

0 1 2 3 4 5
Sample moment (minutes)

0

2

4

6

8

10

Ti
m

e
(m

s)

100 worst Latencies

(i) 100 worst latencies

Figure E.50: Raspberry Pi 5 with Zephyr Nucleo H743ZI µC - default publisher and default subscriber

Robotics and Mechatronics Daniël Huiskes

146 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

F JIWY control loop measurements

Figure F.1: Control loop cycle times complete

Daniël Huiskes University of Twente

APPENDIX F. JIWY CONTROL LOOP MEASUREMENTS 147

Figure F.2: Mean Control loop cycle times

Robotics and Mechatronics Daniël Huiskes

148 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

F.1 Bare-metal control loop measurements

F.1.1 Control loop measurements bare-metal Rasberry Pi Pico at 1 Hz

0.90 0.95 1.00 1.05 1.10
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0.10 0.05 0.00 0.05 0.10
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 2 4 6 8
Sample moment (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ti
m

e
(m

s)

Set output signals: 0.01

Control loop calculations: 0.069

Get input signals: 0.003

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.3: Bare-metal Rasberry Pi Pico at 1 Hz

F.1.2 Control loop measurements bare-metal Rasberry Pi Pico at 10 Hz

0 5 10 15 20 25 30
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0 5 10 15 20 25 30
Time (ms)

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0 5 10 15 20 25 30
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

5

10

15

20

25

30

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.00

0.02

0.04

0.06

0.08

Ti
m

e
(m

s)

Set output signals: 0.012

Control loop calculations: 0.076

Get input signals: 0.004

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.4: Bare-metal Rasberry Pi Pico at 10 Hz

Daniël Huiskes University of Twente

APPENDIX F. JIWY CONTROL LOOP MEASUREMENTS 149

F.1.3 Control loop measurements bare-metal Rasberry Pi Pico at 30 Hz

0 5 10 15 20 25 30
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0 5 10 15 20 25 30
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0 5 10 15 20 25 30
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

5

10

15

20

25

30
Ti

m
e

(m
s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.00

0.02

0.04

0.06

0.08

0.10

Ti
m

e
(m

s)

Set output signals: 0.014

Control loop calculations: 0.088

Get input signals: 0.005

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.5: Bare-metal Rasberry Pi Pico at 30 Hz

F.1.4 Control loop measurements bare-metal Rasberry Pi Pico at 100 Hz

0 2 4 6 8
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0 2 4 6 8
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0 2 4 6 8
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ti
m

e
(m

s)

Set output signals: 0.021

Control loop calculations: 0.137

Get input signals: 0.009

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.6: Bare-metal Rasberry Pi Pico at 100 Hz

Robotics and Mechatronics Daniël Huiskes

150 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

F.1.5 Control loop measurements bare-metal Rasberry Pi Pico 2 at 1 Hz

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0.00 0.02 0.04 0.06 0.08
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 2 4 6 8
Sample moment (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Ti
m

e
(m

s)

Set output signals: 0.003

Control loop calculations: 0.015

Get input signals: 0.002

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.7: Bare-metal Rasberry Pi Pico 2 at 1 Hz

F.1.6 Control loop measurements bare-metal Rasberry Pi Pico 2 at 10 Hz

0.925 0.950 0.975 1.000 1.025 1.050 1.075
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0.00 0.02 0.04 0.06 0.08
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0.075 0.050 0.025 0.000 0.025 0.050 0.075
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Ti
m

e
(m

s)

Set output signals: 0.005

Control loop calculations: 0.022

Get input signals: 0.004

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.8: Bare-metal Rasberry Pi Pico 2 at 10 Hz

Daniël Huiskes University of Twente

APPENDIX F. JIWY CONTROL LOOP MEASUREMENTS 151

F.1.7 Control loop measurements bare-metal Rasberry Pi Pico 2 at 30 Hz

0 2 4 6 8 10
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0 2 4 6 8
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0 2 4 6 8
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

2

4

6

8

10

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.00

0.01

0.02

0.03

0.04

Ti
m

e
(m

s)

Set output signals: 0.008

Control loop calculations: 0.034

Get input signals: 0.005

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.9: Bare-metal Rasberry Pi Pico 2 at 30 Hz

