
MSc Business Information Technology
Final Project

CLAIR: Generating
On-Demand Low-Code
Application Documentation
through Knowledge Graph and
LLM-based Multi-Agent
System Integration

Tim Eichhorn

Supervisors:
Dr. L. Ferreira Pires
Dr. G. Sedrakyan

Enschede
February, 2025

Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 3
1.3 Research and Scope . 4
1.4 Research Questions . 4
1.5 Approach . 5

2 Low-Code & Documentation 8
2.1 Literature Review Approach . 8
2.2 Low-Code . 8

2.2.1 Definition and Components . 9
2.2.2 Types of Low-Code Platforms . 11
2.2.3 Benefits of Low-Code . 12
2.2.4 Challenges of Low-Code . 12
2.2.5 Conclusion . 13

2.3 Documentation in Software Development . 14
2.3.1 Costs and Benefits of Documentation 14
2.3.2 Practitioners’ Perspective on Documentation 16
2.3.3 Documentation in Continuous Software Development 17
2.3.4 Documentation Quality Aspects . 18
2.3.5 Towards Effective Documentation Practices 19
2.3.6 Conclusion . 19

2.4 Low-Code Development Lifecycle . 20
2.4.1 Design Phase . 21
2.4.2 Development Phase . 21
2.4.3 Testing Phase . 22
2.4.4 Deployment Phase . 23
2.4.5 Maintenance Phase . 24
2.4.6 Conclusion . 24

3 Case Study Design: Mendix 25
3.1 Mendix . 25
3.2 Methodology . 26

3.2.1 The Case Study Protocol . 27
3.2.2 Conducting the Case Study . 27
3.2.3 Analysing Case Study Evidence . 28
3.2.4 Develop Conclusions, Recommendations, and Implications Based on

the Evidence . 29

2

3.3 Survey . 30
3.3.1 Goals . 30
3.3.2 Design . 30
3.3.3 Data Collection . 31
3.3.4 Data Analysis . 31

4 Low-Code Developers’ Perspective on Documentation 33
4.1 Respondents . 33
4.2 Information Content (What) . 34
4.3 Information Content (How) . 37
4.4 Documentation Process & Tools . 38
4.5 Design Phase Documentation . 39
4.6 Development Phase Documentation . 43
4.7 Maintenance Phase Documentation . 46
4.8 Conclusion . 48

5 Available Solutions 50
5.1 Automated Documentation Generation Techniques 50

5.1.1 Automatic Code Commenting and Summarisation 50
5.1.2 Context-Aware Documentation . 51

5.2 Model-Driven Documentation Generation 51
5.3 Agile and Dynamic Documentation . 51
5.4 Large Language Models and Software Documentation 52
5.5 Retrieval Augmented Generation . 52
5.6 Conclusion . 53

6 CLAIR: Connecting Low-Code and Artificial Intelligence for RAG 54
6.1 Requirements Specification . 54

6.1.1 Purpose and Scope . 54
6.1.2 Functional Requirements . 55
6.1.3 Non-Functional Requirements . 55

6.2 CLAIR Design . 57
6.2.1 Knowledge Graph Database . 58
6.2.2 LLM-based Multi-Agent System . 62

6.3 Use Cases . 65
6.3.1 On-Demand Documentation Generation 65
6.3.2 Annotation Generation . 66
6.3.3 Debugging and Troubleshooting . 66
6.3.4 New Logic Generation . 66
6.3.5 Generating High-level Overview . 67

7 CLAIR Validation 69
7.1 Validation Preparation . 69

7.1.1 Objectives . 69
7.1.2 Validation Questions . 70
7.1.3 Participant Selection . 70
7.1.4 Testing Plan . 71
7.1.5 Data Collection and Analysis . 72

7.2 Test Case 1 - Documentation Generation . 72
7.3 Test Case 2 - Annotation Generation . 75

3

7.4 Test Case 3 - Troubleshooting . 77
7.5 Test Case 4 - New Logic . 79
7.6 Test Case 5 - High-level Questions . 81
7.7 Usability and User Experience . 84
7.8 Discussion of the Results . 86

7.8.1 Requirements satisfaction . 86
7.8.2 Effect . 88
7.8.3 Trade-off . 89
7.8.4 Sensitivity . 89

8 Final Remarks 90
8.1 Discussion . 90

8.1.1 Research Goal . 90
8.1.2 Research Questions . 90

8.2 Main Contributions . 94
8.2.1 Theoretical Contributions . 94
8.2.2 Practical Contributions . 95
8.2.3 Broader Implications . 96

8.3 Limitations . 96
8.3.1 Subjectivity and Potential Bias . 96
8.3.2 Limited Generalisability of Survey Findings 96
8.3.3 Validation Constraints and Participants 96
8.3.4 Reliance on Mendix . 97
8.3.5 Exclusion of Key Components . 97
8.3.6 LLM Model Choice . 97

8.4 Future Work . 98
8.4.1 Usability Enhancements . 98
8.4.2 Cost and Sustainability Optimisation 98
8.4.3 Integration with Deployment or CI/CD Pipelines 98
8.4.4 Porting to Other Platforms and Outputs 98
8.4.5 Specialisation of LLM-based Multi-Agent System (MAS) 98
8.4.6 Validation Across Platforms and Companies 99
8.4.7 Comparative Analysis of LLM Models 99
8.4.8 Extending Knowledge in the Graph Database 99
8.4.9 Deploying and Expanding CLAIR’s Role 99
8.4.10 Creation of a Validated Documentation Dataset 99

8.5 Conclusion . 100

A Extra results survey 110

B Knowledge Graph Schema Details 115

C Testing Scenarios 118

D Goal Question Metric Process & Survey Questions 119
D.1 Quality of Generated Documentation . 119
D.2 Usability & User Experience . 120

4

List of Figures

1.1 The design cycle for this thesis, based on the cycle presented by Wieringa [95] 6

2.1 Features of Low-Code platforms (Copied from [12]) 10
2.2 Common Architecture of Low-Code tools. (Copied from [39]) 10
2.3 A meta-model for documentation development, usage-and cost process (copied

from [99]). 15
2.4 A meta-model for documentation benefit (copied from [99]). 15
2.5 Possible relations between challenges and practices. The green box indicates

a positive effect on the contribution to better documentation (copied from
[84]). 17

2.6 A meta-model for documentation quality (copied from [99]). 18
2.7 The Low-Code Development Lifecycle. 20

3.1 Overview of the Mendix runtime architecture 26
3.2 Design of the survey used in our study (authors own adaptation of [1]). . . . 32

4.1 Importance of documentation issues to Low-Code practitioners, according
to the results of the survey. 35

4.2 Documentation process and tool issue results of the survey. 39
4.3 Design Phase Documentation usage results 41
4.4 Design Phase Documentation quality results 42
4.5 Development Phase Documentation usage results 44
4.6 Development Phase Documentation quality results 45
4.7 Maintenance Phase Documentation usage and quality results 47

5.1 Comparison between LLM, RAG, and GraphRAG (copied from [63]). 53

6.1 CLAIR architecture . 57
6.2 Knowledge Graph schema for storing Mendix model elements 59
6.3 Refined data pipeline (including the extra JSON reduction step) 60
6.4 Transformation process: (a) Input JSON file and (b) Reduced JSON file. . . 60
6.5 The LLM-based Multi-Agent System Design in Flowise 64
6.6 CLAIR Use Cases . 65
6.7 Example of On-Demand Documentation Generation with CLAIR 68

7.1 Participants distribution in terms of years of experience with Mendix. . . . 71
7.2 Test Case 1 - Quantitative results . 73
7.3 Test Case 2 - Quantitative results . 75
7.4 Test Case 3 - Quantitative results . 77
7.5 Test Case 4 - Quantitative results . 80

5

7.6 Test Case 5 - Quantitative Results . 82
7.7 Usability and user experience results . 85

6

List of Tables

2.1 Design phase documentation . 22
2.2 Development phase documentation . 22
2.3 Test phase documentation . 23
2.4 Deployment phase documentation . 23
2.5 Maintenance phase documentation . 24

4.1 Results question: What type of documentation would you use more if they
were more correct, complete, up-to-date, findable, readable and usable? . . . 48

4.2 Information Content (What & How) . 49
4.3 Documentation Processes & Tools . 49

6.1 Functional requirements for CLAIR . 55
6.2 Quality requirements for the generated documentation 56
6.3 Non-functional requirements for CLAIR . 56

7.1 Average results of the quality requirements for the generated documentation 87

A.1 Reasons for not using Business Case . 110
A.2 Reasons for not using Business Process Documentation 110
A.3 Reasons for not using Requirements Documentation 111
A.4 Reasons for not using Roadmap & Release Plan 111
A.5 Reasons for not using Architecture Design Documentation 111
A.6 Reasons for not using Mockups and UI Documentation 112
A.7 Reasons for not using Data Model Documentation 112
A.8 Reasons for not using Application Logic Documentation 112
A.9 Reasons for not using Source Model Comments 113
A.10 Reasons for not using Component Documentation 113
A.11 Reasons for not using Dependencies Documentation 113
A.12 Reasons for not using Maintenance Documentation 113
A.13 Reasons for not using Service Level Agreements 114
A.14 Reasons for not using Issue Tracking Logs 114
A.15 Reasons for not using User Manuals . 114

7

List of Abbreviations

AI Artificial Intelligence
API Application Programming Interface
BPMN Business Process Model Notation
CSD Continuous Software Development
CI/CD Continuous Integration Continuous Development
CLAIR Connecting Low-Code and Artificial Intelligence for RAG
DSM Design Science Methodology [95]
GPT Generative Pre-trained Transformer
GQM Goal Question Metric
GUI Graphical User Interface
IDE Integrated Development Environment
IR Information Retrieval
IT Information Technology
LCSD Low-Code Software Development
LDCP Low-Code Development Platform
LLM Large Language Model
MAS Multi-Agent System
MBD Model-Based Development
OD3 On-demand Developer Documentation
RAG Retrieval-Augmented Generation
RNN Recurrent Neural Network
RQ Research Question
SDK Software Development Kit
SLA Service Level Agreement
SQL Structured Query Language
TAM Technology Acceptance Model
TAR Technical Action Research [95]
UML Unified Modeling Language

8

Abstract

Low-Code has revolutionised software development by enabling rapid application creation
with minimal coding effort. However, as Low-Code applications scale, challenges related to
documentation, maintainability, and technical debt become increasingly prevalent. Inade-
quate documentation impedes collaboration, maintenance, troubleshooting, and knowledge
retention, particularly in agile development environments where documentation is often
disregarded. This thesis introduces CLAIR (Connecting Low-Code and Artificial Intelli-
gence for RAG), an AI-driven documentation assistant that leverages a knowledge graph
and a LLM-based Multi Agent System to generate on-demand, context-aware documenta-
tion for Low-Code applications. The tool is validated using the Mendix platform, and the
study employs a Design Science Methodology to design, develop, and validate the proposed
solution.

A comprehensive literature review explores challenges in Low-Code documentation, em-
phasising issues such as fragmented knowledge, poor traceability, and the impact of missing
documentation. A survey and case study at CAPE Groep, an Low-Code consultancy firm,
further highlight the documentation needs of Low-Code developers and business analysts.
To address these issues, CLAIR integrates knowledge graphs to structure and store Low-
Code application data, enabling efficient querying and multi-hop reasoning. Additionally,
a Multi-Agent LLM System dynamically generates and enhances documentation based on
application data and user queries.

CLAIR automates documentation generation across various phases of the Low-Code De-
velopment Lifecycle, including the design, development, and maintenance phases. Key
features include automated extraction of domain models, microflows, and dependencies,
generation of high-level summaries and technical details, and support for troubleshoot-
ing. The system enhances maintainability, knowledge retention, and team collaboration
by ensuring up-to-date, structured, and queryable on-demand documentation.

Validation was conducted through expert evaluations and a series of test cases using Tech-
nical Action Research, demonstrating CLAIR’s ability to generate accurate, usable, and
context-aware documentation. Findings indicate that automated documentation signif-
icantly reduces the time and effort needed to create high-quality documentation. This
documentation leads to reduced cognitive load, technical debt, and maintenance effort,
making it a valuable asset for Low-Code development teams.

This research contributes to the fields of Low-Code development, automated documenta-
tion, and AI-driven knowledge management, proposing an innovative approach that com-
bines knowledge graphs and LLMs to enhance documentation processes. By bridging the
gap between Low-Code application development and AI-driven automation, CLAIR sets a
foundation for future advancements in intelligent Low-Code documentation and maintain-
ability solutions.

Keywords: Low-Code, Automated Documentation, On-Demand Documentation, Knowl-
edge Graphs, LLM-based Multi-Agent Systems, Mendix, Maintainability, AI-driven Doc-
umentation.

Chapter 1

Introduction

This chapter introduces the research topic and helps creating an understanding of the
knowledge required for the thesis. Section 1.1 contextualises the study by exploring the
rapid evolution of software development and the unique challenges posed by Low-Code
platforms, particularly regarding documentation. Section 1.2 defines the problem state-
ment. In Section 1.3, the research scope and object are introduced. Section 1.4 outlines
the research questions. Finally Section 1.5, details how the Design Science Methodology
[95] will guide the development and validation of the proposed solution and describes the
structure of the thesis.

1.1 Context

The rapid evolution of software development practices has brought significant attention
to the processes and tools needed to create efficient, scalable, maintainable, and afford-
able applications [24, 53, 60]. Simultaneously, Low-Code platforms have impacted the
way applications are designed, developed, and tested, enabling users with minimal coding
knowledge to rapidly create and deploy functional applications [47]. These platforms visu-
ally abstract a layer of complexity from traditional coding, making it accessible to a broader
range of users [30]. This democratisation of application development offers substantial ad-
vantages, including faster development cycles and a reduced need for specialised coding
skills. However, as Low-Code applications scale in size and functionality, they face unique
challenges distinct from similar challenges in traditional environments [47, 64], particu-
larly for managing growing complexity [41]. Low-Code applications, initially simple and
easy to manage, can become unwieldy as new features are added and as they are tightly
integrated with other systems. This growth can lead to increased complexity, affecting
maintainability, scalability, and performance [41], which can be difficult to manage and
mitigate. The ease of use that initially attracts organisations and developers to Low-Code
platforms can inadvertently lead to increased technical debt [21], as the underlying com-
plexity becomes more difficult to manage without traditional coding methods, practices,
rigorous architectural oversight and supportive tools [41].

In the realm of software engineering, documentation is a foundational aspect that supports
maintainability and scalability throughout the entire lifecycle of software development
[1, 14, 26, 99]. It encompasses all forms of records related to a system, including technical
specifications, architecture diagrams, user guides, and maintenance procedures. Effective
documentation plays a key role in ensuring that both developers and stakeholders have

1

a clear understanding of the system’s design, functionality, and evolution [68]. It not
only facilitates onboarding and collaboration among team members but also provides a
shared knowledge base that supports decision-making and development continuity [26,
99]. Therefore effective high-quality documentation plays a crucial role in managing the
complexity of applications [1, 26, 66, 68, 99]. As systems grow, maintaining clear and
up-to-date documentation helps developers navigate the intricacies of both technical and
business aspects, reducing the risk of hidden complexity [26].

Low-Code platforms, while efficient in the short term, require continuous improvement
processes to handle the complexity that arises as applications scale [67]. To this end, agile
methods are commonly used in software development due to their emphasis on flexibility,
rapid iteration, and responsiveness to change [15, 21]. Low-Code platforms enable faster
development cycles by allowing users to build applications with minimal coding, aligning
naturally with agile methods’ focus on delivering small, incremental improvements [3]. Fur-
thermore, many platforms provide built-in support and collaboration tools based on agile
principles [21]. However, research has shown that developers find team work, communi-
cation, and collaboration in Low-Code challenging [6, 17]. Therefore, while agile methods
facilitate speed and adaptability, they can also introduce complexity into the Low-Code
development processes. Particularly because the the agile manifesto itself values “working
software over comprehensive documentation” and states that “The most efficient and ef-
fective method of conveying information to and within a development team is face-to-face
conversation” [10]. However, research indicated that practitioners see problems with this
agile principle [76]. Practitioners consider documentation valuable, yet they often find that
there is insufficient documentation available in their projects [93]. The focus on minimal
documentation and constant changes contributes to challenges in maintaining long-term
knowledge retention, system cohesion, and scalability [15]. As a result, balancing agile
method’s strengths with effective documentation management strategies is crucial for the
development of sustainable Low-Code applications.

For practitioners, the trade-off between reducing development time through agile practices
and ensuring adequate documentation is a key factor in managing complexity [1, 15]. Low-
Code platforms, by their nature, often rely on visual development environments, which can
obscure the need for detailed documentation [6]. However, as these systems scale, the lack
of documentation can hinder future development and maintenance efforts [48]. This is
further illustrated by the difficulty in locating information about assets within Low-Code
development platforms [17]. Ensuring that adequate documentation is maintained, espe-
cially in Low-Code environments where agile methods are supported and actively promoted,
is essential for managing complexity and ensuring the long-term viability of Low-Code ap-
plications [14]. However, in the context of Low-Code applications, documentation is often
neglected both due to the abstract nature of development [3] and the frequent use of agile
methodologies [15, 84, 93]. Maintaining useful and up-to-date documentation helps devel-
opers and citizen developers navigate the complexity that emerge as applications grow in
size and functionality [26, 66, 68]. It ensures that system components, dependencies, and
design decisions are transparent, making it easier to manage maintainability, reduce tech-
nical debt, and ensure the sustainability of Low-Code solutions over time [26, 66, 99].

Although there has been significant academic attention to the importance of documenta-
tion in software development [1, 82, 26, 99, 93], the field has not yet fully matured [68].
Currently most of the research is focused on identifying the benefits [14], issues [2], qual-
ity requirements [66, 80, 99], and future research directions [68] of documentation, with
only select few studies aiming to develop artifacts to support creation, maintenance, and

2

sharing of high-quality documentation [31, 92]. In the context of Low-Code application
development, to the best of our knowledge, no previous effort to develop an artifact to
support the creation of high-quality documentation has been published.

1.2 Problem Statement

Low-Code development platforms enable rapid application development. However, as ap-
plications grow in size and complexity, maintaining up-to-date and high-quality documen-
tation becomes increasingly challenging [14]. The combination of visual programming and
the involvement of citizen developers often results in outdated or incomplete documenta-
tion [6], which leads to communication breakdowns [11], lesser quality designs [14], and
hampers future maintenance [14, 15] and increases the cognitive load of an application
[60].

Currently, documentation and other system knowledge is often of low quality with inad-
equate information and dispersed across various teams, systems, and tools [1]. Without
a mature consolidated system that supports the creation and management of documen-
tation, organisations face a growing risk of technical debt and accidental complexity [53].
Additionally, without accurate and up-to-date documentation, identifying and reducing
technical debt and areas of accidental complexity in the system becomes difficult, leading
to increased maintenance costs and decreased system agility [14]. Consolidating this key
information in a single environment is crucial to ensure long-term knowledge is stored,
available, and distributed, which is a crucial factor of software sustainability [89].

Traditional documentation processes are often costly, time-consuming, and prone to human
error [31], making it difficult for organisations to maintain the high-quality documentation
necessary for effective communication and maintainability. Furthermore, in many agile
methods, which are actively encouraged in Low-Code application development, minimal
documentation is part of the process, further exacerbating the issue [7, 15]. Furthermore,
existing documentation is often fragmented across different systems and formats, which
makes it difficult for decision-makers to have a complete view of their Low-Code application
portfolios and are therefore often unaware of the lack of documented system knowledge of
the applications within their portfolio. Overall, changing documentation practices without
disrupting existing workflows becomes a crucial challenge [7].

Another significant challenge in Low-Code application development, and software devel-
opment in general, is the unpredictability of documentation needs [68]. It is difficult to
foresee exactly which aspects of the system require detailed documentation and which will
be inherently understood by developers and stakeholders. This makes traditional docu-
mentation approaches inefficient, as they often lead to either over-documentation or critical
gaps [1]. An adaptive approach is particularly beneficial in environments with mixed de-
velopment expertise [68], such as Low-Code involving citizen developers, where the need
for explanatory content varies significantly. To this end, automated on-demand documen-
tation is expected to ensure that the right information is available when needed, thus
reducing cognitive load and supporting both effective collaboration and maintainability
without overburdening developers with exhaustive, static documentation [68].

3

1.3 Research and Scope

Based on our problem statement, it follows that improving the quality, availability, and
comprehensiveness of documentation in Low-Code environments is crucial to addressing
challenges such as technical debt, maintainability, knowledge fragmentation, and overall
system sustainability. Furthermore, understanding how to improve documentation to bet-
ter share knowledge could provide substantial benefits for Low-Code development teams,
ensuring that accurate, up-to-date information is readily available for both technical and
business users, which enhances collaboration. To this end, automated on-demand docu-
mentation is expected to significantly help stakeholders develop in dynamic visual devel-
opment environments while minimising cognitive complexity.

The main objective of this thesis therefore is to improve the documentation process and
quality for Low-Code applications. The enhanced documentation should provide valu-
able insights into application components, processes, and dependencies to improve system
understandability, maintainability, sustainability, and overall knowledge retention.

The scope of this thesis is limited to Low-Code applications. Our focus lies in leveraging
the technical details of these applications and their interrelationships to generate docu-
mentation. To illustrate and validate these objectives, we will conduct a case study using
Mendix1, a leading Low-Code development platform [90], which is representative of many
major Low-Code platforms [25].

1.4 Research Questions

Our main research question is the following:
"How can an automated documentation assistant enhance the quality and process of docu-
mentation for Low-Code applications?"

Aligning with the methodological approach of Wieringa our sub-research questions are
designed as knowledge questions, which require gathering and analysing empirical data
about the world [95]. We decompose the main question into two principal sub-questions.
Each sub-question is further refined into more specific queries that systematically build the
knowledge required to propose and validate a solution. This stepwise approach ensures that
we first capture and describe the complexity of the problem (descriptive knowledge ques-
tions [95]) and then explore how to address it (explanatory and design-oriented knowledge
questions [95]). Below are the sub-questions and a brief rationale for how each contributes
to answering the main research question.

This research question has been decomposed in the following sub-questions:

1. What are the key documentation challenges in Low-Code application development?

(a) What are the main challenges in documentation in Software development in
general?

(b) How do the unique characteristics of Low-Code impact documentation issues?

(c) What are the implications of fragmented, inconsistent, in-adequate documenta-
tion for Low-Code applications?

1https://www.mendix.com/

4

(d) What are the documentation needs and challenges during each phase of the
Low-Code development lifecycle?

2. To what extent can automated documentation be applied in Low-Code development
environments, specifically in the context of complex Mendix applications?

(a) What are the specific documentation needs for different stakeholders in Low-
Code?

(b) What are currently available solutions for automated documentation?

(c) What are the design requirements for our automated documentation assistant?

The first sub-question group is primarily descriptive. It gathers empirical insights into the
broad and specific challenges that Low-Code practitioners face in documenting their appli-
cations. Understanding these issues lays the foundation for defining what “enhanced” docu-
mentation quality and process should look like. Thus, these questions identify the problem
landscape that any automated solution must tackle. Building upon the insights from the
first group of sub-questions, sub-question 2 is more explanatory and design-oriented. It
examines the distinct documentation requirements of various Low-Code stakeholders, ex-
isting automated documentation tools or techniques, and how these insights translate into
specific design requirements for an automated documentation assistant. By investigating
these areas, sub-question 2 provides the necessary knowledge to propose a concrete solu-
tion, thereby relating back to the main research question on how an assistant can enhance
documentation quality and processes in Low-Code applications. Overall, the knowledge
gained from sub-question 1 contextualises the specific shortcomings and complexities that
must be addressed, while sub-question 2 demonstrates how automated documentation can
meet those challenges. Together, they culminate in a comprehensive response to our main
research question, informing the design, implementation, and validation of an automated
documentation assistant that improves Low-Code documentation practices.

1.5 Approach

To answer our main research question we developed an automated documentation assis-
tant for Low-Code applications. To this end we employed the Design Science Methodology
(DSM) by Wieringa [95]. This methodology allows for the systematic design and inves-
tigation of artifacts within their application contexts. In line with the DSM, the design
problem at the core of this thesis is as follows:

Improve the maintainability, understandability, sustainability, development effi-
ciency, and quality of complex Low-Code applications

by designing a documentation assistant that knows the structure of a Low-Code appli-
cation

that supports the automated generation of on-demand, precise, and up-to-date
documentation, offering context-aware insights from both technical and
business perspectives

in order to help Low-Code platform developers, citizen developers, and business an-
alysts efficiently reduce technical debt, troubleshoot, develop, scale, and
maintain their Low-Code applications while fostering knowledge retention
and collaboration.

5

Figure 1.1: The design cycle for this thesis, based on the cycle presented by
Wieringa [95]

We aim to improve the maintainability, understandability, sustainability, development ef-
ficiency, and quality of complex Low-Code applications by enhancing the documentation
process and its quality. Research has consistently demonstrated a direct relationship be-
tween documentation quality and these aspects, this is further discussed in Chapter 2.
Therefore, our validation focuses on assessing the quality of the resulting documentation
and documentation process, rather than directly measuring aspects like maintainability
and efficiency.

6

Mapping of DSM phases to the structure of the thesis

Problem Investigation (Chapters 2, 3 and 4)

• Focused on identifying documentation challenges in Low-Code environments, partic-
ularly Mendix.

• Combined insights from:

– Literature Review: Synthesised knowledge on documentation challenges in Low-
Code and traditional software development.

– Stakeholder Survey: Conducted within CAPE Groep to understand current
practices, challenges, and requirements for documentation in Mendix.

– Aimed to establish a foundation for designing an artifact addressing the docu-
mentation issues faced in Low-Code.

Treatment Design (Chapters 5 and 6)

• A review of currently available solutions, assessing their ability to satisfy the chal-
lenges and needs determined in the problem investigation.

• Specify both the functional and non-functional requirements for the automated doc-
umentation assistant.

• Design and develop an automated documentation assistant for Low-Code applica-
tions, specifically Mendix.

• Key design objectives:

– Generate accurate, on-demand, and context-aware documentation for various
users.

– Enhance maintainability, development efficiency, and support collaboration.

• Iterative design process integrated feedback from problem investigation to ensure
alignment with stakeholder needs.

Treatment Validation (Chapter 7)

• Conducted expert evaluations and Technical Action Research (TAR) [95] to assess
the functionality, usability, and impact of the artifact.

• Validation goals:

– Ensure the generated documentation meets quality requirements.

– Identify areas of improvement related to usability and user experience.

• Evaluated feedback to define potential improvements to the design and align it more
with user needs.

Treatment Implementation

• Implementation is outside the scope of this thesis, as per Wieringa’s Design Science
Methodology [95].

• Future work is discussed in Section 8.4

7

Chapter 2

Low-Code & Documentation

This chapter provides the literature review we performed on Low-Code development plat-
forms, the challenges of maintaining documentation, and the potential solutions to these
issues according to literature. The review synthesises academic research on documentation
in software development and documentation practices within Low-Code environments and
identifies the potential of automation in improving the documentation process and quality
for Low-Code applications.

2.1 Literature Review Approach

This research adopted an exploratory literature review, to investigate questions related to
Low-Code platforms and documentation, as it is suitable for exploring broad and complex
questions where little prior research exists [18]. Our exploratory literature review exam-
ined foundational literature on Low-Code platforms and the role of documentation in both
software development and Low-Code. This review establishes a broad understanding of
Low-Code architecture and common challenges faced by organisations in maintaining ac-
curate, up-to-date documentation. It highlights key studies on documentation challenges
and the impacts on technical debt and cognitive complexity.

In contrast to a systematic literature review, this approach does not aim to provide a
conclusive answer or solution to a research question, it rather explores the available infor-
mation on the topic [18]. Since this type of review does not require a specific structure,
the research was guided by the following steps: formulation of research questions, database
searches (using the concepts outlined in the research questions), identification of relevant
themes and concepts, and analysis of the results. The repositories searched consisted of
Scopus, IEEE Xplore, ISI Web of Science and ACM Digital Library. Furthermore, for
relevant papers their references and citations were also investigated to further add to the
corpus of literature examined in this thesis. A paper was deemed relevant if it provided
insights that were directly applicable to the challenges of documentation.

2.2 Low-Code

Low-Code Development Platforms (LDCPs) are environments designed to enhance software
development productivity by combining minimal source code with interactive graphical
interfaces, enabling rapid application creation [12]. They aim to bridge the gap between
business requirements and technical implementation, empowering non-programmers, or

8

"citizen developers" 1, to create and adapt applications with minimal coding [5, 12, 25,
71]. The goal is to improve business IT alignment and enable organisations to adapt
quickly to changing requirements [3, 12]. Additionally, LDCPs promise several benefits over
traditional coding practices, including increased productivity, reduced development costs,
and simplified application maintenance [12, 64]. However, despite these benefits, LDCPs
also introduce unique challenges related to scalability [5, 69], maintainability [6, 64], and
technical debt [21, 41], especially as applications grow in complexity. While Low-Code is
intended to reduce the development burden, it often requires traditional coding for complex
functionality, which can lead to maintenance difficulties and increased technical debt.

2.2.1 Definition and Components

Despite the wide spread adoption, the academic literature still lacks a clear, common
understanding of Low-Code [13, 20, 25, 39, 47].

Tisi et al. [85] define LCDPs as cloud-based software development tools offered via a
Platform-as-a-Service model that enable users to create fully functional applications using
interactive graphical user interfaces, visual diagrams, and declarative languages. Other
publications assign the term “No-Code Development Platform” to this concept [51], however
[25] consider this term to be a marketing positioning statement and should be considered
as a component of LCDPs.

Al Alamin et al. [3] introduce the notion of “Low-Code Software Development “ (LCSD)
as an emerging paradigm that merges minimal source code with a graphic interface to
promote rapid application development. This correlates with [86], who state that Low-Code
platforms simplify and accelerate application development by offering visual interfaces and
drag-and-drop functionality, replacing the need for complex programming languages and
traditional software development environments. They employ automatic code generation
and transformation techniques, using the Model-Based Development (MBD) approach to
automatically create code from high-level abstract models.

LDCPs integrate various classical development components into a single environment, dif-
fering from traditional software development infrastructures by incorporating most tools
and components necessary for specific software development projects [12], streamlining the
development process and reducing the complexity of software projects [39]. Additionally,
Low-Code platforms often provide pre-built templates to simplify the development process,
reducing accidental complexity, and offering cloud-based environments for application life-
cycle management [20].

Overall, despite the lack of a commonly agreed concept of Low-Code, we can conclude that
based on the combination of the provided conceptualisations, LCDPs aim at streamlining
and simplifying the software development process, making it more accessible to various
types of developers by incorporating visual tools, automatic code generation, and integrated
environments.

