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Abstract

Teleoperated robots are increasingly employed in environments requiring precision and
safety. However, system errors remain inevitable; therefore, appropriate error recovery
solutions are needed. This study investigates how different error recovery strategies influ-
ence operator performance and behaviour during a teleoperation task. Three strategies
were tested: smooth recovery, rapid recovery, and no recovery, using a within-subject
design. Performance metrics included hit scores and unclutching behaviour, while quali-
tative feedback provided insights into user preferences and experiences. Results indicated
no significant overall effect of recovery strategy on performance, though post hoc analysis
revealed differences between specific strategies. User preferences significantly impacted
performance, highlighting the importance of aligning system behaviour with operator ex-
pectations. The findings underscore the need for adaptive recovery strategies tailored to
user needs, enhancing the effectiveness of teleoperated systems. Future research should
explore larger participant samples and incorporate physiological measures to deepen un-
derstanding of operator responses to error recovery.

Keywords: teleoperation, error recovery, user performance, human-robot interaction



Chapter 1

Introduction

1.1 The history of teleoperated robots

In 1986, the Chernobyl disaster posed challenges that humans could not safely confront.
Robots became essential tools for navigating hazardous environments, showcasing their
potential to protect human lives. These teleoperated robots, which are systems remotely
controlled by humans to perform tasks in distant environments, have been in use for many
years. The Chernobyl disaster was part of a broader evolution that began in the 1960s,
when early teleoperation systems were developed for nuclear facilities [1]. In the follow-
ing decade, the use of these robots expanded to space exploration [30]. They further
found their use cases in industrial applications, the military, and healthcare. The shift
into more sectors was mainly due to advances in the technology used, which contributed
to improvements in these systems [19]. These advancements, such as improved haptic
feedback systems, higher-resolution video transmission, and more intuitive user interfaces,
have significantly enhanced situational awareness and control precision.

Previous literature has shown the wide-ranging benefits of using teleoperated robotics.
Teleoperated systems offer the opportunity to guarantee human safety in environments that
might be inhospitable or dangerous for direct human engagement. In some instances, their
usage might also lead to more cost-effectiveness. Recent advancements in areas such as
robotic manipulators and control algorithms have enabled teleoperated systems to achieve
levels of precision that can be difficult for humans to replicate directly in some tasks [32].
Chen et al. put those advantages into context and argue that teleoperation will be of
importance as a default mode for systems that work in sensitive environments [4].

While these advancements have significantly expanded the capabilities of teleoperated
systems, several key challenges remain that limit their widespread adoption and effective-
ness in demanding applications. Particularly, ensuring reliable and efficient control in com-
plex or unpredictable environments. For example, issues such as the cognitive load placed
on the operator and communication delay can hinder performance and even lead to critical
errors. The increasing demand for teleoperated systems in safety-critical applications like
telesurgery or disaster response underscores the urgent need to address these limitations.
Recent developments in areas like advanced prediction algorithms offer promising avenues
for improvement.

1.2 What are teleoperated systems

This thesis will set its focus on the usage of bilateral haptic teleoperation systems which
are in use to tackle the aforementioned societal challenges, as they allow for tasks that
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require a high degree of precision or sensory awareness [12]. These systems are able to
enhance human-machine interaction by acting as a bridge between the two non-co-located
physical locations using the virtual domain as a medium. When talking about teleoperated
systems it usually refers to five main components. The human operator that interacts
with the controller system, the teleoperator or the actuator system that is influenced
and influences the environment, and lastly the communication link or network (Figure
1.1). Teleoperation systems provide a bilateral or two-way communication channel for
the operator and teleoperator where they are able to perceive and respond to the other
components [7]. These teleoperated systems can be operated using a wide variety of control
media; these can include joysticks, pedals, or devices that can be hand-held [4].

Figure 1.1: Five Components of a teleoperated system.

Through these systems, the user can receive various sensor information about the en-
vironment the robot is currently working in [8]. The sensor information of haptics is
especially interesting as it includes both kinaesthetic and tactile information. When talk-
ing about kinaesthetic feedback, we talk about the force that is applied to the muscles and
bones. Tactile feedback, on the other hand, refers to the force applied and felt on the skin.
This information is determined by using aspects such as position, velocity, force, torque,
and vibration, among other aspects. Thus, an important concept within teleoperation is
force feedback. It refers to the transmission of force that is experienced by a remote robot
back to the human operator’s control interface. This is of special importance as it allows
the user to have a sense of being present in the environment of the robot and immerse
themselves in this environment. By experiencing these force cues, the operator is able to
get a better understanding of the environment they are manipulating and, if needed, adjust
their actions accordingly [8]. While bilateral haptic teleoperation offers significant advan-
tages, several challenges remain that can hinder performance and limit its applicability in
certain scenarios. These challenges are discussed in the following section

1.3 Current limitations of teleoperated systems

Despite these advancements, teleoperation systems face significant challenges. A particu-
larly crucial area of concern is the occurrence of errors, which can have severe consequences
in remote operations. These can arise from a multitude of sources and can be broadly cat-
egorized as human-related, environment-related, or system-related errors.

1.3.1 Human-Related Errors

The first category, human-related errors, stems from the operator’s cognitive and physical
limitations. In that sense, one can think about cognitive overload that occurs when the
demands placed on the operator’s cognitive resources exceed their capacity. This can
manifest in various ways, such as difficulty attending to multiple information streams
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simultaneously, struggling to make timely decisions under pressure, or experiencing mental
fatigue [24]. A second source of errors can be the lack of situational awareness. If the human
operators have difficulties perceiving the environment they are operating in or may lack
sufficient information to accurately assess the situation, the operator might make incorrect
decisions [6]. Other sources of errors are stressful situations that lead to increased error
rates, but also training and skill level that can affect the number of errors an operator
makes during a teleoperation task.

