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Management Summary  
Bouwvervoer, a construction transport company with a fleet of approximately 100 vehicles, currently 

relies on a semi-digital manual planning system to coordinate its logistics operations. While digital 

tools support this approach, they heavily depend on human decision-making, introducing 

inefficiencies in route planning, resource utilization, and delivery performance. With the logistics 

industry rapidly evolving through Artificial Intelligence (AI) integration, Bouwvervoer initiated a pilot 

AI-based planning system. However, the company lacks a structured method to evaluate whether the 

AI-driven system outperforms the current manual setup and aligns with its strategic goals. 

This thesis addresses that gap by developing a conceptual comparison framework to compare both 

systems systematically. The aim is to support data-driven decision-making on AI adoption in logistics 

planning. The framework is built upon eight Key Performance Indicators (KPIs), categorized under 

transportation effectiveness, employee satisfaction, and customer service quality. These KPIs, Total 

Distribution Cost, Capacity Utilization, % Empty km’s / Total km, Turnover per Hour per Driver, On-

Time Delivery Performance, Satisfaction with Working Hours, Fulfilment of Specific Driver Requests, 

and Order Accuracy, were selected through a literature review and input from company stakeholders. 

A multiplicative analytical hierarchy process (MAHP) was applied to prioritize the KPIs using pairwise 

comparisons completed by six experienced planners. The KPI weights were then implanted in two 

analysis methods: the Weighted Composite Score (WCS) and Weighted Difference Analysis (WDA), 

both of which quantify system-level performance differences. These methods were implemented in 

an interactive Power BI dashboard alongside descriptive statistics and selected visualization 

techniques. 

Although the dashboard was built using mock-up data due to operational data limitations, it 

demonstrates how the framework would function in practice. The dashboard allows users to analyze 

KPI trends, compute performance scores, and visually compare systems over time. The solution was 

evaluated through structured feedback from the company supervisor, who assessed the tool’s 

usability, design, and decision-making impact. The evaluation confirmed that the dashboard offers 

valuable managerial insights but highlighted areas for refinement, including navigation 

improvements and more direct visual comparisons. 

The developed framework is context-specific to Bouwvervoer but generalizable to similar mid-sized 

logistics firms exploring AI integration. To extend its applicability, future implementations should 

incorporate accurate operational data and engage a broader range of stakeholders for evaluation. 

In conclusion, this thesis offers a structured tool for comparing manual and AI-driven logistics 

systems. It supports data-based decision-making and applies the groundwork for the broader 

adoption of AI technologies in logistics planning.  
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1. Introduction 
This chapter introduces the research context, company background, and the core problem that 

motivated the study. It begins by outlining the growing role of AI in the logistics industry. The chapter 

then narrows its focus to Bouwvervoer, a construction transport company with a manual planning 

system. As the company explores AI-driven planning solutions, it lacks a structured method to 

compare the manual system with the proposed AI system. This chapter defines the nature of that 

gap through a problem analysis, including a problem cluster and a measurement of the gap between 

norm and reality. These sections lay the foundation for developing a comparative performance 

framework. 

1.1 General/Scientific Context 
This section aims to provide a broad overview of the role of AI in the logistics industry. It highlights 

how AI has become a key driver of innovation, leading to improved operational efficiency and 

effectiveness. It provides a foundational understanding of why AI is crucial for companies aiming to 

stay competitive in today's fast-evolving logistics industry. 

The logistics industry is rapidly developing with the advancement of digital technologies and AI. As 

companies aim for efficiency and sustainability, adopting AI in logistics has become a key feature 

distinguishing them from competitors. AI-based systems can optimize decision-making by leveraging 

large volumes (as much as possible) of data, thereby reducing operational costs, improving route 

efficiency, and minimizing environmental impacts. The role of AI in logistics has been widely 

recognized, particularly for its ability to automate complex processes that previously required human 

intervention. AI-driven logistics systems can analyze vast amounts of historical and real-time data to 

make more informed decisions. Studies find up to 46.15% increase in decision outcomes (Rinat et al., 

2024). Also, Choi et al. (2016) gives hints about AI technologies integration into logistics will deepen, 

offering more sophisticated solutions such as autonomous vehicles, drone deliveries, and AI-driven 

supply chain management systems. 

These innovations improve operational efficiency and create a competitive edge for companies that 

adopt them, driving the logistics industry toward a more digitized and automated future. However, 

as highlighted by Zhang (2019), the transformation of traditional logistics through AI presents 

significant challenges alongside these opportunities. There is a considerable gap between the 

logistics industry's current capabilities and the need for intelligent data collection and perception 

infrastructure, such as big data and logistics cloud systems. Additionally, the coverage and accuracy 

of logistics-related internet technologies are still insufficient, restraining the full realization of 

intelligent logistics. Furthermore, the logistics industry is currently struggle with a critical shortage of 

technology and talent. Despite the industry's ability to generate massive amounts of data and 

present rich business scenarios, the lack of skilled professionals with comprehensive knowledge of 

logistics and AI is an ongoing issue that is slowing progress. 

These challenges illustrate that while AI presents possibilities for logistics, significant infrastructure 

advancements, talent development, and standardization are required to unlock its potential fully. 

Companies like Bouwvervoer that can successfully navigate these challenges and leverage AI's 

capabilities stand to gain a competitive advantage as the logistics industry evolves. 

1.2 Company Context 
This section outlines the historical and operational context of Bouwvervoer. It highlights the 

company's growth, the increasing complexity of its operations, and the challenges posed by 
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dependence on manual logistics planning. This background sets the stage for exploring AI as a 

transformative solution. 

Bouwvervoer is a family-owned logistics service specializing in transporting construction materials. It 

was established in 1920. The company is committed to continual improvement and operates with a 

fleet of approximately a hundred vehicles (bouwvervoer.nl, 2023). Bouwvervoer is at a critical point 

in its journey toward operational advancements and sustainability. As the company grows its 

customer base and the complexity of its operations grow as well, and faces challenges that make 

manual logistics planning insufficient. These challenges significantly affect operational efficiency, 

cost-effectiveness, and environmental sustainability. A possible solution to these challenges, AI, is 

increasingly getting integrated into logistics and supply chain management, and the quantity of data 

and continuous advancements in computing capabilities open new possibilities for improving 

decision-making in supply chains (Boute et al., 2022). The trend toward adopting AI and machine 

learning solutions to solve similar challenges highlights the need for Bouwvervoer to re-consider its 

existing planning systems.  

1.3 Defining the Problem 
In this section we address the challenges and opportunities Bouwvervoer faces with its current 

logistical framework and the exploration of the AI system. In section 1.3.1, we examine the critical 

issue—Bouwvervoer's need for an evaluation framework to transition from its semi-digital, manual 

system to the AI-driven system. This section highlights the absence of comprehensive guidance for 

comparing both systems' operational efficiency, cost-effectiveness, and sustainability impacts. The 

section 1.3.2 elaborates on the core problem: the lack of a comparative analysis framework for 

logistical planning systems. It shows the resulting intermediate problems, such as uncertainty in 

performance evaluation and inadequate data utilization, originating from this gap. Finally, in section 

1.3.3 we focus on the current challenges regarding norm and reality. 

Over the decades, Bouwvervoer has consistently aimed to leverage technology to enhance its 

logistical operations, adopting an optimization software since the 1990s. Despite these efforts and 

several attempts to achieve fully automated planning, the company has encountered challenges 

integrating these technologies into its existing workflows. This highlights the motivation behind 

exploring the AI system as a potential solution to the enduring complexities of manual planning. 

Bouwvervoer's logistical operations have relied on a manual planning system in its core approach. 

Using a Gantt chart embedded in the system, planners decide which truck to use and which route for 

which customers. However, it is supported by digital tools and IT systems. This integration of digital 

assistance within a mainly manual framework creates a unique operational way of working. In this 

thesis, the term 'manual' does not mean 'on paper'; instead, it refers to a system where human 

decision-making commands, although assisted by digital tools. This combination of manual 

management with digital tools provides a specific efficiency level but also brings limitations and 

challenges. 

Even with the support of digital tools, the manual planning process at Bouwvervoer faces operational 

challenges, such as inefficiencies in route planning and logistical coordination. Financially, this 

approach can lead to increased costs, which impacts fuel consumption and time management. 

Environmentally, the inability to achieve the most efficient and sustainable routes leads to increased 

carbon emissions, challenging Bouwvervoer's commitment to sustainability (bouwvervoer.nl, 2023). 

Introducing AI system as a pilot project presents a new opportunity for optimization. However, a gap 

exists in the need for evaluation criteria to effectively compare the manual system with this new AI-
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driven solution. This gap highlights the need for a structured approach to evaluate and quantify the 

differences and potential improvements the AI system offers over the current mode of operation. 

1.3.1 Identification of Action Problem 
Bouwvervoer needs a clear framework or criteria to effectively compare and evaluate the 

performance of the current semi-digital, manual system against the AI-driven solution. Incorporating 

the human perspective of decision-makers, it becomes essential to develop criteria that reflect the 

company's strategic objectives and logistics planners' understanding and instincts. 

This situation leads to the primary action problem, anything, or any situation different from how one 

wants it to be is an action problem (Heerkens, 2017): Missing Guidance on Decision-Making to Switch 

to AI Planner. The missing guidance pertains to several critical areas: evaluating both systems' 

operational efficiency, cost-effectiveness, and sustainability alignment under future conditions. More 

specifically, the guidance gap involves creating comparative frameworks that can assess potential 

differences, impact on key performance indicators, and alignment with Bouwvervoer's long-term 

strategic goals. This comparison requires understanding the AI and Manual systems and identifying 

which aspects of logistical planning and execution can be optimized or need adjustment when 

transitioning to an AI-driven approach. 

As Bouwvervoer continues to grow, the scalability of manually managing logistics becomes a 

considerable concern. The manual system becomes more time-consuming and burdens planners, 

particularly in high-demand periods, increasing the possibility of errors or oversights. These 

challenges are not unique to Bouwvervoer but reflect broader trends in the logistics and 

transportation industry. Choi (2016) says third-party logistics service providers and traditional 

transportation and shipping companies face significant operational risks.  highlights that the high 

level of uncertainty and threats to system reliability are critical issues in global logistics systems. 

Furthermore, Zhang (2019) highlights that as AI technology gains broader adoption, numerous 

modern logistics companies are exploring its use to improve various operations and boost overall 

logistical efficiency. In the larger context, improving route efficiency and reducing the number of trips 

matches with cost-saving measures and global ambitions towards environmental responsibility. 

1.3.2 Problem Cluster and Motivation of Core Problem 
The core problem is stated as following: Missing Comparative Analysis Framework for Logistics 

Planning Systems. This fundamental gap interferes with systematically evaluating and placing the 

manual planning system with the AI-driven system. This lack of comparative insight causes a series of 

intermediate problems shown in the problem cluster (Figure 1).  

First, there is inadequate data utilization for decision-making, which means that organizations lack a 

structured approach to leverage available logistics data effectively. This limitation leads to unclarity in 

planning processes, making it difficult to quantify the potential improvements AI could present. 

Second, the undetermined readiness level of the AI system for operational use prevents decision-

makers from measuring whether AI-based solutions are mature enough to replace or complement 

manual systems. AI models may require further testing, calibration, or integration with existing 

workflows before they are fully operational. Lastly, these two challenges are collectively contributed 

by the non-existence of a system/tool for comparing manual and AI planning methods. Without a 

structured method for comparison, logistics companies struggle to make informed decisions 

regarding AI adoption, leading to hesitation and suboptimal implementation. 

These challenges combine into a critical action problem: the need for clear, data-driven guidance on 

transitioning to the AI-driven logistics planning system. With this guidance, Bouwvervoer can make a 
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well-informed decision about embracing new technology to enhance operational efficiency, reduce 

costs, and boost sustainability efforts.  

 

 

Figure 1: Problem Cluster 

1.3.3 Measurement of Norm and Reality 
The intermediate problems established in the problem cluster require defining the expected 

standards, or norms, against which the current reality can be assessed. The norm represents the 

ideal state where logistics planning is optimized. At the same time, the reality reflects the current 

state of operations at Bouwvervoer, which relies on semi-manual decision-making supported by 

digital tools. The absence of a comparative analysis framework creates a gap between these two 

states. While AI-driven logistics planning is designed to achieve maximum efficiency through full data 

utilization, automated route optimization, and minimized inefficiencies, Bouwvervoer's current 

system remains heavily dependent on human expertise, which, despite leveraging digital tools, 

introduces inconsistencies and inefficiencies in decision-making. 

One of the key dimensions of measurement is operational efficiency. The norm in AI-driven logistics 

assumes that the system optimally utilizes the fleet, minimizes empty kilometres, and ensures 

commitment to planned schedules. The reality, however, shows that manual planning decisions, 

although based on experience, can lead to inefficiencies such as inconsistent vehicle utilization and 

an increased number of empty kilometres, affecting both costs and service quality. Cost-effectiveness 

is another essential aspect of comparison. AI planning is expected to distribute resources optimally, 

reducing operational expenses related to fuel consumption, vehicle wear, and labour costs. In 

contrast, manual planning, even when supported by digital tools, often results in inefficiencies that 

drive up transportation costs due to suboptimal route selections and human limitations in processing 

vast amounts of logistical data. 
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Another critical dimension of measurement is data utilization. AI-driven logistics systems integrate 

and analyse historical and real-time data to improve planning accuracy, ensuring that decisions are 

continuously improved based on evolving conditions. However, the reality at Bouwvervoer reflects a 

lack of a structured approach for effectively leveraging available data. Decisions are primarily based 

on planners' expertise and experience rather than systematic data-driven insights, limiting the 

potential for optimization. Scalability and adaptability further demonstrate the gap between norm 

and reality. AI-driven logistics systems are designed to scale up with growing demand. The reality at 

Bouwvervoer, however, is that the manual system becomes increasingly difficult to manage as 

operational complexity grows. The increasing workload on planners can result in bottlenecks, 

increased errors, and slower response times, eventually limiting the company's ability to meet 

market demands. 
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2. Methodology 
This chapter outlines the study's methodological foundation. It introduces the MPSM framework and 

explains how its seven phases are tailored to Bouwvervoer's specific case. It then details the research 

design, including stakeholder involvement, research questions, chosen methods, and data collection 

strategies. Finally, the chapter reflects on key limitations and evaluates the validity and reliability of 

the methodological approach. 