F.1.8 Control loop measurements bare-metal Rasberry Pi Pico 2 at 100 Hz

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0.0 0.5 1.0 1.5 2.0 2.5
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.00

0.02

0.04

0.06

0.08

0.10

Ti
m

e
(m

s)

Set output signals: 0.017

Control loop calculations: 0.081

Get input signals: 0.01

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.10: Bare-metal Rasberry Pi Pico 2 at 100 Hz

Robotics and Mechatronics Daniël Huiskes

152 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

F.2 FreeRTOS control loop measurements

F.2.1 Control loop measurements FreeRTOS Rasberry Pi Pico at 1 Hz

0.7 0.8 0.9 1.0 1.1 1.2 1.3
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 2 4 6 8
Sample moment (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ti
m

e
(m

s)

Set output signals: 0.025

Control loop calculations: 0.086

Get input signals: 0.016

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.11: FreeRTOS Rasberry Pi Pico at 1 Hz

F.2.2 Control loop measurements FreeRTOS Rasberry Pi Pico at 10 Hz

0.7 0.8 0.9 1.0 1.1 1.2 1.3
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ti
m

e
(m

s)

Set output signals: 0.026

Control loop calculations: 0.094

Get input signals: 0.018

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.12: FreeRTOS Rasberry Pi Pico at 10 Hz

Daniël Huiskes University of Twente

APPENDIX F. JIWY CONTROL LOOP MEASUREMENTS 153

F.2.3 Control loop measurements FreeRTOS Rasberry Pi Pico at 30 Hz

0.6 0.8 1.0 1.2 1.4
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0.0 0.1 0.2 0.3 0.4
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0.4 0.2 0.0 0.2 0.4
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Ti

m
e

(m
s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ti
m

e
(m

s)

Set output signals: 0.029

Control loop calculations: 0.111

Get input signals: 0.021

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.13: FreeRTOS Rasberry Pi Pico at 30 Hz

F.2.4 Control loop measurements FreeRTOS Rasberry Pi Pico at 100 Hz

0.6 0.8 1.0 1.2 1.4
Time (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0.0 0.1 0.2 0.3 0.4
Time (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0.4 0.2 0.0 0.2 0.4
Time (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.00

0.05

0.10

0.15

0.20

Ti
m

e
(m

s)

Set output signals: 0.039

Control loop calculations: 0.149

Get input signals: 0.032

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.14: FreeRTOS Rasberry Pi Pico at 100 Hz

Robotics and Mechatronics Daniël Huiskes

154 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

F.2.5 Control loop measurements FreeRTOS Rasberry Pi Pico 2 at 1 Hz

0.8 0.9 1.0 1.1 1.2 1.3
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0.2 0.1 0.0 0.1 0.2 0.3
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.00

0.01

0.02

0.03

0.04

Ti
m

e
(m

s)

Set output signals: 0.012

Control loop calculations: 0.025

Get input signals: 0.009

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.15: FreeRTOS Rasberry Pi Pico 2 at 1 Hz

F.2.6 Control loop measurements FreeRTOS Rasberry Pi Pico 2 at 10 Hz

0.7 0.8 0.9 1.0 1.1 1.2 1.3
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.00

0.01

0.02

0.03

0.04

0.05

Ti
m

e
(m

s)

Set output signals: 0.013

Control loop calculations: 0.029

Get input signals: 0.01

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.16: FreeRTOS Rasberry Pi Pico 2 at 10 Hz

Daniël Huiskes University of Twente

APPENDIX F. JIWY CONTROL LOOP MEASUREMENTS 155

F.2.7 Control loop measurements FreeRTOS Rasberry Pi Pico 2 at 30 Hz

0.6 0.8 1.0 1.2 1.4
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0.0 0.1 0.2 0.3 0.4
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0.4 0.2 0.0 0.2 0.4
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Ti

m
e

(m
s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ti
m

e
(m

s)

Set output signals: 0.016

Control loop calculations: 0.038

Get input signals: 0.012

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.17: FreeRTOS Rasberry Pi Pico 2 at 30 Hz

F.2.8 Control loop measurements FreeRTOS Rasberry Pi Pico 2 at 100 Hz

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Time (ms)

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Time (ms)

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.00

0.02

0.04

0.06

0.08

0.10

Ti
m

e
(m

s)

