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MANAGEMENT SUMMARY

Company X, a global manufacturer of renewable energy plants, operates in a project-based
environment where cost estimations are made before production begins. However, expenses
frequently deviate from initial estimates, leading to financial discrepancies due to unforeseen
production costs. The core issue is the absence of a cost accounting method that provides ac-
curate insight into the production cost structure. Moreover, the absence of a systematic method
for detecting budgeting inaccuracies leads to inefficiencies, necessitating a regression analysis
to identify underlying patterns. Therefore, the research question arises:

How can implementing a new cost accounting method and regression analytics improve
Company X’s insight into production costs?

This study employs the Managerial Problem-Solving Method (MPSM) to systematically identify
and address the core problem. A literature review evaluated various cost accounting and regres-
sion analysis methods. Regression analysis was applied to identify key cost drivers and assess
cost estimation inaccuracies, while activity-based costing (ABC) was implemented to improve
cost allocation. A cost price model was developed, incorporating ABC. Data was collected from
internal company records, including production logs and financial reports, supplemented with
expert interviews. The selected methods were validated through expert validation and statistical
techniques, including cross-validation and goodness-of-fit measures.
The regression analysis showed that labour costs were systematically overestimated, while in-
direct costs were underestimated. The cost price model was validated using two sensitivity
analyses. The One-Factor-at-a-Time (OFAT) sensitivity analysis, which measures the impact of
individual variables by altering them while keeping others constant, indicated that material costs
(13.13%), carbon steel labour (13.1%), and corporate overhead cost driver rate (9.12%) had the
greatest impact on the cost price. The Morris sensitivity analysis, which examines relationships
between variables, demonstrated that corporate overhead cost driver rate and internal assem-
bly labour significantly influenced cost price due to their interaction with other cost factors.
The study confirms that implementing a structured cost accounting method, combined with a
regression-based budget analysis, enhances insight into production costs at Company X. The
transition towards ABC, along with a refined budgeting process supported by regression anal-
ysis, is essential for improving cost transparency and financial control.
However, the cost price model was not validated for accuracy due to insufficient data and should
be tested once more data becomes available. Additionally, the regression analysis did not
account for external factors affecting budget deviations, such as inflation, market volatility, or
supplier issues. The dataset used for regression analysis was small. Another limitation is mul-
ticollinearity, which may have distorted coefficient estimates, reducing the reliability of findings.
Recommendations for Company X include implementing a refined cost accounting approach
such as ABC to improve cost visibility and indirect cost allocation. Data collection should be
enhanced by integrating existing Enterprise Resource Planning (ERP) systems with production
data already captured at the factory floor into a centralised database. Lastly, labour estimation
should adopt a dynamic approach, continuously monitoring real-time labour data and compar-
ing it with estimates, allowing adjustments instead of relying on fixed labour standards updated
quarterly.
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1 INTRODUCTION

1.1 Organisational context

Company X is a global manufacturer of renewable energy plants operating in more than 30
countries. With a workforce of over 500 employees, the company specialises in designing,
developing, and installing energy plants that convert organic materials, primarily waste, into
renewable energy, such as biogas (Company X, 2025). Its diverse clientele includes munici-
palities and large energy-intensive industries seeking sustainable energy solutions. In addition
to manufacturing plants for external clients, Company X also operates its own installations to
generate and sell sustainable energy.
The company produces a range of energy plant types, each with a distinct configuration of com-
ponents and specific input-output requirements. Depending on the design, an energy plant may
consist of up to 600 individual components, which can vary significantly between plant types.
Given the diverse requirements of its clients, Company X customises each installation to meet
specific operational and regulatory needs. Its technological solutions contribute to sustainability
by enabling industries, municipalities, and agricultural businesses to reduce waste and lower
carbon emissions. To maintain efficiency and industry leadership, Company X invests in re-
search and innovation.