1.3.2 Environment-Related Errors

The second category is environmental-related errors that are caused by unpredictable
events or changes in the environment, thereby disrupting the teleoperation task. Complex
environments, characterized by cluttered spaces, irregular terrain, or dynamic obstacles,
pose significant challenges for teleoperated systems. Navigating and manipulating objects
in such environments requires precise control and accurate perception, which can be diffi-
cult to achieve remotely. Lastly, a robot system might also encounter external forces, such
as wind, that affect the robot’s behaviour in an unpredictable and uncontrollable way.

1.3.3 System-Related Errors

Lastly, system-related errors originate from the teleoperation system itself.
During communication of operator and actuator systems that are geographically dis-

tant, the main problems that arise are time delay and packet loss [12]. The delay can range
from milliseconds to seconds and is dependent on the distance and communication. It is
important to notice that delays above 1800 ms up to seconds are considered excessive and
might not even qualify as teleoperation anymore [18]. Humans are able to detect delays
from about 10 to 20 ms on [4]. Previous research emphasized that feedback delays when
operating with teleoperated systems negatively influence the performance of this system.
This becomes apparent in the user’s perception and ability to manipulate the environment.
These feedback delays can result in the actuator making contact with the environment be-
fore the leader is able to display any force [27]. Alternatively, a so-called bounce can also
occur that materializes when an operator stops executing force on the actuator as it waits
for feedback [29]. The stiffness of the arm decreases, which is then not accurate to the
delayed feedback that the operator received. The end result can be described as an unex-
pectedly high feedback force in the opposite direction of the movement. This pushes on
the operator, making them move and in turn the actuator causing a bounce [29].

A study highlighted this further and showed that delay causes significant problems in
the transparency of such a system [4]. This can be explained by the decoupling effects
that an operator experiences while interacting with a teleoperated system. The effect
is experienced as the natural abstract processing is decoupled from the actual physical
environment [4]. To counteract this, two approaches were proposed. First, the idea emerged
to create robots that are able to fulfil the task independently [18]. Adding automation can
help with the challenges that are met such as latency or bandwidth limitations that, in turn,
lead to delays [3]. Secondly, the approach to have a system with different levels of control
emerged. In that sense, the level of automation added to such a system can be seen as a
spectrum, with certain researchers focusing on different types of automation [3]. Basañez
et al. [3] explain the spectrum in more detail through the degree of automation on a scale
from one, “The computer offers no assistance; human must do it all” to ten, “The computer
decides everything and acts autonomously, ignoring the human”. The levels used by Ferrel
and Sheridan [7], on the other hand, are described as either direct control or supervision by
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the operator, with sub-goals that are set in the course of completing the task. This latter
idea is focused on cooperation between the robot and the human operator. Experiments
with this type of control showed that higher degrees of accuracy and reliability could be
achieved when operators performed the task in sequences and waited for feedback. While
these approaches offer some mitigation of the effects of delay, they do not fundamentally
address the core issue of communication latency. In teleoperation, there is no choice in the
delay that a system experiences. Thus, a novel approach to directly tackle the problems
of delay, instability, and loss of transparency is needed.

1.4 Model-mediated teleoperation (MMT)

The idea that emerged to mitigate these detrimental effects of delays and the negative
consequences of the interaction between humans and machines was to use model-mediated
teleoperation [32]. Different types of models can be used in model-mediated teleoperation.
For this specific research, the focus will be on a two-sided model. Experimental results
showed that using such a model has benefits as operators were able to operate the robot
in a controlled manner [2].

Figure 1.2: A simplified architecture of MMT.

The underlying concept is to predict from one side, either the operator or actuator side,
what the other side is going to do. In order to do so, an object model is used on the side
of the controller that approximates the environment of the actuator [25]. The model is
created using geometric properties, for example by creating a 3D model including obstacles
and targets, as well as contact dynamic properties, namely the physical properties of the
model such as object mass or friction. This way a virtual world is created that can be used
by the operator to interact with the environment. The actuator then follows the commands
of the operator and moves in this environment. At the same time, it gathers sensor data
such as force, position, and images about the environment to improve the model of the
environment. The model is able to provide real-life feedback and is not affected by delays.
Estimating this model is more straightforward than the model of the operator since there
are many physical properties of the environment that can be used to develop the model.

On the side of the actuator, a second local model is constructed based on certain
parameters relevant to modeling the operator; these can include aspects such as affordances,
the task, human limitations, and many more. These specific aspects can be rather difficult
to model because of the variability and complexity of human behaviour, resulting in errors.

4



This second model manifests itself in predictions of what the controller is going to do
next [25]. A simplified architecture is depicted in Figure 1.2 that highlights the differences
to the previously described teleoperated system.

1.4.1 Limitations

Although Model-mediated teleoperation (MMT) is a promising approach that addresses the
critical challenges in teleoperated robotics, particularly the one arising from communication
delays, MMT also has challenges.