2.1 MPSM Approach and Fundamentals of the Research 
This section outlines the methodology adopted for the research, following MPSM. The MPSM was 

selected as the research methodology because it is a structured, systematic approach to addressing 

complex problems, particularly good at managerial and business problems. MPSM's seven-phase 

approach enables detailed investigation, from problem identification to solution implementation and 

review. 

The MPSM, a systematic method including seven distinct phases (Heerkens, 2017), is applied 

throughout this research. Each phase is specified to the context of Bouwvervoer's transition to AI-

driven logistics planning and a summary of it can be seen in Table 1.  

Phase Description Deliverable 

1: Defining the 

Problem 

Initial identification of challenges with the 

current manual system and the potential of the 

AI system. Analysis of Bouwvervoer’s operations 

to identify core and action problems. 

A comprehensive problem statement detailing the 

operational inefficiencies and the potential for AI-driven 

logistics planning. 

2: Formulating 

the Approach 

Outlining the research goals and aligning them 

with the MPSM process. Identifying 

fundamental topics to guide the research. 

A research approach document outlining objectives, key 

questions, and the methodological framework. 

3: Analysing the 

Problem 

Deepening the understanding of the problem 

through revisiting definitions, identifying 

knowledge gaps, and uncovering new causes. 

An analysis highlighting new insights into the logistical 

challenges and potential areas for AI integration. 

4: Formulating 

Solutions 

Developing potential solutions like a 

comparative analysis tool or framework using a 

multicriteria model to evaluate various metrics 

and methodologies. 

A solutions framework document detailing proposed 

tools, evaluation criteria, and alternative 

methodologies. 

5: Choosing the 

Solution 

Evaluating proposed solutions to select the 

most effective and feasible option for 

comparative analysis. 

A decision justifying the chosen solution based on its 

alignment with research goals and Bouwvervoer's 

needs. 

6: Implementing 

the Solution 

Applying the selected comparative analysis tool 

to evaluate manual versus AI-driven systems at 

Bouwvervoer. 

Implementation of the comparative analysis tool, with 

initial findings and insights into both systems. 

7: Evaluating the 

Solution 

Assessing the effectiveness and functionality of 

the implemented solution. Identifying 

limitations and areas for improvement. 

An evaluation report with a comprehensive assessment 

of the solution’s impact, effectiveness, and 

recommendations for future enhancements. (Not fully 

delivered because of the limitations of the thesis)  

Table 1: MPSM Phases 
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To effectively evaluate the AI-driven system for Bouwvervoer, an understanding of its functionalities 

and applications is essential. This includes studying AI applications in logistics to ensure proper 

implementation in the comparative analysis. This phase aligns with MPSM Phase 2, focusing on using 

AI-driven logistics planning to address the identified problems from a broad industry perspective. 

A critical aspect is assessing Bouwvervoer's current use of its semi-digital, manual planning system. 

Falling under MPSM Phase 3 involves analysing the existing setup and identifying areas where AI can 

enhance efficiency. Research is conducted to understand the manual system's limitations and data 

usage. 

Selecting the right KPIs is crucial for measuring and improving logistics performance. A 

comprehensive literature review is conducted to identify relevant KPIs in logistics and supply chain 

management. This task is part of MPSM Phase 3 and inform the development of the comparative 

analysis tool. 

The development of the comparative analysis tool contain the findings from the above phases, 

including KPI selection and understanding of AI functionalities. This falls under MPSM Phase 4 and 

Phase 5. The tool is designed to provide clear, actionable insights for decision-making at 

Bouwvervoer. 

In Chapter 5, a functional tool for comparative analysis between manual and AI-driven logistics 

planning systems is delivered. The tool display mock up data and KPIs effectively, aiding in efficient 

decision-making for Bouwvervoer’s logistics planning. 

2.2 Research Design 
This section outlines the methodological approach to investigate how Bouwvervoer can evaluate the 

transition from its manual logistics planning system to an AI-driven alternative. The research design 

follows the framework of the MPSM model and combines both exploratory and descriptive research 

strategies. It includes an analysis of key stakeholders, formulation of research questions and 

knowledge problems, and a description of the chosen research types and methods for data 

collection. Additionally, it reflects on the methodological limitations in the study, such as data 

constraints and the absence of a full-scale AI implementation. 

2.2.1 Stakeholder Analysis 
The primary subjects of this research are linked to the operational and strategic aspects of logistics 

planning at Bouwvervoer. This research's stakeholders include (can also be seen in Figure 2): 

• Researcher: In the context of this project, the primary researcher is a bachelor's student 

responsible for designing the study, conducting a literature review, engaging with 

Bouwvervoer's management and IT experts for primary data collection, and analysing 

qualitative and quantitative data. The researcher's role is to evaluate the potential and 

challenges of adopting AI-driven logistics solutions at Bouwvervoer. 

• Bouwvervoer’s management and operational staff, who are responsible for the daily 

planning of the routes: Bouwvervoer's management and operational staff offer insights into 

daily logistics planning and operational challenges. They provide real-world perspectives on 

AI integration's efficiency and potential impact. Potential conflicts of interest for 

Bouwvervoer's management and operational staff in the project could come from resistance 

to change associated with AI implementation. Staff may fear AI-driven systems could 

automate tasks, leading to job losses or role alterations. Additionally, there might be concern 
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about the transparency and fairness in how AI integration decisions are made, possibly 

affecting trust and cooperation within the team. 

• IT experts working on the AI system: The IT experts working on the AI system are important 

in the project for their technical expertise in AI development and integration. Their role 

involves designing, developing, and implementing the AI system, ensuring it aligns with 

Bouwvervoer's operational requirements and objectives. They provide technical insights, 

support evaluating the system's effectiveness, and address technical challenges. 

• Bouwvervoer's existing IT supplier: As the provider of the current logistics planning 

solutions, IT supplier’s perspective is crucial for understanding the technical and operational 

baseline from which AI integration is considered. However, the potential shift to AI-driven 

system introduces a conflict of interest, given that both services serve similar operational 

needs but are rivals in the technology solutions space. This concerns about IT supplier’s 

reduced involvement and the strategic implications for Bouwvervoer's choice in logistics 

planning technologies. 

• Potentially, other logistics companies that are interested in AI integration. 

Their insights, expectations, and experiences provide a perspective necessary for the 

research's success. By engaging with these various stakeholders, the research aims to 

capture a view of the transition to AI-driven logistics planning, ensuring that the findings are 

relevant, practical, and beneficial for parties involved. 

 

 

Figure 2: Stakeholder Onion Diagram 

2.2.1 Research Questions and Knowledge Problems 
Section 2.2.1 focuses on the critical questions driving this research, centred on Bouwvervoer's 

exploration of AI in logistics. The main question seeks to develop a framework for comparing 

Bouwvervoer's manual system with the AI-driven system. Sub-questions delve into identifying KPIs 

relevant to Bouwvervoer's goals, assessing the current data availability for supporting this analysis, 

analysing the importance of chosen KPIs, and exploring frameworks for KPI selection, data 

visualization, and analysis methodologies. The chosen questions can be seen in Table 2.  
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Question/Knowledge Problem Research Type 

Data Gathering 

Method Method Nature 

Main Research Question: How can Bouwvervoer effectively 

compare its existing manual logistics planning system with the AI-

driven system? 

Exploratory & 

Descriptive 

Literature Review, 

Semi-Structured 

Interviews Qualitative 

RQ1: What are the most critical KPIs for evaluating the efficiency 

and effectiveness of logistics planning systems, specifically in 

Bouwvervoer? Exploratory 

Literature Review, 

Expert Interviews Qualitative 

RQ2: What is Bouwvervoer's perspective on the hierarchy of the 

selected KPIs for evaluating logistics planning systems? 

 

Descriptive Expert Interviews Quantitative  

RQ3: How does the current data availability at Bouwvervoer 

support or restrict the comparative analysis of the manual and AI 

systems? 

Exploratory & 

Descriptive 

Interviews, Internal 

Data Analysis 

Qualitative & 

Quantitative 

KQ1: What frameworks or models exist for selecting logistics and 

supply chain management KPIs that can be applied to AI-driven 

and manual systems? Exploratory Literature Review Qualitative 

KQ2: How can the importance of KPIs be quantified for logistics 

planning systems? Exploratory  Literature Review Qualitative  

KQ3: What are the established data visualization and analysis 

methodologies in comparing logistics system performance? 

 

Exploratory & 

Descriptive Literature Review 

Qualitative & 

Quantitative 

Table 2: Research Questions  and Knowledge Problems 

2.2.3 Research Types  
This study on Bouwvervoer's transition to AI-driven logistics planning adopts a mixed approach, 

combining both exploratory and descriptive research methods. The exploratory component is 

important in learning AI's application in logistics at Bouwvervoer. It allows for a flexible exploration of 

patterns, potential benefits, and challenges associated with the AI-driven system. On the other hand, 

the descriptive aspect of the research focuses on accurately portraying Bouwvervoer’s current 

logistics planning processes. This methodical observation and description are important for setting a 

clear baseline against which the AI system’s performance can be evaluated.  

The study incorporates a secondary data analysis through a systematic literature review, including 

academic journals and industry reports in databases like Scopus and Web of Science. This review 

focuses on AI applications in logistics, comparative analysis frameworks, and KPI frameworks in 

transportation logistics to establish a solid foundation for evaluating AI's potential in Bouwvervoer's 

context. The study uses primary research through qualitative methods, specifically semi-structured 

interviews, and targeted surveys with Bouwvervoer's stakeholders, IT experts, and operational staff. 

These methods are chosen for their strength in producing detailed insights into the practical 
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implications of AI integration, including the opportunities it presents. Semi-structured interviews 

allow for flexible discussions, while surveys provide quantifiable data. 

The research methodology directly corresponds with MPSM, with the exploratory phase aimed at 

identifying and analysing the problem (MPSM Phases 1-3) and the descriptive phase focused on 

formulating and evaluating solutions (MPSM Phases 4-7). To operationalize, the study conduct 

interviews with stakeholders. Data from these primary sources are analysed using thematic analysis 

for interviews and statistical analysis for survey responses, directly providing into the evaluation 

framework's development. The data-gathering methods for each research question and knowledge 

problem are outlined and can be seen in Table 2.  

2.2.4 Limitations of Research Design 
While this research's design follows a structured approach using the MPSM, several limitations 

impact the overall scope of the study. These limitations are particularly significant in the final phase 

(Phase 7: "Evaluating the Solution"), which cannot be completed with real data due to time, 

resource, and operational constraints. This limitation affects the ability to fully assess whether the 

comparative framework developed in this thesis is effective for evaluating AI-driven logistics planning 

versus manual systems. 

Data Availability and Relevance 

The study's effectiveness is dependent on the availability and relevance of data. This includes 

historical and generated data from the manual system and data generated from the pilot 

implementation of the AI system. Limitations in the scope, depth, or quality of the available data 

impact the quality of the comparative analysis and the validity of the study's conclusions. 

Time Constraints 

Given the scope of the research, a time constraint of 10 weeks limit the depth of analysis, specifically 

in the exploratory parts of the study. The time available for developing and testing the comparative 

analysis tool or framework need to be increased to explore all potential functionalities and 

integrations. In a full-scale implementation, Phase 7 would involve testing and iterating on the 

comparison framework developed in this thesis. It would require integrating real-time data from 

both the manual system and the AI-driven system and several rounds of feedback from stakeholders. 

However, the current time frame does not permit such testing, leaving Phase 7 incomplete. 

Lack of Full-Scale Implementation 

Phase 7 of the MPSM is designed to evaluate whether the solution developed—here, the 

comparison framework—provides valid and actionable insights. This evaluation typically involve 

testing the framework in a full-scale operational environment, identifying gaps or areas of 

improvement, and refining the tool accordingly. However, since the AI system is not fully integrated 

into Bouwvervoer's operations, the comparison framework cannot be thoroughly tested.  

Change Management and Employee Adaptation 

While the research aims to consider the human element, particularly regarding change management 

and employee adaptation, the complexity of human behaviours and resistance to change appear. The 

study's recommendations are based on theoretical frameworks and stakeholder interviews, which do 

not fully capture the practical challenges of implementing change in an organizational setting. 
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Generalization of Results 

The results of this research are based on focusing on a single organization's transition to AI-driven 

logistics planning. Therefore, generalizing results to other organizations is not fully possible.  

2.3 Assessment of validity and reliability 
Ensuring the validity and reliability of the methodology and findings is crucial in any research study. 

This section discusses the evaluation of the internal and external validity of the study as well as the 

reliability of the comparative analysis framework developed to assess the manual system versus the 

AI-driven system at Bouwvervoer.  

It is important to consider both validity and reliability as essential metrics, as shown by Cooper and 

Schindler (2014). Validity refers to the capacity to which our tools accurately measure what they 

intend to do, which involves internal and external validity. Internal validity reviews that comparative 

analysis frameworks accurately capture the effectiveness of Bouwvervoer's manual versus AI-driven 

logistics systems. We can examine measurements such as KPIs to confirm that they reflect accurate 

data from the logistics systems. External validity concerns the generalizability of our findings. While 

our study is tailored to Bouwvervoer's unique operational setup, understanding the limitations of our 

research's relevancy to other contexts is necessary. 

Reliability is equally important and contains the consistency of our research tools in providing results. 

Reliability stability ensures that repeated measurements under similar conditions produce consistent 

outcomes, an aspect we mainly focus on in testing the AI-driven logistics system's performance at 

Bouwvervoer. Equivalence in reliability involves confirming that different tools or observers produce 

similar results in measuring the effectiveness of logistics planning (Cooper & Schindler, 2014). 