These LCDPs consist of various components and features, some more common than oth-
ers across various platforms [12]. Figure 2.1 shows an overview of features found in ten
representative Low-Code platforms analysed by [12]. Furthermore, Kirchhof et al. [39]
find that when examining Low-Code tools, it is evident that many share a similar struc-
ture, which is depicted in Figure 2.2. These tools typically require developers to model

1Citizen developers are business users with little to no coding experience who build applications.
https://www.mendix.com/glossary/citizen-developer/

9

Figure 2.1: Features of Low-Code platforms (Copied from [12])

Figure 2.2: Common Architecture of Low-Code tools. (Copied from [39])

10

three aspects of an application: data structures, behaviour, and GUI. Data is modelled
using class diagrams, forms, or spreadsheets. Behaviour is usually modelled with activity
diagrams or business process models, while GUIs are designed using visual drag-and-drop
editors. However, there are deviations, such as UMLP’s use of a textual GUI description
language. Technically, three types of artifacts are common: SQL databases generated from
data models, application behaviour managed through code or model interpreters, and fron-
tend definitions dependent on the target platform, which can often be extended or replaced
with handwritten code.

2.2.2 Types of Low-Code Platforms

There has been extensive research into comparing various Low-Code Platforms [25, 39,
71, 86]. Despite this research, limited attention was given to grouping or classifying these
different platforms. To this end, Frank et al. [25] propose a classification system that
distinguishes between Basic Data Management Platforms, Workflow Management Systems,
Extended GUI-Centric and Data-Centric IDEs, and Multi-Use Platforms.

Basic Data Management Platforms: these platforms primarily focus on handling
and organising data. They provide users with tools to create, manage, and manipulate
databases through a user-friendly interface, without needing extensive coding knowledge.
An example is Quickbase2, which offers functionalities like relational data modelling and
pre-built templates to support business information management efficiently.

Workflow Management Systems: this category includes platforms designed to au-
tomate and streamline business processes. They offer capabilities to design, execute, and
monitor workflows, making it easier for organisations to manage complex processes. Bonita
Studio3 is a notable example, providing tools for process modelling, task automation, and
performance tracking. These platforms often feature drag-and-drop interfaces and support
for integrating with various enterprise systems.

Extended GUI-Centric and Data-Centric IDEs: platforms in this category extend
traditional Integrated Development Environments (IDEs) by incorporating graphical user
interfaces (GUIs) and data-centric capabilities. They aim to simplify application devel-
opment by allowing users to visually design interfaces and data models. Mendix4 and
OutSystems5 are prominent examples, offering comprehensive tools for creating web and
mobile applications with a strong emphasis on GUI and data integration. Furthermore,
these platforms support extensive customisation and integration with external services
through APIs.

Multi-Use Platforms: these versatile platforms are designed for a broad range of busi-
ness applications, encompassing features from the other categories. They provide a unified
environment for application configuration, integration, and development. Platforms like
Microsoft PowerApps6 fall into this category, enabling users to build a variety of applica-
tions that can integrate seamlessly with other business systems and services. They support
both citizen developers and professional developers by offering a mix of no-code and high-
code tools, enhancing the flexibility and scalability of development processes.

2https://www.quickbase.com/
3https://www.bonitasoft.com/
4https://www.mendix.com/
5https://www.outsystems.com/
6https://www.microsoft.com/nl-nl/power-platform/products/power-apps

11

2.2.3 Benefits of Low-Code

According to literature, [3, 12, 25, 39, 64], Low-Code platforms promise various benefits
such as increased productivity, reduced development costs, and improved ability of organ-
isations to adapt to rapidly changing requirements.

• Reduced Development Time: Low-Code platforms significantly shorten devel-
opment cycles [47, 86] by automating code generation and often providing reusable
components [64], resulting in improved return on investments in software develop-
ment projects [5, 48]. Furthermore, for many Low-Code platforms the learning curve
is quite low and one can start modelling very fast [47]. Therefore they allow rapid
prototyping and quick response to market demands [3].

• Lower Deployment Effort: these platforms simplify deployment processes [3],
reducing the need for extensive configuration and setup [64]. Some LCDPs even
provide ‘one-step deployment’ [6]. Furthermore, many LCDP inherently support the
development of cross-platform web and mobile applications [64], making it easier to
deploy apps for mobile devices [47, 86].

• Easier Maintenance: the visual nature of Low-Code development makes it easier
to update and maintain applications [5, 64], as changes can be made directly through
the platform’s interface [3].

• Democratisation of software development: LCDPs can potentially empower
citizen developers to create applications without deep technical knowledge [3, 5, 6, 12,
13, 20, 25, 39, 64, 69, 71]. This democratisation of software creation enables quicker
turnaround times for application development, fosters innovation by enabling domain
experts to design solutions tailored to specific business needs [3, 69], and reduces
the burden on IT departments [64]. Additionally, by leveraging citizen developers,
organisations can potentially alleviate the shortage of professional developers in the
IT sector [6, 69], ensuring that projects can still progress despite the demand for
software growing faster than the number of technical staff [5, 47].

2.2.4 Challenges of Low-Code

Despite their advantages, Low-Code platforms face several challenges, as Low-Code appli-
cations grow in size and complexity, maintaining high performance and low maintainability
becomes difficult [3, 5, 38, 41, 64]

• Low-Code often turns into high-code: Low-Code may lack the flexibility needed
for highly sophisticated applications, often requiring traditional coding to achieve
specific functionalities [40, 41]. Because of this, development processes increase in
difficulty, resulting in the need for more experienced programmers [3, 25, 40, 41].

• Difficulty of maintenance and debugging: Low-Code promises to reduce main-
tenance effort and costs, however this only seems to be true for simple applications,
while more complex ones actually introduce debugging [69] and maintenance issues
[6]. Low-Code developers face challenges regarding bugs in Low-Code platforms [47]
and difficulties in using different application maintenance features provided by the
platform [3]. Furthermore, LCDPs also receive updates, which further complicates
the maintenance of Low-Code applications as developers also find it difficult to up-
date versions of LCDPs [3]. Low-Code applications that were created must be rolled
out, maintained, and further developed. The maintainability and scalability of these

12

applications is a quality criterion that is hardly considered by non-developers. In
retrospect, this can result in great effort and costs in IT to rebuild an application.

• Technical Debt: over time, Low-Code applications can accumulate technical debt,
making them harder to maintain and evolve [3]. Due to the nature of Low-Code and
their development platforms, best practices from high-code applications are difficult
to directly apply [41]. Furthermore, there is a risk of creating additional technical
debt since citizen developers may produce poorly structured applications without
proper oversight [39].

• Poor customisation: customisation in LCDPs often leads to decreased maintain-
ability and performance, especially for complex applications [6, 38]. When extensive
custom code or functionality is needed to meet specific requirements, it can result
in "spaghetti" code, making the application difficult to maintain and prone to is-
sues with reliability and usability [6]. Such customisations can be more straightfor-
ward in traditional development environments, where well-structured libraries like
JavaScript or .Net are used, avoiding the bulk and complexity that Low-Code cus-
tomisation introduces [6]. The impact of customisation on complexity is amplified
when development teams change during the life-time of an application [8].

• Scalability: there are some concerns regarding the scalability of Low-Code appli-
cations. Tisi et al. [85] highlight limitations, noting that LCDPs are primarily de-
signed to support small applications and are not yet suitable for large-scale projects
or mission-critical enterprise applications. Furthermore, [71] identify scalability chal-
lenges through a technical survey and benchmarking applications on various Low-
Code platforms, in which developers mention the low scalability of these platforms
as a reason for their reluctance to use them.

• Documentation: Low-code applications often suffer from inadequate documenta-
tion [64, 41, 33]. The lack of adequate documentation significantly affects the main-
tainability and quality of Low-Code projects [32, 41]. Studies have shown that citizen
developers, key users of LCDPs, often struggle to find relevant explanations and re-
sources [6], which impacts their ability to create effective solutions [40, 3]. This
struggle is exacerbated by the scarcity of well-structured materials and practical
examples [71]. As a result, organisations adopting LCDPs must address these docu-
mentation challenges to ensure that the benefits of Low-Code development are fully
realised, without compromising the quality and maintainability of the applications
[32]. Effective documentation is crucial for ensuring the quality and maintainability
of Low-Code applications, yet current practices often fall short, impacting the ability
of both citizen and professional developers to efficiently leverage these platforms.

2.2.5 Conclusion

Overall, Low-Code development represents a paradigm shift in software development, en-
abling rapid application creation with minimal coding and fostering greater business-IT
alignment. While these platforms offer substantial benefits in terms of productivity, agility,
and ease of use, they also present unique challenges related to maintainability, scalabil-
ity, customisation, and documentation. Understanding the classification, components, and
benefits of Low-Code platforms, provides a foundation for addressing the documentation
and maintainability issues inherent in large Low-Code applications. Although Low-Code
research is spreading, it still lags behind the state-of-the-art software design, development,
and maintenance research [12].

13

2.3 Documentation in Software Development

The term documentation in the context of software development relates to any written,
visual, verbal artifact or activity that transfers knowledge between stakeholders, related to
the software product [93]. The word documentation stems from the etymological meaning
for [83]:

1. teaching (Latin: docere),

2. pointing out, or

3. instructing with evidence and authority.

Documentation is a fundamental element of software development, providing essential sup-
port throughout the software lifecycle for understanding, maintaining, and evolving systems
[26, 99]. Despite its critical role, software documentation is often perceived as a secondary
activity and post-development burden rather than an integral part of the development
process [1, 68, 84, 99]. Numerous studies have pointed the out the issues with inadequate
documentation in Low-Code [64, 41, 33, 6, 3, 40, 71, 32]. However, to our knowledge, no
solution has yet addressed this problem. Therefore, it is both reasonable and necessary
to explore literature related to documentation in traditional software development to look
for inspiration. This section explores the costs, benefits, and quality issues associated with
software documentation, drawing insights from studies to unveil the issues of documenta-
tion and the potential value of solving these issues. These insights serve as the basis for a
balanced approach to improving documentation practices in Low-Code.

2.3.1 Costs and Benefits of Documentation

Zhi et al. [99] provides a systematic overview of the research on software documentation
cost, benefit, and quality. The study reveals that documentation incurs significant costs,
accounting for up to 11% of the overall software project expenditure. Such costs are
associated with both pre-maintenance (e.g., requirements, design, testing) and maintenance
tasks (corrective, adaptive, perfective, and preventive [44]). These costs imply the need
for effective utilisation of documentation throughout the software lifecycle to justify the
investment needed to create them. Their meta-model for documentation development,
usage-and cost process is presented in Figure 2.3.

According to the study, documentation benefits span several domains, including develop-
ment aid, maintenance support, and management decision-making as show in Figure 2.4.
High-quality documentation reduces development and maintenance effort, particularly in
aiding software comprehension, architecture, and code. However, maintaining such quality
requires continuous effort, and many projects face challenges like inadequate content and
outdated information, impacting perceived benefit [99].

To quantify documentation benefits, metrics such as reduction in effort and perceived
importance are employed. Reduction in effort refers to how documentation saves time
during maintenance tasks, while perceived importance reflects developers’ recognition of
its value [99]. These metrics suggest that the cost of documentation should be evaluated
against its potential for reducing future effort.

14

Figure 2.3: A meta-model for documentation development, usage-and cost process
(copied from [99]).

Figure 2.4: A meta-model for documentation benefit (copied from [99]).

15

2.3.2 Practitioners’ Perspective on Documentation

Aghajani et al. [1] provide valuable insights into the documentation issues perceived by
practitioners and the solutions they employ. One notable finding is the widespread neglect
of documentation during corrective maintenance, with issues such as lack of traceability,
untrustworthiness, and incompleteness among the most critical barriers to effective main-
tenance [1]. In a similar research, Garousi et al. [26], investigate the value, degree of usage,
and usefulness of technical documentation in an industrial setting. The study reveals that
technical documentation is used most frequently as an information source during devel-
opment and less frequently during maintenance. In contrast, source code comments are
often the preferred information source for maintenance tasks, highlighting the importance
of code comments in aiding software comprehension [26]. In line with this, Aghajani et al.
[1] highlighted that while code comments are particularly useful for tasks like debugging
and program comprehension, they are often insufficient or missing due to time constraints
or understaffing.

Next to this, Aghajani et al. [1] present evidence that practitioners readability, accu-
racy, consistency, and understandability deem the most important quality attributes for
documentation. Yet, in practice, developers often face challenges like insufficient time,
inadequate content, and inconsistency between code and documentation [1] . Garousi et
al. [26] emphasise that the usefulness of documentation is influenced by its up-to-dateness,
accuracy, and preciseness. Their results show that these attributes have the highest im-
pact on how effectively documentation supports development and maintenance tasks. The
study also highlights that there is no significant difference in the usage of different types of
documentation during development versus maintenance. This finding suggests that ensur-
ing consistent quality across all documentation types is crucial for maximising their utility
throughout the software lifecycle [26].

Furthermore, Garousi et al. [26] underscore the challenges practitioners face in determining
the appropriate amount and depth of documentation. Developing too much or too little
documentation can lead to inefficiencies, with overly extensive documents reducing cost-
effectiveness. This finding supports the need for balancing documentation efforts with the
expected benefits, ensuring that documentation remains a valuable asset rather than an
overhead. Tools that automate code comment generation or documentation could alleviate
some of these issues, enhancing the quality of documentation in practical settings [26, 1,
68].

Similarly Robillard et al. [68] advocate for a shift towards automated, on-demand devel-
oper documentation, which they refer to as OD3, to address the traditional inefficiencies
of manual documentation practices. Although developer documentation, such as source
code comments, API references, and design documents, plays a vital role in software main-
tenance, its high cost and lack of immediate return on investment often relegates it to a
lower priority [68]. OD3 suggests to mitigate this issue by leveraging automated tools to
generate documentation based on developer requests, enhancing its relevance and reducing
the manual burden. To this end, the authors identify three primary challenges to real-
ising OD3: information inference, forming document requests, and document generation.
Advances in natural language processing and feature location techniques can potentially
bridge the gap between high-level features and source code, enhancing the semantic under-
standing of how documentation elements interrelate [68]. Moreover, presenting complex
information coherently is crucial for improving the usability of documentation, especially
when responding to intricate developer questions.

16

Figure 2.5: Possible relations between challenges and practices. The green box
indicates a positive effect on the contribution to better documentation (copied from
[84]).

2.3.3 Documentation in Continuous Software Development

Theunissen et al. [84] explores the challenges, practices, and tools related to documentation
in Continuous Software Development (CSD), which encompasses Agile, Lean, and DevOps
methodologies. This is due to the principles and values of these various CSD approaches;
documentation is considered as waste when is does not contribute to the end product
(Lean). Working software is valued over comprehensive documentation (agile value [10]).
Face-to-face communication is more effective in conveying information (agile principle [10]).
Documentation as infrastructure-as-code (DevOps). However, the study reveals that poor
documentation is a persistent issue in CSD, hindering knowledge transfer, complicating
maintenance, and introducing a steep learning curve for new team members [84].

The challenges identified include informal documentation that is difficult to understand,
documentation being considered waste, and documentation often being out-of-sync with
the software due to the emphasis on short-term focus and working software over com-
prehensive documentation. The practices in CSD often involve non-written and informal
communication, and using development artifacts as a form of documentation. However, the
lack of formal, comprehensive documentation leads to difficulties in knowledge retention,
especially when team members change or when new developers join a project. Theunissen
et al. [84] also note that documentation is often scattered across multiple tools with no
central repository, making it challenging for stakeholders to find a single source of truth.
The possible relations between challenges and practices presented in the paper are shown
in Figure 2.5.

To mitigate these challenges, the authors [84] recommend adopting practices such as using
executable documentation, leveraging modern tools to retrieve and transform information
into documentation, and practising minimal upfront documentation combined with de-
tailed design for knowledge transfer afterward. The study also highlights the importance
of architecture frameworks in supporting effective documentation in CSD environments.
Furthermore, it underscores the need for knowledge-preserving documentation practices
that can stand alone and provide clarity and continuity over time.

17

Figure 2.6: A meta-model for documentation quality (copied from [99]).

2.3.4 Documentation Quality Aspects

The study by Zhi et al. [99] presents a meta-model, shown in Figure 2.6 that incorporates
several quality aspects for documentation, including completeness, accuracy, readability,
accessibility, and traceability. A well-structured document is easier to use, and attributes
like content quality, document format, and structure directly impact perceived quality.
This meta-model provides a structured approach to evaluating the quality of documenta-
tion, which is crucial for improving its usability and effectiveness.

Garousi et al. [26] further emphasise that document quality attributes such as up-to-
dateness, relevance, accuracy, and completeness are critical for ensuring that documenta-
tion meets the needs of developers. The gap between the perceived and expected quality of
documentation, particularly regarding its up-to-dateness, was identified as a major concern.
Addressing this gap is essential for improving the overall utility of technical documenta-
tion.

Robillard et al. [68] extend the discussion on documentation quality by emphasising the
need for integrating traceability, feature location, and information presentation. By en-
suring that documentation is dynamically linked to code and that changes are reflected
seamlessly, the challenges of outdated information and inconsistency can be mitigated. Pre-
senting information in a user-friendly manner, possibly through hierarchical, on-demand
documents, can also address the complexity often associated with traditional documenta-
tion.

Aghanjani et al. [1] emphasise the importance of attributes like clarity and accessibility.
Documentation that is easy to find and understand significantly improves productivity, es-
pecially during maintenance. Practitioners also expressed the need for better tools that in-
tegrate into development environments to enhance the automation of documentation tasks,
which is essential given the time pressures commonly faced in software projects.

Finally, the study by Tang and Nadi [80] introduces a systematic approach for assessing
documentation quality using an automatic evaluation tool for Java, JavaScript, and Python

18

libraries. The study identifies several quality attributes such as completeness, readability,
ease of use, and up-to-dateness in line with the other papers. Tang and Nadi emphasise
that documentation quality is crucial for effective software usage, with metrics like text
readability and code readability being particularly significant for developers. Poorly writ-
ten or outdated documentation can deter developers from adopting a library, highlighting
the need for actionable quality metrics and automation to maintain high standards. This
aligns with the emphasis on providing well-structured, accessible, and up-to-date docu-
mentation to support developer productivity and library adoption.

2.3.5 Towards Effective Documentation Practices

Addressing the challenges associated with software documentation requires a multifaceted
approach that considers both technical and organisational factors. The studies discussed
in this chapter highlight several strategies to improve documentation quality and effective-
ness:

• Automated Documentation Tools: Robillard et al. [68] propose leveraging ad-
vances in natural language processing to automate the creation of developer docu-
mentation, reducing the burden on developers and ensuring consistency.

• Emphasis on Quality Attributes: Quality metrics such as completeness, readabil-
ity, and accuracy should be central to documentation practices [26, 80, 99]. Tools that
evaluate these attributes can help maintain high-quality documentation throughout
the software lifecycle [80].

• Integration into Development Processes: Practitioners’ feedback indicates the
need for integrating documentation activities into the core development workflow,
rather than treating it as an afterthought [1, 26, 84]. Ensuring that documentation
is (automatically) updated alongside code changes can prevent issues of inconsistency
and obsolescence [68].

• On-Demand and Modular Documentation: The concept of on-demand doc-
umentation [68] presents an opportunity to cater to specific information needs of
developers, making documentation more accessible and useful. Providing modular,
context-specific documentation can significantly enhance developer productivity.

• Knowledge-Preserving Documentation in CSD: Theunissen et al. [84] empha-
sise the need for practices that ensure knowledge preservation in CSD environments,
such as using architecture frameworks and leveraging tools to centralise and synchro-
nise information.

2.3.6 Conclusion

Software documentation plays a vital role in the success of software projects, aiding in
system comprehension, maintenance, and decision-making. However, it is often plagued
by high costs, insufficient quality, and a lack of proper integration into the development
lifecycle. The studies reviewed in this section indicate that a shift towards automated,
on-demand, and quality-focused documentation can enhance its value while mitigating
many of the current challenges. Emphasising the importance of documentation quality
attributes, integrating documentation into development practices, and leveraging advanced
tools for automation are crucial steps toward improving the overall effectiveness of software
documentation.

19

Figure 2.7: The Low-Code Development Lifecycle.

2.4 Low-Code Development Lifecycle

This section examines the documentation issues inherent in each phase of the Low-Code
Development Lifecycle, presented in Figure 2.7. By providing a comprehensive analysis
of each phase, we address how deficiencies in documentation can contribute to various
issues throughout the lifecycle of Low-Code applications. The Low-Code Development
Lifecycle presented is based on the lifecycle presented in [3], however we decided to split
the testing and deployment phase due to the difference in information need between both
phases. Furthermore, this split is in line with the software development lifecycle promoted
by Mendix7 and other papers discussing the Low-Code Application Development Lifecycle
such as [72].

A thorough discussion of the documentation requirements and associated complexities
for each development phase is necessary because each phase has distinct activities and
information needs [26], and the absence of documentation in earlier phases often propagates
complexities to subsequent stages. By breaking down the lifecycle into specific phases and
analysing their individual documentation demands, we highlight the diverse impacts of
inadequate documentation on the overall system. Furthermore, this approach allows the
reader to understand the scope and purpose of our research, emphasising the significance
of effective documentation practices in enhancing the understandability, maintainability,
and quality of Low-Code applications.

7https://www.mendix.com/blog/agile-software-development-lifecycle-stages/

20

Documentation Concerns

Each phase of the Low-Code Development Lifecycle presents distinct documentation re-
quirements and challenges, resulting in potential issues such as increased maintenance
effort, reduced development speed and understandability, and limited flexibility [26, 99, 2].
Different types of documents are produced at each phase, which are subsequently used in
later phases to ensure continuity and cohesion across the development process [26]. For
example, requirements documentation and design documents are foundational "sources of
truth" for developers to build upon, and source code comments are a major source of infor-
mation during maintenance and debugging. Due to the iterative nature of the Low-Code
development lifecycle, documentation should be continuously updated based on feedback
from subsequent phases. In this section, all of the development phases are discussed and
their associated issues due to poor documentation. Additionally, for each phase, a table
with commonly found document types and their descriptions is presented.

2.4.1 Design Phase

During this initial phase, teams define the application’s expected features, non-functional
requirements, and technical specifications. Initial designs for domain models, user inter-
faces, and system architecture are created. As stated the table 2.1 key documents in this
phase include Business Case, Business Process Documentation, Requirements Documen-
tation, Architecture Design Documentation, and Mock-ups/UI Documentation.

Issues: Missing or incomplete documentation of stakeholder needs, platform capabilities,
or previous projects can introduce significant complexities. For example, difficulties arise
when prior design decisions are not accessible, or when requirements appear incompatible
with the Low-Code platform despite existing custom components. Unrealistic planning and
budgetary promises can also force developers into shortcuts, scaling down time dedicated
to ensuring future scalability.

Potential Impact: Inadequate documentation leads to misunderstandings between devel-
opers and stakeholders. Without thorough documentation, such as Architecture Design
Documentation, architectural choices may be poorly documented, resulting in models that
are difficult to modify. Insufficient Business Process and Requirements Documentation
may also misalign development with business needs, leading to technical debt. Short-term,
poorly documented solutions often lack the vision for sustainable application design.

2.4.2 Development Phase

During the development phase, teams use the previously created documents and create
and use Data Model Documentation, Application Logic Documentation, Source Model
Comments, Component Documentation, and Dependencies Documentation to build the
application by implementing data models, application logic, and other components. In
this phase, both citizen developers and experienced developers collaborate to create the
application.

Issues: Missing or inadequate documentation can lead to ambiguity, redundancy, and
inconsistencies in model and flow implementation. For instance, lack of awareness of ex-
isting microflows may result in redundant flows, adding technical debt. Citizen developers
without access to best practices might create inefficient or unscalable components. Fur-
thermore, documentation gaps hinder component reuse, with developers relying on manual
processes or the Mendix marketplace to find existing components.

21

Table 2.1: Design phase documentation

Document type Description
Business Case [78, 93] Describes the justification for the project and its expected business value.
Business Process Documenta-
tion [78, 7]

High-level process flows and details about how business operations will
integrate into the system workflows, guiding both development and test-
ing.

Requirements Documentation
[1, 26, 29, 78, 84, 93, 99]

Describes stakeholder needs, business requirements, and functional spec-
ifications shared or developed together with external stakeholders.

Roadmap & Release Plan [7,
93]

High-level planning document showing major project milestones and
timelines and specifics on what features or modules will be delivered
in each release.

(Architecture) Design Docu-
mentation [1, 26, 29, 78, 84,
99]

Provides system architecture, design models, and technical details in-
cluding infrastructure design and high-level system architecture.

Mock-ups and UI Documenta-
tion [1, 7, 78, 93]

Visual representations of design concepts, often shared with clients for
feedback. These mock-ups are not only for feedback but also for aligning
developers and testers with the intended user interface design.

Potential Impact: Poor documentation leads to increased technical debt, inconsistent prac-
tices, and a fragmented application landscape. The lack of documentation also affects col-
laboration and onboarding, particularly for new developers. New developers face a steep
learning curve due to the lack of documented logic and rationale behind design decisions,
further complicating future development. The absence of documentation on reusable com-
ponents results in duplicated efforts and inconsistent implementations.

Table 2.2: Development phase documentation

Document type Description
Data Model Documentation
[1, 7, 26, 93]

Describes business entities and their relationships within the system.

Application Logic Documenta-
tion [1, 7]

This documentation captures the logic flows, processes, and decision
points within the Low-Code application. It includes details about work-
flows, user actions, automated tasks, and integrations with external sys-
tems.

Source Model Comments [1,
26, 78, 84, 93, 99, 7]

Model files containing in-line comments and explanations to help devel-
opers understand the system’s logic and structure.

Component Documentation
[1, 7, 78, 99]

Provides details about internal reusable components or custom modules
built by the team. In the case of an externally developed component or
custom module, a reference to this documentation.

Dependencies Documentation
[7, 78, 84]

Lists all dependencies, including external libraries, internal system de-
pendencies, and third-party integrations, ensuring proper version control
and compatibility throughout the lifecycle.

2.4.3 Testing Phase

During the testing phase, teams verify whether the application works according to the
defined functional and non-functional requirements. Test cases are created, and the appli-
cation is tested for potential issues.

Issues: Missing or outdated Test Case Documentation and Application Logic Documen-
tation makes it difficult for testers to fully understand system behaviour and create com-
prehensive test scenarios. Additionally, without accurate Component Documentation and
Dependencies Documentation, testers may misinterpret the context and purpose of each
component, leading to gaps in test coverage where critical bugs could go unnoticed.

22

Potential Impact: Gaps in Test Coverage Reports and Defect Reports result in incomplete
test coverage, leaving critical issues undetected. Moreover, unclear relationships between
system components due to missing documentation increase testing complexity, often lead-
ing to extended timelines and potentially high-risk defects in production. Finally, due to
the lower quality of testing Quality Assurance Documentation becomes more difficult or
even inaccurate.

Table 2.3: Test phase documentation

Document type Description
Test Case Documentation [1,
7, 78, 84, 93, 99]

Internal documentation of test cases, scenarios, and expected outcomes
based on requirements, ensuring comprehensive coverage across the sys-
tem.

Automated Testing Scripts
[38, 84]

Scripts used within the development team for running automated tests
across the system.

Test Coverage Reports [93] Internal reports detailing the extent of the code covered by tests, ensuring
comprehensive testing.

Defect Reports [27] Captures internal documentation of bugs, root causes, and potential
fixes.

Quality Assurance Documen-
tation [1, 93]

Reports that validate compliance with non-functional requirements (e.g.,
performance, security), shared with external auditors or clients to verify
system quality.

2.4.4 Deployment Phase

During deployment, the system is moved from development to production, and Deploy-
ment Guides and CI/CD Pipeline Documentation ensure smooth deployment across envi-
ronments. Furthermore, the Release Notes ensure that both developers and end users are
aware of the new features, improvements, known issues and potential deprecations.

Issues: Lack of detailed deployment documentation results in inconsistent configurations
across environments. Missing records of deployment steps, dependencies, and environment
settings can cause deployment failures that are difficult to troubleshoot. Undocumented
platform-specific constraints in Low-Code environments may also lead to unexpected de-
ployment issues.

Potential Impact: Deployment complexity is exacerbated by frequent manual interventions,
inconsistent settings, and errors, leading to instability in production. Missing documen-
tation of successful deployments complicates troubleshooting and delays release cycles,
increasing operational risk.

Table 2.4: Deployment phase documentation

Document type Description
Deployment Guides [1, 78, 93] Step-by-step deployment instructions shared with external stakeholders

or system administrators responsible for production deployment.
CI/CD Pipeline Documenta-
tion [1, 84]

Documentation of automated build, test, and deployment processes. In-
cludes scripts and workflows used internally for continuous integration
and deployment.

Release Notes [1, 93] Documents summarising features, improvements, and known issues for
users or clients.

23

2.4.5 Maintenance Phase

In this phase, teams manage ongoing modifications, updates, and feature additions. Key
documents such as Maintenance Documentation, Versioning Logs, and Issue Tracking
Logs are crucial for maintaining system performance and adapting to evolving business
needs.

Issues: Missing or outdated documentation makes it challenging to understand the archi-
tecture and the decisions made during earlier phases of development. Without clear doc-
umentation of microflows, domain models, and custom components, developers may find
it difficult to assess the impact of changes and the interactions between system compo-
nents. Furthermore, platform updates could lead to old features or dependencies requiring
adaptation or replacement. Without proper documentation of both the purpose, imple-
mentation, and requirements for the logic components of an application this becomes very
complex.

Potential Impact: Lack of proper documentation results in slower development cycles dur-
ing maintenance, as developers spend extra time deciphering existing components. This
increases the likelihood of introducing bugs or causing unintended side effects when making
changes. Additionally, lack of documentation leads to increased time spent troubleshoot-
ing when performance issues arise. The inability to easily track previous modifications,
and their reasoning, makes evolving the system a challenging process, and it becomes in-
creasingly difficult to ensure consistency and maintain scalability, ultimately leading to
increased technical debt, reduced maintainability and difficult evolvability.

Table 2.5: Maintenance phase documentation

Document type Description
Maintenance Documentation
[26, 93]

Comprehensive internal documentation detailing how to operate, update,
and troubleshoot the system. This includes system dependencies, known
issues, and ongoing maintenance logs.

Versioning Logs [1, 99] Internal tracking of system updates, changes, and bug fixes.
Service-Level Agreements
(SLA) [93]

Agreements between the development team and external clients outlining
response times, system availability, and support obligations.

Issue Tracking Logs [84] Shared logs for tracking and reporting on externally reported issues or
requests for system updates.

User Manuals [1, 7, 26, 78, 99] Comprehensive guides provided to end-users, explaining how to use the
system, its features, and troubleshooting common issues.

2.4.6 Conclusion

High-quality and available documentation is crucial across all phases of the Low-Code
Development Lifecycle. Inadequate or missing documentation significantly exacerbates
technical debt, complicates maintenance, slows down onboarding, and limits evolvabil-
ity, ultimately jeopardising the long-term success of Low-Code applications. By ensuring
comprehensive and continuously updated documentation, organisations can mitigate these
issues, leading to more maintainable, evolvable, sustainable and high-quality Low-Code
solutions.