One of the main limitations of MMT is the accuracy of the environmental models. The
performance of an MMT system heavily relies on the fidelity of these models, which are
used to predict and simulate the remote environment. Real-world environments are often
dynamic and complex, involving factors such as moving objects and unforeseen obstacles.
Updating the models in real time to reflect changes in the environment is critical for
maintaining accuracy but is computationally demanding. This creates a trade-off between
the model’s complexity and the system’s responsiveness. For instance, studies have shown
that delays in updating the model can result in a loss of situational awareness for the
operator [14]. Moreover, inaccurate or outdated models can lead to misrepresentations of
the environment, causing errors in operator decisions and system actions [5].

In addition to modelling the environment, MMT systems also attempt to predict the
operator’s behaviour and intentions. However, human behaviour is inherently variable and
context-dependent, making it difficult to create reliable predictive models. Errors in these
operator models can lead to misaligned system responses, confusion, and decreased task
performance [33]. For example, predictive errors might cause the robot to act in ways that
do not align with the operator’s intentions, leading to frustration and reduced trust in the
system.

Errors in teleoperation systems, including those employing MMT, are inevitable due
to the complexity of real-world environments and the inherent variability in human be-
haviour [27]. These errors may arise from unexpected situations, inaccuracies in predictive
models, or limitations in the communication link between the operator and the robot.
Given their inevitability, it is crucial to focus on how to recover from these errors effec-
tively rather than solely attempting to avoid them. Research has shown that errors, when
handled correctly, can provide valuable feedback to improve system performance and oper-
ator experience [9]. Moreover, focusing on recovery strategies ensures that systems remain
functional and reliable even under adverse conditions, which is critical for applications in
high-stakes environments such as healthcare, disaster response, and industrial automation.
This thesis emphasizes the importance of developing and evaluating robust error recovery
strategies to enhance the resilience and usability of teleoperated systems.

1.5 Error Recovery Strategies

Previous research has mainly focused on overcoming modelling errors or errors made by
the operator [15]. Research on operator errors has shown the impact such errors can have,
as they tend to lead to an increased task load; operators tend to experience frustration,
and they overall affect the performance of the teleoperated system negatively [22]. There
is, however, a gap in the literature, namely taking the perspective of researching the effect
that system errors have on the operator. To expand on this, it is also important to research
what the best recovery strategy is to overcome these errors and how they affect the operator
and their performance. This is because they are, as of now, inevitable. The research should
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therefore not focus on how to avoid such errors but more on how to correctly recover from
them.

Kontogiannis [9] argues that teleoperated systems, in error detection, can use both a
forward and backward strategy that can be employed to re-enter the plan of the system.
A backward recovery means that the system will be set back to the state it was in before
the error occurred. Forward recovery, on the other hand, means that the system will be
brought to an intermediate state to find a more suitable solution later on [9]. Stein et
al. [26] further describe a forward recovery as re-entering the system at a later stage, or
later task plan. Moreover, there is also the approach of compensatory recovery where the
robot will be brought to the intended goal by, for example, using extra resources. Lastly,
there is also the option to opt for no recovery strategy and give the operator full control
to recover the error. If the error is too great and compensation from the operator is
needed, this might be achieved by unclutching, namely virtually disconnecting the input,
moving the input to the correct position, and clutching it back in [13]. The decision
to choose a certain strategy or combination of strategies depends on the type of error
[9]. Literature argues that it is common to move the robot back to the last commanded
position. Additionally, the forward recovery strategy has the disadvantage of potentially
making the user repeat certain actions that would have happened but were skipped after
the error occurred, therefore making the process more time-consuming. It was therefore
decided to use backward recovery as the main error recovery strategy that this research
would focus on.
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Chapter 2

Problem Definition

2.1 Research Question

Teleoperated robotics can work within the spectrum of automation, as previously men-
tioned systems can be fully controlled, some might be operated under supervised auton-
omy, and the rest lie in between these two extremes [3]. Depending on the task, the cost,
the resources, or other aspects, and the therefore resulting teleoperating system, it can be
placed along that spectrum.

In the specific case of this research, the teleoperated robot can be placed somewhere in
the middle of this spectrum, as it is not fully automated and also not controlled. This is
because it uses predictions to estimate where the operator is going to move next, based on
the model of the operator. Those predictions, however, can contain errors and therefore the
robot’s movement might not coincide with the movement the operator originally intended
for the robot. The system might then try to correct or recover the error. It would be of
interest to research how people react to these types of errors experienced when operating
a teleoperated robot. Thus, there is one research question to be answered:

RQ1: How do different error recovery strategies influence performance?

This question is of interest since errors tend to change over time, and errors will most
likely never be eradicated. Hence, it is of interest to see how a system can move from
the current error to the next prediction while minimizing the error that happened before.
In this study, the following conditions will be explored: 1) an attempt at recovery by
moving back to the current known predicted position in a smooth manner, 2) an attempt
at recovery by moving back to the current known predicted position in a rapid manner,
and lastly 3) no error recovery. For the scope of this research, “performance” is measured
by the number of correct buttons that were hit per minute as well as the amount of time
users unclutched. Both of these measures will be measured in the time span of an error as
well as in a baseline measurement by taking the average over the time span excluding the
time span of the three errors.

In human-computer interaction, user preferences are known to significantly influence
outcomes. Studies have shown that when interacting with a system whose behaviour
aligns with the individual’s expectations and choices, users tend to perform better [20]. In
that sense, if a particular behaviour matches the personal mental model, this can lead to
stronger perceived control and even reduce cognitive workload. This can be explained as
such behaviour may be perceived as more intuitive or effective and, in turn, enhance the
performance of the user. The idea is, therefore, that in this study, participants will, if they
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have a preference for a particular recovery strategy, showcase better performance in that
strategy. Therefore, the following hypothesis was developed.