However, the reliability of the framework cannot be thoroughly evaluated due to the limitations in 

Phase 7. This phase would typically involve repeated application of the framework in real-world 

settings to determine whether the results are consistent over time and across different datasets. The 

lack of real-time operational testing means that potential variability in the results, especially in 

dynamic logistics environments, has not been accounted for. As a result, while the framework can be 

theoretically sound, its reliability in practical applications remains uncertain. 
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3. Literature Review  

3.1 KPI Selection 
This chapter addresses RQ1 and KQ1 by defining the selection criteria for the KPIs used in the 

comparative framework. In developing the comparative framework for evaluating the logistics 

planning systems at Bouwvervoer, we focused on prioritizing KPIs that directly relate to the plan's 

operational efficiency and have a higher possibility of data availability in future. We chose cost 

management, employee satisfaction, and customer service quality as main categories to focus. After 

discussions with the company supervisor and carefully considering the thesis objectives, we selected 

a total of eight KPIs. Five of the KPIs are focused on transportation efficiency and effectiveness are 

the following: Capacity Utilization, On-time Delivery Performance, Total Distribution Cost, Turnover 

per Hour per Driver, and % Empty km’s / Total km. These KPIs were chosen from the framework of 

Iankoulova (2012) to ensure a literature based foundation for our analysis. Figure 3 shows the 

focused part of the framework. Iankoulova (2012) used the work of Krauth et al. (2005) to build the 

framework. We also looked at the framework of Krauth et al. (2005) and they focused on the internal 

perspective and management point of view which we intend to do so with these five KPIs: 

 

 

 

Figure 3: KPI framework of Iankoulova (2012) based on Krauth et al. (2005) 

Capacity Utilization: This is a critical KPI for assessing how efficiently transportation resources are 

used. It measures the extent to which available vehicle capacity is utilized during each trip. By 

optimizing capacity utilization, companies can reduce the number of trips needed, lower fuel 

consumption, and minimize operational costs. In Iankoulova's (2012) framework, this KPI directly 

addresses the operational efficiency of the logistics process, ensuring that resources are used 

optimally. Poor utilization may result in unnecessary trips, wasted resources, and higher costs.  

 

On-time Delivery Performance: This KPI measures delivery punctuality and is a crucial indicator of 

service reliability. It reflects the efficiency of logistics operations in meeting customer expectations, 

which is directly linked to customer satisfaction, which is why it will also be part of customer point-

of-view metrics. This KPI helps identify potential bottlenecks or inefficiencies in the delivery process, 

such as traffic delays, poor route planning, or operational constraints. By focusing on this metric, we 

can evaluate how well the logistics system maintains reliable delivery schedules.  
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Total Distribution Cost: This KPI aggregates all the costs associated with the logistics and 

transportation process, including fuel, labour, maintenance, and administrative costs. This KPI is 

essential for assessing the financial efficiency of logistics operations. By monitoring distribution costs, 

we can identify inefficiencies and areas where cost-saving opportunities exist. 

 

Turnover per Hour per Driver: This KPI evaluates drivers' productivity by measuring the revenue 

generated per hour worked. It offers insights into how effectively human resources are utilized in 

logistics operations. High hourly turnover indicates efficient use of labour, while low turnover may 

suggest inefficiencies such as poor route planning, extended idle times, or suboptimal scheduling.  

 

% Empty km's / Total km KPI: This measures the kilometres driven with no cargo, directly indicating 

inefficiencies in route and capacity planning. Reducing the percentage of empty kilometres can lead 

to significant cost savings and environmental benefits by lowering fuel consumption and optimizing 

vehicle usage.   

 

In addition to the KPIs focused on transportation effectiveness and efficiency, we selected four that 

address employee satisfaction and customer service quality. These KPIs were identified after 

discussions with Bouwvervoer's management and executive teams, who emphasized the importance 

of these areas for the company's long-term strategic goals. While transportation metrics are crucial 

for assessing operational efficiency, the company's leadership stressed that employee well-being and 

customer satisfaction are equally important for maintaining a competitive and sustainable business 

model. 

The first KPI, Satisfaction with Working Hours, measures the level of contentment among employees 

regarding their working schedules. Employee satisfaction with working hours directly impacts crew 

morale, ownership of responsibility, and overall productivity. Susanto et al. (2022) show that when 

employees are satisfied with their working conditions, particularly work-life balance, they tend to be 

more productive, have higher job satisfaction, and are less likely to leave the organization. High 

satisfaction levels can reduce turnover, lowering recruitment and training costs. During discussions 

with management, this KPI was highlighted as a critical factor in improving workforce stability, which 

ultimately supports the company's operational success and comforts the management and executive 

teams about its ability to retain its workforce. 

The second KPI, Fulfillment of Specific Driver Requests, assesses the company's ability to meet its 

drivers' needs and preferences, such as route preferences or schedule adjustments. This KPI was 

included because management emphasized that accommodating driver requests contributes 

significantly to job satisfaction. Meeting these requests improves the work environment. By ensuring 

drivers feel valued and heard, Bouwvervoer can improve its operational efficiency, as satisfied 

employees are more likely to perform at higher levels and demonstrate a more significant 

commitment to the organization. 

Order Accuracy is the third KPI which is related to customer service quality. This KPI measures the 

accuracy with which customer orders are fulfilled, ensuring that the correct products are delivered as 

requested. Order accuracy is critical to customer satisfaction, as errors in order fulfillment can lead to 

customer dissatisfaction, increased return rates, and higher operational costs due to corrective 

actions. Management identified this KPI as fundamental to maintaining high levels of customer trust 

and loyalty, which should make the management and executive teams feel confident about the 

company's customer relationships.  
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Lastly, On-time Delivery Performance from the customer's perspective was also selected as a critical 

KPI. While this overlaps with the transportation-focused version of the same metric, the emphasis 

here is on the punctuality of deliveries as perceived by the customer. Management and executives 

stressed the importance of meeting customer expectations about delivery timelines, noting that late 

deliveries can severely damage the company's reputation and lead to financial penalties or lost 

business. In today's competitive logistics landscape, customer expectations for timely deliveries are 

higher than ever, and Bouwvervoer's ability to consistently meet these expectations is critical for 

maintaining long-term customer relationships. 

Finally, we have created the SCOR KPI metrics from eight chosen KPIs. These KPIs have been 

organized into a three-level hierarchy, as illustrated in the Figure 4, covering transportation efficiency, 

employee satisfaction, and customer service quality. This hierarchical grouping is essential for the 

upcoming weight analysis of the KPIs and the development of questionnaires to assess their relative 

importance. We took inspiration from Ayyildiz et al. (2021) SCOR 4.0 performance metrics, which 

provided a strong foundation for structuring the levels and sub-groups of metrics (SCOR 4.0 model). 

The three-level structure enables a detailed and layered approach, assigning appropriate weights 

that are more accessible and performing more accurate evaluations during the analysis phase. 

 

Figure 4: SCOR KPI metrics 

3.2 KPI Weighting 
Accurately quantifying KPIs is crucial for this thesis. Logistics systems rely on many KPIs to monitor, 

evaluate, and optimize performance across various dimensions. KQ2 comes into play in this sense, 

finding out how the quantification of importance of KPIs can be done, helping build the part where 

the framework's KPI weighting is done appropriately. We intend to review existing methods like AHP, 

DEA, and TOPSIS, and their variations to understand the subject's industry standards. We learn about 

how these methods are used in which situations so we can create an approach tailored to our case. 

Before we create a relationship between articles found about the variety of methods, we will 

evaluate each item in their groups and then wire relationships. 
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These three techniques mentioned above have similarities and differences. AHP is a multi-criteria 

decision-making tool that uses pairwise comparisons and expert judgment to prioritize KPIs, 

providing a structured framework for decision-making (Sirisawat et al., 2024). DEA is a non-

parametric method used for efficiency analysis, benchmarking multiple decision-making units based 

on their inputs and outputs, making it particularly effective in quantitative settings (Danladi et al., 

2024). TOPSIS evaluates alternatives based on their proximity to an ideal solution and offers an 

approach to handling complex, multi-dimensional decision-making problems (Celik & Akyuz, 2018). 

We aim to compare and evaluate the effectiveness, practicality, accuracy, and flexibility of AHP, DEA, 

and TOPSIS in quantifying KPIs for logistics planning systems. This review seek insights into each 

method's strengths and limitations by synthesizing findings from 13 studies.  

3.2.2 Discussion of Methods 
This section discusses methods for quantifying and prioritizing KPIs in logistics planning. We 

conducted an SLR to determine the most suitable approach for KPI weighting in this study, analysing 

13 relevant academic articles. 

a. AHP 

AHP has been demonstrated to be highly effective in various logistics contexts due to its structured 

framework for evaluating and prioritizing KPIs. The method allows for a systematic pairwise 

comparison of criteria (Sirisawat et al., 2024). The literature reviewed highlighted AHP's ability to 

integrate qualitative and quantitative data, providing insights into KPI performance. For instance, 

AHP effectively prioritized KPIs such as patient satisfaction and operational efficiency in healthcare 

logistics, leveraging expert judgments to ensure reliability (Sirisawat et al., 2024). Additionally, AHP's 

use of the Balanced Scorecard framework further shows its effectiveness in performance 

measurement (Regragui et al., 2018). AHP is flexible and adaptable to various contexts. The method 

can be easily tailored to specific needs and integrated with frameworks like the Balanced Scorecard. 

Studies highlighted AHP's flexibility in the healthcare and supply chain contexts, where it effectively 

addressed diverse evaluation criteria (Regragui et al., 2018). AHP is practical in terms of its ease of 

implementation and manageable resource requirements. The method involves straightforward 

mathematical calculations that can be performed using standard statistical software. AHP's reliance 

on expert judgments makes it clear that the evaluations depend on practical experience, which 

makes the method reliable when done with the correct people. Literature shows AHP's practicality in 

healthcare and supply chain contexts, highlighting again its integration with frameworks like the 

Balanced Scorecard (Chorfi et al., 2015). AHP's ease of use and low requirement for coding 

capabilities make it suitable for logistics teams with limited technical expertise. AHP is accurate in 

quantifying KPIs due to its structured approach and the use of consistency ratios to validate expert 

judgments. The method's ability to convert qualitative judgments into quantitative scores is 

functional. 

b. DEA 

DEA effectively evaluates efficiency across diverse logistics contexts. DEA's ability to handle multiple 

inputs and outputs simultaneously allows for a comprehensive performance assessment. The 

method effectively benchmarks performance by comparing entities against best-performing peers, 

providing clear efficiency scores and actionable insights. For example, DEA was utilized to assess the 

efficiency of transport corridors for soybean and corn exports in Brazil, identifying the most efficient 

corridors and guiding future infrastructure investments (Alves Junior et al., 2021). Also, DEA was 

effectively implemented to improve road transport efficiency in a Spanish retail company, 

demonstrating significant improvements in operational performance (García-Arca et al., 2018). The 
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main issue in adapting in this thesis is DEA's practicality. DEA requires an understanding of linear 

programming and access to specialized software, but it does not require extensive data collection. 

However, the need for specialized software may present a challenge for logistics teams with limited 

coding capabilities. DEA's accuracy comes from its detailed mathematical framework, which ensures 

precise efficiency assessments. The method's ability to handle multiple inputs and outputs without 

requiring specific functional forms improves accuracy. DEA's use in evaluating port and transport 

efficiency demonstrated its capability to provide detailed and reliable efficiency scores (Danladi et 

al., 2024). DEA's flexibility is apparent in its adaptability to different contexts and ability to integrate 

with other models, such as the Network Equilibrium Model. The method can be applied to various 

logistics scenarios. Literature shows DEA's flexibility in evaluating transport corridors and road 

transport efficiency (Alves Junior et al., 2021). 

c. TOPSIS 

TOPSIS ranks and selects alternatives based on their closeness to an ideal solution. TOPSIS is 

particularly useful in multi-criteria decision-making scenarios, evaluating alternatives against ideal 

and negative-ideal solutions. In maritime transportation engineering, TOPSIS effectively ranked 

decision-making problems, providing precise and reliable results even in complex, multi-dimensional 

scenarios (Celik & Akyuz, 2018). The method's ability to provide precise rankings highlights its 

effectiveness. While TOPSIS is straightforward in its computational process and the clarity of its 

results, its practicality in this thesis context is limited due to the requirement for a clearly defined 

adverse scenario. The method is relatively simple and only requires limited computational resources. 

Studies have shown its practicality in supply chain contexts, providing clear and actionable rankings 

(Jothimani & Sarmah, 2014). TOPSIS can be implemented using spreadsheet software, making it 

accessible for logistics teams with limited technical resources. The problem is that TOPSIS involves 

identifying ideal and negative-ideal solutions for each criterion, which may not be feasible in logistics 

settings. The absence of a negative scenario can complicate the application of TOPSIS, making it less 

practical. TOPSIS accurately ranks alternatives based on their proximity to ideal solutions. The 

method's ability to provide clear and consistent rankings ensures accuracy even in complex 

scenarios. Studies have demonstrated TOPSIS's accuracy in various contexts (Celik & Akyuz, 2018). 

TOPSIS is flexible in handling multiple criteria and adapting to various decision-making scenarios. The 

simplicity of its implementation process advances its flexibility. 

d. Decision  

The SLR reveals that AHP, DEA, and TOPSIS each have unique strengths in quantifying KPIs for 

logistics planning. AHP excels in structured evaluation and expert involvement, DEA excels in 

comprehensive efficiency assessment and benchmarking, and TOPSIS excels in precise and consistent 

ranking. All three methods are practical, accurate, and flexible, making them valuable tools for 

different aspects of logistics performance measurement. Given the context of logistics and the 

limitations related to coding capabilities and data availability, AHP emerges as the preferred choice. 

AHP is superior regarding practicality and ease of use considering other methods mentioned. AHP's 

ability to be implemented with minimal coding requirements and its effective integration with 

existing frameworks make it highly suitable for limited technical expertise. Therefore, AHP is selected 

as the optimal method to use in weighting of the KPIs.  

3.2.4 Multiplicative AHP 
AHP is a comprehensive and structured decision-making technique that helps analyse complex 

decisions by breaking them down into a multi-level hierarchical structure. AHP incorporates 

qualitative and quantitative decision-making, allowing decision-makers to compare elements at each 

hierarchy level.  
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AHP's primary advantage lies in its use of an intuitive semantic scale to compare and rank 

alternatives and to determine criteria weights. However, when new alternatives are introduced, AHP 

can be subject to rank reversal. Additionally, decision-makers' responses sometimes need to be more 

consistent. AHP addresses this issue by calculating the consistency ratio (CR) and ensuring it is below 

10% to confirm judgment coherence (Chorfi et al., 2015). Tu et al. (2023) proposes two methods to 

avoid the issue: Axiom-Based Prioritization and MAHP. According to the article, axiom-based 

prioritization performs better than MAHP in handling rank reversal issues, but it is much more 

complex to apply. Rank reversal occurs when the addition or removal of alternatives affects the 

ranking of the existing alternatives. Since this is not an essential consideration for our case and 

alternatives (KPIs) will be consistent during the execution of the thesis, we decided to use the MAHP 

model.  