24

Chapter 3

Case Study Design: Mendix

This chapter discusses the case study. Section 3.1 provides an overview of the Mendix
Low-Code platform, which is the target Low-Code platform for our artifact. Section 3.2
discusses the case study methodology, detailing the structured processes used to gather
insights and validate the research in a practical, real-world context. Section 3.3 highlights
the goals and design of the stakeholder survey, which was distributed to capture Low-Code
developers’ perceptions of documentation and identifying key opportunities for automation
in documentation practices.

3.1 Mendix

Mendix has been recognised by analysts like Gartner, IBM, and SAP as a leading Low-Code
development platform. The platform is designed to achieve rapid application development
[54] , while focusing on the collaboration between business and IT to improve business
logic [90]. The platform is well-suited for democratising application development by allow-
ing users with minimal coding expertise to build robust applications. However, as these
applications scale, managing complexity becomes crucial.

The Mendix platform comprises several key components that provide a comprehensive
development environment. These components support the entire lifecycle of application
development, from collaboration and requirement management in the Developer Portal,
to visual development using Mendix Studio and Studio Pro, and execution via the cloud-
native Mendix Runtime. Mendix Studio Pro caters to different user needs, with Studio
Pro allowing "citizen developers" 1 to design interfaces using drag-and-drop features, while
also providing advanced functionality for professional developers. Key elements of Mendix
applications include domain models, which define entities, attributes, and relationships, mi-
croflows and nanoflows for automating business logic, and a Graphical User Interface (GUI)
editor that enables intuitive, code-light interface creation. Microflows handle server-side
processes, whereas nanoflows execute quick, client-side operations, both of which reduce
coding effort by providing visual models inspired by Business Process Model and Notation
(BPMN). An overview of the Mendix runtime architecture is presented in Figure 3.1.

1Citizen developers are business users with little to no coding experience who build applications.
https://www.mendix.com/glossary/citizen-developer/

2Copied from: https://www.mendix.com/evaluation-guide/enterprise-capabilities/
architecture/runtime-architecture/

25

https://www.mendix.com/evaluation-guide/enterprise-capabilities/architecture/runtime-architecture/
https://www.mendix.com/evaluation-guide/enterprise-capabilities/architecture/runtime-architecture/

Figure 3.1: Overview of the Mendix runtime architecture2

3.2 Methodology

This section provides an overview of the case study methodology employed and the stages of
the case study process. A case study was selected as the primary research method due to its
suitability for investigating real-world phenomena in depth [97]. The case study conducted
in this thesis is structured according to the four-stages applied by Tellis [81]:

1. Design the case study protocol.

(a) Determine the required skills

(b) Develop and review the protocol

2. Conducting the case study.

(a) Prepare for data collection

(b) Distribute questionnaire

(c) Conduct interviews

3. Analysing evidence.

(a) Analysis strategy

4. Develop conclusions, recommendations, and implications based on the evidence.

26

3.2.1 The Case Study Protocol

The first stage in designing the case study for this research involves developing a protocol
to ensure reliability and focus. This protocol comprises two key components: determining
the required skills, and developing and reviewing the protocol. The researcher obtained a
knowledge foundation in Mendix application development and Low-Code environments by
conducting an extensive literature review prior to this thesis. Furthermore, regular consul-
tation with academic supervisors, company supervisors, and industry experts ensured the
applied approaches remained grounded and aligned with research goals. Furthermore, Yin
[97] emphasised the importance of creating a structured protocol to enhance the reliability
of case study research. The protocol underwent reviews with both academic and company
supervisors as well as other stakeholders. During these reviews the clarity and relevance of
the survey questions were discussed, as well as the feasibility of the planned data collection
methods. The finalised protocol ensured that the study captured all stakeholders’ perspec-
tives on the challenges and opportunities of documentation in Low-Code. The elements of
the protocol are:

• Case Study Overview: The objective of our research is to address challenges in
Low-Code application documentation by designing an automated assistant. The case
study will serve as practical investigation into the problems found in literature. By
validating the literary findings with practitioner’s insights we ensure our project is
aligned with both academic and industry needs.

• Field Procedures: Access to the production-level Mendix applications and rele-
vant stakeholders at a representative company, CAPE Groep, was obtained. Data
collection involves a survey and semi-structured interviews, supported by literature
review and observations of real-world development practices.

• Case Study Questions: The research questions presented in Section 1.4.1 ("What
are the key documentation challenges in Low-Code application development?" and
"To what extent can automated documentation be applied in Low-Code development
environments?") guide data collection and analysis.

3.2.2 Conducting the Case Study

The steps undertaken to conduct the case study focus on preparation for data collection,
survey distribution, and interviews. These activities support triangulation of evidence,
systematic data collection, and reliability and validity throughout the research.

The following steps were taken in the preparation phase:

1. Defining Data Sources
Although surveys are not explicitly reported as a primary source of evidence [97], their
use is widely accepted in Software Engineering case studies due to their effectiveness
in collecting structured and scalable data across a diverse sample of respondents [52].
Therefore the three primary data sources for this case study are:

• Documentation: Project reports, application models, and design artifacts within
both the Mendix platform and CAPE Groep.

• Surveys: Used to gather broad insights into documentation challenges and au-
tomation opportunities in Low-Code application development.

• Interviews: Semi-structured interviews with Low-Code developers.

27

2. Pretesting Instruments
Both the survey and interview protocols underwent pretesting. Initial drafts were
reviewed by domain experts, including academic supervisors and industry practition-
ers. Pretesting and iterative refinement of the instruments enhance its reliability and
validity [81].

3. Ethical Considerations
Ethical guidelines were strictly adhered to, including voluntary participation, in-
formed consent, anonymity, and data protection. Participants were provided with an
overview of the research objectives and the intended use of their contributions.

Distribution of the Questionnaire

Surveys serve as a vital tool for collecting broad insights from a diverse group of stakehold-
ers. Yin [97] recommends that questionnaires be distributed systematically, followed by
reminders to ensure a high response rate. The survey was designed to gather initial insights
into documentation challenges and opportunities for automation in Low-Code application
development:

• Survey Design: Questions were structured to balance qualitative and quantitative
data collection, incorporating open-ended questions for nuanced feedback or over-
looked scenarios. Furthermore, partial rank-order questions [19] were included to
prioritise features and challenges.

• Survey Platform: Qualtrics3 was chosen as the survey platform because it allows
users to build and distribute surveys, collect responses, and analyse response data,
all from within the same platform.

• Target Audience: The survey was distributed to a representative sample of stake-
holders, including Low-Code developers, business analysts, and project managers at
CAPE Groep. This ensured representation of both technical and business perspec-
tives.

• Enhancing Participation: To maximise participation, the survey was accompanied
by a clear introductory statement outlining its purpose and importance. A reminder
email was sent one week after the initial distribution. Furthermore, potential respon-
dents were reminded to fill in the survey by approaching them.

3.2.3 Analysing Case Study Evidence

The analysis focuses on examining, categorising, and synthesising evidence to address the
research questions. Various techniques were applied to ensure that findings are both valid
and meaningful, balancing qualitative insights with quantitative rigour [81]. Furthermore,
in exploratory case studies where statistical robustness may not always be achievable, the
approaches introduced by Miles and Huberman [55] are particularly valuable [81]. Miles
and Huberman [55] propose alternative methods for qualitative analysis, such as creating
data arrays, frequency tabulations, and visual displays to uncover patterns and relation-
ships. The analysis in our study primarily relied on pattern-matching and explanation-
building techniques:

• Pattern-matching: Empirical data from surveys and interviews were compared against
the challenges and opportunities identified in the literature review (Chapter 2). This

3https://www.qualtrics.com/

28

helped validate the relevance of the research questions and ensured alignment with
real-world complexities in Low-Code documentation practices.

• Explanation-building: Insights were synthesised iteratively to refine understanding
of how documentation automation could address identified challenges. This pro-
cess involved continuous feedback from stakeholders, ensuring that findings remained
grounded in practical realities.

In addition, the study employed thematic analysis to group findings into categories aligned
with the project’s objectives, some of the categories are:

• Documentation challenges in Low-Code application development.

• Opportunities for documentation automation in Low-Code application development

• Key features required for an automated documentation assistant.

Principles of Data Collection

To ensure robust data collection, multiple sources of data were utilised, including surveys,
interviews, and literature analysis. This triangulation enhanced the reliability and validity
of the findings by providing diverse perspectives on the research problem. A structured
case study database was also created, where all collected data, such as survey responses
and interview transcripts, were systematically organised into folders on the researcher’s
laptop. This repository served as a central reference for analysis and reporting, ensuring
accessibility and consistency throughout the study.

Furthermore, Survey data, including partial rank-order and Likert-scale responses, were
analysed using descriptive statistics. For example, partial rankings of documentation chal-
lenges provided quantitative evidence of their perceived importance and frequency. Fur-
thermore, the analysis prioritised the most impactful insights, focusing on key documen-
tation challenges and automation opportunities in Low-Code environments.

3.2.4 Develop Conclusions, Recommendations, and Implications Based
on the Evidence

In any case study, the reporting phase is critical, as it bridges the gap between the re-
search and its practical application [81]. This phase ensures that findings are accessible
to stakeholders and actionable in real-world contexts. A well-designed research may lose
its impact if the results are poorly communicated [97]. Therefore, the results have been
presented clearly, avoiding excessive technical jargon, to ensure that both technical and
non-technical audiences within the Low-Code development ecosystem can easily grasp the
study’s conclusions and implications. This ensured that developers, business analysts, and
decision-makers could derive value from the findings. The conclusion, recommendations,
and implications of the case study are presented in Chapter 4.

29

3.3 Survey

This section outlines the goals of this specific survey and details the survey’s design, im-
plementation, and analysis processes.

3.3.1 Goals

To address the design problem for an automated documentation assistant, it is crucial to
first understand the current practices, challenges, and needs [95] related to documentation
in Low-Code application development. The survey was conducted to:

1. Capture stakeholder perceptions of existing documentation practices.

2. Identify pain points and inefficiencies in documentation workflows.

3. Determine desired features for an automated documentation assistant.

A survey was chosen as a means to gather a wide range of perspectives from stakeholders
across technical and business domains, such as Low-Code developers, business analysts, and
project managers. By combining this input with findings from the literature review, the
research ensures a comprehensive understanding of the documentation landscape. Surveys
allow participants to respond at their convenience and enable the collection of both quali-
tative and quantitative data [52]. The survey in this study included a mix of open-ended
and multiple-choice to maximise engagement and ensure the reliability of the responses.
Furthermore, partial-ordering questions [19] were included to identify the most critical is-
sues faced by respondents. This approach involves asking respondents to rank a limited
subset of items from a larger list, ensuring cognitive and emotional feasibility [19]. Specif-
ically, participants in this study were asked to select their top 5 issues from three lists
of 26 options, 14 options, and 10 options, respectively. By narrowing the selection to a
manageable subset, the method strikes a balance between depth and usability, avoiding
the challenges of ranking an extensive list while still generating meaningful data [19]. This
design supports clearer prioritisation and reduces the likelihood of ties, yielding insights
into the relative importance of documentation issues.

3.3.2 Design

The survey was designed by building upon prior research conducted in high-code environ-
ments, specifically referencing the study by Aghajani et al. [1]. The design of our survey
is shown in Figure 3.2. In the survey by Aghajani et al. they assess practitioner’s per-
spective on different aspects of software documentation, such as what information content
is presented, how this information is presented, the process of creating documentation,
and finally the tools used during this process. Aghajani et al. [1] provide a structured
approach to evaluating software documentation issues and related tasks, which served as
a basis for adapting the survey to the Low-Code domain. However, given the intrin-
sic differences between traditional and Low-Code development paradigms, modifications
were necessary to ensure relevance and applicability. Key changes included translating
high-code-specific elements into Low-Code equivalents. For example, questions addressing
source code comments were transformed to focus on model annotations, aligning with the
visual and model-driven nature of Low-Code platforms. Additionally, questions irrelevant
to Low-Code development, such as those centred on extensive high-code debugging tools,
were ignored.

30

Furthermore, in contrast to the study done by Aghajani et al. [1] we opted for asking
respondents to indicate their current usage and opinion of each of the documentation types
for the design phase, development phase, and maintenance phase previously discussed in
Section 2.4. For each document type, respondents indicated how often they used them using
a Likert scale (1=Never, 5=Always), if they did not use them, we inquired the reason why.
On the other hand, if they did use the documents we requested them to asses the quality
of the documents based on 6 quality aspects (using a Likert scale from 1 to 5); correctness,
completeness, up-to-dateness, usefulness, readability, and findability. We excluded the
testing phase documents to keep the survey in a reasonable size and we excluded the
deployment phase documents as these are least relevant in Low-Code environments where
deployment is mostly handled by the platforms themselves [6]. Finally, the survey was
streamlined to shorten the time required for completion, addressing concerns that lengthy
surveys could reduce respondent engagement and completion rates [52]. This adjustment
was particularly critical for engaging a diverse pool of participants, including consultants,
team leads, and management who often face time constraints.

Our survey retained the core goals of understanding documentation challenges and priori-
ties but presented them in a way that reflects the Low-Code context. We aimed to ensure
that the insights generated would be both transferable and actionable for improving doc-
umentation practices in Low-Code platforms. The questions of the distributed survey are
available in our repository [23].

3.3.3 Data Collection

The survey was created and distributed using Qualtrics. To ensure confidentiality, no
personally identifiable information beyond participant roles and years of experience was
collected, and responses were anonymised for analysis. Before distributing the survey, a
pretesting phase was conducted to refine the questions. The survey link was distributed via
email, accompanied by an introductory statement explaining the purpose and importance
of the research. A reminder email was sent one week later to encourage participation.

3.3.4 Data Analysis

A systematic approach was used to analyse the raw data obtained with the survey:

• Categorisation: Responses were grouped into three themes:

1. Perceived importance of documentation.

2. Current challenges in Low-Code documentation.

3. Need and features for an automated documentation assistant.

• Quantitative Analysis: Responses to multiple-choice and rank-order questions were
analysed using descriptive statistics, such as frequency distributions.

• Qualitative Analysis: Open-ended responses were analysed to uncover recurring pat-
terns and unique perspectives.

These insights guided the refinement of the system’s design objectives which are discussed
in Chapter 6.

31

Figure 3.2: Design of the survey used in our study (authors own adaptation of
[1]).

32

Chapter 4

Low-Code Developers’ Perspective
on Documentation

This chapter presents the analysis and findings from the survey conducted during the
research on the documentation challenges and needs in Low-Code. The survey design is
previously discussed in Section 3.3.2. The results provide insights into the challenges,
opportunities, and stakeholder priorities related to Mendix application documentation,
guiding the development of the automated documentation assistant.

4.1 Respondents

The survey received a total of 24 responses, representing a diverse set of roles within the or-
ganisation, which provided valuable insights into documentation practices and challenges.
The largest group of respondents were consultants1 (7), followed by Low-Code application
developers and team leads, each contributing 5 responses. Customer support profession-
als provided 4 responses, while management contributed 2, and 1 response came from a
developer. This range of roles ensured a comprehensive perspective, capturing input from
individuals directly involved in development, those managing teams, and others supporting
or overseeing processes. This diversity highlights the varied documentation needs across
technical, operational, and managerial levels.

In addition to gathering insights from diverse roles, the survey also captured the respon-
dents with different years of experience. The majority of participants (11) reported having
3-5 years of experience, followed by 6 respondents with 5-10 years of experience, and 5 with
less than 3 years. Only 2 respondents had over 10 years of experience. This distribution
indicates a respondent pool with a solid mix of early-career professionals and experienced
practitioners, ensuring that the feedback reflects both fresh perspectives and seasoned
insights into Low-Code application development and documentation processes.

1At CAPE Groep, consultants also develop Low-Code applications.

33

4.2 Information Content (What)

First, we discuss the findings from the survey responses related to Low-Code documenta-
tion issues under the Information Content (What) category, highlighting key practitioner
concerns regarding Correctness, Completeness, and Up-to-dateness [1]. Furthermore, we
also link our findings to the results from the literature discussed in Chapter 2. Figure 4.1
summarises the responses collected for the first part of the survey.

Logic Behaviour Clarifications as a Central Concern

Logic behaviour clarifications2 emerged as a top priority, with practitioners identifying
inaccuracies, omissions, and outdated descriptions as the most critical issues across all
dimensions. Incorrect logic descriptions were flagged by 92% of respondents as a major
issue, while 79% noted missing logic explanations as a key gap. Furthermore, 83% of
participants pointed to outdated logic behaviour documentation as a persistent challenge.
These findings confirm the importance of accuracy, comprehensiveness, and synchroni-
sation in documentation. Garousi et al. [26] emphasise similar challenges, noting that
up-to-dateness and accuracy directly influence documentation’s effectiveness in supporting
maintenance tasks.

Challenges with Annotations and User Documentation

Annotations spanning microflows, nanoflows, and domain models presented a recurring
challenge, with inaccuracies flagged by 58% of respondents and omissions by 58% as well.
Missing developer guidelines and user documentation were similarly pervasive, noted by
50% and 54% of practitioners, respectively. The significance of documentation in close
proximity to the source has been repeatedly emphasised in the literature [99, 1, 26]. Ad-
ditionally, Garousi et al. [26] emphasise that while technical documentation is a primary
information source during development, it is used less frequently during maintenance,
where developers often rely on source code comments for debugging and comprehension
tasks. However, Aghajani et al. [1] highlight that such comments are often insufficient or
missing due to time constraints or understaffing, and our findings suggest that this is also
the case in Low-Code.

Keeping Documentation Up-to-Date in Agile Environments

Outdated documentation was consistently identified as a significant issue in Low-Code.
Practitioners highlighted the lack of synchronisation between application updates and
their documentation, particularly regarding new features (75%), outdated references (46%),
missing documentation for a new release (42%) and outdated examples (29%). This aligns
with Theunissen et al. [82]’s findings on the difficulties of maintaining documentation
in Continuous Software Development, where iterative updates often render documenta-
tion obsolete. Strategies like automated synchronisation can mitigate these challenges by
ensuring real-time updates [82, 68].

Integration of Technical Artifacts with Business Processes

Another significant finding is the importance of aligning technical documentation with
business context. Practitioners emphasised that errors (54%) or omissions (42%) in map-
ping microflows, nanoflows, and domain models to their corresponding business processes

2the Low-Code translation of "code behaviour clarifications" [1]

34

Figure 4.1: Importance of documentation issues to Low-Code practitioners, ac-
cording to the results of the survey.

35

often lead to misaligned expectations, hindering collaboration. Furthermore, missing or
incorrect business context documentation was highlighted by 50% and 42% of respondents,
respectively, as critical gaps. Outdated business context and references were similarly prob-
lematic, with 46% citing them as an important documentation issue. This suggests the
need for documentation that integrates technical artifacts with organisational objectives to
facilitate support to both technical and non-technical stakeholders. These findings resonate
with Theunissen et al. [84], who stress the importance of connecting technical and business
documentation to enhance organisational memory and communication. The lack of such
integration creates misalignments and complicates stakeholder collaboration, a challenge
also identified by Zhi et al. [99], who emphasise the role of documentation in bridging
development and management objectives.

Visual aids

Visual aids, such as diagrams and screenshots, were less frequently mentioned in compar-
ison to the findings by Aghajani et al. [1]. Missing diagrams and outdated visuals were
only deemed important by 17% and 25% of the respondents, respectively. This can be
attributed to the visual nature of Low-Code development, therefore reducing the need to
create additional visualisations.

Frequency of Issues Faced

The survey results reveal that the challenges in Low-Code documentation regarding cor-
rectness, completeness, and up-to-dateness are not only perceived as important, but also
frequently faced by practitioners. Completeness emerged as the most frequently occurring
category of issue, with missing logic behaviour clarifications (58%) and missing microflow,
nanoflow, and domain model annotations (54%) dominating the concerns. Additionally,
46% of respondents highlighted missing user documentation, emphasising the essential role
of documentation to both internal and external stakeholders [26].

Among correctness issues, wrong logic behaviour clarifications (38%) and wrong microflow,
nanoflow, and domain model annotations (29%) were the most frequently cited problems,
reflecting practitioners’ frequent struggles with understanding the behaviour and intercon-
nections of system components. This aligns with Aghajani et al.’s findings that insufficient
accuracy and consistency in documentation hinder software comprehension, particularly
for debugging and maintenance [1].

Up-to-dateness issues were similarly prominent, with 29% of the respondents citing miss-
ing documentation for new features/components and 25% of the respondents pointing to
outdated examples and outdated related business processes. These challenges reflect the
difficulties practitioners face in synchronising documentation with iterative development
cycles [82].

One key observation here is that although correctness and up-to-dateness issues occur
significantly less according to the respondents, one has to keep in mind that in order for
documentation to be wrong or outdated, it needs to exist. Taking this into account reveals
the actual magnitude of the issue. Many of the documentation required for the efficient
and sustainable development and maintenance of Low-Code applications is missing, and
in case documentation is available, it is frequently inaccurate or outdated.

36

4.3 Information Content (How)

Apart from the correctness, completeness, and up-to-dateness, the survey also investi-
gated issues related to maintainability, readability, usability, and usefulness of Low-Code
documentation. These dimensions were identified as critical for ensuring documentation
effectively supports developers in maintaining, understanding, and using applications [1].
The results are linked to key insights from the literature.

Maintainability of Documentation

54% of the respondents identified lengthy files as a significant maintainability issue, fol-
lowed by superfluous content (50%) and cloned or duplicate content (46%). These issues
reflect inefficiencies that can complicate updating and maintaining documentation, leading
to higher technical debt [2]. Garousi et al. [26] emphasise that usefulness of documenta-
tion diminishes when it is overly extensive and/or contains redundant information, recom-
mending concise and targeted documentation to optimise maintainability. Furthermore,
Robillard et al. [68] advocate for improved automated documentation tools to eliminate
redundancy.

Readability of Documentation

Readability emerged as a top concern, with 96% of the respondents prioritising clarity and
58% emphasising conciseness. Spelling and grammar were noted as secondary concerns by
21% of the participants. These findings underscore the importance of clear and concise
writing in facilitating developer comprehension, and align with literature. Aghajani et al.
highlight clarity and understandability as critical documentation attributes, particularly for
facilitating debugging and program comprehension [1]. Similarly, Zhi et al. emphasise that
improving readability reduces the cognitive load on developers and enhances the overall
effectiveness of documentation [99]. Furthermore, one of the respondents highlighted an
interesting readability issue not yet discussed in the gathered literature, namely that the
author of documentation incorrectly assumes the reader has the necessary foreknowledge,
therefore making the information ineffective.

Usability of Documentation

Accessibility and findability were the most commonly cited usability issues, noted by 79%
of the respondents, while 58% highlighted information organisation as a key gap. Issues
related to format and presentation were mentioned by only 21% of the respondents. These
findings align with Robillard et al.’s [68] emphasis on well-structured, modular, on-demand
and accessible documentation to support efficient navigation and information retrieval.
Theunissen et al. [82] further highlight the importance of centralising documentation to
ensure stakeholders have access to a single source of truth.

Usefulness of Documentation

The survey reveals that 67% of the respondents found documentation content not useful in
practice, reflecting a gap between the documentation provided and the developers’ needs.
One respondent pointed out that this was due to the current need for combining many small
bits of information from various sources, rendering them not useful when separate. These
finding aligns with studies by Garousi et al. [26], who emphasise that documentation must
be relevant and practical to be effective, suggesting a focus on integrating documentation

37

into development workflows. Aghajani et al. [1] further highlight that the perceived
usefulness of documentation is closely tied to its accuracy, up-to-dateness, and alignment
with developers’ tasks.

Frequency of Issued Faced

Practitioners frequently encounter several key documentation challenges that significantly
impact their workflows. Clarity was overwhelmingly identified as the most critical is-
sue, with 79% the of respondents highlighting its importance, followed by accessibil-
ity/findability (71%), underscoring the necessity for clear and well-organised documen-
tation. Lengthy files (38%) and superfluous content (33%) were noted as common main-
tainability issues, complicating efforts to keep documentation concise and relevant. Fur-
thermore, nearly half of the respondents (46%) found that documentation content was
often not useful in practice, reflecting a gap between the intended and actual utility of
documentation. Issues like clone/duplicate content (25%), spelling and grammar (21%),
and format/presentation (25%) were less frequently reported but still indicate areas for im-
provement. These results align with literature, emphasising the need for concise, clear, and
accessible documentation to enhance usability and maintainability, ultimately improving
its effectiveness in supporting development tasks.

4.4 Documentation Process & Tools

This section discusses our survey findings regarding issues with documentation processes
and tools in Low-Code environments, which are summarised in Figure 4.2. The responses
highlight critical challenges such as time constraints, organisation, and a lack of available
tools.

Time Constraints as a Dominant Process Issue

A lack of time to write documentation was identified as both the most pressing and fre-
quently faced issue by 75% and 83% of the respondents, respectively, emphasising the
tension between rapid development cycles of Low-Code and maintaining comprehensive
documentation. This aligns with findings from Theunissen et al. [82], who noticed that
documentation is often deprioritised in Continuous Software Development due to time pres-
sures and the focus on delivering functional software, thereby exacerbating documentation
gaps [93].

Limited Automation and Tooling Deficiencies

A lack of or poor automation in documentation tools emerged as the most significant
tooling-related issue, noted by 79% of the respondents. This finding underscores the need
for automated documentation solutions, as advocated by Robillard et al. [68], who empha-
sise that automation reduces the burden on developers and ensures up-to-date, consistent
documentation. Additionally, 42% of the participants reported missing features in their
current tools, indicating a gap between practitioner needs and available features. These
deficiencies highlight the importance of developing flexible, feature-rich tools tailored to
the specific demands of Low-Code environments.

38

Figure 4.2: Documentation process and tool issue results of the survey.

Organisational Challenges and Traceability

Organisational issues, including the structure and accessibility of documentation files, were
highlighted by 54% of the respondents, while 46% pointed to challenges with traceability.
These concerns align with Aghajani et al.’s findings that poor organisation and lack of
traceability hinder the effective use of documentation during maintenance and debugging
tasks [1]. Addressing these issues through structured file systems and enhanced traceability
mechanisms is essential for improving documentation usability across the software lifecycle
[92].

4.5 Design Phase Documentation

This section analyses survey responses regarding the usage, quality, and reasons for not
using various document types in the design phase of Low-Code development, previously
discussed in Section 2.4.1. The results highlight discrepancies in document availability,
quality concerns, and practitioners’ perceived value. Figure 4.3 presents an overview of the
results regarding usage. Furthermore, Figure 4.4 shows an overview of the quality results.
Finally, Appendix A, gives the results regarding reasons for non-usage.

The survey results for the design phase reveal challenges in the usage, availability, and
quality of key documentation types, reflecting gaps that directly impact alignment, col-
laboration, and development efficiency. Requirements Documentation and Business Case
emerged as the most utilised, with 59% and 50% of the respondents using them most of the
time or always, respectively. However, these documents face persistent issues, particularly
in up-to-dateness, rated as low as 2.6 for business case documents and 3.1 for requirements
documentation. Missing or incomplete requirements were a recurring barrier, with 67%
of the respondents who indicated that they do not use these documents (denoted as non-
users from here on) reporting that these documents either do not exist or cannot be found,
underscoring traceability concerns. Similarly, while Business Process Documentation was
valued for its usefulness (4.1) and readability (3.8), its low up-to-dateness (2.5) reduces its
effectiveness, confirming challenges found in iterative environments where documentation
get out of sync with changes [82].

In contrast, Roadmap & Release Plans and Mockups and UI Documentation exhibited

39

particularly low usage, with 46% and 67% of the respondents, respectively, stating that
they rarely or never use them. For Roadmaps, 55% of non-users indicated that these
documents simply do not exist, reflecting a gap in planning documentation during the
design phase. Mockups and UI documentation, while rated highly for usefulness (4.3) and
readability (4.3) by those who use them, are hindered by availability issues 44% of non-users
reported that such documents are not created at all. These findings suggest that visual
and strategic design artifacts, which could enhance stakeholder alignment and development
clarity, are often disregarded or overlooked. The data overall highlights a recurring theme
of incomplete, unavailable, or outdated design-phase documentation, which could lead to
misalignment and rework.

Furthermore, the results underscore the critical role of improving traceability, adopting
automation to maintain document synchronisation, and fostering a structured approach to
document creation. Addressing these challenges would enable design-phase documentation
to better support decision-making, reduce ambiguity, and provide a stronger foundation
for subsequent phases of Low-Code development.

40

Figure 4.3: Design Phase Documentation usage results

41

Figure 4.4: Design Phase Documentation quality results

42

4.6 Development Phase Documentation

This section analyses the survey responses regarding usage, quality, and reasons for not
using various document types in the development phase of Low-Code development, previ-
ously discussed in Section 2.4.2. The results highlight discrepancies in document availabil-
ity, quality concerns, and practitioners’ perceived value. Figure 4.5 presents an overview of
the results regarding usage. Figure 4.6 shows an overview of the quality results. Appendix
A gives the results regarding reasons for non-usage.

The results for the development phase reveal underutilisation of core documentation types,
with persistent challenges surrounding availability, completeness, and up-to-dateness. Data
Model Documentation and Application Logic Documentation are the least utilised, with
50% or more of the respondents reporting they never or almost never use them. For Data
Model Documentation, 42% of the respondents noted its absence as the primary barrier,
while for Application Logic Documentation, 53% of the respondents reported similar gaps.
This unavailability is particularly concerning, as both document types are foundational
for understanding data relationships and application logic, critical components in Low-
Code development workflows. When used, their quality ratings reveal further concerns:
completeness (2.5 for Data Models, 3.3 for Microflows) and up-to-dateness (2.7 and 2.8,
respectively) were rated as low, reflecting ongoing struggles in maintaining documentation
synchronisation, which is a challenge consistent with literature on iterative development
environments [82, 93, 29].

Source Model Comments (annotations) saw higher usage, with 42% of the respondents
using them sometimes and 29% most of the time, indicating their perceived value in pro-
viding guidance near the source material. However, 40% of non-users cited issues such
as incompleteness, outdated content, or non-existence, highlighting the need for better
management of this lightweight documentation type. Despite these issues, respondents
rated annotations positively for usefulness (3.9), readability (4.1), and findability (4.26),
suggesting they are well-received when available and up-to-date.

Component Documentation and Dependencies Documentation similarly showed mixed us-
age patterns. 29% of the respondents reported never using Component Documentation,
with 45% attributing this to its absence, while Dependencies Documentation was largely
unused by 71% of the respondents due to availability concerns. Both document types
play a critical role in managing reusable components and external dependencies, which
are central to Low-Code development’s scalability. For those who use them, Dependencies
Documentation performed relatively better, with correctness (3.7) and completeness (3.4)
receiving favourable scores. Component Documentation, however, exhibited more quality
concerns, with up-to-dateness (2.7) remaining a key issue, indicating a gap in maintaining
alignment with evolving application components.