1.2 Action problem

Company X operates in a project-based environment. The sales department plays a key role
in negotiating plans with potential customers. Collaborating closely with the procurement and
engineering teams, they calculate the estimated costs for each project. Once an agreement
is finalised, the order is sent to the production company, Company Y, located abroad. At this
facility, all materials are delivered, prepared, and assembled into operational sub-assemblies,
ready to be installed at the customer’s location into a fully operational energy plant. Projects are
executed simultaneously, and in some cases, parts of the production process are even started
before negotiations with a customer are officially closed.
For production, a basic cost allocation scheme is standardised. This allocation scheme is de-
signed by Company X to streamline resource distribution and ensure financial accountability.
However, the financial department occasionally observes that Company Y requires additional
cash to sustain operations. Furthermore, Company Y cannot pinpoint the exact sources of
these extra costs. Moreover, the predetermined costs are used to calculate the cost price,
which serves as a basis for customer negotiations. Extra cash required by Company Y causes
the production costs to exceed the initially budgeted amount. Consequently, the following action
problem arises:

Unforeseen production costs arise, leading to budget overruns and financial discrepancies.

1



1.3 Problem identification

With the action problem clearly defined, the core problem can be identified. Identifying the core
problem is essential because it provides a clear focus on what needs to be addressed to cre-
ate lasting improvements. The core problem is identified by constructing a problem cluster,
which traces all underlying causes back to the root cause, starting from the action problem.
(Chevallier, 2016). The problem cluster can be found in Appendix A.1.
The action problem addresses costs that arise without Company X fully understanding their ori-
gins or impact. During and after the production processes, actual expenses occasionally exceed
expectations. The sales department may negotiate a new project, and then the procurement
and engineering departments determine the necessary activities and resources to manufacture
a working plant. Ideally, by adding these activities and resources together, the organisation
should arrive at a credible cost price for producing the unit. Yet, in reality, it seems more com-
plicated. Some costs do not stem directly from the production process of a certain plant but
rather originate in preparatory tasks or general materials that support multiple projects. Indirect
costs such as utilities, facilities, and maintenance expenses often go unaccounted for when
calculating a project’s cost price. As a result, these essential costs remain hidden contributors
that steadily decrease profit margins.
Tracing the problems upwards reveals the root cause, which we consider the core problem.
The core problem, pictured in red in Appendix A.1, can be defined as the absence of a cost
accounting method that provides insight into the cost structure of the production process. With-
out the knowledge gained from implementing a cost accounting method, Company X cannot
realistically plan budgets, allocate resources, or make informed pricing decisions. The cost ac-
counting method should allow Company X to capture not only direct, project-specific expenses
but also indirect costs and overheads.
In addition to the absence of an accurate cost accounting method, another root cause is identi-
fied. There is no knowledge of what aspects of the budgeting process are inaccurate. It is critical
to understand which types of costs consistently exceed initial budget estimates to improve these
processes. To address this, a regression analysis can be employed, enabling the company to
identify significant cost drivers and detect patterns or anomalies in spending. This analytical
approach would allow Company Y to pinpoint the root causes of budget overruns, whether they
are linked to particular stages of the production process, fluctuating material prices, or unfore-
seen operational challenges.
By integrating these formerly evasive costs into the overall financial picture and employing
regression analysis to uncover key cost drivers, the company can establish a more reliable
foundation for profitability, accountability, and strategic growth. This dual approach transforms
Company X’s cost management from a reactive exercise into a proactive, data-driven practice,
ensuring that every aspect of the production process is clearly understood, correctly valued,
and continuously optimised.

1.4 Gap between Norm and Reality

Currently, the company lacks a clear procedure for identifying production costs and associating
them with specific activities or processes. Furthermore, the company does not have a clear
view of budgeting inefficiencies. As a result, unexpected costs arise, causing actual expenses
to deviate from the budgeted amounts, ultimately reducing the desired profit margin.
The norm is for the company to have a precise understanding of production costs and the ability
to allocate them to specific projects. Furthermore, a validated method for doing so is desired as
well. Achieving this would accurately determine the cost price and help maintain the intended
profit margin.

2



1.5 Problem-solving approach

The main research question is based on Company X’s core problem, as stated in Section 1.3.
This research aims to provide an improved insight into the cost structure of the production
process and is defined as:

How can implementing a new cost accounting method and regression analytics improve
Company X’s insight into production costs?