Ramanathan (1996) and Tu et al. (2023) explain how to use MAHP. The process starts by defining the 

decision goal and structuring the problem into a hierarchy, including the overall goal, criteria, sub-

criteria, and alternatives. The relative importance of each element is then assessed through pairwise 

comparisons, forming a PCM where alternatives are evaluated against each other. Entries in the 

PCM, denoted as 𝑎𝑖𝑗, represent the factor by which alternative 𝑖 is preferred over alternative 𝑗 

concerning a criterion. The reciprocal value is used when the comparison is inversed, ensuring that  

𝑎𝑖𝑗 =  1
𝑎𝑗𝑖

⁄ . 

Then calculation of local weights comes. The local weights of alternatives are derived by calculating 

the geometric mean of each row in the PCM: 

𝑤𝑖 = (∏ 𝑎𝑖𝑗

𝑛

𝑗=1

)

1 𝑛⁄

 

Equation 1: Geometric Mean 

These raw weights are then AI-systemlized to sum to one, yielding the AI-systemlized weights 𝑤𝑖
′ as 

follows: 

𝑤𝑖
′ =

𝑤𝑖

∑ 𝑤𝑘
𝑛
𝑘=1

 

Equation 2: AI-systemlization 

This AI-systemlization facilitates the comparability of weights across different criteria. 

Next step is the aggregation of weights for multiple criteria. The purpose of the aggregation process 

in AHP is to combine weights across different levels of a decision hierarchy, typically when there are 

overarching criteria and more specific sub-criteria. This aggregation is essential in complex decision-

making scenarios. However, in scenarios where the decision structure comprises a single layer of 

criteria, the weights derived from the initial PCM calculations provide a direct measure of each 

criterion's relative importance without further aggregation. However, in our case, we have a multi-

level hierarchy (Level 1, 2, and 3) also as shown in Figure 4. Therefore, once we calculate weights for 

each level, we can aggregate them using geometric mean aggregation to get the final weights for the 

detailed metrics in Level 3.  

These weights conclusively represent the logistic experts' assessments and preferences regarding the 

importance of the evaluated KPIs. This simplicity in structure might give a more straightforward 

application of the AHP but also provides clarity and focus on decision-making. 
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Also, the consistency of each PCM can beassessed using the CR, which is calculated as: 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 

Equation 3: Consistency Ratio 

Here, 𝐶𝐼  is the Consistency Index derived from the eigenvalue method or approximation, and 𝑅𝐼 is 

the Random Index, which depends on the number of alternatives. A 𝐶𝑅 less than 0.1 is typically 

considered acceptable, indicating that the matrix has an acceptable level of consistency. If the 𝐶𝑅 

exceeds this threshold, the judgments within the PCM may require reassessment and adjustment. 

Adjustments may involve altering some evaluations to reduce subjectivity and increase logicality.  

 

3.3 Analysis and Visualization Methods 
This section answers KQ3, introduces several statistical and analytical methods to assess individual 

and composite KPIs, focusing on approaches that combine, compare, and visualize performance 

metrics. The review also incorporates principles of data visualization, as effective data representation 

is critical to translating statistical findings into understandable, actionable insights.  

3.3.1 Analysis Methods 
Weighted Composite Score 

In Devellis (2016) on measurement scales, composite scores are introduced to combine multiple 

items into a single measure, enabling the capture of complex, theoretical constructs that individual 

items alone might not fully represent. The WCS, a composite score with different weighted metrics,  

aggregates multiple performance indicators into a single overall score that reflects the relative 

importance of each KPI. This single score can then identify general trends, make comparisons, or 

simplify complex data into actionable insights.  

Descriptive and Comparative Statistics for Individual KPIs 

Descriptive statistics form the basis for understanding data distributions and tendencies for each KPI 

in isolation. As Dong (2023) emphasizes, descriptive statistics is fundamental in statistical analysis, 

providing essential methods to summarize and organize data variability in meaningful ways. Metrics 

such as mean, median, variance, and standard deviation are crucial to comprehending the typical 

performance levels and variability across KPIs. For instance, standard deviation quantifies the spread 

of values around the mean. This allows analysts to detect KPIs where the AI system offers more 

consistent results than the manual system or where optimization may be required to reduce 

variability. Dong (2023) highlights that these basic descriptive measures serve as a "building block" 

for more complex statistical analyses, making them essential to initial data assessments and 

comparative analysis stages. 

Such comparative insights add a layer of individual KPI analysis that complements the overall 

composite score. Therefore, descriptive statistics provide Bouwvervoer with clarity and precision in 

the initial KPI assessment.  

Weighted Difference Analysis 

Weighted Difference Analysis evaluates the difference in performance between two systems by 

adjusting each KPI difference according to its assigned weight. Given its relative importance, this 

approach provides a perspective by highlighting how each KPI individually contributes to the overall 
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performance gap. The methodology is particularly beneficial in comparative frameworks, where 

organizations must understand the impact of adopting new systems in specific operational areas.  

The study by Soriano-Gonzalez et al. (2023) on KPIs in urban mobility logistics for sustainable cities 

offers relevant support for this approach. In examining critical KPIs for Barcelona's mobility logistics, 

the authors underscore the need for a framework that allows each KPI to be weighted according to 

its impact on strategic goals, a fundamental principle in WDA. The authors' use of the Eltis method, a 

standardized KPI measurement framework, supports the need for weighted approaches in 

performance comparison. In this context, WDA can be seen as an extension of these standardized 

frameworks, offering a way to incorporate KPI-specific insights into a comprehensive performance 

comparison.  

3.3.3. Visualization Methods  
Initial Knowledge  

Data visualization is a critical tool in transforming data into actionable insights. It helps decision-

makers to quickly identify patterns, trends, and relationships that may remain hidden. Visualization 

allows datasets to be understood through visuals, where information is presented in a digestible, 

accessible format, aiming to reduce the viewer's cognitive load and improve interpretability. 

Paczkowski (2021) emphasizes that effective data visualization relies on principles that help perceive 

and understand visual representations. One critical goal of data visualization is to reduce or eliminate 

"chartjunk"—outside elements in a graph that do not contribute to the primary message. Tufte 

(2016) popularized this concept, arguing that visualization should be as clear and direct as possible to 

facilitate understanding. Elements like excessive colors, unrelated graphics, or complicated legends 

can confuse the main insights. Well-designed visualizations put away distractions, focusing the 

viewer's attention on the data's key message. The visualization design must also consider the data 

characteristics, particularly the continuity (discrete or continuous) and dimensionality (single or 

multiple series) of the data. This provides that the chosen visualization method best represents the 

data's structure, effectively revealing relationships, trends, and distributions. 

Data Size Considerations  

The size of the dataset plays a significant role in determining which visualization techniques are 

suitable and how effective they can be in obtaining insights. According to Paczkowski (2021), data 

visualization strategies vary based on dataset size, ranging from Small to Big Data applications. 

Smaller datasets, often under 106 data points, allow for detailed analysis using traditional 

visualization tools, while larger datasets require adaptations to handle complexity and volume. 

For our focus on logistics KPIs, it is reasonable to categorize the data as small to medium based on 

the expected number of observations. In logistics performance tracking, typical datasets may contain 

fewer than 10,000 observations, aligning with the size range that human visual perception can 

process effectively. The human eye can process a maximum of  106 to  107 points, making large-scale 

visualizations challenging to interpret. The dataset sizes categorized as small to medium comfortably 

fit into this perceptual range, indicating that traditional visualization techniques will work for our 

case without extensive modifications. Given this small to medium data scale, techniques like scatter 

plots, line charts, boxplots, and bar charts are likely acceptable.  

Visualization Flowchart 

With the data size identified as small to medium, we can now move on to building a flowchart, 

constructed to streamline the selection of visualization techniques for KPIs.  
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Figure 5: Visualization Technique Selection Aid Flow Chart 

This flow chart (Figure 5) guides users through decisions based on data attributes, such as continuity 

(continuous or discrete), the number of series (single or multiple), and the presence of a time 

dimension. This approach simplifies the visualization selection process. It ensures that each KPI is 

represented in an interpretable way, allowing decision-makers to draw meaningful conclusions and 

take informed actions.  

3.4 Conclusion 
This chapter has addressed RQ1 by identifying the most relevant KPIs for evaluating logistics planning 

performance at Bouwvervoer and KQ1 by establishing a structured framework for KPI selection. The 

eight chosen KPIs, five focused on transportation effectiveness and efficiency, and three addressed 

employee satisfaction and customer point of view, provide a basis for comparing manual and AI-

driven planning systems. Additionally, the chapter explored KQ2, determining how KPIs can be 

quantified and weighted through multi-criteria decision-making techniques. The systematic literature 

review of 13 articles examined AHP, DEA, and TOPSIS as potential methodologies for KPI weighting. 

The comparative analysis demonstrated that while each method has distinct strengths, AHP emerged 

as the most suitable choice due to its structured evaluation process, practical implementation, and 

integration with existing decision-making frameworks. MAHP was introduced as a tool to improve 

consistency in KPI prioritization while addressing limitations such as rank reversal. Finally, KQ3 was 

answered by selecting an approach to analysing and visualizing KPI performance. WCS and WDA 

were introduced as key methods for evaluating logistics efficiency, along with descriptive and 

comparative statistical techniques. A visualization selection flowchart was developed to guide the 

representation of KPI data. 

This chapter set the foundation for developing a comparative analysis framework by defining KPIs, 

selecting a weighting methodology, and analytical tools for performance assessment. 
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4. Conceptual Framework Creation  
This chapter presents the development of the conceptual framework designed to compare the 

manual logistics planning system with the AI-driven system at Bouwvervoer. The framework is 

structured around KPIs, a MAHP for KPI weighting, and analysis tools that assess system 

performance.  

4.1 Selection of KPIs and Causes of (Under) Performance 
KPIs have been selected based on their relevance to Bouwvervoer’s operational goals and data 

availability from manual and AI-driven systems. Each KPI addresses a critical aspect of logistics 

planning, including efficiency, resource management, reliability, and cost-effectiveness. By measuring 

and analysing these KPIs, we can provide a comprehensive assessment of the performance of both 

systems and offer data-driven insights for decision-making. Appendix 2 summarizes the chosen KPIs, 

detailing their definitions, significance, how they are measured, and their practical applications in the 

logistics process. 

In this chapter we also discuss possible causes for unsatisfactory performance in the chosen KPIs. 

One key factor contributing to underperformance in capacity utilization at Bouwvervoer is inefficient 

load planning. When vehicle capacity is not maximized, operational costs increase as more trips are 

required to deliver the same volume of goods. Additionally, incomplete or unclear data regarding 

cargo amounts in the current systems may worsen the issue, making it challenging to optimize truck 

loading fully. 

Delays in deliveries cause underperformance in on-time delivery performance. The causes of these 

delays can include suboptimal route planning, traffic congestion, and unexpected disruptions, such 

as accidents or weather conditions. Additionally, insufficient coordination between scheduling and 

actual delivery execution can result in bottlenecks.  

Underperformance in the total distribution cost KPI is often the result of inefficient resource 

allocation. High fuel costs, underutilized labor, and poor vehicle maintenance management can 

contribute to escalated distribution costs. Another factor driving costs up is the increase in empty or 

underloaded trips, which wastes fuel and driver hours.  

Lower turnover per hour per driver may result from inefficient scheduling, poorly optimized routes, 

or extended idle times during deliveries. In some cases, drivers may face delays due to traffic, loading 

issues, or coordination challenges, which reduce their productivity. Another potential issue is the 

inability to match drivers with trips that maximize their productivity. Poor communication and 

coordination between dispatchers and drivers also can contribute to lower performance in this KPI. 

A high percentage of empty kilometers indicates underperformance in route optimization. This issue 

often arises when trucks are sent out without fully utilizing their cargo capacity or when return trips 

are made without coordinating for return loads. The inability to match available shipments with 

return routes results in wasted fuel and a chance to optimize, increased operational costs, and higher 

carbon emissions.  

Employee dissatisfaction with their working hours can be attributed to inconsistent scheduling, long 

shifts, or a lack of flexibility in adapting personal preferences. Underperformance in this area may be 

caused by a lack of communication between management and drivers, where employees feel their 

needs and preferences should be considered. With structured surveys or feedback mechanisms to 

regularly assess employee satisfaction, Bouwvervoer can avoid upsetting its workforce.  



pg. 22 
 

Order accuracy can be improved due to communication breakdowns between warehouses, logistics 

planners, drivers, and inefficiencies in order fulfillment processes. Errors in packing or 

documentation can lead to incorrect deliveries, which frustrates customers and increases operational 

costs due to returns and re-delivery efforts.  

4.2 Data Availability and Gaps 
A critical factor in evaluating the manual and AI-driven logistics planning systems is the availability of 

reliable data for each KPI. However, as detailed in Appendix 3, significant gaps exist in the dataset, 

making it impossible to conduct a direct, data-driven comparison between the two systems. The lack 

of data affects the manual and AI-driven systems, limiting the feasibility of performing a fully 

quantitative assessment. While some datasets provide partial information for the manual system, 

Appendix 3 shows many crucial elements that are missing or incomplete.  

Drawing empirical conclusions on AI adoption benefits remains unfeasible without a unified dataset 

covering both systems. As a result, this study relies on a conceptual comparison framework rather 

than an empirical one, focusing on theoretical performance assessment methods rather than direct 

data analysis. Addressing these data gaps would require significant efforts in data collection, 

integration, and validation before a fully operational comparison could be conducted. 

4.3 MAHP Questionnaire  
This section introduces the MAHP methodology, which assign weights to the selected KPIs presented 

earlier. The MAHP is a decision-making tool that enables us to structure complex problems into a 

hierarchy and prioritize elements by calculating relative weights through pairwise comparisons. This 

approach is particularly useful in our context as it provides a quantitative means to evaluate and 

compare the relative importance of different KPIs. The MAHP plays role in deriving the weights of the 

eight KPIs identified in Section 3.1 and detailed in Section 4.1. These weights reflect the strategic 

priorities of Bouwvervoer's stakeholders and provide insight into which areas are most essential. The 

decision-makers involved in this process, including logistics planners and operational managers, will 

provide their insights through a structured MAHP questionnaire. This process involves pairwise 

comparisons of the selected KPIs using a standardized 9-point scale, enabling us to quantify the 

relative importance of each KPI. 