Set output signals: 0.027

Control loop calculations: 0.067

Get input signals: 0.019

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.18: FreeRTOS Rasberry Pi Pico 2 at 100 Hz

Robotics and Mechatronics Daniël Huiskes

156 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

F.3 Zephyr control loop measurements

F.3.1 Control loop measurements Zephyr Rasberry Pi Pico at 1 Hz

1 2 3 4 5 6 7 8
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0 1 2 3 4 5 6 7
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0 1 2 3 4 5 6 7
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 2 4 6 8
Sample moment (minutes)

0

1

2

3

4

5

6

7

8

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
(m

s)

Set output signals: 0.089

Control loop calculations: 0.466

Get input signals: 0.023

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.19: Control loop measurements Zephyr Rasberry Pi Pico at 1 Hz

F.3.2 Control loop measurements Zephyr Rasberry Pi Pico at 10 Hz

2 4 6 8
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0 2 4 6 8
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

0 2 4 6 8
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 2 4 6 8
Sample moment (minutes)

0

2

4

6

8

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e
(m

s)

Set output signals: 0.093

Control loop calculations: 0.484

Get input signals: 0.024

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.20: Control loop measurements Zephyr Rasberry Pi Pico at 10 Hz

Daniël Huiskes University of Twente

APPENDIX F. JIWY CONTROL LOOP MEASUREMENTS 157

F.3.3 Control loop measurements Zephyr Nucleo H743ZI at 1 Hz

0 1 2 3 4 5 6
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0 1 2 3 4 5
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

1 0 1 2 3 4 5
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

1

2

3

4

5

6
Ti

m
e

(m
s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Ti
m

e
(m

s)

Set output signals: 0.009

Control loop calculations: 0.006

Get input signals: 0.002

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.21: Control loop measurements Zephyr Nucleo H743ZI at 1 Hz

F.3.4 Control loop measurements Zephyr Nucleo H743ZI at 10 Hz

0 1 2 3 4 5 6 7
Time (ms)

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0 1 2 3 4 5 6
Time (ms)

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

1 0 1 2 3 4 5 6
Time (ms)

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 2 4 6 8
Sample moment (minutes)

0

1

2

3

4

5

6

7

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Ti
m

e
(m

s)

Set output signals: 0.009

Control loop calculations: 0.006

Get input signals: 0.002

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.22: Control loop measurements Zephyr Nucleo H743ZI at 10 Hz

Robotics and Mechatronics Daniël Huiskes

158 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

F.3.5 Control loop measurements Zephyr Nucleo H743ZI at 30 Hz

0 1 2 3 4 5 6 7
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0 1 2 3 4 5 6
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

1 0 1 2 3 4 5 6
Time (ms)

100

101

102

103

104

105

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

1

2

3

4

5

6

7

Ti
m

e
(m

s)
100 worst control loop cycles

(e) 100 worst control loop cycles

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Ti
m

e
(m

s)

Set output signals: 0.009

Control loop calculations: 0.006

Get input signals: 0.002

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.23: Control loop measurements Zephyr Nucleo H743ZI at 30 Hz

F.3.6 Control loop measurements Zephyr Nucleo H743ZI at 100 Hz

0 1 2 3 4 5 6 7
Time (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Control loop cycle times

(a) Control loop cycle times

0 1 2 3 4 5 6
Time (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Absolute jitter control loop cycle times

(b) Abs jitter cycle times

1 0 1 2 3 4 5 6
Time (ms)

100

101

102

103

104

lo
g(

Oc
cu

re
nc

es
)

Jitter control loop cycle times

(c) Jitter control loop cycle times

(d) Control loop cycle boxplot

0 1 2 3 4 5 6 7 8
Sample moment (minutes)

0

1

2

3

4

5

6

7

Ti
m

e
(m

s)

100 worst control loop cycles

(e) 100 worst control loop cycles

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Ti
m

e
(m

s)

Set output signals: 0.01

Control loop calculations: 0.006

Get input signals: 0.002

Mean time control loop cycle phases

(f) Mean time control loop phases

Figure F.24: Control loop measurements Zephyr Nucleo H743ZI at 100 Hz

Daniël Huiskes University of Twente

APPENDIX G. JIWY COMMUNICATION MEASUREMENTS 159

G JIWY communication measurements

G.1 Bare-metal

G.1.1 JIWY communication measurements bare-metal Rasberry Pi Pico 2 at 1 Hz

594.0 594.5 595.0 595.5 596.0 596.5
Time (ms)