The methodology that is used for this research is the Managerial Problem-Solving Method
(MPSM) by Heerkens and van Winden (2021). This is a general research design model that
is widely used. It is a systematic approach that involves identifying the core problem, conduct-
ing thorough research into it, and solving it. Its creative techniques make it applicable in many
situations (Heerkens & Van Winden, 2021). The methodology consists of the following seven
phases:

Phase 1: Defining the problem
The first phase of the MPSM is problem identification. The problem is understood in terms of
its context, stakeholders, and scope. Discovering underlying problems is essential here.

Phase 2: Formulating the approach
In this phase, the problem-solving approach is defined. It is important to discover the methods
available for solving problems similar to this research’s core problem. A systematic literature
review is conducted to identify possible cost accounting methods. Furthermore, regression
methods are investigated to define possible methods to discover budgeting inefficiencies.

Phase 3: Analysing the problem
During this phase, the problem is extensively analysed. This includes gathering the right data,
clearly understanding the production process and cost structure of Company Y, discovering
causes and consequences, and setting up constraints and requirements.

Phase 4: Formulating possible solutions
After analysing the problem, possible solutions are generated. There are a variety of them,
so we can evaluate what the right strategy is afterwards. Criteria are established to assess the
possible cost accounting methods. The characteristics of Company Y’s production environment
are stated when choosing a proper regression method.

Phase 5: Choosing the solution
After evaluating the possible solutions, the best-fitting method is chosen. This is done by evalu-
ating them against the criteria established earlier. The right regression method is chosen based
on the characteristics of the production environment of Company Y. It is decided in what pro-
gramme both the solutions are generated.

Phase 6: Implementing the solution
In this phase, the method is used to come up with results. Firstly, the models for both the
cost price and budgeting evaluation are built. Here, we can see what happens with the cost
structure using the available data and the chosen method. We also carry out the regression
analysis. Both the solutions are validated.

Phase 7: Evaluate the solution and provide recommendations
First, the outcomes are evaluated. We can then compare the outcome with the desired situa-
tion mentioned at the beginning of this research. Afterwards, we conclude the study and give
Company X recommendations.
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1.5.1 Research Design

In this section, the research design is explained. It is a framework that outlines how the study is
conducted. The plan specifies the methods and procedures used in collecting, analysing, and
interpreting data. A well-constructed research design is essential to minimise bias and max-
imise data reliability, yield maximum information with minimal experimental error, and provide
a clear structure for the entire research process (De Vaus, 2001).
This research follows a descriptive and explanatory approach, integrating qualitative methods
for understanding production processes and quantitative methods for cost analysis. Under-
standing the production process is the first step towards determining the cost drivers. Through
interviews with the production staff and managers, the research identifies the direct and indirect
costs that significantly influence the overall production expenses. Key variables, as mentioned
in Section 2.2, such as labour costs, material expenses and overhead allocation, are opera-
tionalised.
For the data collection, relevant cost data is obtained from internal company records such as
production logs, financial reports and data from the Enterprise Resource Planning (ERP) sys-
tem. Interviewing the production staff and management strengthens the dataset by providing
insights and context.
Using insight from the systematic literature review that is conducted, the study evaluates the
suitability of numerous cost accounting methods and regression methods. We establish criteria
to find the method that fits the organisation’s specific needs. These include accuracy, relevance
to the production process, ease of implementation and alignment with the company’s objective.
The selected methods are adapted to the company’s context using the collected data. The
methods are tested and validated to ensure reliability and validity. This involves consulting with
industry experts and statistical validation. By validating the method, its limitations become clear
as well. For instance, the scalability of the method could be a limitation. Additionally, the lim-
itations of this research are the availability and accuracy of cost data and biases in employee
responses.

1.5.2 Research Questions

In this section, the research questions are established. These questions are based on the
methodology and the research design. The research questions contribute towards answering
the main research question mentioned in Section 1.5.

1. What cost accounting methods are available for allocating direct and indirect costs in
manufacturing environments?

2. Which regression models are available for investigating inaccurate cost estimation?

The aim here is to identify and understand various cost accounting methods and regression
models to establish a foundation for selecting the most appropriate methods for Company Y.
These questions are answered in Chapter 2.