4.3.1 Data Collection 
The MAHP questionnaire was distributed to a group of key stakeholders within Bouwvervoer. These 

participants were selected based on their roles and expertise in the company’s logistics operations. 

The questionnaire was distributed via email as a structured digital survey, allowing participants to 

complete the pairwise comparisons conveniently. Given the technical nature of the MAHP process, 

each respondent was provided with detailed instructions on how to evaluate the KPIs using the nine-

point pairwise comparison scale. A total of six participants from Bouwvervoer, each with more than 

ten years of experience in logistics planning, were selected to participate in the MAHP survey. Their 

roles and years of experience make them well-suited to evaluate the performance metrics that are 

most relevant to Bouwvervoer’s operations. Response rate of the participants was 100%.  

4.3.2 MAHP Design  
The MAHP questionnaire is structured to evaluate the relative importance of the selected KPIs by 

organizing them into a multi-level hierarchy. This approach allows for a systematic breakdown of the 

decision-making process, ensuring each metric is weighted according to its significance. The 

hierarchical structure consists of three levels: Level 1 includes three main categories of metrics, Level 
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2 expands into specific sub-metrics, and Level 3 contains the most detailed KPIs that directly reflect 

logistics performance. 

The hierarchical structure, as shown in Figure 4 in Chapter 3, begins with Level 1, which consists of 

three main categories: 

1. Transportation Effectiveness and Efficiency 

2. Employee Satisfaction 

3. Customer Point of View 

In Level 2, each of these categories is further broken down into more specific sub-metrics, such as 

Logistics Costs, Logistics Efficiency, and Service Quality under Transportation Effectiveness, and 

similar expansions for the other categories. Finally, Level 3 consists of detailed KPIs like Total 

Distribution Cost, Capacity Utilization, and On-time Delivery Performance, which are linked to their 

respective sub-metrics and categories. 

For each level in the hierarchy, pairwise comparisons are conducted to determine the relative 

importance of the metrics under consideration. For example, within Transportation Effectiveness, the 

importance of Logistics Costs is compared to Logistics Efficiency and Service Quality. Respondents 

rate these comparisons using a logarithmic scale, reflecting how much more critical one metric is 

relative to another. A score of 1 represents equal importance, while scores like 3, 5, 7, and 9 reflect 

increasing degrees of importance for one metric over another. Intermediate values (2, 4, 6, 8) are 

also used in this questionnaire for finer distinctions. 

This comparison process is repeated at each level of the hierarchy. At Level 3, the detailed KPIs such 

as Capacity Utilization, % Empty km's / Total km, and Turnover per Hour per Driver are compared in 

pairs within their sub-metric categories. The exact process is applied to the Employee Satisfaction 

and Customer Point of View categories, ensuring all KPIs are evaluated about their peers. The final 

questionnaire given to participants can be seen in Appendix 4. All calculations done and explained in 

Chapter 4.3.3 can be found in Appendix 5.  

Matrices 

Once the pairwise comparisons have been completed, the results are used to form matrices at each 

level. A matrix for a particular level compares all elements within that level against each other. For 

instance, in Level 2, under Transportation Effectiveness, the matrix include logistics costs, efficiency, 

and service quality comparisons. This matrix captures the relative importance of each sub-metric in 

achieving transportation effectiveness. 

Similarly, matrices are constructed for other main categories in Level 2 and for the detailed KPIs in 

Level 3. These matrices serve as the basis for calculating the metrics' weights. 

Calculation of Weights 

After the pairwise comparison matrices were constructed, the geometric mean method was used to 

calculate the local weights for each element. The geometric mean of each row in the pairwise 

comparison matrix was calculated to derive the raw weights for each criterion. These raw weights 

were then AI-systemlized so that the sum of the weights for each level equaled one. This process was 

carried out for all levels of the hierarchy, resulting in the AI-systemlized weights for Level 1, Level 2, 

and Level 3 elements. 

Aggregation of Weights Across Levels 
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The next step involved aggregating the weights across levels to obtain the final priority weights for 

the detailed KPIs in Level 3. This was done by multiplying the weights at each level from Level 1 to 

Level 3. For example, the final weight for Total Distribution Cost was calculated by multiplying the 

weight of Transportation Effectiveness (Level 1), the weight of Logistics Costs (Level 2), and the 

weight of Total Distribution Cost (Level 3). This process ensured that the priorities of the detailed 

metrics were influenced by their corresponding higher-level categories, providing a comprehensive 

evaluation of the KPIs. 

Handling of Multiple Weights for On-time Delivery Performance 

A unique situation arose with On-time Delivery Performance (OTDP), which appeared under 

Transportation Effectiveness and Customer Point of View. This resulted in two distinct weights for 

OTDP. To address this, two approaches were considered: calculating a weighted average of the two 

weights to produce a single final weight or keeping the two weights separate to reflect the different 

impacts OTDP has in each category. Both approaches were evaluated, and the decision on which to 

apply was based on the specific focus of the analysis. Because the thesis focuses on practical 

applications we chose to go with the first approach.  

Consistency Check 

Finally, the CR was calculated for each pairwise comparison matrix to ensure that the judgments 

were consistent and logical. The CR was determined by first calculating the largest eigenvalue of the 

matrix and then using the CI and the RI, which was taken from Saaty (1987). Matrices with less than 

three elements had a RI of zero, therefore were not calculated. All CR values were below the 

accepted threshold of 0.1, indicating that the judgments made by the participants were consistent 

and no further adjustments were needed. 

4.3.3 Results and Analysis 
Applying the MAHP resulted in a detailed evaluation of the KPIs relevant to the decision-making 

framework. We used Excel to carry out the calculation, which can be seen in Appendix 5. Structuring 

the problem into a hierarchy, performing pairwise comparisons, and aggregating the results across 

levels gave the final priority weights for each KPI. These weights explain the relative importance of 

each KPI within the context of operational and strategic objectives. 

Final Weights of KPIs 

The final weights of the KPIs are summarized in Table 3. These weights reflect the judgments made 

by the participants, aggregated through the MAHP process to give a clear ranking of the KPIs based 

on their relative importance. 
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Table 3: KPI Weights 

These final weights represent the priorities assigned to each KPI by the participants, with the sum of 

the weights totaling 1.  

Consistency of Judgments 

Throughout the MAHP process, the CR was calculated for each pairwise comparison matrix to ensure 

that the participants' judgments were consistent. In all cases, the CR values were below the 

acceptable threshold of 0.1, indicating that the participants' judgments were logical and coherent. 

This consistency check further validated the results' reliability, ensuring no significant adjustments 

were needed. 

Insights on KPI Prioritization 

The following bar chart (Figure 6) visually represents the assigned weights for each KPI, highlighting 

their relative importance in Bouwvervoer's logistics planning. Additionally, the comparative heatmap 

(Figure 7) displays these KPIs within their categorized framework, emphasizing the strategic 

distribution of priorities across Transportation Effectiveness, Employee Satisfaction, and Customer 

Point of View.  

As seen in the bar chart, On-time Delivery Performance and Order Accuracy emerge as top priorities, 

aligning with Bouwvervoer's emphasis on customer satisfaction and operational reliability. KPIs 

related to cost efficiency and resource utilization, such as Total Distribution Cost and Capacity 

Utilization, are represented in blue, signifying their role in Transportation Effectiveness. Meanwhile, 

KPIs under Employee Satisfaction are shown in green, reflecting moderate but essential importance 

to employee well-being and work-life balance. 

KPI Weight 

Total Distribution Cost 0.12302 

Capacity Utilization 0.12809 

% Empty km’s / Total km 0.06698 

Turnover per Hour per Driver 0.07520 

On-Time Delivery Performance 0.21741 

Satisfaction with Working Hours 0.07064 

Fulfilment of Specific Driver Request 0.10250 

Order Accuracy 0.21616 



pg. 26 
 

 

Figure 6: Bar Graph of KPI Weights 

The comparative heatmap offers a structured view of KPI priorities within their respective categories. 

In the Transportation Effectiveness category, KPIs such as Capacity Utilization and Total Distribution 

Cost are weighted significantly, supporting their essential roles in achieving cost-efficient and 

resource-optimized operations. By contrast, Customer point-of-view KPIs (On-time Delivery 

Performance and Order Accuracy) stand out significantly, reflecting a solid strategic focus on 

customer satisfaction and service reliability. The Employee Satisfaction category, represented by 

metrics such as Satisfaction with Working Hours and Fulfilment of Specific Driver Requests, shows a 

moderate priority level, indicating the company's balanced approach to maintaining workforce well-

being alongside operational goals. This hierarchical visualization reveals how Bouwvervoer's 

stakeholders have layered priorities, with the highest focus on customer-facing metrics followed by 

cost and efficiency considerations. 
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Figure 7: Heatmap of KPI Weights 

Implications for Decision-Making 

The final results provide decision-makers with clear insights into which KPIs should be prioritized to 

improve operational performance and customer satisfaction. With On-time Delivery Performance 

and Order Accuracy emerging as top priorities, organizations can focus on improving these areas to 

ensure reliable service delivery. Optimizing Capacity Utilization and managing Total Distribution 

Costs will further enhance efficiency and profitability in transportation operations. 

4.4 Analysis Tools 
This chapter builds upon the literature discussed in Section 3.3 to establish a structured approach for 

analysing and visualizing KPI performance. WCS, as introduced by Devellis (2016), is used to 

aggregate multiple KPIs into a single performance measure to assess overall system performance. 

Descriptive and Comparative Statistics, as outlined by Dong (2023), serve as a foundation for 

understanding data distributions and variability, offering insights into the consistency of performance 

across different KPIs. WDA, discussed by Soriano-Gonzalez et al. (2023), enables a detailed 

examination of performance gaps between the manual and AI-driven systems by adjusting KPI 

differences according to their assigned importance. Additionally, data visualization techniques are 

crucial in improving the interpretability of KPI performance metrics. The principles outlined by 

Paczkowski (2021) and Tufte (2016) guide effective visual representation, ensuring that complex data 

is presented in an accessible and meaningful manner. 

4.4.1 Weighted Composite Score 
The WDA is calculated by combining multiple metrics, each adjusted by a set weight that reflects its 

relative importance. Each measure (or KPI) is first multiplied by its assigned weight to compute this 

score. These weighted values are then summed to yield a final composite score, representing an 
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overall performance measure. Formally, if 𝑥𝑖  represents each metric and 𝑤𝑖 its corresponding weight, 

the Weighted Composite Score 𝑆 can be calculated by means of Equation 4.  

𝑆 = ∑ 𝑤𝑖

𝑛

𝑖=1

× 𝑥𝑖  

Equation 4: Weighted Composite Score 

Where 𝑛 is the total number of metrics.  

This score provides an accessible, high-level overview of each system's performance, highlighting 

which system offers a stronger alignment with the company's logistical and operational goals. 

Scenario analyses will further explore how varying performance conditions and weight adjustments 

affect this score, offering insights into potential sensitivity to different KPIs. 

4.4.2 Descriptive Statistics  
The descriptive statistics approach involves calculating statistical measures for each KPI, including the 

mean, median, variance, and standard deviation. These statistics reveal patterns in performance, 

highlighting areas where each system may demonstrate greater consistency or volatility.  

Process and Key Metrics: 

• Mean: Provides the average value of each KPI, offering a baseline for performance 

comparison. 

• Median: Shows the central tendency, reducing the impact of outliers and providing a stable 

comparison point. 

• Variance and Standard Deviation: These metrics quantify the spread or variability around 

the mean, identifying KPIs with inconsistent performance or a higher likelihood of 

fluctuation. Lower variability suggests more excellent reliability, which is often desirable for 

KPIs linked to operational predictability. 

Descriptive statistics can identify differences between the manual and AI-driven systems for each KPI 

beyond their average values. For example, while both systems may achieve similar average on-time 

delivery rates, the standard deviation could highlight one system as more reliable.  

4.4.3 Weighted Difference Analysis 
WDA examines how each KPI individually contributes to the overall performance gap between the 

manual and AI-driven systems. The analysis calculates the weighted difference for each KPI by 

determining the absolute difference in each KPI's value between the manual and AI-driven systems. 

Then, this difference is multiplied by the KPI's weight. 

The weighted difference for a given KPI Di is expressed as: 

𝐷𝑖 = 𝑤𝑖 × |𝑥𝑖
𝐴𝐼 − 𝑥𝑖

𝑀𝑎𝑛𝑢𝑎𝑙| 

Equation 5: Weighted Difference 

Where 𝑤𝑖 is the weight of the 𝑖-th KPI, and 𝑥𝑖
𝐴𝐼  and 𝑥𝑖

𝑀𝑎𝑛𝑢𝑎𝑙  represent the KPI values for the AI-

driven and manual systems, respectively. 

For instance, if "On-time Delivery Performance" has a substantial weighted difference, it may suggest 

that the AI system improves punctuality over the manual system. Conversely, suppose a KPI like 
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"Total Distribution Cost" shows little difference. In that case, the analysis suggests that both systems 

have similar cost efficiency. This analysis helps prioritize specific KPIs for operational adjustments, 

especially in areas where the weighted difference is significant. For instance, a high-weighted 

difference in "Capacity Utilization" might start actions to optimize AI algorithms for better resource 

management.  

4.4.4 Visualization of KPIs 
Each KPI is paired with a visualization technique selected using the flowchart developed in section 

3.3.3. This flowchart guided the decision-making process for each visualization, providing alignment 

with each KPI's data characteristics, such as continuity, temporal nature, and series type.  