100

101

lo
g(

Oc
cu

re
nc

es
)

Round-trip times pan

(a) Round trip times pan

594.0 594.5 595.0 595.5 596.0
Time (ms)

100

101

lo
g(

Oc
cu

re
nc

es
)

Round-trip times tilt

(b) Round trip times tilt

0.75 1.00 1.25 1.50 1.75 2.00 2.25
Time (ms)

100

101

lo
g(

Oc
cu

re
nc

es
)

Pan subscriber times

(c) Pan subscriber times

1.0 1.5 2.0 2.5 3.0 3.5
Time (ms)

100

101

lo
g(

Oc
cu

re
nc

es
)

Pan publisher times

(d) Pan publisher times

1.75 2.00 2.25 2.50 2.75 3.00 3.25
Time (ms)

100

101

lo
g(

Oc
cu

re
nc

es
)

Tilt subscriber times

(e) Tilt subscriber times

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Time (ms)

100

101

lo
g(

Oc
cu

re
nc

es
)

Tilt publisher times

(f) Tilt publisher times

Figure G.1: Bare-metal Rasberry Pi Pico 2 at 1 Hz

G.1.2 JIWY communication measurements bare-metal Rasberry Pi Pico 2 at 10 Hz

72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Round-trip times pan

(a) Round trip times pan

72.5 73.0 73.5 74.0 74.5 75.0
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Round-trip times tilt

(b) Round trip times tilt

0.5 1.0 1.5 2.0 2.5
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Pan subscrbiber times

(c) Pan subscriber times

1.0 1.5 2.0 2.5 3.0 3.5
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Pan Publisher times

(d) Pan publisher times

1.0 1.5 2.0 2.5 3.0 3.5
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Tilt subscriber times

(e) Tilt subscriber times

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Tilt Publisher times

(f) Tilt publisher times

Figure G.2: Bare-metal Rasberry Pi Pico 2 at 10 Hz

Robotics and Mechatronics Daniël Huiskes

160 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

G.1.3 JIWY communication measurements bare-metal Rasberry Pi Pico 2 at 30 Hz

5 10 15 20 25 30 35 40
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Round-trip times pan

(a) Round trip times pan

5 10 15 20 25 30 35 40
Time (ms)

101

102

lo
g(

Oc
cu

re
nc

es
)

Round-trip times tilt

(b) Round trip times tilt

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Pan subscrbiber times

(c) Pan subscriber times

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Pan Publisher times

(d) Pan publisher times

0 5 10 15 20 25 30 35
Time (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Tilt subscriber times

(e) Tilt subscriber times

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Tilt Publisher times

(f) Tilt publisher times

Figure G.3: Bare-metal Rasberry Pi Pico 2 at 30 Hz

G.1.4 JIWY communication measurements bare-metal Rasberry Pi Pico 2 at 100 Hz

72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Round-trip times pan

(a) Round trip times pan

72.5 73.0 73.5 74.0 74.5 75.0
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Round-trip times tilt

(b) Round trip times tilt

Figure G.4: Bare-metal Rasberry Pi Pico 2 at 100 Hz

Daniël Huiskes University of Twente

APPENDIX G. JIWY COMMUNICATION MEASUREMENTS 161

G.2 FreeRTOS

G.2.1 JIWY communication measurements FreeRTOS Rasberry Pi Pico 2 at 1 Hz

312.5 313.0 313.5 314.0 314.5 315.0 315.5 316.0 316.5
Time (ms)

100

101

lo
g(

Oc
cu

re
nc

es
)

Round-trip times pan

(a) Round trip times pan

313.5 314.0 314.5 315.0 315.5 316.0 316.5 317.0 317.5
Time (ms)

100

101

lo
g(

Oc
cu

re
nc

es
)

Round-trip times tilt

(b) Round trip times tilt

1.5 2.0 2.5 3.0 3.5 4.0
Time (ms)

100

101

lo
g(

Oc
cu

re
nc

es
)

Pan subscriber times

(c) Pan subscriber times

2.0 2.5 3.0 3.5 4.0
Time (ms)