Overall, the results for the development phase point to recurring issues of documenta-
tion availability and quality, particularly for critical artifacts like Application Logic and
Data Model Documentation. These findings underscore the need for structured documen-
tation practices, improved traceability, and synchronisation tools to reduce effort and en-
sure documentation remains accurate and accessible throughout the development process.
Without addressing these gaps, development-phase documentation run the risk becoming
a bottleneck, increasing complexity and technical debt while reducing collaboration and
maintainability.

43

Figure 4.5: Development Phase Documentation usage results

44

Figure 4.6: Development Phase Documentation quality results

45

4.7 Maintenance Phase Documentation

This section analyses the survey responses regarding usage, quality, and reasons for not us-
ing various document types in the maintenance phase of Low-Code development, previously
discussed in Section 2.4.5. The results highlight discrepancies in document availability,
quality concerns, and practitioners’ perceived value. Figure 4.7 shows an overview of the
results regarding both the usage and quality. Appendix A provides the results regarding
reasons for non-usage.

The results for the maintenance phase highlight widespread underutilisation and mixed
perceptions of documentation quality. Maintenance Documentation and User Manuals
emerged as the least utilised document types, with 37% and 50% of the respondents,
respectively, reporting they never or almost never use them. For Maintenance Documen-
tation, 33% of the respondents indicated that it does not exist, while 22% mentioned lack
of value as a reason for not using it. Despite being essential for ongoing updates and trou-
bleshooting, the quality of Maintenance Documentation was rated as poor, particularly for
completeness (2.5) and up-to-dateness (2.3). Similarly, User Manuals suffer from availabil-
ity issues, with 42% of the non-users stating they do not exist and 33% reporting they are
inaccessible. This aligns with their low usage frequency, as only 17% of the respondents
reported using them most of the time or always. Although rated highly for readability
(3.9), User Manuals struggle with up-to-dateness (2.8).

Service-Level Agreements (SLAs) and Issue Tracking Logs were moderately used, with 21%
and 29% of the respondents using them most of the time, respectively. For SLAs, 42% of
the non-users cited a lack of perceived value, highlighting potential misalignment between
documentation intent and user needs. Despite this, SLAs received relatively positive rat-
ings for correctness (3.5) and completeness (3.6), suggesting they are valuable when used.
Notably, the quality of Issue Tracking Logs was perceived favourably in terms of usefulness
(3.5) and findability (4.0), indicating their importance in identifying and resolving issues
efficiently.

Overall, the results highlight gaps in availability and up-to-dateness across maintenance-
phase documents, particularly for foundational artifacts like Maintenance Documentation
and User Manuals. Poor availability and perceived low value of these documents hinder
knowledge transfer, troubleshooting, and system evolution, leading to inefficiencies and
increased maintenance costs. Addressing these challenges through improved traceability,
automation, and structured updates could significantly enhance the role of maintenance
documentation in supporting long-term Low-Code application sustainability.

46

Figure 4.7: Maintenance Phase Documentation usage and quality results

47

4.8 Conclusion

This section concludes the chapter by discussing the last survey question and summarising
our findings and their paired conclusions in Table 4.2 and Table 4.3. The final survey
question sought to identify the types of documentation that respondents would use more
frequently if they were improved in terms of correctness, completeness, up-to-dateness,
findability, readability, and usability. The results to this question are presented in Table
4.1. The responses revealed that (Architecture) Design Documentation (63%), Business
Process Documentation (58%), and Business Case Documentation (54%) were the most
desired types, highlighting their foundational role in framing other documentation types.
Respondents emphasised that inaccuracies or incompleteness in these high-level documents
often cascade into other forms of documentation, diminishing their utility. Respondents
also highlighted significant desire to increase use of Maintenance Documentation (50%)
and Application Logic (Microflow) Documentation (46%), and User Manuals (42%). These
types are critical for understanding ongoing system operations and application logic, espe-
cially in dynamic Low-Code environments. However, as the results in Section 4.2 showed
they are often outdated or inaccessible, reducing their utility for developers and stakehold-
ers.

Additional comments revealed challenges in the current state of documentation practices
in line with the findings presented in literature. Some respondents pointed to challenges
related to outdated documents stored in inaccessible locations, the lack of proactive doc-
umentation updates, and the absence of centralised repositories. This reflects a broader
concern about the usability and discoverability of documentation in Low-Code environ-
ments. Documentation types such as Roadmaps and Release Plans (21%), Service-Level
Agreements (17%), and Data Model Documentation (13%) received lower prioritisation.
This suggests that while these documents are valuable, their perceived relevance may vary
depending on specific roles or contexts.

Overall, the survey underscores a need to address documentation gaps, ensuring their
accessibility, and promoting regular updates to keep pace with evolving Low-Code appli-
cations. These insights align closely with literature findings and the broader objectives
of this research to enhance the quality and availability of documentation in Low-Code
environments.

Table 4.1: Results question: What type of documentation would you use more if
they were more correct, complete, up-to-date, findable, readable and usable?

Documentation Type Percentage

(Architecture) Design Documentation 63% Component documentation 25%

Business Process Documentation 58% Dependencies Documentation 25%

Business Case 54% Roadmap & Release Plan 21%

Maintenance Documentation 50% Mockups and UI documentation 21%

Application Logic (Microflow) Documentation 46% Service-Level Agreements (SLA) 17%

User Manuals 42% Issue Tracking Logs (Tickets) 17%

Requirements Documentation 29% Data Model Documentation 13%

Source Model Comments (Annotations) 29%

48

Table 4.2: Information Content (What & How)

Finding Conclusion

Missing or outdated logic behaviour documen-
tation and annotations significantly hinder com-
prehension and debugging efforts.

Correctness, completeness, and synchronisation
of documentation are critical. Integrated source
annotations can reduce debugging challenges.

Misalignments between technical artifacts and
business processes exacerbate these issues

Aligning technical documentation with business
objectives could enhance collaboration.

Agile iterations frequently lead to outdated
documentation. Practitioners also noted frag-
mented and redundant documentation as barri-
ers to maintainability and usability

Automated synchronisation strategies ensuring
up-to-date documentation are essential for main-
taining relevance and reducing technical debt in
rapidly evolving Low-Code environments.

Clarity, accessibility, and concise content were
prioritised, but fragmented information and in-
correct assumptions about user knowledge re-
duced practical utility.

Clear, centralised, and modular documentation
could support diverse stakeholder needs. Inte-
gration into workflows and alignment with de-
veloper tasks enhances usability and practical
utility.

Table 4.3: Documentation Processes & Tools

Finding Conclusion

Time pressures in fast-paced Low-Code develop-
ment cycles often make documentation become
disregarded, leading to incomplete or outdated
content.

Automated tools and processes are vital to en-
sure documentation keeps pace with develop-
ment and does not fall behind.

Existing tools lack essential features or automa-
tion, resulting in inconsistent documentation
practices.

There is a critical need for feature-rich, au-
tomated tools tailored to Low-Code platforms.
Such tools can reduce the burden on developers
while ensuring synchronisation with iterative up-
dates.

Poorly organised documentation files and lim-
ited traceability mechanisms complicate mainte-
nance and debugging tasks.

Structured file systems and robust traceability
mechanisms could improve usability and collabo-
ration, facilitating faster problem resolution and
better long-term knowledge retention.

49

Chapter 5

Available Solutions

This chapter analyses the current state of research and practical tools related to automated
documentation generation, highlighting their various techniques, benefits, and limitations.
In line with the research methodology proposed by Wieringa [95], this short review iden-
tifies gaps and opportunities that we addressed with our proposed documentation assis-
tant.

5.1 Automated Documentation Generation Techniques

Automated documentation generation has been a prominent theme in Software Engineering
[56], particularly due to the increasing complexity of software systems and the burden
of maintaining comprehensive documentation manually. Existing studies propose diverse
techniques, ranging from algorithm-driven to model-driven methods, as well as modern AI
integrations that address multiple aspects of documentation challenges. However, many of
these solutions often struggle with scalability, flexibility, context-awareness, or alignment
with evolving development practices.

5.1.1 Automatic Code Commenting and Summarisation

A substantial body of work focuses on generating automatic comments and summaries
directly from source code [75, 56, 57]. Moreno and Marcus [56] categorise these auto-
mated software summarisation strategies into text-to-text, code-to-text, code-to-code, and
mixed-artifact summarisation, highlighting the various goals and approaches of different
summarisation tools. Various algorithms, particularly those based on information retrieval
(IR), deep learning, and hybrid methods, have been investigated [75]. While IR-based
techniques can be efficient, their reliance on static templates limits their flexibility. Mean-
while, Deep Learning models, such as recurrent neural networks (RNNs) and transformers,
generate higher-quality comments by integrating both structural and lexical code features
[45]. However, the scalability of these methods and the lack of standardised datasets
remain major obstacles to broader adoption [75]. Additionally, many of these strategies fo-
cus primarily on syntactic or structural code insights, overlooking the broader application
goals and nuances. Furthermore, many existing approaches emphasise code summarisation
rather than generating contextually rich or purpose-driven descriptions [50]. Therefore,
Song et al. argue for a need of a customised and intelligent automatic generation system
that meets various scenarios [75].

50

5.1.2 Context-Aware Documentation

Addressing context-awareness is another key focus within documentation generation. Tools
such as McBurney and McMillan’s [50] context-aware summariser incorporate method de-
pendencies and interactions, offering deeper insights into the “why” and “how” of code
operation. Similarly, LAMBDADOC [4] showcases the usefulness of documenting Java
lambda expressions by combining metadata and natural language generation templates to
provide more comprehensive information. While these strategies improve code comprehen-
sion, their applicability is often limited by factors such as poor scalability, tight coupling
with specific programming languages, and limited output flexibility.

5.2 Model-Driven Documentation Generation

Low-Code documentation generation is closely related to model-driven documentation,
which leverages structured templates and mappings to create various artifacts such as re-
quirements, design specifications, and system overviews directly from underlying software
models. This approach reduces manual overhead and promotes consistency in environ-
ments that employ Model-Driven Development. Wang et al. [94] present a model-driven
documentation generator integrated into the SmartOSEK IDE [98], aiming to bridge the
gap between software models and the corresponding documentation. Their tool ensures
consistency across artifacts by using a hierarchical documentation model, wherein each
node corresponds to key sections, such as requirements, preliminary design, and detailed
design specifications. A dedicated mapping mechanism links elements from system models
(e.g., UML diagrams) to these documentation nodes, allowing both textual and graphical
data to be incorporated. Other frameworks, such as those proposed by Henzgen and Strey
[31], further extend the scope of model-driven documentation by aggregating UML, BPMN,
and GSN model information into ISO-compliant documents. Although these model-driven
systems underscore the potential of dynamic templates and metamodel mappings, their ef-
fectiveness hinges on model completeness and up-to-dateness, frequently requiring manual
oversight to address inconsistencies [31]. Moreover, these model-driven solutions rely on
predefined outputs, limiting flexibility, and responsiveness in rapidly changing projects or
user requirements [68].

5.3 Agile and Dynamic Documentation

Agile development methodologies, which are characterised by iterative and incremental
practices, often disregard documentation in favour of frequent releases. To address this
challenge, Voigt et al. [91] introduce SprintDoc, which is a tool that integrates documen-
tation activities into Agile workflows by linking task management systems (e.g., Jira) with
version-controlled documentation repositories. Likewise, Silva et al. [74] propose methods
like Dynamic Documentation Generation and Automated Documentation Testing to cur-
tail technical debt and improve customer-facing documentation. While these tools promote
traceability and adaptability, they currently lack real-time contextual updates and do not
fully utilise advanced natural language generation techniques to deliver rich documentation
outputs.

51

5.4 Large Language Models and Software Documentation

In recent years, Large Language Models (LLMs) have shown considerable promise for au-
tomating software documentation [37, 58, 77]. Tools like Codex excel at generating context-
aware descriptions across multiple programming languages [37]. By synthesising code-level
data into human-readable text, Codex significantly reduces manual effort. However, several
issues remain, including the tendency toward verbose outputs, limited domain specificity,
hallucination, and reliance on proprietary large-scale infrastructures that can pose data
privacy risks [37]. Other notable work includes Naimi et al. [58], which utilises LLMs to
transform UML use case diagrams into documentation. While this method demonstrates
the advantages of combining structured inputs with generative models, it relies heavily on
prompt engineering and has limited adaptability to evolving development requirements.
Distilled GPT models [77] present an alternative solution, offering lightweight yet effective
code summarisation capabilities that preserve data custody and often achieve similar re-
sults as larger models like GPT-3.5. Despite their strengths, current LLM-based solutions
face constraints such as high computational overhead, dependence on proprietary datasets,
hallucination, limited customisation and lack of flexibility for specialised needs.

5.5 Retrieval Augmented Generation

A key limitation of LLMs lies in their reliance on pre-trained knowledge, which can lead to
incomplete, outdated, or overly general responses, often referred to as “hallucinations” [9],
when queried about domain-specific details [63]. Retrieval-Augmented Generation (RAG)
addresses this challenge by coupling LLMs with external knowledge sources, allowing them
to query and incorporate relevant information in real time [9]. This approach significantly
improves accuracy, adaptability, and context-awareness, making it highly valuable for soft-
ware development tasks [73]. In this area, Parvez et al. [62] propose a framework named
REDCODER, a retrieval-augmented generation solution specifically tailored to code gen-
eration and summarisation. REDCODER extends state-of-the-art dense retrieval meth-
ods to search for relevant code or corresponding natural language descriptions, thereby
bridging the gap between unimodal data (solely code or language) and bimodal instances
(paired code-description). Their results demonstrate that supplementing code-generation
and summarisation models with retrieved content leads to more comprehensive and accu-
rate outputs [62]. However, retrieval methods common in RAG systems often struggle with
complex reasoning for query formulation [46] and the handling of intricate and complex
structures and relationships [63], leading to incomplete retrieval and responses [65].

Aiming to solve these issues, graph-based RAG methodologies have emerged as a com-
pelling paradigm for enhancing the interaction between LLMs and external knowledge
[22, 63]. GraphRAG [22, 63] leverages the structural relationships between entities to en-
hance retrieval precision and depth, effectively capturing relational knowledge and enabling
more accurate, context-aware responses [63]. A comparison between Direct LLM, RAG,
and GraphRAG can be seen in Figure 5.1. As the figure shows, when responding to user
queries, LLMs may provide shallow or insufficiently specific answers. RAG partially miti-
gates this by retrieving relevant textual information, but its effectiveness is limited by the
length of the text and the flexibility of natural language in expressing entity relationships,
making it challenging to highlight "influence" or indirect relations central to the query
[63]. In contrast, GraphRAG methods use explicit representations of entities and their
relationships enabling precise answers. Building on this, some attempts have been made
to apply this concept to software repositories. Liu et al. [46] introduce CODEXGRAPH,

52

Figure 5.1: Comparison between LLM, RAG, and GraphRAG (copied from [63]).

which couples LLM agents with a graph database interface. This architecture encodes code
elements and relationships as nodes and edges within a unified graph schema. Through
static analysis, CODEXGRAPH supports precise queries and multi-hop reasoning, making
it particularly effective for debugging, code navigation, and unit testing [46]. In contrast,
RepoGraph [61] introduces line-level granularity into code representations, strengthening
the traceability of code dependencies and execution flows. By relying on sub-graph retrieval
algorithms, RepoGraph delivers localised yet comprehensive code segment analysis. How-
ever, it still depends on predetermined retrieval algorithms, limiting its capacity to adapt
to less structured or evolving repository configurations. Both CODEXGRAPH and Repo-
Graph underscore the potential of graph-based representations for addressing challenges
such as scalability and contextual relevance at the repository level.

5.6 Conclusion

Overall, this chapter reports on a range of automated documentation generation approaches
identifying strengths and persistent challenges. Traditional IR-based and Deep Learning
methods excel at producing code-level summaries but often have poor scalability, lack con-
textual awareness, and domain adaptability. Model-driven approaches leverage structured
templates and metamodels to create consistent artifacts, yet they remain dependent on
comprehensive and up-to-date models. Agile and dynamic documentation solutions bring
documentation closer to fast-paced development cycles but fall short in delivering real-
time, context-rich outputs. Recently, LLM-based systems have shown strong potential for
generating more natural and expressive documentation, although issues such as verbosity,
hallucination, and reliance on proprietary infrastructures pose ongoing hurdles. RAG and
GraphRAG further extend the capabilities of LLMs by incorporating external knowledge
sources to deliver improved accuracy, multi-hop reasoning, and deeper context. Overall,
while existing tools demonstrate valuable progress, gaps remain in addressing scalability,
customisability, real-time adaptability, and the specific needs of Low-Code.

53

Chapter 6

CLAIR: Connecting Low-Code and
Artificial Intelligence for RAG

The primary goal of this research is to improve the documentation quality and process
for Low-Code applications. The enhanced documentation should provide valuable insights
into application components, processes, and dependencies to improve system maintain-
ability, understandability, sustainability and overall knowledge retention. To this end, we
propose an AI-driven assistant, which we named CLAIR that integrates knowledge graphs
and LLM agents for retrieval-augmented generation1 to automate and support on-demand
documentation for Low-Code applications. This chapter outlines the design of CLAIR,
starting with the specification of the requirements in Section 6.1, after which in Section
6.2 the overall design is introduced, and ending with Section 6.3 which introduces the use
cases of CLAIR.

6.1 Requirements Specification

This section defines the purpose and scope of the artifact we developed in this project,
CLAIR, as well as its functional and non-functional requirements. The requirements are
derived through a combination of literature review, empirical research, and stakeholder
analysis in line with DSM [95].

6.1.1 Purpose and Scope

The purpose of CLAIR is to address documentation gaps in Low-Code applications by dy-
namically generating on-demand documentation. This aims to improve the documentation
quality and process specifically addressing the challenges and needs identified in Chapter
4. CLAIR focuses on the Mendix Low-Code platform and agile development environments,
where documentation often lags due to rapid delivery cycles.

1Retrieval-Augmented Generation (RAG) is a method that combines external data retrieval with text
generation to improve the accuracy and relevance of outputs, addressing the limitations of LLMs in handling
domain-specific queries [9].

54

Scope

For the current implementation, the focus is limited to data and application logic elements
within Mendix applications. Specifically, CLAIR extracts and processes components such
as modules, domain models, and microflows, which form the foundation of application logic
and data relationships. At this stage, UI-related elements, such as pages, and custom code
components, including Java actions, scheduled events, and other advanced customisations,
are excluded. This focused approach ensures a manageable and scalable implementation,
while addressing the critical components of data and application logic that have significant
impact on maintainability and knowledge retention.

6.1.2 Functional Requirements

To achieve the intended goals, CLAIR must satisfy the functional requirements shown in
Table 6.1. These requirements are based on the combination of the literary findings in
Chapter 2, the results of the survey presented in Chapter 4, and the identified gaps in the
current solution, discussed in Chapter 5.

Table 6.1: Functional requirements for CLAIR

ID Requirement Description

FR1 Knowledge Extraction Extract components like domain models, microflows, and
their relationships from Mendix applications.

FR2 Store Retrievable Knowledge Store extracted knowledge of components in a graph reposi-
tory, retrievable by the documentation assistant.

FR3 On-Demand Documentation
Generation

Automatically generate dynamic context-aware documenta-
tion based on user queries.

FR4 Chat Interface Provide a chat interface for intuitive user interaction

FR5 Multi-Purpose Functionality The system must be able to provide various types of docu-
mentation, discussed in Section 2.4 to support different pur-
poses across the development lifecycle, including design, de-
velopment, and maintenance.

6.1.3 Non-Functional Requirements

Non-functional requirements concern the quality of CLAIR’s implementation and the qual-
ity of the documentation it generates. To address this dual focus, we define two distinct
sets of requirements. Table 6.2 specifies the quality criteria for the generated documenta-
tion, ensuring it meets stakeholder needs identified in Chapter 4. Table 6.3, outlines the
non-functional requirements concerning the usability of CLAIR itself.

55

Table 6.2: Quality requirements for the generated documentation

ID Requirement Description

QR1 Correctness The generated documentation must accurately reflect the actual Mendix
application components, ensuring no errors or discrepancies.

QR2 Completeness All relevant components, including entities, microflows, and their rela-
tionships, must be fully included in the generated documentation.

QR3 Relevancy The assistant should focus on providing only the necessary and context-
specific information based on the user’s query, avoiding redundancy or
irrelevant details.

QR4 Understandability The generated content must be clear, concise, and easy to understand
for both technical and non-technical stakeholders.

QR5 Readability The documentation must be well-structured, logically organised, and
formatted to facilitate quick navigation and comprehension. 2

QR6 Usefulness The documentation must serve its intended purpose, aiding stakeholders
in understanding, maintaining, and improving Low-Code applications.

QR7 Up-to-dateness The documentation must reflect the latest state of the Low-Code appli-
cation, ensuring it remains current after changes or updates.

Table 6.3: Non-functional requirements for CLAIR

ID Requirement Description

NFR1 Usability The system must be easy to use, ensuring users can interact with the
tool intuitively.

NFR2 Information
Availability

The system must be able to provide the requested information on-
demand without delays, less than 30 seconds.

NFR3 Helpfulness The responses and generated documentation must be helpful in address-
ing users’ needs and goals.

NFR4 Accuracy The system must provide accurate and reliable information that aligns
with user queries.

NFR5 Time Efficiency The system must save users time by automating documentation genera-
tion and reducing manual effort.

NFR6 Scalability The system must be able to handle large and complex Mendix applica-
tions without significant slowdowns.

NFR7 Workflow Integra-
tion

The system must integrate seamlessly into users’ workflows, encouraging
frequent and practical use.

NFR8 Flexibility The system must be able to handle diverse queries, providing tailored
responses based on the specific information requested.

56

Figure 6.1: CLAIR architecture

Wieringa emphasises that requirements must be justified using contribution arguments.
These arguments predict how an artifact should contribute to stakeholder goals [95].

Contribution Argument:
If CLAIR generates high-quality, up-to-date, on-demand documentation,
and assuming Mendix developers rely on visual tools and agile practices which results in
inadequate documentation,
then CLAIR will improve maintainability, reduce technical debt, improve collaboration,
and enhance application sustainability.

6.2 CLAIR Design

CLAIR is an artifact designed to automate and enhance documentation for Low-Code
applications, particularly Mendix. The system bridges Mendix applications and Large
Language Models (LLMs) through a knowledge graph interface, chosen for its ability to
provide a structured, queryable representation of complex interrelated application data.
By leveraging a data pipeline, it transforms structured data extracted from Mendix appli-
cations into a knowledge graph database, serving as a central knowledge repository that
supports efficient and dynamic information retrieval. The architecture, illustrated in Figure
6.1, also includes an LLM-based Multi-Agent System (MAS) [28] to process user queries.
This MAS was implemented for its capability to interpret natural language queries, gen-
erate graph queries, and retrieve relevant insights from the knowledge graph, providing
accurate, context-aware responses tailored to users’ needs. The modular and scalable de-
sign ensures flexibility and adaptability, allowing users to access up-to-date, dynamic, and
context-aware documentation on-demand. This section details the rationale behind the
selection and integration of these components, as well as the processes of constructing the
knowledge graph, the data pipeline, the knowledge graph database, and the LLM-based
Multi-Agent System.

57

6.2.1 Knowledge Graph Database

To ensure a consistent and structured representation of the application data, we adopted
the approach for knowledge graph development as outlined by Tamašauskaitė and Groth
[79]. This method involves the sequential steps: identifying data, constructing the schema,
extracting and processing knowledge, and integrating the data into a graph structure.

Data Source

As discussed in Section 3.1, Mendix applications consist of various interconnected compo-
nents, including domain models, microflows, entities, and attributes. All of these compo-
nents can be designed in Mendix’s visual development environment called Mendix Studio
Pro. Built applications are stored in Mendix specific file types with a .mpr and .mpk
extension. To build a knowledge graph, we need to be able to extract the components
in a systematic manner and transform them to a structured representation. The Mendix
Model Software Development Kit3 (SDK) allows programmatic access to the structure of
Mendix models, by providing an API that enables developers to read, analyse, and in-
teract with Mendix application models. The SDK supports JavaScript/TypeScript and
allows access to all Mendix model elements, including domain models, microflows, pages,
and custom widgets. Furthermore, the SDK provides a function that returns the structure
of an element in an application as plain JSON. Given that we need a structured textual
representation for our design we used the SDK to create a script that retrieves JSON
representations of following components:

• Domain Models

– Extracted entities, their attributes, and data types.

– Captured relationships between entities (associations and generalisations).

• Microflows and Nanoflows

– Extracted the logic within each microflow, including actions, decision splits,
loops, and more.

– Captured dependencies between microflows and other entities or modules.

• Modules

– Extracted module and element hierarchies.

Schema Design

Using the Mendix SDK, we ensured a systematic and reliable extraction process, providing
the foundation for constructing a knowledge graph. To construct the knowledge graph
schema, we combined the components extracted from the Mendix application with the
publicly available Mendix Metamodel4. This approach ensured that the schema not only
reflected the specific structure of the application but also adhered to the general Mendix
model structure and relationships defined by the platform. By following this method, we
adhered to a top-down knowledge graph construction process [79]. The top-down approach
leverages an existing domain metamodel or structured dataset, both of which are available,
to guide the development of the knowledge graph schema [79]. The schema specifies the

3https://docs.mendix.com/apidocs-mxsdk/mxsdk/sdk-intro/
4https://docs.mendix.com/apidocs-mxsdk/mxsdk/mendix-metamodel/

58

Figure 6.2: Knowledge Graph schema for storing Mendix model elements

categories of nodes, edges, and their properties, which dictate how the graphs are structured
and stored within the graph database [79]. The constructed knowledge graph schema can
be seen in Figure 6.2. The details of the schema can found in Appendix B.

Data Pipeline

The second step to construct knowledge graphs is to extract and process knowledge from the
data [79]. To this end, we have setup a data pipeline that extracts, enhances, and processes
the desired knowledge from the JSON representations extracted using the Mendix SDK,
Python, and a LLM API. For this section we zoom in on the data pipeline component in
Figure 6.1. Figure 6.3 gives an overview of this pipeline, which includes an additional data
preparation step related to reducing the size of the JSON files, each step of the pipeline is
discussed below.

1) Reduce JSON File Size
JSON files generated from the Mendix Model SDK for microflows are verbose, containing
keys and values required for Mendix Studio Pro or background processes. These elements,
while essential for the Studio Pro development environment to be able to interact with
models, are irrelevant for the logic and structure of the resulting application, and therefore
for our AI Assistant. To address this, the extracted JSON files undergo a cleaning process
where information only needed for Studio Pro is removed ensuring that the final files are
concise and focused. Figure 6.4 illustrates the file reduction by showing an original and
reduced file. This reduction serves multiple purposes:

• Improved Speed: Smaller file sizes enable faster data processing and querying.

59

Figure 6.3: Refined data pipeline (including the extra JSON reduction step)

Figure 6.4: Transformation process: (a) Input JSON file and (b) Reduced JSON
file.

60

• Enhanced Accuracy: By removing irrelevant data, we improve the clarity of the
information presented to the LLM.

• Reduced Token Costs: Smaller JSON files reduce the amount of data sent to the
LLM API, reducing costs associated with token usage.

2) Extract Entities, Relationships, and Attributes
Key elements from the JSON are extracted to form the abstract representation of the
application structure within the knowledge graph. This involves processing modules, do-
main models, microflows, nanoflows, entities and attributes to capture their information
and relationships. This extraction ensures that the knowledge graph reflects the full struc-
ture and functionality of the Mendix application, providing a comprehensive view of its
components.

3) Enhance Data with Microflow Summaries
Apart from extracting and processing the information related to applications components
inherent in the JSON files we also generate summary representations of JSON parts related
to microflows. We do this to address the limitations of LLM context windows5 and opti-
mise token usage. The high-level summaries of microflows are generated by an LLM and
added to the knowledge graph as summary nodes. These summaries serve as condensed
representations of microflows, enabling efficient querying for broad questions while pre-
serving detailed information for deeper exploration. This is done by a Python script that
calls an LLM API, generating structured summaries for each microflow. In our design, we
use GPT-4o, which is a model developed by OpenAI6 and is among the top-performing
models as of January 20257. Furthermore, the model excels in reasoning, Mathematics,
and code as well as showing good results in similar settings [46, 61, 34]. We prompt the
API with both instructions and a JSON representation of a microflow. We do this for each
of the microflows in an application. By using structured outputs8, we ensure consistency,
with each summary node containing:

• Flow Summary: a high-level textual overview of the microflow.

• Purpose: the primary objective of the microflow.

• Main Actions: key actions performed within the flow.

• Parameters: inputs and outputs involved in the flow.

• Dependencies: external elements that the microflow interacts with, capturing rela-
tionships and impacts.

• Return Type: the type of output or result produced by the microflow.

4)Automatically Construct the Knowledge Graph
The final step involves populating a graph database with the extracted data, represented in
the JSON files. Python scripts utilising the Neo4j library9 are used to automate this pro-
cess, ensuring that the knowledge graph is accurately and efficiently constructed. Queries
are automatically generated to add extracted entities, attributes, relationships, and sum-
maries from the JSON files to the graph database. Duplicate entities and relationships are

5The GPT-4o model has a limit of 128K tokens on its context window [22]. When prompting the API
with a larger input, it will crash.

6https://openai.com/
7https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard
8https://platform.openai.com/docs/guides/structured-outputs
9https://pypi.org/project/neo4j/

61

identified and handled to prevent redundancies. Furthermore, after the initial data inges-
tion, the scripts re-check the graph to verify the existence and validity of all nodes and
relationships, ensuring a robust and consistent structure. This automated pipeline provides
a seamless and scalable way to construct and maintain the knowledge graph.

Knowledge Graph Database

Our knowledge graph database is built using Neo4j10, a leading graph database plat-
form designed to store and manage highly connected data. Neo4j is commonly used in
research [45, 61] and offers several benefits, including scalability, flexibility in modelling
relationships, and optimised performance for graph-based queries, making it well-suited for
representing the intricate dependencies and interactions within applications. Furthermore,
Neo4j uses the Cypher query language11, a powerful, declarative language specifically de-
signed for querying and manipulating graph data. This is another great benefit because
research has demonstrated that state-of-the-art LLM models have a high accuracy in gen-
erating correct Cypher queries to interact with graph databases, especially OpenAI’s GPT
model [34]. By selecting a database provider that supports Cypher, we ensure that our
LLM MAS can effectively retrieve the correct information to answer user questions. This
synergy between Neo4j and advanced LLM capabilities not only enhances the system’s
ability to deliver precise and contextually relevant responses but also lays the foundation
for the integration with CLAIR’s AI-driven component.