H1: There is a correlation between recovery strategy preference and baseline
performance.

Zheng and Daneshmend [34] suggest that in teleoperated systems, removing the depen-
dency of an autonomous system on a human operator should be achieved, as it allows the
human to solely focus on the task instead of additionally recovering from errors. Based on
this idea, the following hypothesis was developed.

H2: Participants will showcase a better performance if there is an active recov-
ery strategy

In this specific case, an active recovery refers to the recovery strategies smooth and
rapid, where the system attempts a recovery. The third Recovery strategy, namely no
strategy, is seen as a passive recovery strategy since the operator has to recover instead of
the system doing it.
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Chapter 3

Methods

3.1 Participants

A convenience sample was used, where participants were primarily recruited within the
circle of acquaintances of the researchers. Participants needed to be over the age of 18 but
did not need any other previous requirements. Apart from being asked for their demo-
graphic information, they were also asked about their previous knowledge of teleoperated
robotics.

A total of 21 participants participated in the study, with eleven female and ten male
participants. The age ranged from 19 to 55 years. Nineteen participants indicated to be
on a beginner level with regards to teleoperated robots while two indicated that they were
on a novice level. In the end, two of the participants’ data recordings were faulty and
could therefore not be used. Thus, the quantitative data analysis will be based on 19
participants.

3.2 Materials and Measures

3.2.1 Informed Consent

Participants of the study were asked to read and actively sign the informed consent. The
informed consent contained information regarding the study, the use of information gath-
ered in the study, as well as contact information in case questions arose.

3.2.2 Quantitative Measurements

A closer look was taken at unclutching to see how participants react after an error oc-
curs. Moreover, how many correct buttons were pressed during the whack-a-mole task was
observed.

3.2.3 Interview

Lastly, an interview was conducted with the participants once the experiment was con-
cluded. Here, questions about the interaction of the user with the robot and the experi-
ence were explored further. The questions are meant to allow the researcher to engage in
a semi-structured interview and to follow a certain scheme that dives into the topics of
the user experience and attitude, impact on task, error understanding, and error recovery.
The questions were developed based on the study done by Weiss et al. [31]. The authors
propose four methodological points of view, namely the user experience while interacting
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with a robot, the perceived usability, and attitude towards such a robot. Mirnig et al.
[17] propose to start with introductory questions and then move on to questions regarding
the perceived error in the interaction. Thus, the questions about error understanding and
recovery make up the last part of the interview.

3.3 Procedure

The general setup of the experiment uses the Franka Emika Panda arm as well as the
corresponding code to activate and manage the robot.

Figure 3.1: Set up of the experiment.

The robot can be controlled remotely by using a Force Dimension Omega 7. The
Omega 7 system can provide haptic feedback because it is a 7 DOF control unit. A
complete technical setup is described in the Appendix (Appendix B). Participants were
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seated in front of the robot and could look directly at the whack-a-mole game. They were
then asked to complete a whole game of the whack-a-mole task.
The whack-a-mole task consists of targets (buttons) that light up and need to be hit by
the participant to score. In this experiment, the buttons change every four seconds if the
participant is too slow and does not hit it in time. The game requires quick reactions
and precise movements, which are key aspects of teleoperation tasks. Moreover, the ran-
dom appearance of moles mimics unpredictable scenarios in teleoperation, such as sudden
environmental changes. The simplicity of the game mechanics (hit the mole when it ap-
pears) ensures that participants can focus on the teleoperation process and the effects of
errors and recovery strategies without being distracted by complex task requirements. It
therefore is a fitting context to evaluate the research question in.

Participants first got some minutes to get used to the robot and to test the functions
out; once they felt comfortable, they let the researcher know. The researcher started a
recording of all the data. Additionally, a timer of five minutes was set and the participants
were instructed to try and hit as many moles as possible (Figure 3.2).

Participant hitting mole Robot executing error

Figure 3.2: Game play

Then the robot was manipulated by introducing an artificial position error, by doing a
nudge once the operator pressed a key (Figure 3.2). The robot, thus, moves away from the
path the user is following in addition to the user input. During those five minutes, there
were three different conditions the participant was in.

1. Condition "Smooth": Error strategy where the robot moves back to the current
known position in a smooth manner.

2. Condition "Rapid": The robot moves back to the current known position in a
rapid manner.

3. Condition "No": The robot does not intervene and maintains the error position
and requires the user to compensate. Here, no repair is attempted.

In the smooth recovery strategy, the robot arm moved with a speed of 0.1 m/s, whereas
in the rapid recovery strategy, the robot moved with a speed of 0.5 m/s. The maximum
distance the robot could move in each recovery condition was 0.1 m, after which it would
automatically stop.

These conditions were randomly introduced to the user; thus, every participant expe-
rienced all three conditions and recovery strategies, making it a within-participant set-up.

Once the five minutes were over, the researcher started a voice recording and the
interview. The interview was concluded with a debrief during which the research aim of
the experiment was explained. The participants were informed that during their game an
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error and three different error recovery strategies were artificially added by the researcher.
Participants were asked for further input on these errors and recovery strategies.

3.4 Data Analysis

In order to analyse the data and to answer the research question and hypothesis, statistical
tests were chosen. First, both a Shapiro-Wilk as well as a Kolmogorov-Smirnov Test
were used to test for normality of the data. Based on the results of this test, either a
repeated measures ANOVA or a Friedman’s Test was conducted to research the effect of
the error recovery strategies on user performance. These tests were run a second time
using normalized data to account for the varying baseline. In order to do so, an average of
the baseline was taken and subtracted from each score. This was followed up with a Post
Hoc analysis where pairwise comparisons using multiple Bonferroni corrections were run.