100

101

lo
g(

Oc
cu

re
nc

es
)

Pan publisher times

(d) Pan publisher times

2.0 2.5 3.0 3.5
Time (ms)

100

101

lo
g(

Oc
cu

re
nc

es
)

Tilt subscriber times

(e) Tilt subscriber times

1.5 2.0 2.5 3.0 3.5
Time (ms)

100

101

lo
g(

Oc
cu

re
nc

es
)

Tilt publisher times

(f) Tilt publisher times

Figure G.5: FreeRTOS Rasberry Pi Pico 2 at 1 Hz

G.2.2 JIWY communication measurements FreeRTOS Rasberry Pi Pico 2 at 10 Hz

68 69 70 71
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Round-trip times pan

(a) Round trip times pan

68 69 70 71 72
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Round-trip times tilt

(b) Round trip times tilt

1.5 2.0 2.5 3.0 3.5 4.0
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Pan subscriber times

(c) Pan subscriber times

1.5 2.0 2.5 3.0 3.5 4.0
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Pan publisher times

(d) Pan publisher times

1.5 2.0 2.5 3.0 3.5 4.0
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Tilt subscriber times

(e) Tilt subscriber times

1.0 1.5 2.0 2.5 3.0 3.5
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Tilt publisher times

(f) Tilt publisher times

Figure G.6: FreeRTOS Rasberry Pi Pico 2 at 10 Hz

Robotics and Mechatronics Daniël Huiskes

162 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

G.2.3 JIWY communication measurements FreeRTOS Rasberry Pi Pico 2 at 30 Hz

5 10 15 20 25 30 35 40
Time (ms)

101

102

lo
g(

Oc
cu

re
nc

es
)

Round-trip times pan

(a) Round trip times pan

5 10 15 20 25 30 35 40
Time (ms)

101

102

lo
g(

Oc
cu

re
nc

es
)

Round-trip times tilt

(b) Round trip times tilt

2 3 4 5 6 7
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Pan subscrbiber times

(c) Pan subscriber times

1.5 2.0 2.5 3.0 3.5 4.0
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Pan Publisher times

(d) Pan publisher times

2 3 4 5 6 7 8 9
Time (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Tilt subscriber times

(e) Tilt subscriber times

1 2 3 4 5
Time (ms)

100

101

102

103

lo
g(

Oc
cu

re
nc

es
)

Tilt Publisher times

(f) Tilt publisher times

Figure G.7: FreeRTOS Rasberry Pi Pico 2 at 30 Hz

G.2.4 JIWY communication measurements FreeRTOS Rasberry Pi Pico 2 at 100 Hz

68 69 70 71
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Round-trip times pan

(a) Round trip times pan

68 69 70 71 72
Time (ms)

100

101

102

lo
g(

Oc
cu

re
nc

es
)

Round-trip times tilt

(b) Round trip times tilt

Figure G.8: FreeRTOS Rasberry Pi Pico 2 at 100 Hz

Daniël Huiskes University of Twente

APPENDIX H. JIWY MOTION TRACKING 163

H JIWY motion tracking

0 5 10 15 20 25 30 35 40
Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Po
sit

io
n

(ra
d)

JIWY position tilt - Pico
setpoint tilt
real tilt pico pi4
real tilt pico pi5

(a) Motion profile Pico

0 5 10 15 20 25 30 35 40
Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Po
sit

io
n

(ra
d)

JIWY position tilt - Pico 2
setpoint tilt
real tilt pico 2 pi4
real tilt pico 2 pi5

(b) Motion profile Pico 2

Figure H.1: Motion profile tracking

0 5 10 15 20 25 30 35 40
Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Po
sit

io
n

(ra
d)

JIWY position tilt - Pico
setpoint tilt
real tilt pico pi4
real tilt pico pi5

(a) Motion profile Pico swapped JIWYs

0 5 10 15 20 25 30 35 40
Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Po
sit

io
n

(ra
d)

JIWY position tilt - Pico 2
setpoint tilt
real tilt pico 2 pi4
real tilt pico 2 pi5

(b) Motion profile Pico 2 swapped JIWYs

Figure H.2: Motion profile tracking swapped JIWYs

Robotics and Mechatronics Daniël Huiskes

164 EPG: Automating Model-to-Code Translation for micro-ROS and ROS 2

References

Belsare, Kaiwalya et al. (2023). ‘Micro-ROS’. In: Robot Operating System (ROS): The Complete
Reference (Volume 7). Cham: Springer International Publishing, pp. 3–55. ISBN: 978-3-031-
09062-2. DOI: 10.1007/978-3-031-09062-2_2. URL: https://doi.org/10.
1007/978-3-031-09062-2_2.