6.2.2 LLM-based Multi-Agent System

The LLM-based Multi-Agent System (MAS) [28] represents a core component of the
CLAIR architecture, enabling advanced, automated interactions between users and the
knowledge graph database. Leveraging Flowise12, an open-source low-code platform, this
system enables us to integrate specialised agents designed to execute distinct roles within
a structured workflow. Flowise provides a simplified framework for orchestrating LLM-
powered processes, reducing implementation complexity while maintaining robust func-
tionality. Figure 6.5 shows an overview of the LLM-based MAS in Flowise.

MAS Concept and Structure

An agent in the MAS context is a system that employs LLMs to determine the control flow
of applications. These agents can be categorised into Single Agents, which perform a single
task, and Multi-Agents, which collaborate to address complex tasks [35]. When the context
becomes too complex for a single agent to track, dividing the application into smaller,
independent agents significantly improves their accuracy and performance [35, 46, 34]. In
a MAS the Supervisor Agent serves as the central coordinator, managing communication
and task distribution among Worker Agents. It ensures the overall efficiency of the workflow
by interpreting agent outputs and directing subsequent steps. This hierarchical structure
facilitates collaboration and dynamic task allocation, crucial for handling complex, multi-
step processes [35]. Furthermore, LLM-based MAS leverage natural language processing
for agent communication, where each agent specialises in specific tasks while interacting
with other agents through natural language, significantly enhancing system flexibility [43]
and efficiency [96].

10https://neo4j.com/
11https://neo4j.com/docs/getting-started/cypher/
12https://flowiseai.com/

62

Design Considerations

Key considerations in the MAS design include:

• Efficient Communication Protocols: Ensuring seamless agent interactions to maintain
workflow integrity [35].

• Data Transformation Strategies: Minimising information loss during data prepro-
cessing and transformation while optimising storage and token cost [43].

• Scalable Architecture: Supporting dynamic system expansion and real-time process-
ing [35].

Furthermore, we applied iterative enhancement of prompts through automated generation
and optimisation. Engineering appropriate prompts for LLMs is a challenging task that
demands significant resources and requires expert human input [16]. However, recent ad-
vancement in LLMs have made them very suitable for prompt engineering and optimisation
[16], and we applied this technique to iteratively generate and enhance the prompts for
each agent in the MAS.

Agents and Workflow

The MAS consists of five agents, each fulfilling a critical role in the query-response pipeline:

1. The Supervisor Agent orchestrates the entire workflow. It initiates the query
process by delegating tasks to other agents and consolidates their outputs into a
cohesive response. As the central coordinator, the Supervisor ensures consistency and
optimises the system’s performance by monitoring agent interactions and resolving
bottlenecks.

2. The Information Assessor Agent evaluates user input to identify the specific
information required. Based on the user’s query it generates a concise list of data
points essential for answering the query, ensuring efficient subsequent processing.

3. The Cypher Query Generator Agent translates the Information Assessor’s out-
put into precise Cypher queries compatible with the Neo4j database. This agent
leverages the Neo4j graph schema in a zero-shot prompt13 to ensure queries are syn-
tactically correct and aligned with the user’s intent.

4. The Query Executor Agent interacts with the Neo4j database through a cus-
tom built JavaScript tool, executing Cypher queries and using the retrieved data to
answers the user’s query.

5. The Critic Agent validates the completeness and accuracy of the Query Executor’s
output. If the response is incomplete or ambiguous, the Critic initiates a refinement
cycle by providing specific feedback to the Supervisor. If the response meets stan-
dards, it finalises and delivers the output to the user.

13zero-shot prompting refers to the technique of guiding LLMs to perform specific tasks or reasoning
processes using only a task description or template, without providing any task-specific examples [42].

63

Figure 6.5: The LLM-based Multi-Agent System Design in Flowise

Benefits

The LLM-based MAS provides several benefits:

• Specialisation and Collaboration: Role-specific agents optimise task execution while
collaborative interactions enhance overall efficiency [96].

• Scalability: The modular design allows additional agents to be integrated as needed,
supporting new functionalities.

• Improved Context-Aware Query Resolution: Iterative validation by the Critic en-
sures comprehensive, accurate responses [46]. Furthermore the Critic ensures that
responses contextually relevant, enhancing user satisfaction [35].

By integrating natural language-based interaction, role specialisation, and iterative val-
idation, the MAS forms a flexible, responsive foundation capable of addressing multiple
different complex user queries.

64

Figure 6.6: CLAIR Use Cases

6.3 Use Cases

Although the initial goal and design of CLAIR were aimed at automatically generating
documentation, due to LLM’s adaptability and flexibility we have created a system that
is capable of serving more purposes than documentation alone. These additional use cases
were inspired by research into integrating LLMs and code repositories, such as RED-
CODER’s retrieval-augmented code generation and summarisation framework [62], RE-
POGRAPH’s repository-level navigation [61], and CodexGraph’s bridging of LLMs with
code databases [46]. Together, these studies highlight how advanced graph-based systems
can facilitate not only technical insight but also knowledge retrieval and collaborative de-
velopment. CLAIR leverages these advancements to potentially address challenges across
Low-Code development, enhancing Mendix documentation, debugging, and process opti-
misation. This section presents the practical implementation cases of CLAIR. Through use
cases such as on-demand documentation generation, annotation generation, debugging and
troubleshooting, new logic generation, and generating high-level overview, the potential ca-
pabilities of the system are discussed, demonstrating its ability to handle complex tasks
through collaboration between LLM agents. Figure 6.6 visualises the different potential
use cases identified.

6.3.1 On-Demand Documentation Generation

The MAS can generate comprehensive and context-aware documentation for Mendix appli-
cations on demand. By leveraging the structured knowledge stored in the Neo4j database
and the natural language capabilities of the agents, users can retrieve technical documen-
tation detailing the structure and logic of microflows, domain models, modules, and their
intricate relationships. This feature ensures up-to-date and accurate documentation tai-
lored to user queries, significantly reducing manual documentation efforts. Additionally,
this greatly improves the findability of documentation, as users can directly request the
required information instead of searching for it manually. This eliminates the need, for ex-
ample, for a central wiki with a search engine, and enables the generation of documentation
customised to user needs. The system can also include extra explanations or additional in-
formation as required by users, addressing a major challenge in traditional documentation
where content is often either too detailed, minimal, or irrelevant, from the perspective of

65

the reader [1]. An example of how a request for documentation looks like is presented in
Figure 6.7. This example includes all of the messages sent by the various agents, but in
the final implementation this should be hidden for the end-user to improve usability.

6.3.2 Annotation Generation

Apart from generating technical documentation, CLAIR is also capable of generating an-
notations, which are akin to comments in traditional code environments. Documentation
situated close to the source code, or models in Low-Code, has repeatedly been empha-
sised in literature as critical factor for maintainability and collaboration. Our findings in
Chapter 4 highlight that such annotations are frequently needed but are often missing,
outdated, or inaccurate. Given that CLAIR has access to the detailed logic of microflows
users can request an annotation for a specific action or piece of logic within a microflow.
This enables developers to generate more up-to-date, accurate and clear annotations with
a consistent structure throughout their project.

6.3.3 Debugging and Troubleshooting

Inspired by the application of LLM’s and code repository for debugging in other papers
[46, 61]. We foresee that the system can potentially aid developers in identifying and
resolving issues within Mendix applications by:

• Supporting stack traces as input and dissecting them to identify the root cause of
the error.

• Allowing users to query specific microflows or components for potential causes of
errors.

• Identifying dependencies and their potential impact on the application.

• Generating actionable insights, such as suggested fixes or additional data required
for resolution. Therefore enhancing debugging efficiency by providing targeted and
relevant information.

6.3.4 New Logic Generation

Next to debugging, based on the flexibility of LLM-based MAS [35], CLAIR should also be
able to generate textual descriptions of new microflow logic based on user’s requirements.
By utilising existing components within the application, the system ensures that the gen-
erated logic is specific and applicable to the current project. This feature is particularly
useful for:

• Supporting new Mendix developers in learning the platform.

• Assisting experienced developers with inspiration, validation, or support during the
creation of complex logic.

• Minimising the cognitive complexity of understanding and implementing intricate
new logic. Research indicates that combining visual representations (such as models)
with textual explanations significantly enhances comprehension and retention [49],
enabling developers to grasp new complex workflows more effectively.

66

6.3.5 Generating High-level Overview

Finally, CLAIR addresses the challenge of global sensemaking questions in large-scale ap-
plications by employing concepts inspired by the Graph RAG approach outlined by Edge
et al. [22]. The concept relates to generating summaries of various hierarchical levels in a
graph database in order to generate partial responses which are once again summarised into
a final response. In our implementation, this relates to generating high-level descriptions
of what modules do and support. These responses are generated based on the previously
generated microflow summaries. The hierarchical nature of this summarisation process
ensures that the system can handle broad, global sensemaking questions that exceed the
context window limitations of traditional LLMs [22]. By structuring data into graph com-
munities and generating both community-level and global summaries, CLAIR achieves a
balance between detail and scalability. This capability is valuable for developers, man-
agers, and business analysts, enabling them to dissect and understand the application’s
architecture in the context of its supported business processes, therefore aiming to support
better decision-making and alignment of technical implementations with organisational
goals.

67

Figure 6.7: Example of On-Demand Documentation Generation with CLAIR

68

Chapter 7

CLAIR Validation

This chapter discusses the third step of the DSM according to Wieringa [95] namely, the
validation phase. In Section 7.1 the procedure for validating CLAIR is introduced. In terms
of the participants selection, the testing setup, the data collection and analysis methodol-
ogy. Sections 7.2, till 7.6 present the results for each test case. Finally, Section 7.8 discusses
our results, relating them to the requirements, goals and validation questions.

7.1 Validation Preparation

This section outlines the methodology and setup we applied for testing and validating
CLAIR with Mendix developers. The testing process was designed to evaluate CLAIR’s
effectiveness, usability, and adaptability in real-world Low-Code development scenarios. By
engaging Mendix developers, we aimed to gather actionable insights and feedback to refine
and improve the system. The approach aligns with the principles of expert opinion and
Technical Action Research (TAR) [95], ensuring both systematic validation and practical
applicability.

7.1.1 Objectives

The primary objectives of the testing and validation phase have been:

• Effectiveness evaluation: assess the system’s ability to generate accurate, context-
aware, and relevant documentation.

• Usability assessment: determine how intuitive and user-friendly CLAIR is for Mendix
developers.

• Adaptability measurement: evaluate how well CLAIR addresses diverse developer
needs, including debugging, troubleshooting, and logic generation, as discussed in
Section 6.3.

• Feedback collection: gather qualitative and quantitative feedback to identify areas
for enhancement.

These objectives reflect the iterative cycles emphasised in both DSM and TAR, where
stakeholder feedback and measurable outcomes are used to continuously refine the artifact
[95].

69

7.1.2 Validation Questions

To validate the treatment, CLAIR was evaluated in accordance with the guidelines out-
lined in the DSM [95]. Specifically, Wieringa suggests a series of questions for artifact
validation:

• Effect (Artefact X Context = Effects)

1. How does CLAIR perform when generating documentation for Mendix applica-
tions?

2. How does CLAIR help improve the documentation in Mendix applications?

3. How does CLAIR respond to varied developer queries, such as generating mi-
croflow documentation or clarifying debugging issues?

4. To what extent can CLAIR be integrated with existing applications?

• Trade-off (Alternative Artefact X Context = Effects)

1. What alternative tools or approaches exist for similar applications?

2. How does CLAIR compare to these alternatives in terms of usability and effec-
tiveness?

• Sensitivity (Artefact X Alternative Context = Effects)

1. What changes occur in CLAIR’s usability and effectiveness if applied to larger
or smaller Mendix applications?

2. How can CLAIR be adapted for contexts outside Mendix applications, such as
other Low-Code platforms?

3. What assumptions about Mendix does CLAIR’s design depend on, and how do
these assumptions affect its adaptability to other contexts?

• Requirements Satisfaction - do effects satisfy requirements?

1. Do CLAIR’s capabilities meet the functional requirements outlined in Table
6.1?

2. Do CLAIR’s generated responses match the quality requirements defined in
Table 6.2?

3. Does CLAIR’s performance fulfil the non-functional requirements outlined in
Table 6.3?

7.1.3 Participant Selection

The participants group consisted of Mendix developers with varying levels of expertise,
from junior to senior practitioners. We looked for 10 participants, who were recruited
at CAPE Groep’s development and support teams, leveraging their diverse expertise in
Mendix applications, to gather both quantitative and qualitative insights. This group size
and diversity ensured a comprehensive evaluation of CLAIR’s capabilities across different
skill levels. Furthermore, this inclusive participants selection aligns with TAR’s principle
of engaging diverse stakeholders to validate practical utility in real-world settings. The
distribution of the participants and their expertise can be seen in Figure 7.1.

70

Figure 7.1: Participants distribution in terms of years of experience with Mendix.

7.1.4 Testing Plan

To properly test CLAIR, a testing plan to evaluate CLAIR’s performance through struc-
tured scenarios with both qualitative and quantitative data collection methods has been
designed. This plan consisted of defining various testing scenarios, preparing instructions,
and setting up the testing environment.

The testing environment includes the following components:

• CLAIR Setup: a fully operational instance of CLAIR integrated with a database
populated with real-world Mendix application data chosen by the participant. This
means that each participant could choose their own application.

• Testing Platform: a Flowise web interface allowing developers to interact with CLAIR,
submit queries, and receive generated documentation.

• Introduction: an explanation and walkthrough to guide participants in using CLAIR,
along with printed out instructions including tips for query formulation to address
any unclarities. Furthermore, participants are informed of the current limitations of
CLAIR (e.g., no UI elements).

During the testing sessions, participants are instructed to complete five different test
scenarios designed to evaluate the different capabilities of CLAIR discussed in Section
6.3:

1. Generate Documentation for a Microflow.

2. Generate Annotations for a Microflow Component.

3. Troubleshoot Issues.

4. Generate New Microflow Logic.

5. High-Level Overview Queries.

A complete description of the testing scenarios can be found in Appendix C.

71

We provided participants with realistic scenarios and a realistic testing environment, ensur-
ing alignment with TAR’s focus on solving real-world problems while allowing empirical
validation of CLAIR’s features [95]. The introduction and structured guidance reflects
our focus on usability and empirical data collection, while ensuring the participants are
properly equipped to interact effectively with the system.

7.1.5 Data Collection and Analysis

Data collection for the CLAIR validation involved:

• Interviews: semi-structured interviews during the testing sessions, to gather quali-
tative feedback on both user experience and CLAIR’s effectiveness.

• Post-Scenario Surveys: following each test scenario, each participant answered
6 questions designed to assess various quality aspects based on the requirements
specified in Table 6.2. The participants could add to each answer with comments to
clarify their answer or suggest improvements.

• Post-Test Survey: participants responded to statements using a Likert scale (1 =
Strongly Disagree, 5 = Strongly Agree) to assess usability and satisfaction.

The evaluation metrics used in the surveys were determined using the Goal Question Metric
method (GQM) [87] An overview of the GQM process along with the list of questions for
both surveys can be found in the Appendix D.

Data analysis involved:

• Statistical evaluation of quantitative metrics.

• Analysis of qualitative feedback to identify strengths and areas for improvement.

• Comparative analysis of performance across different developer skill levels.

7.2 Test Case 1 - Documentation Generation

This test case focused on evaluating CLAIR’s ability to generate documentation for mi-
croflows in Mendix applications. Participants were instructed to generate documentation
for three microflows, each with increasing size and complexity. The results are visualised
in Figure 7.2.

Correctness

CLAIR demonstrated a high degree of accuracy in generating documentation, with most
participants agreeing that the outputs were technically correct and aligned with the pro-
vided input. However, occasional issues arose, such as minor errors in interpreting meaning
from naming conventions or misrepresenting relationships between entities. While these
errors were not frequent, they highlighted a need for refining the system’s dependence on
naming conventions. This suggests CLAIR could benefit from additional logic to validate
inferred relationships and names, or the injections of semantics to reduce misinterpreta-
tion. Inconsistencies in user-defined names could also be an indication of improper naming
conventions applied by developers, thereby highlighting an area of improvement for the
application.

72

Figure 7.2: Test Case 1 - Quantitative results

Completeness

While CLAIR’s outputs were generally comprehensive, providing detailed responses, in-
cluding multi-layered documentation, participants noted that the system sometimes lacked
high-level context, focusing more on technical details ("what" happens) in the microflow
rather than providing deeper insights into the rationale ("why" something happens). It
was pointed out that this could potentially be improved by including business context
into the system. Apart from this, participants expressed that the combination of high-
level summaries and detailed information was really helpful. However, for larger and more
complex microflows, the generated documentation occasionally missed critical interactions
with other components.

Relevance

The system scored well in terms of relevance, with participants finding that the generated
documentation typically aligned with their queries and provided meaningful information.
Various participants praised CLAIR’s ability to provide purpose and explain relationships
between microflows, especially if they tailored their queries. However, feedback suggested
that the system could benefit from prioritising essential details over exhaustive coverage,
which sometimes diluted the relevance of the output. Furthermore, some participants re-
marked that while the generated documentation was relevant, much of the information
could be retrieved directly from the microflow. However, this comment was mainly given
by the more experienced developers, indicating a difference in perception of ease of under-
standing complex logic.

Understandability

This was the strongest metric for this test scenario, as participants praised the clarity of the
generated documentation. The use of consistent terminology and alignment with Mendix’s
model structure contributed to its high understandability. Suggestions for improvement

73

included organising information chronologically to enhance logical flow and ensuring that
the most critical details are presented first.

Readability

Participants found the documentation easy to read, with bullet points and structured
outputs contributing to its readability. However, the ordering of information could be im-
proved, particularly for complex microflows where chronological ordering of sub-microflows
and actions within the flow was suggested to improve logical flow and readability fur-
ther.

Usefulness

Although usefulness received the lowest score among the metrics, a 7.5 for a prototype
system is an encouraging result, especially given the complexity and experimental nature
of CLAIR. Participants consistently highlighted the tool’s value for onboarding new devel-
opers and team members, making it a significant asset for simplifying complex applications
or understanding unfamiliar models. CLAIR’s functionality for breaking down the purpose
and inner workings of large and complex microflows was especially appreciated, with par-
ticipants recognising its capacity to clarify intricate workflows. Furthermore, the “purpose”
section in the documentation stood out as a key feature, offering valuable insights into the
rationale and logic behind microflows. Participants noted that this section should remain
constant over time for a microflow, serving as a stable reference point for making changes
in the future. Experienced developers, who are already familiar with the application, found
CLAIR less impactful. However, this was also expected, given that for the test scenarios
the participants were very familiar with the application, therefore reducing the need for
documentation in general.

Key Insights

• CLAIR performs well for generating technically correct documentation, but further
development is needed to eliminate a few edge-case inaccuracies.

• While CLAIR provides granular detail, it could enhance completeness by integrat-
ing application-wide context and offering explanations for design choices, although
participants did indicate this might be difficult to infer based solely on application
structure.

• CLAIR’s relevancy could be optimised by balancing the depth of information with
the specific focus of the query.

• CLAIR excels in delivering clear and comprehensible documentation, but improved
information hierarchy and structure would make the documentation even more user-
friendly.

• CLAIR is highly effective as a tool documentation creation and for onboarding, es-
pecially for new developers or those tackling complex workflows. However, its utility
could be broadened to better serve experienced developers and business stakehold-
ers by incorporating additional features, such as business context and coverage of
elements beyond the current scope, such as REST services and Java actions.

74

Figure 7.3: Test Case 2 - Quantitative results

7.3 Test Case 2 - Annotation Generation

This test case focused on CLAIR’s ability to generate annotations for complex parts of
microflows in Mendix applications. Participants were instructed to generate annotations
for three different components of a microflow, such as splits, loops or complex database
retrieves. The results are visualised in Figure 7.3.

Correctness

CLAIR delivered generally accurate annotations, with participants praising its ability to
generate valid responses and, in some cases, include examples to clarify the annotations.
The tool’s reliance on naming conventions was both an asset and a limitation. When nam-
ing conventions were clear and consistent, CLAIR produced accurate outputs. However,
deviations in naming logic occasionally led to incorrect assumptions. Furthermore, some
annotations were deemed overly generic and missed the specific nuances of the microflow
logic or its interactions with preceding and succeeding microflows.

Completeness

Completeness emerged as the weakest metric for this test case. Participants appreciated
when annotations went beyond the immediate logic of the split and incorporated broader
application-level insights, although this was inconsistent. While CLAIR excelled at describ-
ing "what happens" in a microflow, it often failed to address the "why" behind actions,
which participants deemed crucial for effective annotations. Missing context from the
broader application or interactions with other components further impacted the perceived
completeness. However, CLAIR identified key activities and provided a solid foundation
for annotations in almost all cases. Finally, some participants indicated that responses
were quite verbose and lacked some precision, which could reduce their usability as quick,
targeted explanations.

75

Relevance

Participants found CLAIR’s annotations relevant to their queries but occasionally too
generic or shallow in detail. While its focus on specific components, such as e.g. split
conditions, was effective, the lack of deeper insights reduced the overall relevance of the
output. Furthermore, relevance often depended on the quality of the query and the user’s
ability to provide sufficient context and guidance. Additionally, some more experienced
participants felt that CLAIR’s annotations did not significantly add value beyond what
they could write themselves, although this was also not the purpose of the use case. CLAIR
is supposed to help developers write annotations, not replace their annotations.

Understandability

Once again understandability was a strong point, with participants praising the clarity
and straightforward nature of CLAIR’s annotations. Clear phrasing and alignment with
Mendix terminology contributed to the system’s high performance in this metric. This
metric received no specific criticisms, highlighting CLAIR’s success in producing clear and
comprehensible outputs.

Readability

Participants appreciated CLAIR’s structured outputs, such as grouping information into
logical sections. However, they noted that the annotation itself was sometimes buried under
additional context or explanations, requiring users to sift through the response to find the
key information. Therefore, responses could be reordered to prioritise the annotation itself,
ensuring it is immediately visible and accessible.

Usefulness

The usefulness of CLAIR’s annotation generation was recognised, particularly for devel-
opers who dislike writing annotations. However, experienced developers noted that the
generated annotations sometimes lacked the depth or specificity needed for real-world ap-
plication, indicating their preference to write their own annotations. Although, our findings
in Section 4.2 indicate that annotations are currently more often then not missing, out-
dated, or wrong. Furthermore, various participants indicated that this feature would be
greatly enhanced if was integrated with the development environment, thereby allowing
annotations to be generated on-demand during development. This would allow CLAIR
to provide a template annotation to which the developer can add some context and or
reasoning for the particular design choice.

Key Insights

• CLAIR reliably generates correct annotations, but accuracy can be improved by
addressing assumptions based on naming conventions and enhancing its ability to
consider broader contextual nuances.

• CLAIR’s completeness could be enhanced by emphasising the rationale behind ac-
tions, and maintaining brevity.

• CLAIR can improve relevancy by tailoring annotations more closely to the user’s
query and providing greater or lesser depth where necessary.

76

Figure 7.4: Test Case 3 - Quantitative results

• CLAIR’s annotations are clear and easy to understand, but focusing on brevity and
avoiding verbosity would further enhance their clarity.

• CLAIR should prioritise presenting annotations first, followed by any supporting
details, to improve readability.

• CLAIR’s annotations are valuable for reducing repetitive tasks, but integration with
the development environment would enhance its utility.

7.4 Test Case 3 - Troubleshooting

This test case evaluated CLAIR’s ability to assist Mendix developers in identifying and
resolving issues within applications by providing guidance based on known errors or stack
traces. The results are visualised in Figure 7.4.

Correctness

CLAIR demonstrated a high level of accuracy in diagnosing issues and suggesting potential
causes. The system consistently generated accurate suggestions based on the error descrip-
tions or stack traces provided. Participants appreciated its ability to identify problematic
attributes, pinpoint involved entities, and even anticipate potential future issues based on
the provided input. Occasionally, CLAIR included excessive and less relevant information
in its responses, which blurred the clarity of the most accurate suggestions. Despite this
CLAIR demonstrates great potential for correctly identifying root causes and suggesting
solutions.

Completeness

Participants found CLAIR’s responses to be generally complete, offering thorough insights
into the potential causes of issues. The system provided a comprehensive breakdown of

77

potential causes, often exceeding participant expectations in identifying multiple aspects
of an issue. However, several participants remarked that CLAIR provided too much infor-
mation, making it difficult to focus on the most relevant parts. Focusing on likely causes
rather than providing exhaustive details could improve usability. Furthermore, responses
sometimes required follow-up queries to retrieve context, such as related microflows, which
could have been included in the initial response. However, this does conflict with the
statements of too much information. Therefore, there is a need to balance here or provide
an option to users to hide or see more information.

Relevance

Relevance was one of the highest-scoring metrics in this test case. Participants highlighted
CLAIR’s ability to focus on the problem described, making its outputs both applicable and
actionable. This result was even produced without any instructions by merely copy pasting
the stack trace into the chat interface. Participants especially appreciated the tool’s ability
to prioritise potential causes of issues, ordering them by likelihood. This feature was noted
as a significant advantage. Sometimes participants indicated that the tool’s suggestions
were only partially directly related to the microflow and a bit generic, however, they also
pointed out that this could indicate that the problem is not occurring where they requested
CLAIR to check.

Understandability

Participants appreciated CLAIR’s clear and concise language, which made its responses
easy to understand. Furthermore, CLAIR effectively highlighted problem areas in a manner
that was easy to comprehend. However, minor adjustments to phrasing could improve the
intuitiveness of the troubleshooting advice. A suggestion made by a participant was to
frame the troubleshooting advice as a hypotheses, as e.g., "CLAIR thinks this issue may
be caused by...", as that would improve the clarity of the suggestions.

Readability

Readability was the lowest-scoring metric for this test case. Although still performing well
and participants appreciated the structured responses, some found the information over-
whelming or difficult to navigate. Multiple participants felt the most critical information,
such as conclusions, was buried under unnecessary details. To this end, participants sug-
gested starting with a clear summary of the recommended solution, followed by supporting
details.

Usefulness

Participants recognised CLAIR’s potential as a valuable troubleshooting tool, particularly
for newer developers or those unfamiliar with the application. Many participants found
CLAIR great as a starting point for investigating issues. Some indicated that they currently
often use a general LLM, such as ChatGPT, to decipher their stack traces, however given
that those do not know the structure of the application, their responses are often too
generic. CLAIR gives guidance till the attribute level and even provides working solutions.
Additionally, capabilities such as copying stack traces directly into the system for guidance
were seen as highly valuable. Another suggestion made during the testing sessions was
that it would be very valuable if CLAIR included references to external resources, such
as documentation, community knowledge, or Internet searches supplement its guidance.

78

Overall, the system’s ability to guide debugging processes while also suggesting potential
solutions was deemed highly useful.

Key Insights

• CLAIR performs well in troubleshooting tasks, but eliminating irrelevant information
would enhance the perception of correctness and reliability.

• CLAIR should aim to deliver comprehensive responses in fewer iterations, reducing
the need for follow-up queries to refine or complete the information.

• CLAIR excels in generating relevant output for troubleshooting, but could be further
improved presenting prioritised solutions first and limiting verbosity in its output.

• CLAIR is a valuable tool for troubleshooting but could be enhanced with additional
context and external resource integration to better support developers of all experi-
ence levels.

7.5 Test Case 4 - New Logic

This test case evaluated CLAIR’s ability to generate detailed descriptions for new mi-
croflows based on user-provided requirements. The results are visualised in Figure 7.5

Correctness

Correctness received the lowest score among the metrics for this test case, with partici-
pants identifying some technical inaccuracies in CLAIR’s outputs. The system generally
adhered to the user-provided requirements, and demonstrated a good understanding of user
requirements, translating them into microflow logic effectively in many cases. Furthermore,
participants appreciated the system’s ability to propose innovative logic, even when some
steps required refinement. However, some approaches proposed by CLAIR were sometimes
technically correct but misaligned with standard best practices. One participant noted:
"If you implement this, it will work, however it does not align with Mendix and CAPE
best practices, it would be great to enhance the system with this information". On top of
this, in some occasions the system suggested unsupported actions, such as grouping and
using maps or dictionaries, which are not feasible in Mendix.

Completeness

Completeness was one of the stronger aspects of CLAIR’s performance in this test case.
CLAIR generated detailed and thorough descriptions, often providing sufficient informa-
tion to construct a working microflow. Particularly, the system excelled in describing
simpler microflows, delivering outputs that were actionable and complete. However, for
more complex microflows, some participants noted gaps in details, such as missing XPath1

constraints in retrieve actions. Furthermore, suggestions to improve completeness included
better handling of parameters and integrating checks and error handling directly into the
generated microflow logic, as currently the system sometimes adds it as suggestion.

1Mendix XPath is one of the Mendix query languages designed to retrieve data. XPath uses path
expressions to select data of Mendix objects and their attributes or associations. (https://docs.mendix.
com/refguide/xpath/)

79

https://docs.mendix.com/refguide/xpath/
https://docs.mendix.com/refguide/xpath/

Figure 7.5: Test Case 4 - Quantitative results

Relevance

CLAIR demonstrated strong contextual awareness and relevancy, particularly when pro-
vided with clear, straightforward prompts. However, there were opportunities to improve
the alignment of outputs with user expectations. CLAIR effectively interpreted user re-
quirements and generated relevant responses, making it accessible even with minimal
prompting. Furthermore, participants appreciated its adaptability to different levels of
detail in prompts. However, some participants felt the need for iterative refinements to
improve the relevance of outputs, particularly for complex requirements. Some participants
suggested better query guidance or predefined templates to help users frame their requests
more effectively and receive outputs closely aligned with their expectations.

Understandability

Participants appreciated the clarity of CLAIR’s logic descriptions, which were easy to fol-
low and understand. The structured language used in the outputs made them accessible to
developers of varying skill levels, although minor adjustments to phrasing, such as empha-
sising the reasoning behind certain actions, could further improve understandability.

Readability

CLAIR’s structured outputs, including step-by-step descriptions and logical grouping, were
highlighted as key contributors to readability. Participants noted that CLAIR’s consistent
organised formatting enhanced comprehension and reduced the effort required to under-
stand the outputs. However, some participants suggested improvements in the ordering of
steps, ensuring that the sequence aligns more with the logical flow of the microflow.

80

Usefulness

Usefulness received a relatively lower score, reflecting feedback from participants that
CLAIR’s value varies depending on the user’s experience level and the complexity of the
task. Overall, CLAIR was viewed as a valuable tool for new developers, offering inspira-
tion and guidance in constructing microflows. Furthermore, participants highlighted its
potential as a "co-developer" or "sparring partner" for sparking ideas and validating logic.
In contrast, some participants noted that experienced developers might find limited value
in CLAIR for simpler microflows, as they could generate similar logic independently in
quicker fashion. Also, right now the participants had to put in quite extensive information
related to the requirements. Some indicated that if one is able to write such a detailed
prompt than you should be able to build the microflow yourself quite easily. However,
if the prompt could be written in a more ‘business process’ like fashion then this would
be of great value. Multiple participants suggested an integration possibility with user
stories.

Key Insights

• While the tool generally performed well, reducing technical inaccuracies and refining
its understanding of Mendix-specific constraints would improve correctness.