To test the first hypothesis, namely that participants with a strong preference for a
strategy will perform better, a third ANOVA or Friedman’s Test was run. To under-
stand better which conditions differ, paired t-tests, with a Bonferroni correction, were
run. Participants were divided into participants with a strong preference, weak or divided
preference, and no preference.

To research individual differences, two-tailed paired sample t-tests were run, as well
as the nonparametric alternative, the Wilcoxon Signed Rank Test. These tests were also
used to answer the second research question, namely that participants will perform better
if there is an active recovery strategy.
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Chapter 4

Results

This section presents the findings of the study, that focused on the three error recovery
strategies: 1) a smooth recovery strategy, 2) a rapid recovery strategy, and 3) no error
recovery strategy. Key outcomes related to task performance and user reactions are re-
ported. Both quantitative and qualitative results are included to provide a comprehensive
understanding.

4.1 Hit Scores

4.1.1 Normality Test

Results of the Shapiro-Wilk and a Kolmogorov-Smirnov Test suggest that the data is
normally distributed (W=0.96, p=0.64 and D=0.10, p=0.97). Lastly, the results of
the Quantile-Quantile (Q-Q) Plot are shown in Figure 4.1, visualizing the distribution of
the data. Based on the results, parametric statistical tests were used.

Figure 4.1: Q-Q Plot.

4.1.2 Descriptive Statistics

Overall, the highest score of hits was 188 total hits or 37 hits per minute, while the
lowest score was a total of 15 hits or 3 hits per minute. On average, the no recovery
strategy showed the highest number of hits per minute mhits=3.9, followed by the no
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smooth condition mhits=3.7, and lastly the rapid recovery strategy mhits=2.7. Figure 4.2
shows that the no recovery condition has the highest variability in the data, whereas the
rapid condition shows the lowest variability.

Figure 4.2: Boxplot for Hits across conditions with the baseline values.

4.1.3 Influence of recovery strategies on hit scores

ANOVA

The repeated measures ANOVA revealed a non-significant main effect of the condition, the
recovery strategy, on user performance, F=2.50, p=0.121. Thus, the different conditions
did not have a detectable impact on the dependent variable, the performance of the par-
ticipants. To account for a varying baseline a second repeated measures ANOVA was run
using normalized scores. The results of this second repeated measure ANOVA showed no
significant result F= 2.5, p= 0.09. A significant effect was found on individual differences
among participants with regards to their results, F = 2.62, p = 0.007. Hence, there is
a significant variability between the participants.

Post Hoc Analysis

Next, t-tests with Bonferroni corrections were run. Three paired sample t-tests were con-
ducted to compare the hits in the three conditions. There was a significant difference
between the smooth recovery strategy (mhits=3.7, SD=1.9) and the rapid one (mhits =2.8,
SD=1.6), t=2.8,p=0.01. A significant difference can also be seen between recovery strate-
gies two and three (mhits=3.9, SD=2.2), t=-2.1, p= 0.04. No significant difference
was found between recovery strategies one and three, t=-0.33, p=0.75. As shown in
Figure 4.2, the rapid recovery strategy showed overall the lowest scores with the lowest
distribution, while both the smooth and the no recovery conditions show a fairly similar
distribution.

4.1.4 Performance Differences Based on Recovery Strategy Preference

The first hypothesis stated that there is a correlation between recovery strategy preference
and baseline performance.
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Figure 4.3: Bargraph for Hits across conditions with preferences for a strategy .

Figure 4.3 illustrates the distribution of hit scores for each participant across three
recovery strategy conditions. Each bar represents the number of hits per participant under
each condition, as well as participants’ stated preferences, with marks above the preferred
condition. While some participants performed best under their preferred condition (e.g.,
Participant 16 preferred Smooth and scored highest there), others demonstrated incongru-
ence between preference and performance (e.g., Participant 7 preferred "No" but performed
better in the "Smooth" condition). Several participants, such as Participant 9 and Partic-
ipant 15, exhibited a divided preference between two strategies.

To test this first hypothesis and that if participants have a strong preference they will
showcase a better performance in that preferred condition, an ANOVA was run. The re-
sults were significant F=10.31, p=0.005 showing that there is a significant difference; at
least one of the strategies leads to different performance compared to the others. Results
of the follow-up t-tests show that there was a significant result (p = 0.0152), for the per-
formance of the participant under the condition with a stronger preference (C_smooth)
compared to the weaker preference condition (C_rapid). There was also a significant dif-
ference between weaker (C_rapid) and no preference (C_no)(p = 0.0065), suggesting
that participants may perform worse in conditions of equal/no preference (C_rapid) com-
pared to no preference (C_no). Lastly, there was no significant difference (p = 0.4054),
between having a strong preference or no preference.

4.1.5 Individual differences

A closer look can be taken at the scores of the participants across the conditions. The line
graph in Figure 4.4 shows the scores of each participant in each condition.

It becomes apparent that some participants score higher in certain conditions and lower
in others. From the interviews, it became apparent that some participants had a strong
preference for either of the conditions. In that sense, participants expressed that “the
reposition yourself (no recovery condition) was the worst,” while others “did not like it (the
robot) to do anything that I am not doing” and therefore expressed a preference for no
recovery strategy.