The Figure 9 below outlines the chosen visualization techniques for each KPI, along with the 

rationale for each choice: 

 

 

KPI Visualization 
Technique 

Rationale 

Capacity 
Utilization 

Line Chart A line chart works because capacity utilization is a continuous, 
percentage-based metric. This visualization makes it easy to observe 

efficiency changes between the two systems 

On-time 
Delivery 

Performance 

Line Chart As a time-based metric, a line chart captures trends in delivery 
punctuality, allowing for a clear comparison of reliability over time 

Total 
Distribution 

Cost 

Stacked 
Column 

Chart 

Since distribution costs include multiple components, a stacked 
column chart allows a breakdown of cost elements over time, making 

it easier to identify specific areas for potential cost savings 

Turnover 
per Hour per 

Driver 

Bar Chart Since this KPI is a straightforward comparison of productivity rates 
per driver, a bar chart will allow for an easy comparison of hourly 

turnover 

% Empty 
km’s / Total 

km 

Line Chart If this metric is tracked over time, a line chart can capture trends and 
patterns in route efficiency. This visualization shows whether the AI-

driven system leads to a reduction in empty kilometres over time 

Satisfaction 
with 

Working 
Hours 

Pie Chart A pie chart displays the proportion of employee satisfaction levels 
and provides a clear view of the workforce perspective regarding each 

system's impact on work-life balance 

Fulfillment 
of Specific 

Driver 
Requests 

Pie Chart A pie chart displays the percentage of fulfilled driver requests across 
both systems 

Order 
Accuracy 

Line Chart A line chart captures the trend in order accuracy over time 

Table 4: Chosen Visualization Techniques for KPIs 

4.5 Conclusion 
This chapter builds upon the foundation established in Chapter 3, where the KPIs were initially 

identified by refining their definitions, analyzing potential causes of underperformance, and setting 

up the necessary analysis tools. Through development of a conceptual comparison framework, this 

chapter establishes a methodology for evaluating the manual and AI-driven logistics planning 
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systems at Bouwvervoer. This chapter has answered RQ2 by determining the relative importance of 

each KPI through the MAHP. The established KPI weights is the basis for future comparisons and 

performance assessments within the framework. Additionally, this chapter has addressed RQ3 by 

assessing data availability and gaps. The analysis in Appendix 3 highlights the significant missing data 

in manual and AI-driven systems, making an empirical, data-driven comparison unfeasible at this 

stage. Furthermore, this chapter extends the analytical framework introduced in Chapter 3 by 

integrating WCS, WDA, and Descriptive Statistics. Applying these techniques provides that the 

framework is prepared to provide quantifiable insights into system performance. The selection of 

visualization techniques, guided by  the literature, further improves the interpretability of KPI results.  

Overall, this chapter establishes the foundational elements of the conceptual comparison 

framework, setting the stage for the implementation of a practical solution. By defining KPIs, 

assigning weights, and selecting appropriate analysis tools, this framework is ready to be translated 

into an actionable tool. The next step involves creating a Power BI dashboard to apply the framework 

and visualize performance metrics.  
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5. Solution Implementation 
This chapter presents the implementation of the conceptual framework through a roadmap and an 

interactive dashboard. These tools form the core of the comparative evaluation framework designed 

to analyze and compare the performance of manual and AI-driven logistics planning systems at 

Bouwvervoer. The roadmap provides a structured visual representation of the process, while the 

dashboard is a practical interface for managers to interact with performance data. Together, these 

solutions offer an approach to decision-making, helping Bouwvervoer to evaluate which system 

works better with its operational objectives. 

5.1 Roadmap for System Comparison 
The roadmap in Figure 8 outlines the sequential data flow and activities required for the comparative 

framework. It serves as a guiding tool, addressing all relevant components of the comparison 

process. The roadmap starts with data input from both the manual planning system and the AI-

driven system, facilitated by a unified database that ensures consistency and comparability. 

Subsequently, the planning systems generate logistics plans independently. The manual system relies 

on human decision-making supported by digital tools, while the AI system automates route and 

resource planning. Each system's performance is evaluated based on eight predefined KPIs. The 

roadmap incorporates visualization and analysis stages where individual KPI performance is 

observed. WCS and WDA calculations are subsequently performed to aggregate performance metrics 

into interpretable scores. These calculations allow managers to determine whether the AI-driven 

system offers superior performance compared to the manual system. Finally, the roadmap reaches a 

final, which is a comparison of the two systems' KPIs together. 

 

 

 

Figure 8: Comparison Roadmap 

 

Framework / Dashboard 
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5.2 Dashboards as a Central Tool for Visualization 
Dashboards have emerged as a central tool for visualizing logistics system performance. Piela (2017) 

highlights the importance of dashboards in presenting KPIs to multiple stakeholders, especially in 

environments that require real-time updates. Dashboards offer flexibility, as they can be customized 

for different organizational levels—operational, tactical, and strategic—allowing users to access 

relevant KPIs appropriately. This adaptability is essential in logistics, where real-time visibility of 

performance metrics can influence daily operational decisions, while static views may support long-

term strategic planning. 

Dashboard design should prioritize simplicity and clarity to avoid overwhelming users with too much 

data. Piela (2017) also emphasizes the need for interactive and dynamic visualizations, which allow 

users to drill down into data and obtain more granular insights. Proper visualization techniques can 

vastly improve decision-making processes in logistics by making KPIs more accessible and easier to 

understand. 

The Power BI dashboard developed for this study operationalizes these principles. Explicitly designed 

for Bouwvervoer's managers, the dashboard integrates simplicity and interactivity, ensuring its 

usability for decision-makers at the strategic and operational levels. 

5.3 Mock-Up Data 
To facilitate the development and demonstration of the Power BI dashboard, a seven-week mock-up 

dataset was created to simulate the performance of the manual and AI-driven logistics planning 

systems. This synthetic dataset was necessary due to the data limitations outlined in Appendix 3, 

which revealed significant gaps in the availability of accurate operational data—particularly from the 

manual and still-developing AI systems. The purpose of the mock-up data was to enable the 

implementation of the conceptual comparison framework in a functional environment, showcasing 

its analytical and visualization capabilities. 

The mock-up data was structured to reflect two key dynamics. First, the AI-driven system was 

designed to outperform the manual system across all eight KPIs. Second, the mock-up data 

incorporated higher variability in the weekly performance of the AI-driven system. This design choice 

reflects a common trade-off in automated systems. While they often achieve superior overall results, 

they may be more sensitive to external factors, leading to more significant fluctuations in 

performance over time. In contrast, the manual system displayed more stable but lower 

performance trends. While the mock-up data is artificial and do not fully reflect the complexities of 

actual operations, it is a valuable tool for demonstrating the dashboard's functionality and potential. 

5.4 Dashboard Solution 
The Power BI dashboard is an interactive decision-support tool designed to evaluate and compare 

the performance of manual and AI-driven logistics planning systems at Bouwvervoer. The dashboard 

integrates KPI monitoring, weighted analysis, and performance comparison within a structured 

architecture, ensuring that key stakeholders can easily interpret and act upon logistics performance 

insights. The system has been developed explicitly for managerial use. 

The dashboard is structured as a multi-layered system that follows a logical data pipeline, enabling 

tracking, analysing, and comparing performance indicators. It is built upon four key functional 

components: KPI definition and weighting, individual KPI analysis, WCS & WDA calculation, and 

system-wide comparison. 
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5.4.1 Navigation and KPI Overview 
At the dashboard's core, a structured navigation panel with the same design as the Comparison 

Roadmap (Figure 8) shown in Section 5.1 allows users to interact with various analysis pages. The 

KPIs (overview) page, shown in Figure 9, provides a foundational understanding of the eight selected 

KPIs, outlining their definitions. The dashboard presents this information using text-based 

descriptions, tables summarizing KPI weights, and a pie chart visualizing the relative importance of 

each KPI. Users can directly track individual KPI performance from this section by clicking on buttons 

on right below side of the page.   

 

Figure 9 : KPIs Page 
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5.4.2 KPI Tracking and Visualization 
The dashboard's KPI tracking functionality allows users to explore the performance trends of 

individual KPIs across the seven-week data period. Each KPI has a dedicated page that can be guided 

through the Visualization & Analysis page shown in Figure 10.  

 

Figure 10 : Visualization & Analysis Page 

 

When clicked upon one of the KPI page buttons, the opened page displays time-series visualizations, 

summary statistics, and system-specific insights. Figure 11 shows one of the examples out of sixteen 

KPI pages.  

 

Figure 11 : Track Manuel Capacity Utilization Page 
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Key statistical measures, such as mean, median, variance, and standard deviation, are presented at 

the top of the page, offering a snapshot of the system's stability. Below, a line graph visualizes weekly 

trends, enabling users to identify fluctuations, patterns, and potential anomalies in logistics 

efficiency. 

An important design choice was incorporating separate KPI pages for manual and AI-driven systems, 

allowing for independent assessments before direct comparisons. This structure ensures that users 

understand each system's strengths and weaknesses before evaluating performance differences. 

5.4.3 WCS and WDA Calculation 
The dashboard integrates a WCS and WDA calculations page, shown in Figure 12, translating raw KPI 

performance data into a structured evaluation framework. The WCS and WDA values are presented 

through numeric displays, comparison tables, and summary insights. A key feature of this section is 

its categorization of improvement, where overall performance change is classified into qualitative 

categories (e.g., "Modest Improvement") to provide more precise interpretations of the AI system's 

impact. 

 

Figure 12 : WCS and WDA Calculations Page 

 

5.4.4 System-Wide Comparison  
The final component of the dashboard is the Comparison page shown in Figure 13, which aggregates 

all KPI evaluations into a direct comparison between the manual and AI-driven logistics planning 

methods. This section enables side-by-side evaluations and interactive filtering, providing users with 

a comprehensive decision-support tool. The dashboard uses comparative line graphs to present 

individual KPI performance trends for both systems. Users can select a specific KPI to visualize its 

historical performance across the seven weeks, enabling targeted assessments. 
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Figure 13: Comparison Page 
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6. Solution Evaluation 
The evaluation chapter assesses the Comparison Roadmap and KPI Dashboard developed as part of 

the thesis. The assessment is based on feedback collected through an evaluation form completed by 

the company supervisor. This chapter critically examines the tools' usability, functionality, and 

strategic impact, highlighting their contributions to decision-making processes at Bouwvervoer while 

identifying areas for improvement. The feedback form used for evaluation can be found in Appendix 

6. 

6.1 Feedback Summary 
The primary objective of this assessment was to determine the dashboard's usability, functionality, 

and overall effectiveness in supporting decision-making processes at Bouwvervoer. By gathering 

insights from the company supervisor, this evaluation highlights strengths and identifies areas for 

improvement. 

The feedback was categorized into four main areas: usability and design, functionality and technical 

performance, impact on decision-making, and aesthetic and accessibility. Each section summarizes 

key observations, ratings, and recommendations for future improvements. While the dashboard 

successfully provides a structured framework for performance analysis, feedback suggests changes 

that could further improve its user experience, navigation efficiency, and comparative analysis 

capabilities. 

It is important to note that the evaluation was conducted by only one participant, the company 

supervisor, limiting the scope and comprehensiveness of the assessment. While their insights 

provide valuable feedback, the absence of multiple users' perspectives restricts the ability to 

measure how different stakeholders might interact with and interpret the dashboard. 

6.1.1 Usability and Design 
The usability of the dashboard was rated 4/5, indicating that the tool is generally easy to navigate. 

The company supervisor noted that a key improvement would be ensuring users can return to the 

"home" page with one click from any section. Additionally, the dashboard layout received a 3/5 score 

for intuitiveness. It was observed that the lack of explicit markers identifying KPI origins (manual or 

AI) and their placement within the broader workflow sometimes caused confusion. Addressing these 

concerns by incorporating a more dynamic and visually explicit navigation framework could enhance 

usability further. 

6.1.2 Functionality and Technical Performance 
The dashboard scored 4/5 in terms of the helpfulness of its visualizations, such as line charts and 

weighted composite scores, for understanding trends and differences between the manual and AI-

driven systems. A specific suggestion was to include comparative graphs overlaying manual and AI 

performance within a single visualization for easier direct comparisons. The technical bugs or 

limitations were not experienced, suggesting that the dashboard meets basic functionality 

expectations. 

6.1.3 Impact on Decision-Making 
The dashboard's impact on decision-making processes was rated 4/5. The company supervisor 

indicated that once populated with operational data, the dashboard could significantly support 

performance evaluations.  
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6.1.4 Aesthetic and Accessibility 
The dashboard's aesthetic design was considered appealing and professional, with a rating of 4/5. Its 

accessibility to users with limited technical expertise also scored 4/5, reflecting that the design 

successfully works for various users. 

6.2 Conclusion 
The evaluation highlights the dashboard's success in meeting its core objectives of improving data 

visualization and supporting decision-making at Bouwvervoer. While the tool demonstrates 

functionality and usability, addressing the identified areas for improvement will further improve its 

strategic impact. With these refinements, the dashboard will provide an even more effective 

platform for evaluating the transition from manual to AI-driven logistics planning. 
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7. Conclusion 
This final chapter brings together the key findings and contributions of the research, reflecting on 

how the study addressed its objectives and research questions. It begins by summarizing the 

methodology and results, including KPIs' selection and weighting, the comparison framework's 

development, and its implementation in a Power BI dashboard. The chapter then discusses the 

theoretical and practical implications of the framework, especially its relevance for Bouwvervoer and 

broader logistics decision-making. Finally, the study's limitations are assessed, and future research 

directions are presented. 

7.1 Summary 
This thesis aimed to develop a conceptual comparison framework for evaluating logistics planning 

systems, explicitly comparing a manual route planning system with an AI-driven alternative at 

Bouwvervoer. Given data availability constraints, the study constructed a structured methodology to 

assess logistics performance using KPIs, AHP-based weighting, and comparative analysis tools 

implemented in a Power BI dashboard. 

To answer RQ1 and KQ1, the research conducted a literature review to define a set of eight KPIs. The 

selected KPIs included Capacity Utilization, On-time Delivery Performance, Total Distribution Cost, 

Turnover per Hour per Driver, % Empty km / Total km, Satisfaction with Working Hours, Fulfillment of 

Specific Driver Requests, and Order Accuracy.  

To address RQ2 and KQ2, the study explored multiple weighting methodologies and selected MAHP 

as the most suitable approach. The MAHP framework provided structured, expert-driven 

prioritization of KPIs based on pairwise comparisons conducted with the company's logistics 

planners. The final weighting results indicated that On-time Delivery Performance and Order 

Accuracy were the most critical KPIs, reflecting the company's strong emphasis on service reliability. 

Cost-related KPIs such as Total Distribution Cost and Capacity Utilization were also highly weighted, 

demonstrating the financial and operational efficiency considerations in logistics decision-making. 

The study conducted a data availability analysis in response to RQ3. This revealed significant 

operational data gaps for manual and AI-driven logistics systems, as detailed in Appendix 3. The lack 

of comprehensive historical records made it infeasible to compare the two systems directly. 

Consequently, a seven-week mock-up dataset was created to simulate logistics performance trends. 

The dataset was structured to reflect variability in AI-driven decision-making while maintaining the 

stability of manual system performance. This ensured the Power BI dashboard could effectively 

demonstrate the framework's analytical capabilities. 