Bezemer, Maarten, Robert Wilterdink and J.F. Broenink (June 2011). ‘LUNA: Hard real-time,
multi-threaded, CSP-capable execution framework’. In: Communicating Process Architec-
tures 2011. Vol. 68. Concurrent System Engineering Series WoTUG-33. IOS, pp. 157–175.
ISBN: 978-1-60750-773-4. DOI: 10.3233/978-1-60750-774-1-157.

Brugali, Davide and Patrizia Scandurra (2009). ‘Component-based robotic engineering (Part I)
[Tutorial]’. In: vol. 16. 4, pp. 84–96. DOI: 10.1109/MRA.2009.934837.

Bruyninckx, Herman (2002). ‘OROCOS: design and implementation of a robot control software
framework’. In: Proc. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatron. Citeseer.

Chen, Celia et al. (2017). Why Is It Important to Measure Maintainability and What Are the Best
Ways to Do It? DOI: 10.1109/ICSE-C.2017.75.

Controllab (2025). 20-sim - Bond Graph-based Multidomain Simulation Software. Accessed:
February 7, 2025. Controllab Products B.V. URL: https://www.20sim.com/.

Dokter, J. (July 2016). 20-sim Template for Raspberry Pi 3. BSc Thesis 019RaM2016. University
of Twente. URL: https://cloud.ram.eemcs.utwente.nl/index.php/s/
SydM7FSnCiBiaYw.

eProsima (2024). eProsima Fast DDS Documentation. Accessed: 25 February 2025. URL:
https://fast-dds.docs.eprosima.com/en/latest/.

EVL Project (2023). EVL Project. https://evlproject.org/. Website.
Gibson, David (2006). Device Tree Compiler.https://ozlabs.org/~dgibson/papers/

dtc-paper.pdf. Accessed: 2025-01-28.
In ’t Veld, N.E.D. (Dec. 2023). Control of the Production Cell on Raspberry Pi using a real-time

robot-software framework. MSc Thesis 056RaM2023. University of Twente. URL: https:
//cloud.ram.eemcs.utwente.nl/index.php/s/BWBn4TEbQSik668.

Kempenaar, J.J. (Jan. 2014). Communication Component for Multiplatform Distribution of Con-
trol Algorithms. MSc Thesis 001RaM2014. University of Twente. URL: https://cloud.
ram.eemcs.utwente.nl/index.php/s/PNS7YzGrMbp6zgc.

Lee, Hyun-Jae and Hak Yi (2021). Development of an Onboard Robotic Platform for Embedded
Programming Education. DOI: 10.3390/s21113916.

Linux Foundation (2025). Linux and the Devicetree. Accessed: 2025-01-20. URL: https://
www.kernel.org/doc/html/latest/devicetree/usage-model.html.

Liu, Wei et al. (Aug. 2022). ‘Zoro: A robotic middleware combining high performance and
high reliability’. en. In: Journal of Parallel and Distributed Computing 166, pp. 126–138.
ISSN: 0743-7315. DOI: 10.1016/j.jpdc.2022.04.010. URL: https://www.
sciencedirect.com/science/article/pii/S0743731522000879 (visited
on 12/03/2023).

Macenski, Steven et al. (2022). ‘Robot Operating System 2: Design, architecture, and uses in the
wild’. In: Science Robotics 7.66, eabm6074. DOI: 10.1126/scirobotics.abm6074.
URL: https : / / www . science . org / doi / abs / 10 . 1126 / scirobotics .
abm6074.

Meijer, A. (Oct. 2021). Real-time robot software framework on Raspberry Pi using Xenomai and
ROS2. MSc Thesis 070RaM2021. University of Twente. URL: https://cloud.ram.
eemcs.utwente.nl/index.php/s/TPtt2yjixfN5DCc.