Overall, participants who expressed a strong preference for the smooth recovery con-
dition showed a lower average score of hits per minute during their baseline recordings
(mhits=17.8), whereas participants with a preference for no recovery condition had a higher
overall score (mhits=22.4). The results of the t-test showed that for participants who had
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Figure 4.4: Linegraph for Hits across conditions with the baseline values.

a strong preference for the smooth recovery strategy, there was no significant difference be-
tween the scores in this condition in comparison to the baseline, t18 = 0.58, p = 0.604. For
participants that chose no recovery strategy as their preference, a significant result could
be seen t18 = 2.14, p = 0.049; meaning that there was a significant difference between the
scores in their preferred condition and in the baseline condition.

To test if the baseline performance of participants with a preference for the smooth
strategy or no strategy differed statistically, a second t-test was run. The results show that
there is a significant difference between the groups t = 2.718, p = 0.024. The positive result
of the t-test suggests that the group preferring the no recovery strategy has a significantly
higher hit score than participants that prefer the smooth condition.

4.1.6 Active versus passive recovery strategy

To answer one of the hypotheses, namely that participants perform better if there is a
recovery strategy over no recovery strategy, a paired t-test was conducted. Results show
that there is no significant difference between these two groups, t=1.14, p=0.27.

4.2 Unclutching behaviour

4.2.1 Normality

The results of the Shapiro-Wilk and Kolmogorov-Smirnov Test suggest that the data is
not normally distributed (W=0.877, p=0.02 and D=0.200, p=0.35). Lastly, the
results of the Histogram as well as the Quantile-Quantile (Q-Q) Plot are shown in Figure
4.5, visualising the distribution of the data. Based on the results, researchers decided to
continue using nonparametric tests.

4.2.2 Descriptive Statistics

Overall, both recovery strategies 1 and 2 showed the lowest medians with a Mdn=2. The
rapid condition had a median of Mdn=3, as well as the lowest variability.
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Figure 4.5: Histogram and Q-Q Plot.

Figure 4.6: Boxplot of unclutching across conditions with the baseline values.

4.2.3 Influence of recovery strategies on unlcutching

Friedman’s Test

The result of the Friedman’s Test, F=3.39, p=0.18 indicates that there is no significant
difference in the number of unclutching between the three recovery strategies. Next, to
account for a varying baseline, a second Friedman’s Test was run using normalized scores.
The results of this statistical test showed no significant results F=0.13, p=0.08.

Post Hoc Analysis

The results showed a significant difference between conditions "smooth" and "rapid"
(p=0.037, Bonferroni corrected). There was no significant difference between conditions
"smooth" and "no recovery strategy" (p=1.00) and conditions "rapid" and "no recovery
strategy" (p=0.129).

4.2.4 Performance Differences Based on Recovery Strategy Preference

The first hypothesis states that there is a correlation between recovery strategy preference
and baseline performance.

This bar chart in Figure 4.7 illustrates the unclutching scores of each participant under
the three recovery strategy conditions. There is variability in unclutching behaviour across
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Figure 4.7: Bargraph for unclutching scores per minute across conditions with pref-
erences for a strategy .

participants and conditions. For example, Participant 11 shows a particularly high number
of unclutching actions under the "No" condition, whereas Participant 5 and Participant
18 showed very few unclutching actions overall. Some participants’ preferred conditions
correlate with fewer unclutching actions (e.g., Participant 7 shows fewer unclutchings under
"No", which they also preferred). In contrast, others display higher unclutching frequencies
in their preferred condition (e.g., Participant 4 preferred Smooth despite unclutching most
in that condition).

To test the first hypothesis, and that people with strong preferences will perform better
in their preferred condition, a Friedman’s Test was conducted. The results were significant
(F=12.15, p=0.0042), indicating that at least one of the strategies produces different
performance results than the others. The results of the Wilcoxon Signed Rank Test suggest
that there was a significant (p = 0.0148) difference in participant performance between
the condition with a stronger preference (C_Smooth) and the weaker preference condition
(C_Rapid). Additionally, there was a significant difference between weaker preference
(C_Rapid) and no preference (C_No) (p = 0.0073). Finally, there was no significant
difference ((p = 0.4126) between having a strong preference versus no preference.

4.2.5 Individual Differences

The graph in Figure 4.8 illustrates the variability in performance across participants and
conditions. Each line represents a single participant’s score in each condition, highlighting
the patterns observed. The red ’X’ markers indicate baseline performance, which also
varies across conditions.

As mentioned in the previous section, some participants expressed a strong preference
for one of the three recovery strategies. It was therefore decided to take a closer look at
the unclutching behaviour of participants with such a preference. Overall, the no recovery
strategy condition showed the lowest amount of unclutching per minute (munclutching=2.5),
followed by the smooth condition (munclutching=2.7) and lastly the rapid condition with
on average the highest amount of unclutching (munclutching=3.1).

The results of the Wilcoxon Signed-Rank test showed that there was no significant
difference between the smooth condition and the baseline W=2.1, p=0.32. For the no
recovery condition and the baseline condition, no significant difference could be found
W=2.5, p=0.79.

To test if the baseline performance of participants with a preference for the smooth
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Figure 4.8: Lingraph for unclutching across conditions with the baseline values.

strategy or no strategy differed statistically, a second Wilcoxon Signed-Rank test was run.
The results show that the difference in the unclutching scores between participants who
prefer the smooth strategy and those who prefer no recovery strategy is not significant
W=16.5, p=0.38.