• CLAIR’s relevance is strong for straightforward use cases, but could be improved for
complex queries through better prompt handling and user guidance.

• CLAIR’s readability and understandability is strong, with room for minor adjust-
ments in step ordering to improve logical flow.

• CLAIR is a useful tool for supporting new developers but could better cater to
experienced developers through advanced features and best-practice integration.

• Participants suggested incorporating more "business process" like prompts or linking
the tool to user stories to enhance its applicability.

7.6 Test Case 5 - High-level Questions

This test case assessed CLAIR’s ability to handle high-level queries and global sensemaking
questions, providing overviews of modules and their purposes. The results are visualised
in Figure 7.6.

Correctness

CLAIR demonstrated a strong ability to correctly identify module functionalities and their
relationships. The tool effectively extracted meaningful insights from module components
and provided an overview of their purpose, which participants found helpful for under-
standing unfamiliar modules. However, some participants observed that CLAIR occasion-
ally fabricated details based on microflow or module names, which undermined trust in its
responses. Next to this, the system sometimes exhibited “tunnel vision” by focusing too
narrowly on individual modules, missing critical interactions with other modules.

Completeness

Participants appreciated CLAIR’s ability to provide comprehensive module overviews, with
some feedback noting that its descriptions involved insights that are difficult to infer from

81

Figure 7.6: Test Case 5 - Quantitative Results

the module structure. Furthermore, the system offered detailed insights into module func-
tionality, helping participants get a clear picture of its core actions, although some partici-
pants found CLAIR’s responses too detailed for a high-level overview, suggesting it should
focus on key concepts and avoid diving too deeply into specifics. Particularly, missing de-
tails about inter-module interactions and overarching application context were highlighted
as gaps in completeness.

Relevance

CLAIR’s outputs were largely relevant to the queries, providing meaningful information
about modules and their purposes. However, there was room to improve alignment with
user expectations. CLAIR provided relevant first impressions of modules, particularly for
users unfamiliar with their purpose or structure. Therefore, the tool’s ability to extract
and summarise module functionality was celebrated as a valuable initial exploration tool
in a new application. Despite this, some participants noted that the system sometimes
generated overly verbose or too detailed responses, detracting from their relevance. As a
result, users suggested providing more guided prompts or predefined templates to improve
alignment with specific needs.

Understandability

Understandability was the highest-rated metric of this test case, reflecting CLAIR’s abil-
ity to produce clear and concise explanations of modules. Particularly, participants con-
sistently highlighted the clarity of CLAIR’s language and descriptions, making outputs
accessible even for less experienced developers. However, some participants noted that
sometimes the summarisation was too brief, thereby requiring the reader to have some
prior knowledge before fully comprehending the module’s purpose.

82

Readability

CLAIR’s structured responses were generally well-received, but some participants identified
opportunities to enhance the flow and organisation of information. Particularly, the use of
bullet points and clear logical groupings of module functionalities improved user navigation
through responses. However, some participants found the sequence of information less
intuitive, suggesting reordering to prioritise the most critical insights.

Usefulness

CLAIR was highly valued for providing quick overviews of modules, particularly for on-
boarding new team members or understanding unfamiliar applications. Additionally, par-
ticipants appreciated its ability to uncover details about modules whose names provided
little indication of their purpose. However, experienced developers who are already familiar
with the application found the tool less useful, as the generated descriptions added limited
value beyond what they could infer from domain models. Furthermore, missing a bit of
business context was a recurring theme, with participants emphasising the importance of
aligning technical details with broader application goals. Therefore, in this case CLAIR’s
utility lies primarily in onboarding and initial exploration, but enhancing its alignment with
business context and inter-module relationships could make it more broadly useful.

Key Insights

• CLAIR demonstrated a strong ability to correctly summarise module functionalities
and their relationships.

• Responses could be improved by focusing on high-level insights and cross-module
relationships while avoiding unnecessary technical detail.

• CLAIR’s outputs could benefit from improved guidance and response filtering to
ensure outputs remain focused and meaningful.

• CLAIR’s outputs were easy to understand, with minor refinement such as optimising
the logical flow of responses and simplifying language needed for broader audiences.

• CLAIR’s usefulness is strongest for onboarding and high-level orientation but requires
additional contextual integration to appeal to experienced developers and business
users.

83

7.7 Usability and User Experience

The usability and user experience evaluation of CLAIR involved participant responses to
several statements on a Likert scale, assessing various aspects of the system’s performance,
user-friendliness, and its perceived value in a real-world Mendix development workflow.
In this way, the evaluation aligned with the core principles of the extended Technology
Acceptance Model (TAM) [88], which is the most frequently used theory to asses user ac-
ceptance of AI technologies [36]. The aggregated scores, along with participant comments,
provide insights into CLAIR’s strengths and areas for improvement in terms of usability
and practicality. Figure 7.7 summarises the results.

Overall Usability

Participants found CLAIR relatively easy to use (3.8) and learn (4.0), reflecting a well-
structured interface and straightforward interaction model. The onboarding guidance and
structured responses helped new users become familiar with the tool. However, the lower
score for ease of use compared to ease of learning suggests that while the system is easier
to understand with some guidance, some friction points remain in usage, such as crafting
effective prompts or navigating complex outputs. Participants appreciated the chat-based
interface but some suggested the addition of predefined query templates to streamline
interactions and reduce user effort when crafting effective prompts.

Information Accuracy and Relevance

CLAIR performed well in providing helpful (4.4) and relevant (3.8) responses, with partici-
pants particularly praising the clarity and structure of its outputs. However, slightly lower
scores for accuracy (3.6) indicate occasional issues, such as fabricated details, reliance on
naming conventions, or incomplete context integration. While participants highlighted its
helpfulness, ensuring precise and context-aware outputs remains critical for building trust
and reliability, which is essential for AI adoption [36].

Efficiency and Organisational Impact

The system demonstrated clear time-saving potential (4.2), with participants noting its
ability to generate structured documentation and annotations that would otherwise re-
quire significant effort. However, the lower scores for improving organisation (3.7) and
traceability (3.6) highlight a need for enhanced features, such as integration with existing
documentation workflows or Mendix Studio Pro. However, overall CLAIR’s potential to
streamline documentation workflows was a significant strength, with participants seeing
value in using it to standardise and organise documentation.

Adoption

Participants were generally positive about incorporating CLAIR into their workflows, es-
pecially for onboarding, troubleshooting, and generating documentation for complex ap-
plications. Furthermore, the system’s appeal as a co-developer tool for brainstorming or
validating ideas was also highlighted. However, some participants noted its limited utility
for experienced developers, who may already have in-depth knowledge of their applica-
tions, although in this scenario, the deprecation of CLAIR’s value can be attributed to
experienced developers not needing any documentation when working with familiar appli-
cations.

84

Figure 7.7: Usability and user experience results

85

7.8 Discussion of the Results

This section discusses the outcomes of the tests presented in Sections 7.2 till 7.6, com-
paring them against the requirements outlined in Section 6.1 and the validation questions
presented in Section 7.1.2. The analysis evaluates whether CLAIR meets its intended
objectives and satisfies both functional and non-functional requirements.

7.8.1 Requirements satisfaction

Functional Requirements

Table 6.1 shows 5 functional requirements that CLAIR needed to satisfy in order to achieve
the intended purpose. Due to our design choices, we have successfully implemented each
of the requirements:

• FR1 Knowledge Extraction: by leveraging the Mendix Model SDK, CLAIR effec-
tively and accurately extracts domain models, microflows, and their relationships
from Mendix applications. Our testing sessions did not reveal any missing or incor-
rectly extracted data. Therefore this requirements is fully met.

• FR2 Store Retrievable Knowledge: using the data pipeline, the system efficiently
processes these components and represents them in the knowledge graph. By lever-
aging Cypher queries, the system accurately extracted the requested information.
This effective extraction of knowledge in the Neo4j graph database was successfully
validated during the tests, ensuring reliable retrieval.

• FR3 On-Demand Documentation Generation: CLAIR dynamically generates docu-
mentation tailored to specific user queries, with high relevance and accuracy con-
firmed during user testing.

• FR4 Chat Interface: the built-in Flowise chat interface facilitated smooth interaction
with users, which was further improved by locally storing chat history, therefore
enabling follow-up questions.

• FR5 Multi-Purpose Functionality: as extensively discussed in Section 6.3, CLAIR is
able to handle a diverse range of queries for various purposes. As the test results
show, CLAIR effectively supports multiple documentation types, addressing varied
needs across the Low-Code development lifecycle.

Quality Requirements

One of the key factors of a successful validation of CLAIR was to assess the quality of the
output generated by the tool. Therefore we specified a list of quality requirements and
we assessed them for each test case separately. Overall the results are very promising. In
Table 7.1, we present the requirements with the average result across the 5 test scenarios.
The average scores ranged from 7.5 to 8.7, thereby we can conclude that each of the
quality requirements are fully met. However, concerning up-to-dateness, we currently have
to manually update the database, which we did to prepare for testing. Therefore the
data and the generated documentation was up-to-date, however to ensure this holds in the
future a coupling must be made with a CI/CD or deployment pipeline.

86

Table 7.1: Average results of the quality requirements for the generated documen-
tation

ID Requirement Average Result

QR1 Correctness 8.4

QR2 Completeness 7.9

QR3 Relevancy 8.3

QR4 Understandability 8.7

QR5 Readability 8.3

QR6 Usefulness 7.5

QR7 Up-to-dateness Inherent to the design.

Non-Functional Requirements

Table 6.3 shows 8 non-functional requirements that CLAIR needed to satisfy in order to
facilitate a smooth user experience. Most of these requirements were measured during the
post-test surveys, and the results are shown in Figure 7.7.

• NFR1 Usability: as the results from the testing indicate, most users found CLAIR
easy to use. Furthermore, they indicated that learning how to use it was also a
smooth experience. However, some participants suggested usability improvements,
such as incorporating template queries and adding options to hide or show specific
details in the outputs. Overall, this requirement has been met.

• NFR2 Information availability: users indicated that the system is able to provide
information on request without any issues. Some minor delays in some responses
were observed, however this could be primarily due to the testing setup involving
locally running instances of Flowise and Neo4j. This requirement is deemed met,
but further testing in a fully deployed environment is recommended for additional
validation.

• NFR3 Helpfulness: the responses generated by CLAIR were rated as helpful, with
this quality aspect scoring the highest score. Users appreciated the contextually
relevant and accurate information provided during their interactions with the tool.
This feedback indicates that the system meets its goal of being helpful and supportive
in addressing documentation needs.

• NFR4 Accuracy: the system’s ability to accurately provide requested information
was rated with a mean score of 3.6. While most users found the responses accurate,
there were occasional discrepancies or cases where the generated information required
clarification. Therefore, this requirement is partially met, where further fine-tuning
of the knowledge graph and query handling mechanisms are expected improve this
aspect.

• NFR5 Time Efficiency: CLAIR was reported to save time in writing documentation.
Participants emphasised that automation reduced their manual effort significantly,
meeting this requirement effectively.

87

• NFR6 Scalability: this requirement was not directly measured during the user tests
but was indirectly observed through performance variations across different query
types and application sizes. The smallest application (2,151 nodes and 4,322 rela-
tionships) and the largest application (8,396 nodes and 16,467 relationships) in the
graph database both performed at similar speeds, demonstrating the efficiency and
capability of graph databases for managing and querying large datasets.

• NFR7 Workflow integration: most users indicated that CLAIR integrates well into
their workflows. However, further integration could be achieved by incorporating
CLAIR directly into the development environment.

• NFR8 Flexibility: CLAIR’s ability to respond to diverse queries and adapt to dif-
ferent documentation needs was demonstrated during the various testing scenarios.
While most users were satisfied with the flexibility, further enhancements, such as
more tailored outputs for each use case, could strengthen this capability.

7.8.2 Effect

What performance does CLAIR achieve with generating documentation for
Mendix applications?

CLAIR demonstrated strong capability in generating high-quality documentation for Mendix
applications. The system processes components effectively, with accuracy confirmed during
validation. The system demonstrated consistent performance across different application
sizes, with no significant delays or resource issues observed even for the largest applications
tested. This highlights the efficiency of CLAIR’s graph database architecture. Overall,
CLAIR’s performance is effective for its intended use cases, consistently demonstrating
efficiency across different application sizes, with no significant delays or resource issues
observed even for the largest applications tested.

How does CLAIR help improve the documentation in Mendix applications?

By automating the documentation process, CLAIR significantly reduces manual effort, en-
suring timely, accurate and up-to-date documentation at all times. The ability to provide
tailored, context-aware documentation makes it easier for developers and business analysts
alike to understand and maintain applications. Furthermore, participants highlighted its
capability to enhance traceability and organisation, which are critical in continuous devel-
opment environments [82].

How does CLAIR respond to varied developer queries, such as generating mi-
croflow documentation or debugging issues?

CLAIR’s integration with a Multi-Agent LLM System enables effective handling of diverse
queries. It generates precise microflow documentation, supports debugging, and provides
high-level overviews of modules. User feedback indicated that CLAIR adapts to varied
query scenarios, consistently delivering relevant and actionable information.

To what extent can CLAIR be integrated with existing applications?

CLAIR integrates seamlessly with Mendix applications through its use of the Mendix Model
SDK. CLAIR’s robust integration capabilities make it well-suited for direct deployment and
use without requiring further adaptation for most use cases.

88

7.8.3 Trade-off

What alternative tools or approaches exist for similar functionalities?

Chapter 5 extensively discussed alternative tools and approaches, including model-driven
documentation generation, traditional documentation generation systems, and other LLM
based solutions. While many alternatives provide specific features like code smell detection
or static documentation, CLAIR uniquely combines knowledge graphs and LLM integration
to offer dynamic context-aware outputs.

How does CLAIR compare to these alternatives in terms of usability and ef-
fectiveness?

CLAIR’s usability scores and participants intention to usage indicate that it performs
competitively compared to alternatives. Its ability to provide tailored documentation and
handle diverse queries gives it an edge in adaptability. Furthermore, CLAIR’s focus on
dynamic, context-aware documentation provides distinct value, even though some tradi-
tional documentation tools might excel in niche areas such as code commenting. These
tools serve complementary purposes rather than being direct competitors.

7.8.4 Sensitivity

What changes occur in CLAIR’s usability and effectiveness if applied to larger
or smaller Mendix applications?

For smaller applications, CLAIR operates with minimal latency and high efficiency. For
larger applications, CLAIR maintained consistent usability and responsiveness, showcasing
its ability to handle varying complexity without noticeable performance degradation.

How can CLAIR be adapted for contexts outside Mendix applications, such as
other Low-Code platforms?

What assumptions about Mendix does CLAIR’s design depend on, and how
do these assumptions affect its adaptability to other contexts?

CLAIR’s architecture, based on graph databases and LLM integration, is inherently adapt-
able to other Low-Code platforms. Adjustments to the extraction pipeline would be re-
quired to align with other platforms. For example, porting the system to Microsoft Pow-
erApps or OutSystems requires a method to be setup to translate these applications into
a structured format, such as JSON. Next to this, CLAIR assumes a specific Mendix meta-
model, including domain models, microflows, and their relationships. These assumptions
simplify its integration with Mendix but may limit its applicability to platforms with
different structures. Adapting CLAIR to other contexts would involve reconfiguring its
knowledge graph schema and ensuring compatibility with different platform architectures.
Furthermore, CLAIR leverages Mendix’s long-standing presence and extensive online docu-
mentation. This documentation enhances the knowledge inherent in LLM models, enabling
them to reason effectively over Mendix applications. Therefore, porting the system to other
platforms would rely on the availability and quality of documentation, potentially reducing
the system’s reasoning capabilities if adapted for those contexts. Nevertheless, the flexi-
bility inherent in the design highlights CLAIR’s potential for being applied to a broader
range of Low-Code applications, while acknowledging the effort required for adaptation
especially for platforms with less-documented ecosystems.

89

Chapter 8

Final Remarks

This chapter consolidates the key findings and implications of this research. Section 8.1
discusses the research questions and objectives, interpreting the findings based on the liter-
ature review, survey results, system design, and validation. Section 8.2 outlines the theoret-
ical and practical contributions of this research, highlighting its impact on both academia
and industry. Section 8.3 addresses the limitations of the study, including methodological
considerations, platform dependencies, and areas for improvement. Section 8.4 presents
directions for further research, exploring potential enhancements to CLAIR’s functionality,
scalability, and adaptability. Finally, Section 8.5 provides the conclusion.

8.1 Discussion

8.1.1 Research Goal

The primary objective of this research was to improve the documentation process and
quality for Low-Code applications. The enhanced documentation should lead to improved
system understandability, maintainability, sustainability, and knowledge retention. This
goal was realised through the development of CLAIR, which has been able to address these
goals by automating the generation of context-aware, up-to-date documentation, which
helps address the broader challenges of identified in our literature review and survey.

8.1.2 Research Questions

RQ1. What are the key documentation challenges in Low-Code application
development?

a) What are the main challenges in documentation in Software development in general?
Software documentation is widely acknowledged as essential for understanding, maintain-
ing, and evolving systems. However, challenges remain, resulting in incomplete, inconsis-
tent, or outdated documents. These issues stem from several factors, including the high
costs of creation and maintenance, the perception of documentation as a post-development
burden rather than an integral part of the development lifecycle, and difficulties in ensur-
ing key quality attributes such as readability, accuracy, and up-to-dateness. Moreover,
practical constraints, such as time limitations and reluctance to write documentation, fur-
ther widen the gap between documentation needs and actual practices, leading to missing
or low-quality content. These general software development challenges set an important
baseline for understanding documentation challenges in Low-Code.

90

(b) How do the unique characteristics of Low-Code impact documentation issues?
Building upon the general challenges, Low-Code’s rapid iteration cycles that often lack
robust documentation practices, its visual modelling approaches, and mixed technical and
non-technical user base exacerbate documentation problems. Furthermore, unique chal-
lenges in Low-Code environments include inadequate traceability between visual elements
and their underlying logic, a lack of standardised documentation, and the high cognitive
load required to navigate interconnected components. Additionally, documentation is fre-
quently scattered across tools, making it challenging for stakeholders to locate a single
source of truth. Overall, the documentation issues are extrapolated in Low-Code, while
currently available approaches to help mitigate these issues are not tailored around the
specific characteristics of Low-Code.

(c) What are the implications of fragmented, inconsistent, in-adequate documentation for
Low-Code applications?
The consequences of these heightened challenges become more evident in Low-Code con-
texts. Fragmented, inconsistent, or inadequate documentation has significant implications
for Low-Code applications, particularly in terms of maintainability, collaboration, and
scalability. Without high-quality documentation, developers face increased challenges in
understanding application logic, resulting in longer debugging times and higher mainte-
nance costs, creating barriers to effective knowledge sharing among teams, consequently
this hinders the onboarding of new developers. Additionally, as Low-Code applications
grow in complexity, fragmented documentation becomes a bottleneck for scaling develop-
ment efforts. Overall, inadequate documentation diminishes the long-term sustainability
of Low-Code projects, highlighting the critical need for Low-Code specific solutions.

(d) What are the documentation needs and challenges during each phase of the Low-Code
development lifecycle?
As discussed in Section 2.4, the documentation needs and challenges across the Low-Code
development lifecycle vary, reflecting the unique demands of each phase. In the design
phase, clear and comprehensive documentation is essential to translate business require-
ments into technical designs. However, documentation at this stage often lacks sufficient
detail, creating ambiguities that impact subsequent phases. During development, itera-
tive changes in visual models and rapid development frequently result in documentation
that is out-of-sync with the application, making it difficult for developers to trace de-
pendencies. In the testing phase, the lack of detailed documentation hampers validation
efforts, reducing the efficiency of quality assurance processes. Deployment introduces its
own challenges, as deployment documentation is often neglected in Low-Code, potentially
leading to errors and inefficiencies. Finally, the maintenance phase suffers the most from
inadequate or outdated documentation, as maintaining complex applications without a
clear understanding of their structure and dependencies becomes increasingly difficult over
time. Identifying these lifecycle-specific challenges confirms the need for context-specific,
real-time documentation to ensure that critical information remains current and accessible
to diverse stakeholder needs.

Together, the answers to the sub-questions of RQ1 establish a clear understanding of the
underlying and context-specific challenges that automated documentation in Low-Code
environments must address. These findings not only justify the need for a specialised
automated documentation system but also outline the areas, such as on-demand generation,
workflow integration, and up-to-dateness, where automation has the greatest potential
impact.

91

RQ2. To what extent can automated documentation be applied in Low-Code
development environments, specifically in the context of complex Mendix ap-
plications?

(a) What are the specific documentation needs for different stakeholders in Low-Code?
Having established the overarching documentation challenges, we focused on the diverse
range of stakeholders involved in Low-Code development, including developers, citizen de-
velopers, and business analysts and their needs. The results of the survey, presented in
Chapter 4, show that the needs vary significantly across stakeholders. Developers require
detailed technical documentation that provides insights into application logic, dependen-
cies, and implementation specifics to support debugging and development tasks. For citizen
developers, documentation must be accessible and easy to understand, with a focus on ex-
plaining the functionality of components and processes without requiring deep technical
knowledge. Business analysts, in contrast, need documentation that links technical struc-
tures to business processes, enabling them to validate requirements and monitor alignment
with organisational goals. Additionally, technical support teams require documentation
that offers quick access to troubleshooting guides, error descriptions, and solutions to
common issues. The challenge lies in providing tailored documentation to these diverse
stakeholders while ensuring consistency and accuracy across all outputs. Therefore, these
diverse documentation requirements motivate the need for an adaptive, context-sensitive
solution.

(b) What are currently available solutions for automated documentation?
In Chapter 5, we discussed existing solutions, for automated documentation, including
static tools and more dynamic tools that leverage machine learning or natural language pro-
cessing to enhance documentation processes. These tools are useful but lack the dynamic
and context-aware capabilities required for generating accurate comprehensive documen-
tation. Model-driven approaches offer structured templates and metamodels for creating
consistent documentation artifacts. These approaches are particularly effective in ensuring
uniformity and clarity. However, they rely heavily on comprehensive and up-to-date mod-
els, which can be challenging to maintain in fast-paced development environments like Low-
Code. Agile and dynamic documentation solutions align better with rapid iteration cycles
by embedding documentation into development workflows. Furthermore, recently, systems
powered by LLMs have shown strong potential for producing more natural and expres-
sive documentation. These systems excel at handling diverse documentation queries and
generating tailored outputs. However, they bring up challenges, since verbosity, hallucina-
tion, and dependence on proprietary infrastructures remain significant obstacles. Further-
more, emerging techniques like Retrieval-Augmented Generation (RAG) and GraphRAG
are promising alternative since they demonstrate the value of integrating external knowl-
edge sources with LLMs for more accurate, real-time documentation insights. Despite
the advancements in automated documentation, gaps remain in addressing the scalability,
customisability, and real-time adaptability required for Low-Code platforms.

(c) What are the design requirements for our automated documentation assistant?
By synthesising the unique demands of Low-Code development and the limitations of ex-
isting automated documentation tools we defined key design requirements for CLAIR. As
stated in Section 6.1, the system should support knowledge extraction from Low-Code ap-
plications to provide a comprehensive understanding of the application structure. It should
also enable the storage and retrieval of this knowledge in a graph-based repository, ensur-
ing scalability and fast access to information. Further, CLAIR should support on-demand
documentation generation, offering context-aware insights tailored to diverse stakeholder

92

queries, including both technical and non-technical users. A user-friendly chat interface is
essential for enabling intuitive interaction with the system, allowing stakeholders to access
relevant documentation without a steep learning curve. Furthermore, the assistant should
provide multi-purpose functionality, generating high-quality documentation that supports
various phases of the development lifecycle. By adhering to these requirements, CLAIR
addresses the specific needs of Low-Code environments, ensuring it delivers value to all
stakeholders while improving documentation quality and process efficiency.

These requirements represent the fundamental capabilities an automated assistant must
fulfil to overcome the recognised challenges, thereby positioning an automated documenta-
tion assistant as a response to RQ2 and linking back to the overarching goal of enhancing
documentation quality and processes in Low-Code.

"How can an automated documentation assistant enhance the quality and pro-
cess of documentation for Low-Code applications?"

This research has shown that an automated documentation assistant can improve the qual-
ity and process of documentation for Low-Code applications by systematically addressing
key documentation challenges identified in literature discussed in Chapter 2. Furthermore,
the results of the survey in Chapter 4 show that effective documentation in Low-Code en-
vironments is often hindered by issues such as fragmentation, inconsistency, and outdated
information. Automating documentation mitigates these challenges by ensuring compre-
hensive, real-time updates and by structuring documentation in a way that is accessible,
dynamic, and tailored to the diverse needs of stakeholders.

First, automated documentation improves quality by reducing human errors, inconsisten-
cies, and knowledge fragmentation. The survey results revealed that 79% of respondents
found existing documentation tools insufficient, citing missing automation features and
poor traceability. Addressing these concerns, automated assistants can leverage structured
data extraction to systematically capture key artifacts ensuring all relevant components
are documented in a standardised and complete manner. This eliminates the risk of miss-
ing or outdated documentation, a common problem in agile and iterative development
environments.

Second, our findings in Chapter 7 show that by delivering real-time, context-aware insights,
an automated assistant empowers various stakeholders to access precisely the information
they need. Rather than providing static, one-size-fits-all documentation, these systems
can dynamically generate content tailored to specific queries or tasks, improving the clar-
ity and relevance of the documentation. Such flexibility helps organisations adapt their
documentation strategy to different phases of the development lifecycle, from initial design
through maintenance and support.

Third, seamless integration with the Low-Code development environment ensures that
documentation is closely aligned with ongoing development activities. Both literature and
survey findings highlighted the difficulty of maintaining up-to-date documentation in ag-
ile workflows. Automated assistants can either continuously track changes in application
components or update documentation on demand, considerably reducing the gap between
the actual system state and what is recorded in the documentation. This approach allows
teams to maintain accurate, current information without imposing excessive manual up-
keep, thus combating the pervasive issue of outdated documentation.

93

Additionally, an automated assistant contributes to long-term knowledge retention and
maintainability. With a single source of truth that is both comprehensive and easily ac-
cessible, development teams can focus on strategic tasks, such as scaling and innovation.
As the findings of our validation show, new team members particularly benefit from im-
proved onboarding resources. Furthermore, by structuring documentation in a knowledge
graph, developers can navigate complex dependencies and system relationships more effec-
tively.

Overall, for Low-Code environments requiring an automated documentation assistant, this
research provides actionable guidelines; achieve structured application data by leverag-
ing metamodel-based extraction techniques, ensure context-aware dynamic documentation
generation, integrate the assistant within the development workflow, and finally leverage
the inherent flexibility of an LLM-based Multi-Agent System to provide diverse responses
tailored to diverse stakeholder needs.

In this research, these principles were operationalised through the development and valida-
tion of CLAIR, an automated documentation assistant tailored to the Mendix Low-Code
platform. CLAIR leverages the Mendix metamodel to extract key application components
and their interrelationships. By integrating a knowledge graph with an LLM-based Multi-
Agent System, CLAIR automates documentation generation and provides real-time con-
textual insights. The prototype was evaluated using Technical Action Research and expert
evaluations, presented in Chapter 7, measuring its ability to generate documentation for
various use cases. The validation process demonstrated that CLAIR improved documen-
tation completeness, saved users time while writing documentation and overall provided
helpful responses to stakeholders with diverse expertise levels. In doing so, CLAIR not
only demonstrates the feasibility of automated documentation in Low-Code environments
but also highlights its significant benefits: enhanced documentation completeness, ensured
up-to-dateness, decreased time constraints, and increased usefulness of documentation.
Through structured data extraction, interactive querying, and seamless integration, CLAIR
effectively improves the quality and process of Low-Code documentation, addressing key
challenges in maintainability, technical debt, sustainability, and system scalability.

8.2 Main Contributions

This research provides contributions to both academia and practice in the domain of Low-
Code development and automated documentation. These contributions are outlined be-
low.

8.2.1 Theoretical Contributions

Highlighting the Low-Code Documentation Challenges

To our knowledge, this is the first research to focus specifically on the importance and
challenges of documentation in Low-Code environments, underscoring its critical role in
reducing technical debt and improving collaboration. This research identified key docu-
mentation challenges in software development, and related these challenges to the specific
characteristics of Low-Code platforms. By synthesising insights from existing literature and
practice, it highlights gaps such as reliance on rapid iteration cycles and visual development
environments that often lack robust documentation practices, fragmented documentation,
and inadequate traceability, offering a clear roadmap for future research on documentation
in Low-Code environments.

94

Low-Code Developers’ Perspectives on Documentation Issues

Through the survey and case study, this research provides a structured and empirical un-
derstanding of how Low-Code developers perceive documentation challenges, particularly
in areas such as knowledge retention, maintainability, and accessibility. This comprehensive
survey inquired participants across a range of documentation topics such as importance of
problems faces, frequency of these issues, their perspective on the current documentation
processes and tools, and finally their opinions on the criticality and quality of various doc-
ument types needed throughout the Low-Code development lifecycle. By identifying the
gaps between documentation needs and current practices, this research builds a foundation
for addressing the unique characteristics of Low-Code environments, which often diverge
from traditional software development practices. These insights contribute to the theoret-
ical understanding of documentation in the lifecycle of Low-Code applications.

Survey of Current Solutions

This research provided an analysis of existing automated documentation generation tools,
assessing their strengths and weaknesses while identifying the specific gaps they fail to
address in Low-Code platforms. The evaluation identifies key limitations, such as inade-
quate contextual awareness, limited scalability, and a lack of customisation for the unique
requirements of Low-Code environments. These insights not only underline the need for
tailored solutions but also positions our proposed solution (CLAIR) as a step forward in
addressing these challenges effectively.

8.2.2 Practical Contributions

Innovative State-of-the-Art Solution

The design and implementation of CLAIR provides a practical, automated solution to
enhance the documentation process for Low-Code applications, particularly Mendix appli-
cations. CLAIR addresses issues such as fragmented, out-dated documentation, and man-
ual effort by offering context-aware, query-based insights tailored to diverse stakeholder
needs. To our knowledge, CLAIR is the first solution to combine Low-Code, knowledge
graphs, and LLM agents into a unified approach for automated documentation, supporting
an innovative and novel approach for addressing documentation challenges in Low-Code
environments.

Improved Documentation for Low-Code Platforms

CLAIR enhances the quality, accessibility, and usability of documentation in Low-Code
environments. By supporting multiple documentation types (e.g., technical guides, trou-
bleshooting resources), it improves knowledge retention and collaboration among develop-
ers, citizen developers, and technical support teams. By automating the extraction and
generation of documentation, CLAIR helps reduce technical debt and supports scalable
development practices. Its architecture ensures that even large and complex Mendix appli-
cations can be documented systematically, improving maintainability and troubleshooting
efficiency.