Daniël Huiskes University of Twente

https://doi.org/10.1007/978-3-031-09062-2_2
https://doi.org/10.1007/978-3-031-09062-2_2
https://doi.org/10.1007/978-3-031-09062-2_2
https://doi.org/10.3233/978-1-60750-774-1-157
https://doi.org/10.1109/MRA.2009.934837
https://doi.org/10.1109/ICSE-C.2017.75
https://www.20sim.com/
https://cloud.ram.eemcs.utwente.nl/index.php/s/SydM7FSnCiBiaYw
https://cloud.ram.eemcs.utwente.nl/index.php/s/SydM7FSnCiBiaYw
https://fast-dds.docs.eprosima.com/en/latest/
https://evlproject.org/
https://ozlabs.org/~dgibson/papers/dtc-paper.pdf
https://ozlabs.org/~dgibson/papers/dtc-paper.pdf
https://cloud.ram.eemcs.utwente.nl/index.php/s/BWBn4TEbQSik668
https://cloud.ram.eemcs.utwente.nl/index.php/s/BWBn4TEbQSik668
https://cloud.ram.eemcs.utwente.nl/index.php/s/PNS7YzGrMbp6zgc
https://cloud.ram.eemcs.utwente.nl/index.php/s/PNS7YzGrMbp6zgc
https://doi.org/10.3390/s21113916
https://www.kernel.org/doc/html/latest/devicetree/usage-model.html
https://www.kernel.org/doc/html/latest/devicetree/usage-model.html
https://doi.org/10.1016/j.jpdc.2022.04.010
https://www.sciencedirect.com/science/article/pii/S0743731522000879
https://www.sciencedirect.com/science/article/pii/S0743731522000879
https://doi.org/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://cloud.ram.eemcs.utwente.nl/index.php/s/TPtt2yjixfN5DCc
https://cloud.ram.eemcs.utwente.nl/index.php/s/TPtt2yjixfN5DCc

References 165

Object Management Group (Feb. 2020). DDS-XRCE: DDS for Extremely Resource Constrained
Environments Specification. Version 1.0. Accessed: 19 February 2025. URL:https://www.
omg.org/spec/DDS-XRCE/.

Radon Developers (2025). Radon Documentation. Accessed: 2025-02-08. URL: https : / /
radon.readthedocs.io/en/latest/commandline.html.

Raoudi, I. (Apr. 2023). Latency reduction and modularity improvement of a Raspberry Pi -
FPGA control system. Pre-MSc Thesis 011RaM2023. University of Twente. URL: https:
//cloud.ram.eemcs.utwente.nl/index.php/s/yCTxXcqHC8arBD6.

— (Dec. 2024). ROS2 – Xenomai4 Real-time Framework on Raspberry Pi. MSc Thesis
078RaM2024. msc. University of Twente. URL: https : / / cloud . ram . eemcs .
utwente.nl/index.php/s/g6SijsJ4P8igszo.

Soetens, P. (2024). RTT: Real-Time Toolkit. http://www.orocos.org/rtt.
Stampfer, Dennis et al. (Aug. 2016). ‘The SmartMDSD Toolchain: An Integrated MDSD Work-

flow and Integrated Development Environment (IDE) for Robotics Software’. In: Journal of
Software Engineering for Robotics (JOSER) 7, pp. 3–19.

Szyperski, Clemens (2002). Component Software: Beyond Object-Oriented Programming. 2nd.
USA: Addison-Wesley Longman Publishing Co., Inc. ISBN: 0201745720.

The Eclipse Foundation (2023). Papyrus for robotics. https : / / www . eclipse . org /
papyrus/. Website.

USB Implementers Forum (Apr. 2000). Universal Serial Bus Specification, Revision 2.0. Ac-
cessed: 20 February 2025. URL: https://www.usb.org/document-library/usb-
20-specification.

Vinkenvleugel, J.T. (July 2022). Designing an embedded software architecture for a mobile edu-
cation robot with real-time control on a Raspberry Pi 4 with FPGA-based I/O. BSc Thesis
025RaM2022. University of Twente. URL: https://cloud.ram.eemcs.utwente.
nl/index.php/s/aKqPCq4jppWonec.

Visser, B. (Aug. 2020). A bare-metal microcontroller as a target for 20-sim-generated C code.
BSc Thesis 043RaM2020. University of Twente. URL: https://cloud.ram.eemcs.
utwente.nl/index.php/s/CZg3SRs7yEf9Wen.