4.2.6 Active versus passive recovery strategy

To answer the second hypothesis, a Wilcoxon Signed-Rank Test was used. The results show
that there is no significant difference between the active versus passive recovery strategy,
W=47.5, p=0.28.
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Chapter 5

Discussion

5.1 Recapitulation and Implications of the present study

This study examined the impact of different error recovery strategies on operator per-
formance and behaviour in a teleoperation task. The aim was to answer the following
research question: How do different error recovery strategies influence perfor-
mance? The strategies included a smooth recovery strategy, a rapid recovery strategy,
and no error recovery strategy. Both quantitative and qualitative data were collected to
provide a comprehensive view of how these strategies affected the operators’ performance
and reactions.

5.1.1 Summary of Findings

Research Question: How do different error recovery strategies influence per-
formance?

The results showed no significant overall effect of recovery strategy on hit performance, as
revealed by repeated measures ANOVA. However, post hoc analysis suggested significant
differences between specific recovery strategies. Notably, as revealed by the descriptive
statistics, recovery strategy one (smooth recovery) outperformed strategy two (rapid re-
covery). In strategy three (no error recovery) a better performance than in the rapid
strategy was observed. Lastly, no significant difference was found between the smooth
strategy and no recovery strategy. These findings suggest that while participants’ perfor-
mance can vary across strategies, the relationship between strategy type and performance
is nuanced. This aligns with previous research highlighting the importance of individual
adaptability and preference in error recovery contexts [23]. Unclutching behaviour did
not significantly differ across recovery strategies, as indicated by the Friedman test. Post
hoc analysis revealed a significant difference between the smooth strategy and the rapid
strategy, but no significant differences between other pairs of strategies. These findings
suggest that while recovery strategies may influence unclutching behaviour to some extent,
the effects are not consistent or robust.

Hypothesis 1: There is a correlation between recovery strategy preference and
baseline performance.

The hypothesis that participants would perform better in their preferred strategy was par-
tially supported. The bar graphs depicting individual performance patterns across recovery
strategies highlighted the variability in how participants responded to each condition. For
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instance, while some participants performed best under their stated preferred condition,
others showed a mismatch between preference and performance (e.g., Participant 7 pre-
ferred the no recovery strategy but performed better during the smooth condition).

In addition to that, the tests revealed a significant effect of preference. Post hoc analy-
sis indicated that there was a significant difference between strong preference and a divided
preference. There was, additionally, a significant difference between divided preference and
no preference. Lastly, there was no significant difference between strong preference and
no preference. Participants performed worse in conditions of equal preference, reinforcing
the idea that preference can play a role in performance but may depend on the specific
strategies. This could be seen as preference for the smooth strategy meaning on average a
lower baseline hit score. On the other hand, those favouring no recovery strategy achieved
better scores relative to baseline conditions. Participants with no preference may have
approached the task with a more flexible or neutral mindset, focusing on completing the
task regardless of the system’s recovery behaviour. This could have allowed them to adapt
more readily to each recovery strategy without the distraction of comparing or critiquing
the system’s actions. These results were also statistically significant. This finding suggests
that the recovery strategy preference might have a differential impact on task performance,
specifically in terms of hitting accuracy or success. Thus, suggesting that alignment be-
tween user preferences and system behaviour can positively impact task efficiency [11].

Hypothesis 2: Participants will showcase a better performance if there is an
active recovery strategy

The results indicate that there was no significant difference in participant performance be-
tween having an active recovery strategy and no recovery strategy. Additionally, individual
recovery strategies varied in their effectiveness, with the rapid strategy underperforming
compared to the smooth strategy and no recovery, but none of these differences collectively
indicated a broad advantage of active recovery strategies over no recovery strategy.

5.2 Interpretation of Findings

It is important to note that none of the participants could recall the errors when asked
during the interview. In that sense, some participants, after having been told that errors
were introduced, mentioned that they “do not remember noticing the recovery (as) it was
so subtle that it did not affect the game play”. Most of the participants either could not
explain the error, “I did not understand it (the behaviour of the robot) completely” or
assumed that the error was made by them “I feel like I was the one making the errors”.

Role of Recovery Strategy Type

The findings of hypothesis two suggest that while certain recovery strategies may enhance
performance for specific individuals or contexts, the presence of an active recovery strat-
egy alone does not universally lead to better performance. Instead, the effectiveness of
a recovery strategy may depend on its alignment with user preferences and its design
characteristics [16]. The mixed results regarding recovery strategies suggest that strategy
two (fast recovery) may not align well with user expectations or task demands, leading
to poorer performance. This, for example, manifests itself in the higher unclutching fre-
quency in this strategy which could signal frustration or disengagement with this recovery
approach. One participant explained that that condition “swung very much to the right
side and after that, it was hard to find the control back”. A second participant explained
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further that this strategy interrupted the task performance since they first had “the com-
plete range of motion without having to have (to) unclutch”, and then afterwards they lost
that range of motion and they “immediately tried to push against it and got out of the
flow” and had to get back into it again. In contrast to that, the similar performance levels
between the smooth strategy and no recovery strategy may indicate that participants value
predictability and more control over the system’s actions [28].

Impact of Preference

The findings support the hypothesis that preference influences performance. Participants
with strong preferences likely feel more confident and engaged, which can positively affect
task performance. The lack of significant differences between strong preference and no
preference, however, suggests that preferences must align with task demands to enhance
performance. Strong preferences for an ineffective strategy may not yield benefits. A
strong preference does not always guarantee a better performance in all conditions, as
having a strong preference versus not having a strong preference was not significant. This
lack of significant difference between these two conditions suggests that other factors, such
as individual participant variability, may also influence performance.