KQ3 focused on the tools necessary to analyze and visualize system performance in a way that 

supports decision-making. In response, the thesis reviewed and selected a set of established 

analytical methods: WCS to provide an overall performance metric, WDA to show system-level 

performance gaps by KPI, and Descriptive Statistics to allow examination of weekly stability and 

trends. These tools were supported by visualization techniques, including line charts, bar charts, pie 

charts, and stacked columns, which were selected based on the data characteristics of each KPI and 

implemented through a flowchart. 

The conceptual framework was then implemented in Power BI answering. The dashboard was 

designed as an interactive tool for logistics managers, featuring: 

• KPI tracking pages that visualize individual performance metrics. 

• WCS and WDA calculations for system-level assessment. 
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• A comparative analysis function allows users to assess performance trends between the 

manual and AI-driven systems. 

 

 

7.2Theoretical Contributions 
This research contributes to comparative performance assessment. Developing a KPI-based 

comparison model bridges a gap in the literature, as most existing studies focus on AI's impact on 

logistics without offering structured comparative methodologies. By integrating KPI-based 

performance measurement, WCS, and WDA, this study provides an approach for systematically 

evaluating logistics performance. 

The MAHP application introduces a weighting mechanism tailored for logistics KPIs. This multi-

criteria decision-making tool improves the objectivity of KPI prioritization, ensuring that expert 

judgment is systematically incorporated into performance evaluation. Additionally, this study 

advances the role of data visualization in logistics analytics by demonstrating how interactive 

dashboards can improve decision-making transparency. The combination of statistical analysis, multi-

criteria decision-making, and visualization techniques provides a foundation for future comparative 

studies in AI-driven logistics optimization. 

7.3 Practical Implications for Bouwvervoer and Industry 
The findings of this research have direct implications for Bouwvervoer and the logistics industry. The 

developed framework provides a decision-support tool that allows companies to evaluate AI 

adoption based on quantitative evidence rather than intuition or trial-and-error approaches. The 

results suggest that an immediate shift to AI-driven logistics planning may not be optimal. Instead, a 

hybrid approach that combines AI optimization with human oversight can lead to more stable 

performance while mitigating the risks associated with full automation. 

The research highlights the importance of real-time KPI tracking in ensuring AI's alignment with 

operational goals. Companies must continuously monitor AI-driven logistics performance, making 

adjustments where necessary to maintain efficiency. Moreover, the study highlights the need for 

industry-specific AI customization. Since AI does not operate uniformly across all logistics contexts, 

firms should tailor AI algorithms to fit their specific operational constraints and strategic objectives.  

7.4 Limitations and Future Directions of the Study 
While this study provides valuable insights into the development and evaluation of a logistics 

performance dashboard, several limitations concerning validity, reliability, and generalizability must 

be acknowledged. These limitations impact the degree to which findings can be applied to broader 

contexts beyond the specific case of Bouwvervoer, and offer key insights into areas for future 

research and improvements. 

7.4.1 Validity and Reliability Concerns 
One of the main limitations of this study is the restricted size of the evaluation, as feedback was 

obtained from only a single participant, the company supervisor. A one-person evaluation naturally 

limits the reliability of the findings, as it does not account for various perspectives from other key 

stakeholders, such as planners and drivers. A more complete assessment involving multiple users 

across different roles would increase internal validity by ensuring that the dashboard meets the 

needs of various end-users. Furthermore, since no operational data was available during the 
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evaluation, the feedback was based entirely on mock-up data. This restricts the validity of the 

evaluation, as user perceptions may change when interacting with real-world logistics data. 

7.4.2 Generalizability to Other Logistics Sectors and Companies 
Another significant limitation is that the study is highly context-specific, meaning the results cannot 

be easily generalized to other logistics companies or sectors. The dashboard was designed with 

Bouwvervoer’s specific operational structure, KPI framework, and managerial priorities, making it 

less relevant to companies with different logistics models, fleet structures, or business goals. 

Additionally, the choice of KPIs and their weighting were tailored to Bouwvervoer’s unique 

evaluation criteria, meaning that other firms with different KPIs may require significant modifications 

to the framework before its application. 

The data gaps identified in the study also constrain generalizability. Since the conceptual framework 

relies on structured data collection and integration, companies with different data availability and 

structure may not be able to implement the same approach without adjustments. Furthermore, 

logistics firms that operate in different geographic regions, market conditions, or regulatory 

environments may have different performance goals that the current dashboard does not account 

for. 

7.4.3 Need for Further Validation and Testing 
Given these limitations, future research should focus on expanding the scope of evaluation by 

involving multiple stakeholders in the validation process. Conducting usability tests with a broader 

sample of employees from different functional areas would improve the reliability and credibility of 

the results. Additionally, implementing the dashboard with accurate operational data rather than 

mock-up data would allow for a more accurate assessment of its practical effectiveness, ultimately 

improving its adaptability to different logistics environments. 

In conclusion, while the developed dashboard offers a structured and methodologically sound 

approach to comparing manual and AI-driven logistics systems, its evaluation remains poor and 

context-specific. Despite these limitations, the research lays the foundation for future advancements. 

By addressing these limitations, future research can refine the conceptual comparison framework 

into a more robust, widely applicable decision-support tool for logistics management. 
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Appendix 

Appendix 1 - Systematic Literature Review 
Aim of Research:  

The objective of this systematic literature review is to answer the following questions: What 

methodologies are currently used to quantify, weigh, or prioritize key performance indicators (KPIs) 

in the context of logistics, supply chain management, or route planning? This research gathers 

insights into the various approaches and techniques used to assess the importance of KPIs. By 

examining current practices and trends, the review seeks to understand these methodologies' 

effectiveness, challenges, and impacts on applications to better understand KPI integration in 

logistics operations. 

Database Selection: 

The research will use Scopus and Web of Science databases for this systematic literature review. 

These platforms were chosen due to their extensive scientific and academic literature archives, 

containing various disciplines focusing on technology and AI-related studies. Also, they are 

recommended by the University of Twente. These databases will help access relevant, high-quality 

academic papers, articles, and case studies relevant to AI-driven logistics systems. 

Inclusion and Exclusion Criteria: 

Setting explicit inclusion and exclusion criteria in a systematic literature review is crucial for filtering 

relevant research. These criteria guide the selection process. This study's criteria focus on identifying 

studies that address the quantification, weighting, or prioritization of KPIs in logistics, supply chain 

management, or route planning. Including peer-reviewed and English-language publications ensures 

the credibility and accessibility of the research data. 

Criteria 

Type 
Criteria 

Inclusion 
Focus: Articles must focus on the quantification, weighting, or prioritization of KPIs in 

the context of logistics, supply chain management, or route planning. 

 
Methodological Insight: Studies that provide clear methodologies or frameworks for 

quantifying the importance of KPIs. 

 Peer-Reviewed: Only include peer-reviewed journal articles to ensure research validity. 

 
Publication Date: Prioritize studies published in the last 10 years to ensure relevance to 

current technologies and methodologies. 

 Language: English-language publications only. 

Exclusion 
Focus: Research not addressing the quantification, weighting, or prioritization of KPIs in 

logistics systems. 

 Language: Non-English research materials 

 Inclusion and Exclusion Table 
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Search Matrix: 

Key Concept    

 

Related 

Terms/Synonyms 

Narrower Terms 
Broader Terms 

KPI 

Quantification 

KPI Weighting, KPI 

Prioritization 

KPI Selection Criteria, 

Performance Indicator 

Quantification 

Performance Metrics, Business 

Intelligence 

Logistics 

Route Planning, Supply 

Chain 

Transportation 

Management Systems, 

Warehouse 

Management Systems 

Logistics Technology, Supply Chain 

Management Systems 

Methodologies 

Analytical Techniques AHP, Fuzzy AHP, DEA, 

TOPSIS Multicriteria Decision Making, 

Quantitative and Qualitative Analysis 

 Search Matrix Table 

Search Query: 

Search Query Source 

Number 

of 

Results 

Date of 

Search 
Notes 

("quantifying KPI importance" OR "KPI weighting" 

OR "KPI prioritization" OR "route planning KPIs 

importance" OR "logistics KPI weighting" OR 

"performance indicator quantification" OR "KPI 

analysis in logistics" OR "KPI selection criteria" OR 

"multi-criteria decision making") AND ("logistics" 

OR "route planning" OR "supply chain") 

Web of 

Science 
1853 

5-12-

2023 

Initial broad search 

for KPI 

quantification 

methodologies. 

KPI* OR "KPI selection”) AND (AHP* OR "Fuzzy 

AHP" OR "multicriteria decision making") AND 

(logist* OR "supply chain" OR "route planning") 

Web of 

Science 
28 

5-12-

2023 

Focused search 

using AHP 

methodology. 

("KPI weigh*" OR "KPI select*" OR "priority 

setting in logistics") AND ("AHP" OR "Fuzzy AHP" 

OR "multicriteria decision making") AND 

("logist*" OR "supply chain" OR "route planning") 

Scopus 1 
5-12-

2023 

Narrowed search in 

Scopus for AHP in 

logistics. 

(KPI* OR "KPI selection") AND ("Data 

Envelopment Analysis" OR DEA*) AND (logist* OR 

"supply chain" OR "route planning") 

Scopus 30 
5-12-

2023 

Search using DEA 

methodology. 
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(KPI* OR "KPI selection") AND ("Data 

Envelopment Analysis" OR DEA*) AND (logist* OR 

"supply chain" OR "route planning") 

Web of 

Science 
40 

5-12-

2023 

Expanded search in 

Web of Science for 

DEA in logistics. 

(KPI* OR "KPI selection") AND (TOPSIS OR "Order 

Preference by Similarity to Ideal Solution") AND 

(logist* OR "supply chain" OR "route planning") 

Scopus 7 
5-12-

2023 

Search using TOPSIS 

methodology. 

(KPI* OR "KPI selection") AND (TOPSIS OR "Order 

Preference by Similarity to Ideal Solution") AND 

(logist* OR "supply chain" OR "route planning") 

Web of 

Science 
10 

5-12-

2023 

Expanded search in 

Web of Science for 

TOPSIS in logistics. 

 

Screening Process:  

In this systematic literature study, we used Mendeley, a well-known reference manager, to organize 

and streamline the screening process. Mendeley ensured that the pieces of literature were handled 

methodically and effectively. We imported references from previously stated databases. In the initial 

screening stage, titles and abstracts were compared to our inclusion and exclusion lists. The 

publication date, study design, and relevance to the research topic were among the criteria. We 

performed a near full-text review of the papers that made it beyond the first screening.  

Literature Overview Matrix: 

Method Article Title Authors 
Year of 

Publication 

Context of 

Logistics 

Planning 

KPIs Used Findings Limitations 

AHP 

Identifying the 

hospital 

logistics key 

performance 

indicators for 

public hospitals 

in remote areas 

of Thailand 

Sirisawat, P., 

Rodbundith, 

T. S., & 

Hasachoo, N. 

2024 

Hospital 

logistics in 

remote areas 

Delivery 

time, 

inventory 

levels, cost 

efficiency 

AHP effectively 

prioritized KPIs for 

improving hospital 

logistics. 

Specific to the 

healthcare sector; 

may not be directly 

transferable to other 

logistics contexts. 

AHP 

Improving 

performance 

through 

measurement: 

the application 

of BSC and AHP 

in healthcare 

organization 

Regragui, H., 

Sefiani, N., & 

Azzouzi, H.  

2015 
Healthcare 

logistics 

Patient 

satisfaction, 

operational 

efficiency, 

cost 

management 

AHP combined 

with BSC provides 

a framework for 

performance 

measurement. 

Healthcare-focused; 

may require 

adaptation for other 

logistics 

environments. 

AHP Selection of Key 

Performance 
 2018 General supply 

chain 

Delivery 

reliability, 

AHP helps in 

selecting and 

Needs context-

specific adjustments 
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Indicators for 

Supply Chain 

monitoring 

using MCDA 

management cost 

efficiency, 

lead time 

prioritizing KPIs 

effectively. 

for different 

industries. 

AHP 

The Analysis of 

Supply Chain 

Performance 

Measurement 

at Construction 

Project 

Wibowo, M. 

A., & Sholeh, 

M. N. 

2015 
Construction 

project logistics 

Project 

completion 

time, cost 

management, 

resource 

utilization 

AHP is useful in 

evaluating and 

improving supply 

chain 

performance in 

construction 

projects. 

Specific to 

construction; may 

need modifications 

for other sectors. 

DEA 

Which Green 

Transport 

Corridors (GTC) 

Are Efficient? A 

Dual-Step 

Approach Using 

Network 

Equilibrium 

Model (NEM) 

and Data 

Envelopment 

Analysis (DEA) 

Alves Junior, 

P. N., Melo, I. 

C., Branco, J. 

E., 

Bartholomeu, 

D. B., & 

Caixeta-Filho, 

J. V. 

2021 

Green 

transport 

corridors 

Sustainability, 

cost 

efficiency, 

delivery 

reliability 

Combining NEM 

and DEA 

effectively 

evaluates the 

efficiency of green 

transport 

corridors. 

Complex 

methodology may be 

challenging to 

implement. 

DEA 

Efficiency 

analysis and 

benchmarking 

of container 

ports operating 

in lower-

middle-income 

countries: A 

DEA approach 

Danladi, C., 

Tuck, S., 

Tziogkidis, P., 

Tang, L., & 

Okorie, C. 

2024 

Container ports 

in lower-

middle-income 

countries 

Operational 

efficiency, 

throughput, 

cost 

efficiency 

DEA is effective in 

benchmarking and 

analyzing the 

efficiency of 

container ports. 

Requires large and 

accurate data sets for 

reliable results. 

DEA 

Integrating KPIs 

for improving 

efficiency in 

road transport 

García-Arca, 

J., Prado-

Prado, J. C., & 

Fernández-

González, A. 

J. 

2018 
Road transport 

logistics 

Fuel 

efficiency, 

delivery time, 

cost 

efficiency 

DEA helps in 

integrating and 

improving KPIs for 

road transport 

efficiency. 

May not capture all 

qualitative aspects of 

performance. 

DEA 

Towards a 

common 

measure of 

greenhouse gas 

Holden, R., 

Xu, B., 

Greening, P., 

Piecyk, M., & 

2016 

Greenhouse gas 

emissions in 

logistics 

GHG 

emissions, 

fuel 

efficiency, 

DEA provides a 

common measure 

for evaluating 

greenhouse gas-

Focuses primarily on 

environmental KPIs, 

may overlook other 

important logistics 
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related logistics 

activity using 

data 

envelopment 

analysis 

Dadhich, P. operational 

efficiency 

related activities 

in logistics. 

aspects. 