Vulcanexus (2023). URL: https : / / docs . vulcanexus . org / en / latest / rst /
tutorials/cloud/kubernetes/kubernetes.html.

Wenger, Monika et al. (Sept. 2016). ‘A model based engineering tool for ROS component com-
positioning, configuration and generation of deployment information’. In: 2016 IEEE 21st
International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–
8. DOI: 10.1109/ETFA.2016.7733559.

Zephyr Project (2025). Zephyr Project. https://zephyrproject.org.
Zhang, Jiaqiang et al. (Dec. 2022). ‘Distributed Robotic Systems in the Edge-Cloud Continuum

with ROS 2: a Review on Novel Architectures and Technology Readiness’. In: 2022 Seventh
International Conference on Fog and Mobile Edge Computing (FMEC), pp. 1–8. DOI: 10.
1109/FMEC57183.2022.10062523.

Robotics and Mechatronics Daniël Huiskes

https://www.omg.org/spec/DDS-XRCE/
https://www.omg.org/spec/DDS-XRCE/
https://radon.readthedocs.io/en/latest/commandline.html
https://radon.readthedocs.io/en/latest/commandline.html
https://cloud.ram.eemcs.utwente.nl/index.php/s/yCTxXcqHC8arBD6
https://cloud.ram.eemcs.utwente.nl/index.php/s/yCTxXcqHC8arBD6
https://cloud.ram.eemcs.utwente.nl/index.php/s/g6SijsJ4P8igszo
https://cloud.ram.eemcs.utwente.nl/index.php/s/g6SijsJ4P8igszo
http://www.orocos.org/rtt
https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/
https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/usb-20-specification
https://cloud.ram.eemcs.utwente.nl/index.php/s/aKqPCq4jppWonec
https://cloud.ram.eemcs.utwente.nl/index.php/s/aKqPCq4jppWonec
https://cloud.ram.eemcs.utwente.nl/index.php/s/CZg3SRs7yEf9Wen
https://cloud.ram.eemcs.utwente.nl/index.php/s/CZg3SRs7yEf9Wen
https://docs.vulcanexus.org/en/latest/rst/tutorials/cloud/kubernetes/kubernetes.html
https://docs.vulcanexus.org/en/latest/rst/tutorials/cloud/kubernetes/kubernetes.html
https://doi.org/10.1109/ETFA.2016.7733559
https://zephyrproject.org
https://doi.org/10.1109/FMEC57183.2022.10062523
https://doi.org/10.1109/FMEC57183.2022.10062523

	Summary
	Contents
	1 Introduction
	1.1 Context
	1.2 Goals
	1.3 Report outline

	2 Background
	2.1 Introduction
	2.2 Component-based software
	2.3 Robotic software architectures
	2.4 Modelling and simulation tool 20-sim
	2.5 Device tree

	3 Analysis
	3.1 Introduction
	3.2 Requirements
	3.3 Selection of the software/hardware configuration

	4 Design
	4.1 Introduction
	4.2 Automation method
	4.3 Software tool implementation
	4.4 EPG-target configurations
	4.5 Verification of the requirements

	5 Testing
	5.1 Introduction
	5.2 Performance testing
	5.3 Network testing
	5.4 Test compatibility with a different mechatronic system

	6 Conclusions and Recommendations
	6.1 Conclusion
	6.2 Recommendations

	A EPG user guide
	A.1 Software installation
	A.2 Using the EPG
	A.3 Demos

	B Micro-ROS communication
	C Active engagement with open-source developers
	D Literature study
	D.1 Key aspects of a component-based design methodology
	D.2 State-of-the-art in robotic software architectures
	D.3 Real-time robotic software
	D.4 Networking within a robotic software architectures

	E Ping-pong measurements
	E.1 Data distribution round-trip times
	E.2 Bare-metal control loop measurements
	E.3 FreeRTOS control loop measurements
	E.4 Zephyr control loop measurements

	F JIWY control loop measurements
	F.1 Bare-metal control loop measurements
	F.2 FreeRTOS control loop measurements
	F.3 Zephyr control loop measurements

	G JIWY communication measurements
	G.1 Bare-metal
	G.2 FreeRTOS

	H JIWY motion tracking
	References
	References