Adaptable Solution Architecture

The solution architecture of CLAIR is not only adaptable to other Low-Code platforms be-
yond Mendix but also to traditional software development environments. Its graph-based

95

design and reliance on semi-structured data ensure flexibility for a wide range of appli-
cations. Furthermore, the integration of LLM-based Multi-Agent reasoning enhances the
system’s adaptability, enabling potential applications in domains outside software devel-
opment, provided the input data is (semi-)structured and relational. Overall, CLAIR’s ar-
chitecture demonstrates a structured approach to augmenting an LLM-based Multi-Agent
System with external, interrelated knowledge. This design opens up opportunities for fu-
ture research, with significant potential to explore its capabilities and applications across
various domains.

8.2.3 Broader Implications

Industrial Relevance

CLAIR demonstrates the potential for automated documentation tools to be adopted in
real-world Mendix projects, reducing the time and effort required for documentation while
improving collaboration and maintainability. The Technical Action Research conducted
during this study ensured that CLAIR was tested on a near-implementation level, validat-
ing its practical functionality and robustness in realistic settings. This approach demon-
strates CLAIR’s readiness to be quickly deployed in production environments, making it a
valuable tool for organisations seeking to optimise their development workflows. Addition-
ally, its adaptable architecture extends its relevance beyond Mendix, offering opportunities
for broader adoption across diverse Low-Code platforms.

8.3 Limitations

8.3.1 Subjectivity and Potential Bias

The study, including the survey and case study, was conducted through the lens of a
single researcher. While rigorous guidelines were followed to minimise bias and ensure
objectivity, there remains the potential for subjective interpretation or omission of certain
insights. The singular perspective introduces a level of bias that could be addressed in
future research by involving multiple researchers or peer-reviewed analyses.

8.3.2 Limited Generalisability of Survey Findings

The initial survey conducted during this research was limited to one platform (Mendix)
and distributed within a single organisation (CAPE Groep). This approach ensured a clear
understanding of process and tool-related issues specific to this context. However, this
narrow focus limits the generalisability of the findings to other organisation and Low-Code
platforms. Broader distribution across multiple organisations and Low-Code platforms
could potentially provide different results and insights.

8.3.3 Validation Constraints and Participants

The validation of CLAIR was conducted in a testing environment with a limited sample
size of 10 participants, who were known to the researcher before the validation. While
efforts were made to include participants with diverse roles, background, and experience
levels within CAPE Groep, this familiarity and limited diversity could introduce bias into
the results. Additionally, the testing environment and the limited scope of use cases may
not fully capture the variability in challenges and scenarios encountered in broader indus-
try contexts or other organisations. Furthermore, due to time constraints and a lack of

96

a validated data set, we did not employ a data-driven systematic analysis of the outputs
generated by CLAIR, therefore, we have no quantitative evidence that validates the con-
sistency of the generated documentation. However, the consistency of the outputs was
qualitatively validated by the author of this thesis by examining the outputs across the
different testing sessions.

8.3.4 Reliance on Mendix

First, the current implementation of CLAIR relies on the Mendix metamodel structure,
which ensures that the knowledge graph nodes and their relationships accurately reflect
the platform architecture. While this alignment optimises CLAIR for Mendix, it limits
the tool’s direct applicability to other Low-Code platforms that may use less structured
or different metamodels. Adapting CLAIR for such platforms would require modifications
to the knowledge graph schema and the data extraction process to accommodate other
platform architectures.

Second, CLAIR leverages the extensive knowledge embedded in state-of-the-art LLMs
about Mendix, which benefits from the platform’s long-standing presence as a major player
in the Low-Code industry. The availability of comprehensive online documentation, tuto-
rials, and community discussions on Mendix enables LLMs to reason effectively within this
domain. However, this benefit may not extend to other Low-Code platforms, particularly
newer or less-documented ones, of which the LLM’s internal knowledge may be more lim-
ited. This discrepancy underscores the importance of evaluating the system’s performance
across different platforms and adapting it for contexts where LLM reasoning might require
supplementary training or additional external resources.

8.3.5 Exclusion of Key Components

To maintain feasibility and focus, several key elements of Mendix applications, such as
UI components, custom Java actions, and external service calls, were excluded from the
current implementation. While this streamlined approach allowed us to focus on core
logic, incorporating these elements in the future could introduce additional complexity.
This may negatively impact the performance and accuracy of CLAIR, particularly during
the retrieval and contextualisation of relevant knowledge from the graph. Therefore, the
scalability of CLAIR to fully incorporate all aspects of Mendix applications remains an
open question.

8.3.6 LLM Model Choice

The solution uses the GPT-4 model due to its demonstrated capability of accurately gen-
erating Cypher queries, which is a critical aspect of CLAIR’s functionality. However, the
performance of LLMs can vary significantly depending on their usage [59], and this re-
search did not explore the impact of alternative models on CLAIR’s overall performance.
Furthermore, due to time and budget constraints, we currently opted for an untrained gen-
eral purpose LLM. However, research has shown that training and optimising models for
a specific purpose potentially increases their accuracy, speed, and reduces token cost [70].
Therefore, a limitation of our research is that we have not investigated how, other possibly
locally deployed open-source models trained for the specific task of generating Low-Code
documentation perform.

97

8.4 Future Work

8.4.1 Usability Enhancements

Based on the validation results, improving the usability of CLAIR is a key area for future
development. This can include integrating predefined query templates to guide users in
framing their queries more effectively, and embedding CLAIR directly into development
environments. Such enhancements would streamline user interactions and ensure a more
intuitive experience for both technical and non-technical stakeholders.

8.4.2 Cost and Sustainability Optimisation

While on-demand documentation generation provides significant benefits, such as flexibil-
ity to user’s needs, the token cost and energy consumption associated with LLMs pose
challenges for long-term sustainability. Future work could investigate hybrid approaches,
such as storing frequently requested documents in a database. This would allow CLAIR to
retrieve pre-generated outputs for common queries, reducing the need for repeated LLM
processing and minimising both the cost and environmental impact of the system.

8.4.3 Integration with Deployment or CI/CD Pipelines

One of the limitations of CLAIR’s current implementation is the static nature of its knowl-
edge graph updates, requiring manual intervention to synchronise with application changes.
Future research could explore integrating CLAIR with deployment or CI/CD pipelines to
automate this process. To this end, efficient approaches could be developed to detect
changes in the application structure and update only the relevant portions of the graph
database as well as reprocess the affected summary nodes. This would ensure that docu-
mentation remains aligned with the application’s current state while avoiding unnecessary
processing.

8.4.4 Porting to Other Platforms and Outputs

Porting CLAIR to other Low-Code platforms, such as OutSystems or Microsoft Power-
Apps, remains an important direction for future research. This would involve tailoring
the knowledge graph schema and data extraction pipelines to accommodate the differ-
ent platform-specific structures. Additionally, CLAIR’s outputs could be extended beyond
text to include visual representations, such as automatically generated diagrams or models,
providing richer and more versatile documentation formats.

8.4.5 Specialisation of LLM-based Multi-Agent System (MAS)

Currently, CLAIR employs a single Multi-Agent System to handle all queries and use
cases. Future iterations could explore the development of specialised MAS for specific
purposes, such as technical documentation, or troubleshooting. By doing this, we could
more strictly determine the steps taken and output generated by each system, making
them more aligned with user needs for each use case. A central conversational AI could
then delegate queries to the appropriate MAS, potentially improving accuracy, speed, and
reliability while optimising the retrieval and response generation process.

98

8.4.6 Validation Across Platforms and Companies

The documentation issues identified in this research were based on surveys and case stud-
ies conducted within a single organisation (CAPE Groep) and a single platform (Mendix).
Future studies should validate these findings across different Low-Code platforms and or-
ganisations to assess whether the issues identified are universal or platform/organisation-
specific. This would improve the generalisability of the results and provide broader insights
into Low-Code documentation challenges.

8.4.7 Comparative Analysis of LLM Models

Exploring the performance of various LLM models within CLAIR’s architecture is another
promising area for research. A comparative analysis of proprietary and open-source mod-
els, including performance and cost trade-offs, could inform the design of future systems.
Furthermore, deploying and training locally hosted open-source models could also provide
interesting opportunities for future research.

8.4.8 Extending Knowledge in the Graph Database

Currently, CLAIR focuses on core Mendix components, such as domain models and mi-
croflows. Future research could investigate how to incorporate additional elements, such
as UI components and custom Java actions into the graph database. Capturing these
elements would require schema changes and careful consideration of their impact on per-
formance. Furthermore, currently the inputs for CLAIR are the application structure and
LLM-generated summaries. Future iterations could enrich the graph database with ad-
ditional knowledge sources, such as ontologies, business documentation, user feedback, or
design decision records. This could improve CLAIR’s ability to link technical structures to
business contexts, providing potentially more comprehensive and actionable insights.

8.4.9 Deploying and Expanding CLAIR’s Role

Deploying CLAIR in real-world development environments and gathering longitudinal feed-
back from users is essential to evaluate its long-term impact, usability, and effectiveness.
By observing how teams integrate CLAIR into their workflows over time, we could gain
valuable insights. Additionally, the inherent flexibility of the LLM-based MAS can be ex-
plored to extend CLAIR’s use cases beyond documentation. For instance, CLAIR’ could
potentially be extended to actively assist developers during the application development
process by, for example, offering intelligent recommendations for reusable components or
suggesting design optimisations. Such enhancements would transform CLAIR from a doc-
umentation assistant into a comprehensive development support tool, further amplifying
its value for Low-Code development teams.

8.4.10 Creation of a Validated Documentation Dataset

The development of a validated documentation dataset can be a crucial step toward sys-
tematically improving and evaluating CLAIR’s outputs. Such a dataset would contain
high-quality, thoroughly reviewed documentation samples, providing a benchmark for mea-
suring CLAIR’s outputs. By comparing CLAIR-generated documentation against these
validated samples, researchers could obtain quantitative metrics on clarity, accuracy, and
completeness using data-driven analysis, in contrast to our reliance on expert validation.

99

This dataset could also serve as training data for enhanced LLM fine-tuning or reinforce-
ment learning approaches, allowing CLAIR to iteratively improve its output with feedback.
Building and curating this dataset would require collaboration with domain experts and
standardised evaluation criteria, laying the groundwork for more rigorous, data-driven val-
idation of automated Low-Code documentation solutions.

8.5 Conclusion

This research set out to explore how automated documentation can enhance the quality and
efficiency of documentation processes in Low-Code application development. The investi-
gation was driven by the observation that documentation remains a persistent challenge
in software development, while these issues are extrapolated in Low-Code environments,
particularly as applications scale in complexity. The study systematically examined the
key documentation issues faced by Low-Code developers, the extent to which automa-
tion can address these challenges, and the design requirements for an effective automated
documentation assistant. This investigation culminated in the design and development of
CLAIR, a novel documentation assistant that leverages knowledge graphs and an LLM-
based Multi-Agent System to generate on-demand context-aware documentation.

While CLAIR has demonstrated its effectiveness in automating documentation for Mendix
applications, its broader implications extend beyond the specific case study presented in
this research. By structuring application knowledge in a graph-based repository and in-
tegrating LLM-based reasoning, CLAIR provides a scalable and adaptable approach to
documentation generation that can be refined and expanded for different Low-Code plat-
forms. The validation results showed that automated documentation can save time writing
documentation, improve maintainability, support onboarding, and even assist during de-
bugging, making it a viable solution for addressing documentation challenges in dynamic
development environments.

However, as with any novel approach, limitations remain. CLAIR’s reliance on Mendix’s
metamodel structure restricts its immediate applicability to other Low-Code platforms
without adaptation. The exclusion of certain elements such as UI components and exter-
nal service calls represents an area for future improvement. Additionally, LLM accuracy,
cost, and sustainability constraints introduce challenges that must be addressed for long-
term viability. Future research should explore optimising CLAIR’s architecture for different
platforms, integrating it into CI/CD pipelines, and enhancing its retrieval-augmented gen-
eration capabilities. Moreover, the potential of CLAIR extends beyond documentation, by
improving its Multi-Agent System, it could evolve into an intelligent development assistant,
aiding in debugging, system analysis, and decision-making.

In conclusion, this research highlights the critical role of documentation in Low-Code de-
velopment and demonstrates that by effectively structuring AI-driven automation, docu-
mentation process and quality can be significantly improved. CLAIR represents a step
forward in bridging the gap between human expertise and automated knowledge retrieval,
paving the way for more intelligent, adaptive, and scalable documentation solutions. By
integrating structured data extraction, interactive querying, and context-aware informa-
tion retrieval, CLAIR not only advances the state of Low-Code documentation but also
sets the foundation for future innovations in AI-assisted Low-Code development.

100

Bibliography

[1] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele
Bavota, Michele Lanza, and David C. Shepherd. Software documentation: The prac-
titioners’ perspective. In Proceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering, pages 590–601. ACM, 6 2020. doi:10.1145/3377811.
3380405.

[2] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Marquez, Mario Linares-Vasquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. Software documentation issues
unveiled. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pages 1199–1210. IEEE, 5 2019. doi:10.1109/ICSE.2019.00122.

[3] Md Abdullah Al Alamin, Sanjay Malakar, Gias Uddin, Sadia Afroz, Tameem Bin
Haider, and Anindya Iqbal. An empirical study of developer discussions on low-code
software development challenges. In 2021 IEEE/ACM 18th International Conference
on Mining Software Repositories (MSR), pages 46–57, 2021. doi:10.1109/MSR52588.
2021.00018.

[4] Anwar Alqaimi, Patanamon Thongtanunam, and Christoph Treude. Automatically
generating documentation for lambda expressions in java. In 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR), pages 310–320.
IEEE, 5 2019. doi:10.1109/MSR.2019.00057.

[5] Hana A. Alsaadi, Dhefaf T. Radain, Maysoon M. Alzahrani, Wahj F. Alshammari,
Dimah Alahmadi, and Bahjat Fakieh. Factors that affect the utilization of low-code
development platforms: survey study. Revista Română de Informatică s,i Automatică,
31:123–140, 9 2021. doi:10.33436/v31i3y202110.

[6] Zaher Alyousef. Challenges development teams face in low-
code development process. Master’s thesis, Open University,
11 2021. URL: https://research.ou.nl/en/studentTheses/
challenges-development-teams-face-in-low-code-development-process.

[7] Scott Ambler. Agile Modeling: Effective Practice for eXtreme Programming and the
Unified Process. John Wiley & Sons, Inc, 2002. doi:https://dl.acm.org/doi/10.
5555/863226.

[8] Vard Antinyan, Miroslaw Staron, and Anna Sandberg. Evaluating code complex-
ity triggers, use of complexity measures and the influence of code complexity on
maintenance time. Empirical Software Engineering, 22:3057–3087, 12 2017. doi:
10.1007/s10664-017-9508-2.

101

https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1109/MSR52588.2021.00018
https://doi.org/10.1109/MSR52588.2021.00018
https://doi.org/10.1109/MSR.2019.00057
https://doi.org/10.33436/v31i3y202110
https://research.ou.nl/en/studentTheses/challenges-development-teams-face-in-low-code-development-process
https://research.ou.nl/en/studentTheses/challenges-development-teams-face-in-low-code-development-process
https://doi.org/https://dl.acm.org/doi/10.5555/863226
https://doi.org/https://dl.acm.org/doi/10.5555/863226
https://doi.org/10.1007/s10664-017-9508-2
https://doi.org/10.1007/s10664-017-9508-2

[9] Muhammad Arslan, Hussam Ghanem, Saba Munawar, and Christophe Cruz. A sur-
vey on rag with llms. Procedia Computer Science, 246:3781–3790, 2024. 28th Interna-
tional Conference on Knowledge Based and Intelligent information and Engineering
Systems (KES 2024). URL: https://www.sciencedirect.com/science/article/
pii/S1877050924021860, doi:10.1016/j.procs.2024.09.178.

[10] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jef-
fries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff
Sutherland, and Dave Thomas. The agile manifesto, 2001. Agile Alliance. URL:
http://agilemanifesto.org/.

[11] Michel Benaroch and Kalle Lyytinen. How much does software complexity mat-
ter for maintenance productivity? the link between team instability and diver-
sity. IEEE Transactions on Software Engineering, 49:2459–2475, 4 2023. doi:
10.1109/TSE.2022.3222119.

[12] Alexander C. Bock and Ulrich Frank. Low-code platform. Business & Information
Systems Engineering, 63:733–740, 12 2021. doi:10.1007/s12599-021-00726-8.

[13] Alessio Bucaioni, Antonio Cicchetti, and Federico Ciccozzi. Modelling in low-code de-
velopment: a multi-vocal systematic review. Software and Systems Modeling, 21:1959–
1981, 10 2022. doi:10.1007/s10270-021-00964-0.

[14] Vikas Chomal and Jatinderkumar Saini. Significance of software documentation in
software development process. International Journal of Engineering Innovation &
Research, 3:410–416, 2014. URL: https://ijeir.org/administrator/components/
com_jresearch/files/publications/IJEIR_1009_Final.pdf.

[15] M. Coram and S. Bohner. The impact of agile methods on software project man-
agement. In 12th IEEE International Conference and Workshops on the Engineer-
ing of Computer-Based Systems (ECBS’05), pages 363–370. IEEE, 4 2005. doi:
10.1109/ECBS.2005.68.

[16] Wendi Cui, Jiaxin Zhang, Zhuohang Li, Hao Sun, Damien Lopez, Kamalika Das,
Bradley Malin, and Sricharan Kumar. Phaseevo: Towards unified in-context prompt
optimization for large language models, 2024. URL: https://arxiv.org/abs/2402.
11347, arXiv:2402.11347.

[17] Daniel Dahlberg. Developer experience of a low-code platform: an exploratory study.
Master’s thesis, Umeå University, 2020.

[18] Punyashlok Dash. Analysis of literature review in cases of exploratory research. SSRN
Electronic Journal, 2019. doi:10.2139/ssrn.3555628.

[19] Frederico A. de Carvalho and Valdecy Faria Leite. Attribute importance in service
quality: an empirical test of the pbz conjecture inbrazil. International Journal of Ser-
vice Industry Management, 10:487–504, 12 1999. doi:10.1108/09564239910289021.

[20] Davide Di Ruscio, Dimitris Kolovos, Juan de Lara, Alfonso Pierantonio, Massimo
Tisi, and Manuel Wimmer. Low-code development and model-driven engineering:
Two sides of the same coin? Software and Systems Modeling, 21:437–446, 2022.
doi:10.1007/s10270-021-00970-2.

102

https://www.sciencedirect.com/science/article/pii/S1877050924021860
https://www.sciencedirect.com/science/article/pii/S1877050924021860
https://doi.org/10.1016/j.procs.2024.09.178
http://agilemanifesto.org/
https://doi.org/10.1109/TSE.2022.3222119
https://doi.org/10.1109/TSE.2022.3222119
https://doi.org/10.1007/s12599-021-00726-8
https://doi.org/10.1007/s10270-021-00964-0
https://ijeir.org/administrator/components/com_jresearch/files/publications/IJEIR_1009_Final.pdf
https://ijeir.org/administrator/components/com_jresearch/files/publications/IJEIR_1009_Final.pdf
https://doi.org/10.1109/ECBS.2005.68
https://doi.org/10.1109/ECBS.2005.68
https://arxiv.org/abs/2402.11347
https://arxiv.org/abs/2402.11347
https://arxiv.org/abs/2402.11347
https://doi.org/10.2139/ssrn.3555628
https://doi.org/10.1108/09564239910289021
https://doi.org/10.1007/s10270-021-00970-2

[21] Renato Domingues, Miguel Reis, Miguel Araújo, Marcelo Marinho, and Mário J. Silva.
Tracking technical debt in agile low code developments. In Anais do XXVII Congresso
Ibero-Americano em Engenharia de Software (CIbSE 2024), pages 226–240. Sociedade
Brasileira de Computação, 5 2024. doi:10.5753/cibse.2024.28450.

[22] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody,
Steven Truitt, and Jonathan Larson. From local to global: A graph rag approach
to query-focused summarization, 2024. URL: https://arxiv.org/abs/2404.16130,
arXiv:2404.16130.

[23] Tim Eichhorn, 2025. URL: https://github.com/TS-Eichhorn/
Low-Code-Developers-Perspective-on-Documentation---Survey-Questions.

[24] Carlos Fernandez-Sanchez, Juan Garbajosa, Carlos Vidal, and Agustin Yague. An
analysis of techniques and methods for technical debt management: A reflection from
the architecture perspective. In 2015 IEEE/ACM 2nd International Workshop on
Software Architecture and Metrics, pages 22–28. IEEE, 5 2015. doi:10.1109/SAM.
2015.11.

[25] Ulrich Frank, Pierre Maier, and Bock Alexander. Low code platforms: Promises,
concepts and prospects: A comparative study of ten systems, 12 2021. URL: https:
//doi.org/10.17185/duepublico/47018, doi:10.17185/duepublico/75244.

[26] Golara Garousi, Vahid Garousi-Yusifoğlu, Guenther Ruhe, Junji Zhi, Mahmoud Mous-
savi, and Brian Smith. Usage and usefulness of technical software documentation:
An industrial case study. Information and Software Technology, 57:664–682, 1 2015.
doi:10.1016/j.infsof.2014.08.003.

[27] Vahid Garousi, Ebru Göçmen Ergezer, and Kadir Herkiloğlu. Usage, usefulness and
quality of defect reports. In Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering, pages 1–6. ACM, 6 2016. doi:
10.1145/2915970.2916009.

[28] Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V.
Chawla, Olaf Wiest, and Xiangliang Zhang. Large language model based multi-
agents: A survey of progress and challenges, 2024. URL: https://arxiv.org/abs/
2402.01680, arXiv:2402.01680.

[29] Basit Habib, Rohaida Romli, and Malina Zulkifli. Identifying components exist-
ing in agile software development for achieving “light but sufficient” documenta-
tion. Journal of Engineering and Applied Science, 70:75, 12 2023. doi:10.1186/
s44147-023-00245-1.

[30] Jens Heidrich, Michael Kläs, Andreas Morgenstern, Pablo Oliveira Antonino, Adam
Trendowicz, Jochen Quante, and Thomas Grundler. From complexity measurement
to holistic quality evaluation for automotive software development, 10 2021. doi:
10.48550/arXiv.2110.14301.

[31] Arne Henzgen and Lukas Strey. Model-driven approach for automatic model informa-
tion aggregation in structured documents. In 2023 ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems Companion (MODELS-C),
pages 403–413. IEEE, 10 2023. doi:10.1109/MODELS-C59198.2023.00072.

103

https://doi.org/10.5753/cibse.2024.28450
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://github.com/TS-Eichhorn/Low-Code-Developers-Perspective-on-Documentation---Survey-Questions
https://github.com/TS-Eichhorn/Low-Code-Developers-Perspective-on-Documentation---Survey-Questions
https://doi.org/10.1109/SAM.2015.11
https://doi.org/10.1109/SAM.2015.11
https://doi.org/10.17185/duepublico/47018
https://doi.org/10.17185/duepublico/47018
https://doi.org/10.17185/duepublico/75244
https://doi.org/10.1016/j.infsof.2014.08.003
https://doi.org/10.1145/2915970.2916009
https://doi.org/10.1145/2915970.2916009
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://doi.org/10.1186/s44147-023-00245-1
https://doi.org/10.1186/s44147-023-00245-1
https://doi.org/10.48550/arXiv.2110.14301
https://doi.org/10.48550/arXiv.2110.14301
https://doi.org/10.1109/MODELS-C59198.2023.00072

[32] Matteus Herinksson. Exploring the use of low-code software development in the au-
tomotive industry. Master’s thesis, Linköping University, 10 2023. URL: https:
//urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-201559.

[33] Marvin Heuer, Christian Kurtz, and Tilo Böhmann. Towards a governance of low-code
development platforms using the example of microsoft powerplatform in a multina-
tional company. In Proceedings of the 55th Hawaii International Conference on System
Sciences, 1 2022. doi:10.24251/HICSS.2022.831.

[34] Markus Hornsteiner, Michael Kreussel, Christoph Steindl, Fabian Ebner, Philip
Empl, and Stefan Schönig. Real-time text-to-cypher query generation with large
language models for graph databases. Future Internet, 16:438, 11 2024. doi:
10.3390/fi16120438.

[35] Cheonsu Jeong. Beyond text: Implementing multimodal large language model-
powered multi-agent systems using a no-code platform, 2025. URL: https://arxiv.
org/abs/2501.00750, arXiv:2501.00750.

[36] Sage Kelly, Sherrie-Anne Kaye, and Oscar Oviedo-Trespalacios. What factors con-
tribute to the acceptance of artificial intelligence? a systematic review. Telematics
and Informatics, 77:101925, 2023. URL: https://www.sciencedirect.com/science/
article/pii/S0736585322001587, doi:10.1016/j.tele.2022.101925.

[37] Junaed Younus Khan and Gias Uddin. Automatic code documentation generation
using gpt-3. In Proceedings of the 37th IEEE/ACM International Conference on Au-
tomated Software Engineering, pages 1–6. ACM, 10 2022. doi:10.1145/3551349.
3559548.

[38] Rohit Khankhoje. Beyond coding: A comprehensive study of low-code, no-code and
traditional automation. Journal of Artificial Intelligence & Cloud Computing, pages
1–5, 12 2022. doi:10.47363/JAICC/2022(1)148.

[39] Jörg Christian Kirchhof, Nico Jansen, Bernhard Rumpe, and Andreas Wortmann.
Navigating the low-code landscape: A comparison of development platforms. In 2023
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C), pages 854–862. IEEE, 10 2023. doi:10.1109/
MODELS-C59198.2023.00135.

[40] Sebastian Käss, Susanne Strahringer, and Markus Westner. A multiple mini case
study on the adoption of low code development platforms in work systems. IEEE
Access, 11:118762–118786, 2023. doi:10.1109/ACCESS.2023.3325092.

[41] Timothy C. Lethbridge. Low-code is often high-code, so we must design low-code
platforms to enable proper software engineering. In Leveraging Applications of Formal
Methods, Verification and Validation, pages 202–212, Cham, 2021. Springer Interna-
tional Publishing. doi:10.1007/978-3-030-89159-6_14.

[42] Yinheng Li. A practical survey on zero-shot prompt design for in-context learn-
ing. In Proceedings of the Conference Recent Advances in Natural Language Pro-
cessing - Large Language Models for Natural Language Processings, page 641–647.
INCOMA Ltd., Shoumen, BULGARIA, 2023. URL: http://dx.doi.org/10.26615/
978-954-452-092-2_069, doi:10.26615/978-954-452-092-2_069.

[43] Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai
Lu, Lei Ji, Shaoguang Mao, Yun Wang, Linjun Shou, Ming Gong, and Nan Duan.

104

https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-201559
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-201559
https://doi.org/10.24251/HICSS.2022.831
https://doi.org/10.3390/fi16120438
https://doi.org/10.3390/fi16120438
https://arxiv.org/abs/2501.00750
https://arxiv.org/abs/2501.00750
https://arxiv.org/abs/2501.00750
https://www.sciencedirect.com/science/article/pii/S0736585322001587
https://www.sciencedirect.com/science/article/pii/S0736585322001587
https://doi.org/10.1016/j.tele.2022.101925
https://doi.org/10.1145/3551349.3559548
https://doi.org/10.1145/3551349.3559548
https://doi.org/10.47363/JAICC/2022(1)148
https://doi.org/10.1109/MODELS-C59198.2023.00135
https://doi.org/10.1109/MODELS-C59198.2023.00135
https://doi.org/10.1109/ACCESS.2023.3325092
https://doi.org/10.1007/978-3-030-89159-6_14
http://dx.doi.org/10.26615/978-954-452-092-2_069
http://dx.doi.org/10.26615/978-954-452-092-2_069
https://doi.org/10.26615/978-954-452-092-2_069

Taskmatrix.ai: Completing tasks by connecting foundation models with millions of
apis, 2023. URL: https://arxiv.org/abs/2303.16434, arXiv:2303.16434.

[44] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. Characteristics of application
software maintenance. Communications of the ACM, 21:466–471, 6 1978. doi:10.
1145/359511.359522.

[45] Shangqing Liu, Yu Chen, Xiaofei Xie, Jingkai Siow, and Yang Liu. Retrieval-
augmented generation for code summarization via hybrid gnn, 2021. URL: https:
//arxiv.org/abs/2006.05405, arXiv:2006.05405.

[46] Xiangyan Liu, Bo Lan, Zhiyuan Hu, Yang Liu, Zhicheng Zhang, Fei Wang, Michael
Shieh, and Wenmeng Zhou. Codexgraph: Bridging large language models and code
repositories via code graph databases, 2024. URL: https://arxiv.org/abs/2408.
03910, arXiv:2408.03910.

[47] Yajing Luo, Peng Liang, Chong Wang, Mojtaba Shahin, and Jing Zhan. Charac-
teristics and challenges of low-code development: The practitioners’ perspective. In
Proceedings of the 15th ACM / IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM), pages 1–11. ACM, 10 2021. doi:
10.1145/3475716.3475782.

[48] Eder Martinez and Louis Pfister. Benefits and limitations of using low-code develop-
ment to support digitalization in the construction industry. Automation in Construc-
tion, 152:104909, 8 2023. doi:10.1016/j.autcon.2023.104909.

[49] Richard E. Mayer. Multimedia Learning. Cambridge University Press, 3 edition, 2020.
doi:10.1017/9781316941355.

[50] Paul W McBurney and Collin McMillan. Automatic documentation generation via
source code summarization of method context. In Proceedings of the 22nd Interna-
tional Conference on Program Comprehension, pages 279–290. Association for Com-
puting Machinery, 2014. doi:10.1145/2597008.2597149.

[51] Joe McKendrick. The rise of the empowered citizen developer, 11
2017. URL: https://www.dbta.com/DBTA-Downloads/ResearchReports/
THE-RISE-OF-THE-EMPOWERED-CITIZEN-DEVELOPER-7575.pdf.

[52] Jorge Melegati and Xiaofeng Wang. Case survey studies in software engineering re-
search. In Proceedings of the 14th ACM / IEEE International Symposium on Em-
pirical Software Engineering and Measurement (ESEM), pages 1–12. ACM, 10 2020.
doi:10.1145/3382494.3410683.

[53] Tom Mens. Research trends in structural software complexity. CoRR, 8 2016. doi:
10.48550/arXiv.1608.01533.

[54] Lionel Mew and Daniela Field. A case study on using the mendix low code platform
to support a project management course. In Proceedings of the EDSIG Conference.
ISCAP (Information Systems & Computing Academic Professionals), 2018. URL:
https://iscap.us/proceedings/2018/pdf/4621.pdf.

[55] M.B. Miles and A.M. Huberman. Qualitative Data Analysis: A Sourcebook of New
Methods. SAGE Publications, 1984. URL: https://books.google.nl/books?id=
5AFHAAAAMAAJ.