TOPSIS 

An interval 

type2 fuzzy 

AHP and 

TOPSIS 

methods for 

decision 

making 

problems in 

maritime 

transportation 

engineering 

Celik, E., & 

Akyuz, E. 
2018 

Maritime 

transportation 

engineering 

Safety, cost 

efficiency, 

operational 

efficiency 

Combining fuzzy 

AHP and TOPSIS 

improves decision-

making in 

maritime 

transportation by 

addressing 

uncertainty. 

Complexity in 

implementing fuzzy 

logic and the need 

for expert input. 

 TOPSIS 

KPI and 

Logistics 

Dashboard 

Design Using 

Neutrosophic 

Statistics 

Goyes García, 

J. F., Carrión 

Hurtado, L. 

H., León 

Yacelga, M. 

A., & 

Enríquez 

Chugá, J. F. 

2021 

General 

logistics 

management 

Delivery 

times, 

inventory 

management, 

cost 

efficiency 

TOPSIS combined 

with neutrosophic 

statistics enhances 

the visualization 

and decision-

making process in 

logistics. 

Requires advanced 

statistical knowledge 

and integration with 

neutrosophic logic. 

TOPSIS 

Performance 

assessment of 

circular driven 

sustainable 

agri-food 

supply chain 

towards 

achieving 

sustainable 

consumption 

and production 

Kumar, M., 

Sharma, M., 

Raut, R. D., 

Mangla, S. K., 

& Choubey, 

V. K. 

2022 

Sustainable 

agri-food 

supply chain 

Sustainability, 

resource 

efficiency, 

cost 

management 

TOPSIS effectively 

prioritizes 

sustainability KPIs 

in agri-food supply 

chains. 

May require 

extensive data 

collection and 

validation. 

TOPSIS 

Prioritizing the 

solutions of 

lean 

implementation 

in SMEs to 

overcome its 

barriers: An 

integrated fuzzy 

Belhadi, A., 

Touriki, F. E., 

& El fezazi, S. 

2017 

Lean 

implementation 

in SMEs 

Operational 

efficiency, 

cost 

reduction, 

process 

improvement 

Integrating fuzzy 

AHP and TOPSIS 

helps in 

prioritizing lean 

implementation 

solutions 

effectively. 

Complexity in 

integrating fuzzy AHP 

with TOPSIS and the 

need for expert 

judgment. 



pg. 50 
 

AHP-TOPSIS 

approach 

TOPSIS 

Supply chain 

performance 

measurement 

for third party 

logistics 

Jothimani, D., 

& Sarmah, S. 

P. 

2014 
Third party 

logistics 

Delivery 

reliability, 

cost 

efficiency, 

customer 

satisfaction 

TOPSIS provides a 

comprehensive 

framework for 

measuring supply 

chain 

performance in 

third party 

logistics. 

May not fully capture 

qualitative aspects of 

performance and 

requires data. 

KQ1 Literature Table 

Conclusion: 

The systematic literature review aimed to identify and evaluate the current methodologies used to 

quantify, weigh, or prioritize key performance indicators (KPIs) in logistics, supply chain 

management, and route planning. It was found that methodologies such as the Analytical Hierarchy 

Process (AHP), Data Envelopment Analysis (DEA), and Technique for Order of Preference by Similarity 

to Ideal Solution (TOPSIS) are often used for KPI evaluation and decision-making. Each of these 

methods has its strengths and limitations, making it suitable for different contexts and applications. 

AHP is highly effective for scenarios requiring expert judgment and pairwise comparisons. DEA excels 

in quantitative settings with multiple decision-making units, and TOPSIS is advantageous for complex, 

multi-dimensional decision-making problems. Effectiveness, practicality, accuracy, and flexibility were 

essential criteria for evaluating these methods. After review, we found MAHP, an improved version of 

AHP, to be the suitable method for weighting KPIs in this thesis. 

Appendix 2 - KPI Table  
 

KPIs DEFINITION SIGNIFICANCE HOW IT MEASURED APPLICATION 

Capacity 
Utilization 

Capacity Utilization 
refers to how 
effectively the 

available transport 
capacity is used 

during operations. It 
measures the 
proportion of 

vehicle capacity that 
is utilized during 

each trip 

Optimizing capacity 
utilization can 

significantly reduce the 
number of trips 

needed, lowering fuel 
consumption and 
operational costs. 
Underutilization of 

capacity often leads to 
inefficiencies and 

higher per-unit 
transportation costs 

This KPI is expressed 
as a percentage, 

calculated by 
dividing the actual 
cargo load by the 

maximum possible 
load for each 

vehicle. This data 
can be collected 

from load manifests 
and fleet 

management 
systems 

This KPI helps 
Bouwvervoer 

assess whether 
trucks are being 
used optimally, 
indicating areas 

where better load 
planning could 

reduce empty or 
partially filled trips 

On-time 
Delivery 

Performance 

This KPI tracks the 
percentage of 
deliveries that 

arrive within the 
scheduled time 

window, a critical 
measure of logistics 

Timely deliveries are 
crucial for maintaining 
customer satisfaction 

and ensuring 
operational 

effectiveness. Delays 
can result in penalties, 

This KPI is the ratio 
of deliveries made 

within the scheduled 
time to the total 

number of 
deliveries. The time 

data is usually 

By focusing on this 
KPI, Bouwvervoer 

can identify 
bottlenecks in the 
delivery process, 

such as traffic 
congestion or 
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reliability lost business 
opportunities, and 

decreased client trust 

recorded through 
systems like 

electronic proof of 
delivery (ePOD) or 
GPS-enabled fleet 

tracking 

inefficient route 
planning, and work 
to improve delivery 

times 

Total 
Distribution 

Cost 

This KPI aggregates 
all the costs 

associated with 
distribution, 

including fuel, 
labour, 

maintenance, and 
other operational 

expenses 

Minimizing total 
distribution costs is 

essential for improving 
overall financial 

performance. High 
distribution costs can 
reduce profit margins 
and make the logistics 
process unsustainable 

Total Distribution 
Cost includes 

multiple factors such 
as fuel expenses, 

driver wages, vehicle 
maintenance, and 
indirect costs like 

administration. Data 
is typically sourced 

from financial 
records and fleet 

management 
systems 

Monitoring this KPI 
allows 

Bouwvervoer to 
perform cost 

analyses, identify 
inefficiencies, and 

explore 
opportunities for 
cost savings, such 
as optimizing fuel 

usage or scheduling 
more efficient 

routes 

Turnover per 
Hour per 

Driver 

 
Measures the 

revenue generated 
per hour drivers 
work, assessing 

driver productivity 
in logistics 
operations 

High turnover per 
driver hour indicates 

efficient use of labour 
resources. Low 

turnover could suggest 
inefficiencies like poor 

route planning, 
extended idle times, or 
inadequate scheduling 

Calculated by 
dividing the total 

revenue generated 
by the total driver 

hours worked 

Allows 
Bouwvervoer to 

assess driver 
productivity, 

identify inefficiency 
in labour use, and 

improve overall 
workforce 

management 

% Empty km’s / 
Total km 

Measures the 
proportion of 

kilometres driven 
without cargo, 

indicating 
inefficiencies in 

route and capacity 
planning 

Reducing the 
percentage of empty 
kilometres improves 

fuel efficiency and cost 
savings while 

minimizing 
environmental impact 

through lower 
emissions 

This KPI is expressed 
as a percentage of 
kilometres driven 

without cargo over 
the total kilometres 

driven 

Help Bouwvervoer 
in identifying 

inefficiencies in 
route planning and 
capacity utilization, 

reducing 
unnecessary trips 

and environmental 
impact, and 

optimizing vehicle 
use 

Satisfaction 
with Working 

Hours 

Measures employee 
satisfaction 

regarding their 
working schedules, 

particularly 
regarding work-life 

balance and 
flexibility 

High employee 
satisfaction contributes 

to improved morale, 
higher productivity, and 

lower turnover, 
reducing recruitment 

and training costs 

 
They are measured 
through employee 

surveys or feedback 
forms, focusing on 
satisfaction with 
schedules, shift 

distribution, and 
work-life balance. 

Data can be 
collected through 
periodic internal 

surveys 

It helps 
Bouwvervoer 

maintain a satisfied 
workforce, reduce 

turnover, and 
improve overall 

operational 
stability 

Fulfillment of 
Specific Driver 

Requests 

Assesses how well 
the company meets 

drivers' requests, 
such as preferred 

Meeting drivers' 
requests improves job 

satisfaction and 
contributes to a more 

Measured through 
driver feedback and 
request fulfilment 
logs, tracking how 

Assists 
Bouwvervoer in 

building a positive 
work environment 
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routes or schedule 
adjustments 

engaged and 
productive workforce. 
Employee engagement 
often leads to higher 

commitment and 
better operational 

performance 

many specific driver 
requests were met 

by addressing 
driver needs 

Order Accuracy 

Measures the 
percentage of 

customer orders 
delivered accurately 

regarding correct 
items, quantities, 

and conditions 

Accurate order 
fulfillment is crucial for 
customer satisfaction 

and retention 

They are calculated 
as the percentage of 
accurately fulfilled 

orders over the total 
number of orders 

Enables 
Bouwvervoer to 

assess operational 
precision in order 

fulfilment and 
identify areas 

where processes 
need improvement 

to maintain high 
customer 

satisfaction and 
reduce operational 

errors 

 

Appendix 3 - KPI Data Availability  
 

KPIs REQUIRED DATA AVAILABILITY GAPS IDENTIFIED  

Capacity 
Utilization 

Load manifests, 
vehicle capacity, 

trip records, cargo 
weight/volume 

 

Available: in AI-SYSTEM data provides 
order weight and volume 

Partially available: in Manual, 
"Planning Order Dataset twee weken 

2024" provides cargo amount 
(clarification needed on type of 

cargo) 

For Manual: 
Clarification needed 
on cargo amounts in 

"Planning Order 
Dataset twee weken 

2024" 

On-time 
Delivery 

Performance 

Delivery schedules, 
timestamps, GPS 

tracking data 

Available: in AI-SYSTEM data provide 
planned arrive 

Available: in Manual, Delivery 
schedules exist in "Planning Orderset 
2023" and "Planning Order Dataset 

twee weken 2024" for each trip 

For both: No real-
time data (GPS) on 

traffic delays or 
other factors 

affecting punctuality 

Total 
Distribution 

Cost 

Fuel costs, labor 
costs, maintenance, 

administrative 
expenses 

Partially Available: in Manual, fuel 
consumption data available in "Fuel 

Consumption" dataset 
Not available: in AI-SYSTEM AI data 

For Manual: Need 
data on labor and 
maintenance costs 

For AI-SYSTEM: Not 
available at all 

Turnover per 
Hour per 

Driver 

Driver work hours, 
revenue, trip data 

Not available: in AI-SYSTEM AI data 
Available: in Manual, trip-specific 

revenue and work hour data exist in 
"Planning Order Dataset twee weken 

2024." 

For AI-SYSTEM: Not 
available at all 

% Empty km’s / 
Total km 

Trip logs, cargo load 
data, route and GPS 

data 

Partially Available: Trip logs, and 
order weight and volume available in 
"AI-system Trip Steps," but no cargo 

load data. 
Partially Available: in Manual, 

Delivery schedules exist in "Planning 

For Both: Need 
cargo load data to 

accurately calculate 
empty kilometers 
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Orderset 2023" and "Planning Order 
Dataset twee weken 2024" for each 

trip 

Satisfaction 
with Working 

Hours 

Employee surveys, 
shift schedules 

Partially Available: In Manual, shift 
schedules available in "Overnight" 

dataset. 
Not Available: in AI-SYSTEM AI data 

For Manual: 
Employee 

satisfaction survey 
data is missing. 

For AI-SYSTEM: Not 
available at all  

Fulfillment of 
Specific Driver 

Requests 

Request logs, 
feedback forms, 
scheduling data 

Not Available: In AI-system AI data  
Partially Available: In Manual, driver 

preferences exist, but no data on 
fulfillment of these preferences 

For Both: Need 
system to track 

fulfillment of driver 
requests 

Order Accuracy 
Order logs, 

customer feedback, 
returns data 

Partially Available: In AI-SYSTEM data 
order logs available 

Partially Available: In Manual,  order 
logs available in the "Planning Order" 

dataset 

For Both: No data 
on customer 

feedback or returns 
to verify accuracy 
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Appendix 4 - MAHP Questionnaire  
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Appendix 5 - MAHP Calculations 
 

Short Code for KPI 

KPI 
Short 
Code 

Level 1 Metrics   
Transportation effectiveness and efficiency  TEE 
Employee Satisfaction ES 
Customer point of view  CPV 
Level 2 Metrics   
Logistics Costs LC 
Logistics Efficiency  LE 
Service Quality  SQ 
Work Environment  WE 
Employee Engagement EE 
Order Fulfillment Accuracy OFA 
Level 3 Metrics   
Total Distribution Cost TDC 
Capacity Utilization  CU 
% Empty km’s / Total km EKM 
Turnover per Hour per Driver  TPHD 
On-time Delivery Performance  ODP 
Satisfaction with Working Hours  SWH 
Fulfillment of Specific Driver Request  FSDR 
Order Accuracy OA 

 

Pairwise Comparison Matrices and Geometric Mean 

Level 1 

 

Level 2 Transportation Effectiveness 
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Level 2 Employee Satisfaction 

 

Level 2 Customer POV 

 

Level 3 Logistic Efficiency  

 

Raw Weights (From Geometric Mean) 

Level 1  

 

Level 2 Transportation Effectiveness 

 

Level 2 Employee Satisfaction 

 

Level 2 Customer POV 

 

Level 3 Logistic Efficiency 
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AI-systemlizing Raw Weights 

Level 1  

 

Level 2 Transportation Effectiveness 

 

Level 2 Employee Satisfaction 

 

Level 2 Customer POV 

 

 

Level 3 Logistic Efficiency 
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Final Weights Before and After Multiple ODP Handled  

 

Consistency Check 

Level 1  

 

Level 2 Transportation Effectiveness 

 

Level 3 Logistic Efficiency 
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Appendix 6 - Evaluation Form Feedback 
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