5.3 Practical Implications

Recovery strategies should prioritize user preference to enhance user satisfaction and task
performance. Kontogiannis [10] suggests that experiencing errors leads to an increased
workload. In these abnormal situations, when errors are encountered, the goal should be
to reduce complexity and manage information overload as this is crucial for effective error
recovery. Furthermore, it could be beneficial to avoid strategies that are overly fast or
disruptive, as these can hinder performance and increase unclutching behaviour [21]. A
one-size-fits-all recovery approach may not suit the diverse range of user behaviors and
preferences. The results further indicated that user performance can diverge even from
their expressed preferences, suggesting that adaptive systems that can learn and respond
to individual user patterns could further optimize performance and user satisfaction. In-
corporating mechanisms that allow users to customize or select recovery strategies based
on their preferences could, further, improve task outcomes [20]. This is particularly rele-
vant in systems where users have diverse needs or skill levels. The observed variability in
the data underscores the need for flexible teleoperation systems. Especially for users who
demonstrate indecisiveness or fluctuating preferences, the system could provide recommen-
dations or gradually tune recovery behaviours to match observed user tendencies. Based
on feedback from certain participants, additional feedback when errors occurred could be
beneficial. One participant expressed that “I wasn’t always sure if I did that or the robot
as you don’t get much feedback.” Stein et al. [26] support this idea and express that there
should be multiple overlapping ways of feedback for better error recovery.

5.4 Limitations and Future Research

This study presented certain limitations. First, the study categorized preference levels but
did not account for how these preferences were formed. Future research could explore the
factors influencing user preferences, such as prior experience or task familiarity. Next, the
results were based on the task performance, measured by hits and unclutching behaviour,
as well as reports. For future research, it could be of interest to incorporate measures
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like eye tracking or heart rate variability to gain deeper insights into user engagement and
stress levels during error recovery. The idea of working with teleoperated systems that
incorporate user modelling techniques or machine learning algorithms that dynamically
adjust recovery behaviours based on observed performance and user input over time can
also be explored. Lastly, the small sample size may limit the generalizability of the findings.
Future studies should include a larger participant pool to validate the results.

5.5 Conclusion

This study emphasizes the need for tailoring error recovery procedures based on user prefer-
ences and task requirements. While preferences and active methods can have an impact on
performance, their effectiveness is determined by how well they correspond with user wants
and expectations. Teleoperation systems can improve their performance and satisfaction
by developing adaptive and user-centered recovery methods.
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Appendix A

Interview Questions

1. Considering the interaction with the robot overall, how would you rate
your experience?

When you have control of the robot and you get used to it, quite easy to use.

It was pretty responsive.

It was quite or relative Intuitive. Sometimes it had a little hick-up, which was kind
of annoying.

I think it kind of feels the same as just a normal computer mouse, but it takes some
getting used to.

At times it was very smooth and it just like it did exactly what I did. And sometimes
I hit it too hard and like start and when stacking up like in the end, it was kind of
doing its own thing.

2. What were your initial thoughts and feelings when you first started using
the teleoperated robot?

It reminds me of when you kind of stand in front of a mirror and you try to do like
a movement.

I had to get used to the force, that’s for sure, because I was using way too much force
and sometimes it was a bit difficult to estimate the distance.

I knew how to move it, but I didn’t know how sensitive it was, you know, so I didn’t
want to go too hard

3. How did the interaction influence your mood throughout the session?

I just was focused on doing it as efficient as possible

When it was stuck, I was kind of frustrated, But in general I had a very stable mood
and it went well.

So it started in a more cramped way and then decided. To relax and then I feel my
performance, might change towards the end.

4. Have you experienced any issues while interacting with the robot? / Have
you encountered any malfunctions or technical issues?

Aside from the When it was stuck again, it just continued. Normally it wasn’t acting
weird or having issues.

Yes, that it moved it’s position without me doing anything. Movement wasn’t as
smooth as I thought it was going to be.
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Yes! Sometimes it got stuck on the button and then I think you had to reset it or
something.

Apart from the jerking and the tilting no.

No, there were a couple of situations where the robots suddenly flew off to the right,
which I didn’t understand entirely.

5. How did the system recover from these issues (errors)?

I solved them myself.

I feel like it was mainly me, but on the other hand I don’t think I actually like let go
and recentered (no unclutching). Might be both.

6. How did these issues (errors) affect your gameplay experience and task
performance?

But they gave me, I think a few seconds delay every time to get it back.

Something that I encountered at some point is that it like drifted a little bit. Like
at the start I set up a little area which could perfectly hit all the buttons, but then
sometimes it drifted a little bit and then that area was skewed, so I had to unclutch.

7. Debrief

I was mostly bothered by the fast one because you thought you were doing a mistake
and then you immediately tried to push against it and got out of the flow.

I like the first one best. I like that it recovers itself, he has his own life and should
also behave.

It seems like it recovered itself. I don’t remember noticing the recovery so it was so
subtle that it did not affect the game play.
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Appendix B

Setup

To conduct the experiment, the following setup was used. The Franka Research 3 robot
arm was further expanded by adding a force torque sensor installed in the final ‘limb’ of
the robot. It was further completed by a 3D printed tip that the participants used to hit
the targets. The force torque sensor is used to measure force and torque when they are
applied.

Figure B.1: Technical Setup

In front of the robot a second table was placed where on top the whack-a-mole box
was secured using clamps. Then came the table with the participant seated where also the
Omega 7 system was found (Figure B.2).

Figure B.2: Omega 7 system.
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