105

https://arxiv.org/abs/2303.16434
https://arxiv.org/abs/2303.16434
https://doi.org/10.1145/359511.359522
https://doi.org/10.1145/359511.359522
https://arxiv.org/abs/2006.05405
https://arxiv.org/abs/2006.05405
https://arxiv.org/abs/2006.05405
https://arxiv.org/abs/2408.03910
https://arxiv.org/abs/2408.03910
https://arxiv.org/abs/2408.03910
https://doi.org/10.1145/3475716.3475782
https://doi.org/10.1145/3475716.3475782
https://doi.org/10.1016/j.autcon.2023.104909
https://doi.org/10.1017/9781316941355
https://doi.org/10.1145/2597008.2597149
https://www.dbta.com/DBTA-Downloads/ResearchReports/THE-RISE-OF-THE-EMPOWERED-CITIZEN-DEVELOPER-7575.pdf
https://www.dbta.com/DBTA-Downloads/ResearchReports/THE-RISE-OF-THE-EMPOWERED-CITIZEN-DEVELOPER-7575.pdf
https://doi.org/10.1145/3382494.3410683
https://doi.org/10.48550/arXiv.1608.01533
https://doi.org/10.48550/arXiv.1608.01533
https://iscap.us/proceedings/2018/pdf/4621.pdf
https://books.google.nl/books?id=5AFHAAAAMAAJ
https://books.google.nl/books?id=5AFHAAAAMAAJ

[56] Laura Moreno and Andrian Marcus. Automatic software summarization: the state of
the art. In 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), pages 511–512. IEEE, 5 2017. doi:10.1109/ICSE-C.2017.169.

[57] Michael Moser and Josef Pichler. eknows: Platform for multi-language reverse en-
gineering and documentation generation. In 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 559–568. IEEE, 9 2021.
doi:10.1109/ICSME52107.2021.00057.

[58] Lahbib Naimi, El Mahi Bouziane, Abdeslam Jakimi, Rachid Saadane, and Abdellah
Chehri. Automating software documentation: Employing llms for precise use case de-
scription. Procedia Computer Science, 246:1346–1354, 2024. doi:10.1016/j.procs.
2024.09.568.

[59] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muham-
mad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive
overview of large language models, 2024. URL: https://arxiv.org/abs/2307.06435,
arXiv:2307.06435.

[60] John Ousterhout. A Philosophy of Software Design. Yaknyam Press, 1 edition, 11
2021. doi:https://dl.acm.org/doi/10.5555/3288797.

[61] Siru Ouyang, Wenhao Yu, Kaixin Ma, Zilin Xiao, Zhihan Zhang, Mengzhao Jia, Jiawei
Han, Hongming Zhang, and Dong Yu. Repograph: Enhancing ai software engineering
with repository-level code graph, 2024. URL: https://arxiv.org/abs/2410.14684,
arXiv:2410.14684.

[62] Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-
Wei Chang. Retrieval augmented code generation and summarization, 2021. URL:
https://arxiv.org/abs/2108.11601, arXiv:2108.11601.

[63] Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan
Zhang, and Siliang Tang. Graph retrieval-augmented generation: A survey, 2024.
URL: https://arxiv.org/abs/2408.08921, arXiv:2408.08921.

[64] Benny Petersson and William Evans. How does low-code development correspond
with best practice in software development? Master’s thesis, Malmö Univer-
sity, 6 2023. URL: https://www.diva-portal.org/smash/get/diva2:1766201/
FULLTEXT02.pdf.

[65] Huy N. Phan, Hoang N. Phan, Tien N. Nguyen, and Nghi D. Q. Bui. Repohyper:
Search-expand-refine on semantic graphs for repository-level code completion, 2024.
URL: https://arxiv.org/abs/2403.06095, arXiv:2403.06095.

[66] Reinhold Plosch, Andreas Dautovic, and Matthias Saft. The value of software docu-
mentation quality. In 2014 14th International Conference on Quality Software, pages
333–342. IEEE, 10 2014. doi:10.1109/QSIC.2014.22.

[67] Hengameh Rezaei, Filippa Ebersjo, Kristian Sandahl, and Miroslaw Staron. Identi-
fying and managing complex modules in executable software design models-empirical
assessment of a large telecom software product. In 2014 Joint Conference of the
International Workshop on Software Measurement and the International Confer-
ence on Software Process and Product Measurement, pages 243–251. IEEE, 10 2014.
doi:10.1109/IWSM.Mensura.2014.27.

106

https://doi.org/10.1109/ICSE-C.2017.169
https://doi.org/10.1109/ICSME52107.2021.00057
https://doi.org/10.1016/j.procs.2024.09.568
https://doi.org/10.1016/j.procs.2024.09.568
https://arxiv.org/abs/2307.06435
https://arxiv.org/abs/2307.06435
https://doi.org/https://dl.acm.org/doi/10.5555/3288797
https://arxiv.org/abs/2410.14684
https://arxiv.org/abs/2410.14684
https://arxiv.org/abs/2108.11601
https://arxiv.org/abs/2108.11601
https://arxiv.org/abs/2408.08921
https://arxiv.org/abs/2408.08921
https://www.diva-portal.org/smash/get/diva2:1766201/FULLTEXT02.pdf
https://www.diva-portal.org/smash/get/diva2:1766201/FULLTEXT02.pdf
https://arxiv.org/abs/2403.06095
https://arxiv.org/abs/2403.06095
https://doi.org/10.1109/QSIC.2014.22
https://doi.org/10.1109/IWSM.Mensura.2014.27

[68] Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar Cha-
parro, Neil Ernst, Marco Aurelio Gerosa, Michael Godfrey, Michele Lanza, Mario
Linares-Vasquez, Gail C. Murphy, Laura Moreno, David Shepherd, and Edmund
Wong. On-demand developer documentation. In 2017 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), pages 479–483. IEEE, 9 2017.
doi:10.1109/ICSME.2017.17.

[69] Karlis Rokis and Marite Kirikova. Challenges of low-code/no-code software develop-
ment: A literature review. In Perspectives in Business Informatics Research, pages
3–17. Springer International Publishing, 2022. doi:10.1007/978-3-031-16947-2_1.

[70] Zhyar Rzgar K. Rostam, Sándor Szénási, and Gábor Kertész. Achieving peak perfor-
mance for large language models: A systematic review. IEEE Access, 12:96017–96050,
2024. doi:10.1109/ACCESS.2024.3424945.

[71] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Alfonso Pierantonio.
Supporting the understanding and comparison of low-code development platforms. In
2020 46th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pages 171–178. IEEE, 8 2020. doi:10.1109/SEAA51224.2020.00036.

[72] Gayane Sedrakyan, Maria Eugenia Iaccob, and Jos van Hillegersberg. Towards lowde-
vsecops framework for low-code development: Integrating process-oriented recommen-
dations for security risk management. In ACM/IEEE 27th International Conference
on Model Driven Engineering Languages and Systems (MODELS Companion ’24).
ACM, 9 2024. doi:10.1145/3652620.3688335.

[73] Jiho Shin, Reem Aleithan, Hadi Hemmati, and Song Wang. Retrieval-augmented
test generation: How far are we?, 2024. URL: https://arxiv.org/abs/2409.12682,
arXiv:2409.12682.

[74] Lakmal Silva, Michael Unterkalmsteiner, and Krzysztof Wnuk. Towards identify-
ing and minimizing customer-facing documentation debt. In 2023 ACM/IEEE In-
ternational Conference on Technical Debt (TechDebt), pages 72–81. IEEE, 5 2023.
doi:10.1109/TechDebt59074.2023.00015.

[75] Xiaotao Song, Hailong Sun, Xu Wang, and Jiafei Yan. A survey of automatic
generation of source code comments: Algorithms and techniques. IEEE Access,
7:111411–111428, 2019. URL: http://dx.doi.org/10.1109/ACCESS.2019.2931579,
doi:10.1109/access.2019.2931579.

[76] Christoph Johann Stettina and Werner Heijstek. Necessary and neglected? an em-
pirical study of internal documentation in agile software development teams. In Pro-
ceedings of the 29th ACM International Conference on Design of Communication,
SIGDOC ’11, page 159–166, New York, NY, USA, 2011. Association for Computing
Machinery. doi:10.1145/2038476.2038509.

[77] Chia-Yi Su and Collin McMillan. Distilled gpt for source code summarization. Auto-
mated Software Engineering, 31:22, 5 2024. doi:10.1007/s10515-024-00421-4.

[78] Shams Tabrez and Islam Jan. Documentation and agile methodology. Master’s the-
sis, Uppsala University, 12 2013. URL: https://www.diva-portal.org/smash/get/
diva2:678784/FULLTEXT01.pdf.

107

https://doi.org/10.1109/ICSME.2017.17
https://doi.org/10.1007/978-3-031-16947-2_1
https://doi.org/10.1109/ACCESS.2024.3424945
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1145/3652620.3688335
https://arxiv.org/abs/2409.12682
https://arxiv.org/abs/2409.12682
https://doi.org/10.1109/TechDebt59074.2023.00015
http://dx.doi.org/10.1109/ACCESS.2019.2931579
https://doi.org/10.1109/access.2019.2931579
https://doi.org/10.1145/2038476.2038509
https://doi.org/10.1007/s10515-024-00421-4
https://www.diva-portal.org/smash/get/diva2:678784/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:678784/FULLTEXT01.pdf

[79] Gytė Tamašauskaitė and Paul Groth. Defining a knowledge graph development pro-
cess through a systematic review. ACM Transactions on Software Engineering and
Methodology, 32:1–40, 1 2023. doi:10.1145/3522586.

[80] H Tang and S Nadi. Evaluating software documentation quality. In 2023 IEEE/ACM
20th International Conference on Mining Software Repositories (MSR), pages 67–78,
2023. doi:10.1109/MSR59073.2023.00023.

[81] Winston Tellis. Application of a case study methodology. The Qualitative Report, 9
1997. doi:10.46743/2160-3715/1997.2015.

[82] Theo Theunissen. Identifying conditions for effective communication with just enough
documentation in continuous software development. In CAiSE (Doctoral Consortium),
pages 11–20, 2020. URL: https://ceur-ws.org/Vol-2613/paper2.pdf.

[83] Theo Theunissen, Stijn Hoppenbrouwers, and Sietse Overbeek. In continuous soft-
ware development, tools are the message for documentation. In Proceedings of
the 23rd International Conference on Enterprise Information Systems, pages 153–
164. SCITEPRESS - Science and Technology Publications, 4 2021. doi:10.5220/
0010367901530164.

[84] Theo Theunissen, Uwe van Heesch, and Paris Avgeriou. A mapping study on docu-
mentation in continuous software development. Information and Software Technology,
142:106733, 2 2022. doi:10.1016/j.infsof.2021.106733.

[85] Massimo Tisi, Jean-Marie Mottu, Dimitrios S Kolovos, Juan de Lara, Esther Guerra,
Davide Di Ruscio, Alfonso Pierantonio, and Manuel Wimmer. Lowcomote: Training
the next generation of experts in scalable low-code engineering platforms. In Inter-
national Conference on Software Technologies: Applications and Foundations, 2019.
URL: https://api.semanticscholar.org/CorpusID:196613731.

[86] Burak Uyanık and Ahmet Sayar. Analysis and comparison of automatic code genera-
tion and transformation techniques on low-code platforms. In 2023 5th International
Conference on Software Engineering and Development (ICSED), pages 17–27. ACM,
10 2023. doi:10.1145/3637792.3637795.

[87] Rini van Solingen (Revision), Vic Basili (Original article, 1994 ed.), Gianluigi Caldiera
(Original article, 1994 ed.), and H. Dieter Rombach (Original article, 1994 ed.). Goal
Question Metric (GQM) Approach. John Wiley & Sons, Ltd, 2002. doi:10.1002/
0471028959.sof142.

[88] Viswanath Venkatesh and Fred D. Davis. A theoretical extension of the technology
acceptance model: Four longitudinal field studies. Management Science, 46(2):186–
204, 2000. arXiv:https://doi.org/10.1287/mnsc.46.2.186.11926, doi:10.1287/
mnsc.46.2.186.11926.

[89] Colin C. Venters, Rafael Capilla, Stefanie Betz, Birgit Penzenstadler, Tom Crick,
Steve Crouch, Elisa Yumi Nakagawa, Christoph Becker, and Carlos Carrillo. Software
sustainability: Research and practice from a software architecture viewpoint. Journal
of Systems and Software, 138:174–188, 4 2018. doi:10.1016/j.jss.2017.12.026.

[90] Paul Vincent, Kimihiko Lijima, Mark Driver, Jason Wong, and Yefim Natis. Magic
quadrant for enterprise low-code application platforms, 8 2019.

108

https://doi.org/10.1145/3522586
https://doi.org/10.1109/MSR59073.2023.00023
https://doi.org/10.46743/2160-3715/1997.2015
https://ceur-ws.org/Vol-2613/paper2.pdf.
https://doi.org/10.5220/0010367901530164
https://doi.org/10.5220/0010367901530164
https://doi.org/10.1016/j.infsof.2021.106733
https://api.semanticscholar.org/CorpusID:196613731
https://doi.org/10.1145/3637792.3637795
https://doi.org/10.1002/0471028959.sof142
https://doi.org/10.1002/0471028959.sof142
https://arxiv.org/abs/https://doi.org/10.1287/mnsc.46.2.186.11926
https://doi.org/10.1287/mnsc.46.2.186.11926
https://doi.org/10.1287/mnsc.46.2.186.11926
https://doi.org/10.1016/j.jss.2017.12.026

[91] Stefan Voigt, Detlef Hüttemann, Andreas Gohr, and Michael Große. Agile docu-
mentation tool concept. In Developments and Advances in Intelligent Systems and
Applications, pages 67–79. Springer International Publishing, 2018. doi:10.1007/
978-3-319-58965-7_5.

[92] Stefan Voigt, Susanne Kaufmann, and Christina Maischak. Successful interorganiza-
tional collaboration through structured wikis: : A case study from a german knowledge
transfer project. In 2022 International Conference on Advanced Enterprise Informa-
tion System (AEIS), pages 127–137. IEEE, 12 2022. doi:10.1109/AEIS59450.2022.
00025.

[93] Gerard Wagenaar, Sietse Overbeek, Garm Lucassen, Sjaak Brinkkemper, and Kurt
Schneider. Working software over comprehensive documentation – rationales of agile
teams for artefacts usage. Journal of Software Engineering Research and Development,
6:7, 12 2018. doi:10.1186/s40411-018-0051-7.

[94] Chao Wang, Hong Li, Zhigang Gao, Min Yao, and Yuhao Yang. An automatic doc-
umentation generator based on model-driven techniques. In 2010 2nd International
Conference on Computer Engineering and Technology, volume 4, pages V4–175–V4–
179, 2010. doi:10.1109/ICCET.2010.5485654.

[95] Roel J. Wieringa. Design Science Methodology for Information Systems and Software
Engineering. Springer Berlin Heidelberg, 2014. doi:10.1007/978-3-662-43839-8.

[96] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang,
Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White,
Doug Burger, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation, 2023. URL: https://arxiv.org/abs/2308.08155, arXiv:2308.
08155.

[97] Robert K. Yin. Case Study Research and Applications. Sage Inc, 6 edition, 1 2017.

[98] Minde Zhao, Zhaohui Wu, Guoqing Yang, Lei Wang, and Wei Chen. Smartosek:
A real-time operating system for automotive electronics. In Embedded Software and
Systems, pages 437–442, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. doi:
10.1007/11535409_63.

[99] Junji Zhi, Vahid Garousi-Yusifoğlu, Bo Sun, Golara Garousi, Shawn Shahnewaz, and
Guenther Ruhe. Cost, benefits and quality of software development documentation:
A systematic mapping. Journal of Systems and Software, 99:175–198, 1 2015. doi:
10.1016/j.jss.2014.09.042.

109

https://doi.org/10.1007/978-3-319-58965-7_5
https://doi.org/10.1007/978-3-319-58965-7_5
https://doi.org/10.1109/AEIS59450.2022.00025
https://doi.org/10.1109/AEIS59450.2022.00025
https://doi.org/10.1186/s40411-018-0051-7
https://doi.org/10.1109/ICCET.2010.5485654
https://doi.org/10.1007/978-3-662-43839-8
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://doi.org/10.1007/11535409_63
https://doi.org/10.1007/11535409_63
https://doi.org/10.1016/j.jss.2014.09.042
https://doi.org/10.1016/j.jss.2014.09.042

Appendix A

Extra results survey

Table A.1: Reasons for not using Business Case

Why do you not use a Business Case?
(multiple answers allowed)

Count (N=4)

I don’t find it valuable 1
It is incomplete or incorrect 1
It is outdated 1
I can’t find it 1
I can’t understand it 1
Other 1: "Not used yet"

Table A.2: Reasons for not using Business Process Documentation

Why do you not use Business Process
Documentation? (multiple answers al-
lowed)

Count (N=5)

It does not exist 1
It is unavailable for me 1
I can’t find it 1
Other 3: "The customer doesn’t see

the value so it does not get im-
plemented.", "Personally i like
to make my own", "Often not
relevant"

110

Table A.3: Reasons for not using Requirements Documentation

Why do you not use Requirements Docu-
mentation? (multiple answers allowed)

Count (N=6)

It does not exist 4
It is unavailable for me 1
It is incomplete or incorrect 1
It is outdated 1
I can’t find it 4
Other 1: "not relevant for me"

Table A.4: Reasons for not using Roadmap & Release Plan

Why do you not use Roadmap & Release
Plan? (multiple answers allowed)

Count (N=11)

I don’t find it valuable 2
It does not exist 6
It is unavailable for me 5
It is incomplete or incorrect 2
It is outdated 4
I can’t find it 1

Table A.5: Reasons for not using Architecture Design Documentation

Why do you not use (Architecture) De-
sign Documentation? (multiple answers
allowed)

Count (N=4)

I don’t find it valuable 1
It does not exist 1
It is unavailable for me 1
It is outdated 1
Other 2: "not yet used", ""

111

Table A.6: Reasons for not using Mockups and UI Documentation

Why do you not use Mockups and UI Doc-
umentation? (multiple answers allowed)

Count (N=16)

I don’t find it valuable 3
It does not exist 7
It is unavailable for me 4
It is incomplete or incorrect 1
It is outdated 3
Other 5: "The customer doesn’t

see the value so it does not
get implemented", "not used
yet", "We don’t have the skills
to create these documents",
"Not relevant", "Not relevant
for me"

Table A.7: Reasons for not using Data Model Documentation

Why do you not use Data Model Docu-
mentation? (multiple answers allowed)

Count (N=12)

It does not exist 5
It is unavailable for me 3
It is incomplete or incorrect 1
It is outdated 3
I can’t find it 3
I can’t understand it 1
Other 1: "not relevant for me"

Table A.8: Reasons for not using Application Logic Documentation

Why do you not use Application Logic
Documentation? (multiple answers al-
lowed)

Count (N=15)

I don’t find it valuable 2
It does not exist 8
It is incomplete or incorrect 2
It is outdated 2
I can’t find it 4
I can’t understand it 2
Other 2: "flow should be easy

enough you do not need
it", "Instead use annotations,
they make the documentation
findable where it is needed"

112

Table A.9: Reasons for not using Source Model Comments

Why do you not use Source Model Com-
ments? (multiple answers allowed)

Count (N=5)

I don’t find it valuable 2
It does not exist 2
It is incomplete or incorrect 2
It is outdated 2
I can’t understand it 1

Table A.10: Reasons for not using Component Documentation

Why do you not use Component Docu-
mentation? (multiple answers allowed)

Count (N=15)

I don’t find it valuable 2
It does not exist 5
It is unavailable for me 2
It is incomplete or incorrect 1
It is outdated 2
I can’t find it 2
I can’t understand it 1
Other 1: "not relevant for me"

Table A.11: Reasons for not using Dependencies Documentation

Why do you not use Dependencies Docu-
mentation? (multiple answers allowed)

Count (N=17)

I don’t find it valuable 4
It does not exist 6
It is unavailable for me 3
It is incomplete or incorrect 2
It is outdated 4
I can’t find it 1
I can’t understand it 1
Other 3: "not relevant for me", "Not

my role", ""

Table A.12: Reasons for not using Maintenance Documentation

Why do you not use Maintenance Docu-
mentation? (multiple answers allowed)

Count (N=9)

I don’t find it valuable 2
It does not exist 3
It is unavailable for me 1
It is incomplete or incorrect 1
It is outdated 1
I can’t find it 1
Other 2: "not used yet", ""

113

Table A.13: Reasons for not using Service Level Agreements

Why do you not use Service Level Agree-
ments? (multiple answers allowed)

Count (N=12)

I don’t find it valuable 5
It is unavailable for me 2
I can’t find it 1
Other 5: "Useful for support, not

for me", "I don’t need to deal
with SLA’s, I leave that to
support", "I do not perform
outside work hours services for
clients", "Don’t have to use it
for now.", "I’ve mostly been
involved in project that aren’t
live yet recently, so it has not
been relevant for a while"

Table A.14: Reasons for not using Issue Tracking Logs

Why do you not use Issue Tracking Logs
(multiple answers allowed)

Count (N=7)

I don’t find it valuable 1
It does not exist 1
It is unavailable for me 1
It is outdated 1
Other 4: "My projects don’t use

tickets", "Clients communi-
cate issues directly and fix
them via devops user story’s",
"Don’t have to use it for now",
""

Table A.15: Reasons for not using User Manuals

Why do you not use User Manuals (mul-
tiple answers allowed)

Count (N=12)

I don’t find it valuable 2
It does not exist 5
It is unavailable for me 4
It is incomplete or incorrect 1
It is outdated 3
I can’t find it 1
Other 1: "Don’t have to use it for

now"

114

Appendix B

Knowledge Graph Schema Details

Nodes

• Module:

– id (String): Unique identifier of the module

– name (String): Name of the module

• Folder:

– name (String): Name of the folder

– subfolders (String[]): Array of subfolders

• DomainModel:

– id (String): Unique identifier of the domain model

– name (String): Name of the domain model

– documentation (String): Description or additional information about the do-
main model manually added by developers.

• Microflow:

– id (String): Unique identifier of the microflow

– name (String): Name of the microflow

– documentation (String): Description or additional information about the mi-
croflow manually added by developers.

– json (String): JSON representation of the microflow, capturing actions, activi-
ties, flow, and other details.

• Entity:

– id (String): Unique identifier of the entity

– name (String): Name of the entity

– documentation (String): Description or additional information about the entity
manually added by developers.

– persistable (String): Indicates whether the entity is persisted to the database.

115

• Attribute:

– id (String): Unique identifier of the attribute

– name (String): Name of the attribute

– documentation (String): Description or additional information about the at-
tribute manually added by developers.

– type (String): Data type of the attribute (e.g., String, Integer, Enumeration).

– value (String): Default value of the attribute, if applicable.

• Enumeration:

– id (String): Unique identifier of the enumeration

– name (String): Name of the enumeration

– documentation (String): Description or additional information about the enu-
meration manually added by developers.

– values (String[]): Array of possible values for the enumeration.

Relationships

• CONTAINS:

– Source: Module or Folder or DomainModel

– Target: Folder or Microflow or DomainModel or Entity or Enumeration

• INTERACTS:

– Source: Microflow

– Target: Entity or Attribute

– Properties:

∗ interactionType (String): Type of interaction between the microflow and
the target (e.g., "create", "read", "update", "delete").

• CALLS:

– Source: Microflow

– Target: Microflow

• GENERALIZATION:

– Source: Entity

– Target: Entity

• ASSOCIATED_WITH:

– Source: Entity

– Target: Entity

– Properties:

∗ name (String): Name of the association

116

∗ type (String): Type of association, either "Reference" or "ReferenceSet"

∗ owner (String): Specifies the multiplicity, either "both" (1-to-1) or "default"
(1-to-*)

• HAS_ATTRIBUTE:

– Source: Entity

– Target: Attribute

• HAS_ENUMERATION:

– Source: Attribute

– Target: Enumeration

117

Appendix C

Testing Scenarios

During the testing sessions participants complete five test scenarios designed to evaluate
different capabilities of CLAIR discussed in Section 6.3.

1. Generate Documentation for a Microflow

• Choose three microflows of varying complexity.

• Query CLAIR to generate detailed documentation.

• Assess the documentation’s accuracy, completeness, and clarity.

2. Generate Annotations for a Microflow Component

• Identify three complex parts of a microflow (e.g., splits, loops).

• Request annotations for these components.

• Evaluate the quality of the generated annotations.

3. Troubleshoot Issues

• Provide CLAIR with stack traces or descriptions of two known issues.

• Assess the system’s ability to guide problem resolution and suggest fixes.

4. Generate New Microflow Logic

• Provide CLAIR with requirements for a new microflow.

• Assess the generated description for completeness and applicability to the spec-
ified requirements.

5. High-Level Overview Queries

• Query CLAIR for high-level summaries of three modules.

• Evaluate the generated overviews for accuracy, relevance, and usefulness in un-
derstanding module purposes.

118

Appendix D

Goal Question Metric Process &
Survey Questions

This appendix provides an overview of the Goal Question Metric (GQM) [87] process used
in this research to evaluate CLAIR’s performance. The GQM method was employed to
systematically assess the effectiveness, usability, and quality of CLAIR’s generated doc-
umentation based on predefined evaluation criteria. The structured approach of GQM
ensures that the collected data aligns with the research objectives and allows for a com-
prehensive analysis of CLAIR’s capabilities.

The GQM methodology, introduced by Basili et al. [87], is a structured framework for
defining and evaluating software quality. It follows a hierarchical approach where:

1. Goals define the high-level objectives of the evaluation.

2. Questions are formulated to assess whether these goals are met.

3. Metrics are established to quantify the responses to these questions.

For this study, the GQM framework was applied to two main areas:

D.1 Quality of Generated Documentation

Goal

Assess the effectiveness of CLAIR in generating high-quality documentation for Low-Code
applications.

Questions

1. How correct is the documentation generated by CLAIR?

2. How complete is the generated documentation?

3. How relevant is the generated documentation to the user’s needs?

4. How understandable is the generated documentation ?

5. How readable is the documentation in terms of formatting and clarity?

6. How useful is the generated documentation?

119

Metrics

• Correctness: participant ratings on a scale from 1 (Very Poor) to 10 (Excellent).

• Completeness: participant ratings on a scale from 1 (Very Poor) to 10 (Excellent).

• Relevancy: participant ratings on a scale from 1 (Very Poor) to 10 (Excellent).

• Understandability: participant ratings on a scale from 1 (Very Poor) to 10 (Excel-
lent).

• Readability: participant ratings on a scale from 1 (Very Poor) to 10 (Excellent).

• Usefulness: participant ratings on a scale from 1 (Very Poor) to 10 (Excellent).

Additionally participants were encouraged to provide qualitative comments to elaborate
on their scores, highlighting any missing details, inconsistencies, or areas for improve-
ment.

D.2 Usability & User Experience

Goal

Evaluate the usability and user experience of CLAIR and assessing how well it integrates
into Low-Code development workflows.

Questions

For this component, we opted to provide statements to the participants, to which they
responded with their level of agreement on a Likert scale.

1. "The system was easy to use."

2. “The system is able provides the requested information”

3. "The responses/documentation were helpful."

4. “The system accurately provides the required information”

5. "The system would save me time writing documentation."

6. “The system improves the organisation of documentation”

7. "The system was easy to learn how to use."

8. “The system improves traceability of the documentation”

9. "I would use this tool in my workflow."

Metrics

• Ease of Use: Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree).

• Information Retrieval: Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree).

• Helpfulness: Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree).

• Accuracy: Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree).

• Efficiency: Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree).

120

• Organisation: Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree).

• Learnability: Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree).

• Traceability: Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree).

• Intend to Use: Likert scale from 1 (Strongly Disagree) to 5 (Strongly Agree).

121

	Introduction
	Context
	Problem Statement
	Research and Scope
	Research Questions
	Approach

	Low-Code & Documentation
	Literature Review Approach
	Low-Code
	Definition and Components
	Types of Low-Code Platforms
	Benefits of Low-Code
	Challenges of Low-Code
	Conclusion

	Documentation in Software Development
	Costs and Benefits of Documentation
	Practitioners' Perspective on Documentation
	Documentation in Continuous Software Development
	Documentation Quality Aspects
	Towards Effective Documentation Practices
	Conclusion

	Low-Code Development Lifecycle
	Design Phase
	Development Phase
	Testing Phase
	Deployment Phase
	Maintenance Phase
	Conclusion

	Case Study Design: Mendix
	Mendix
	Methodology
	The Case Study Protocol
	Conducting the Case Study
	Analysing Case Study Evidence
	Develop Conclusions, Recommendations, and Implications Based on the Evidence

	Survey
	Goals
	Design
	Data Collection
	Data Analysis

	Low-Code Developers’ Perspective on Documentation
	Respondents
	Information Content (What)
	Information Content (How)
	Documentation Process & Tools
	Design Phase Documentation
	Development Phase Documentation
	Maintenance Phase Documentation
	Conclusion

	Available Solutions
	Automated Documentation Generation Techniques
	Automatic Code Commenting and Summarisation
	Context-Aware Documentation

	Model-Driven Documentation Generation
	Agile and Dynamic Documentation
	Large Language Models and Software Documentation
	Retrieval Augmented Generation
	Conclusion

	CLAIR: Connecting Low-Code and Artificial Intelligence for RAG
	Requirements Specification
	Purpose and Scope
	Functional Requirements
	Non-Functional Requirements

	CLAIR Design
	Knowledge Graph Database
	LLM-based Multi-Agent System

	Use Cases
	On-Demand Documentation Generation
	Annotation Generation
	Debugging and Troubleshooting
	New Logic Generation
	Generating High-level Overview

	CLAIR Validation
	Validation Preparation
	Objectives
	Validation Questions
	Participant Selection
	Testing Plan
	Data Collection and Analysis

	Test Case 1 - Documentation Generation
	Test Case 2 - Annotation Generation
	Test Case 3 - Troubleshooting
	Test Case 4 - New Logic
	Test Case 5 - High-level Questions
	Usability and User Experience
	Discussion of the Results
	Requirements satisfaction
	Effect
	Trade-off
	Sensitivity

	Final Remarks
	Discussion
	Research Goal
	Research Questions

	Main Contributions
	Theoretical Contributions
	Practical Contributions
	Broader Implications

	Limitations
	Subjectivity and Potential Bias
	Limited Generalisability of Survey Findings
	Validation Constraints and Participants
	Reliance on Mendix
	Exclusion of Key Components
	LLM Model Choice

	Future Work
	Usability Enhancements
	Cost and Sustainability Optimisation
	Integration with Deployment or CI/CD Pipelines
	Porting to Other Platforms and Outputs
	Specialisation of LLM-based Multi-Agent System (MAS)
	Validation Across Platforms and Companies
	Comparative Analysis of LLM Models
	Extending Knowledge in the Graph Database
	Deploying and Expanding CLAIR's Role
	Creation of a Validated Documentation Dataset

	Conclusion

	Extra results survey
	Knowledge Graph Schema Details
	Testing Scenarios
	Goal Question Metric Process & Survey Questions
	Quality of Generated Documentation
	Usability & User Experience