3. What steps are involved in the production process at Company Y?

4. How do direct and indirect costs associated with the steps in the production process affect
total production costs?

Answering these questions enables the analysis of the production workflow and cost drivers. It
provides insight into the cost structure and the challenges of establishing the right cost price.
These two questions are addressed in Chapter 3.

5. What cost accounting approach best fits Company Y’s production methods and cost struc-
ture, and why?
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6. Which regression models are most suitable for conducting a cost variance analysis in the
context of Company Y?

It is essential to evaluate potential methods and justify selecting the most suitable one or a
combination of multiple. It ensures the alignment between the method(s) and the operational
and company needs. These questions are answered in Chapter 4.

7. How can the selected cost accounting and regression methods be adapted for implemen-
tation at Company X using its existing data?

The objective is to determine how the selected cost accounting method can be effectively
adapted to Company X’s operational context, utilising the data collected earlier in the research.
This process involves developing a structured implementation plan that details how the cost
accounting method can be integrated into existing operations while addressing practical chal-
lenges. Key adjustments and feasibility considerations are identified to ensure a realistic and
scalable approach. The regression analysis is done on collected data to identify potential bud-
geting weaknesses. These aspects are thoroughly examined in Chapter 5.

8. How can the validity and reliability of the selected methods be assessed at Company X?

It is necessary to establish validation procedures for the selected method to ensure that the
new cost insights are accurate and trustworthy. The validation methods should align with the
available resources. This is addressed in Chapter 5 as well.

9. What new insights into production costs are gained from applying the selected cost ac-
counting method to Company X’s situation?

10. What recommendations can be made for Company X based on the new cost insights for
improving cost management and decision-making?

Answering these last two questions, the goal is to provide actionable suggestions derived from
the findings. It helps the company use the new insight to optimise its operations. This is ad-
dressed in the final part of this thesis, Chapter 6.

1.5.3 Scope

The scope of this research is intentionally limited to two standard types of energy plants, Product
A and B. Each type has many customisation options to fulfil the customer’s needs. The limitation
ensures in-depth analysis and actionable recommendations within the time constraints of a
bachelor’s thesis. These product types sell the most, so its practical relevancy is the highest.
By focusing solely on direct and indirect production costs, the study aims to provide a granular
understanding of the production’s cost structure without dilution from unrelated cost factors such
as sales or transport. This focus aligns closely with the core problem identified, addressing the
gap in cost accounting methods and budget efficiency to offer insights tailored to Company X’s
production.

1.5.4 Deliverables

As a result of the research conducted at Company X, there are several deliverables. First, a
detailed report including recommendations on how to implement a cost accounting method
to enhance insight into production costs. It also outlines the cost accounting method selection
process and the rationale behind the choice. Furthermore, it includes an identification of cost
estimation errors and recommendations on how to solve these errors. All of these recommenda-
tions are accompanied by practical guidelines. Secondly, it includes a cost price model, made
in Excel, that incorporates a cost accounting method to improve cost allocation and enhance
visibility into the production’s cost structure.
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2 THEORETICAL FRAMEWORK

The theoretical framework of this study establishes the foundation for evaluating and imple-
menting cost accounting and regression methods within Company X’s production processes.
Through a systematic literature review, the chapter delves into the principles of cost accounting
and regression analysis, offering a comprehensive understanding of how these methods can
provide insights into cost structures and drivers. By integrating regression analysis, the study
expands its focus to include predictive and diagnostic tools, allowing for the identification of sig-
nificant cost drivers and patterns. This enhanced theoretical base enables the design of more
effective cost accounting models tailored to Company X’s operational and financial needs.

2.1 Cost Accounting

Cost accounting is a specialised branch of accounting that plays a key role in business man-
agement. Whereas financial accounting focuses on providing financial information to external
stakeholders, such as investors and regulators, cost accounting has a more internal focus and
is designed to help managers understand, control, and optimise costs associated with a com-
pany’s operations. By analysing the cost structure of products, services, or processes, compa-
nies can make informed decisions to enhance efficiency and profitability (Horngren et al., 2018).
Cost accounting involves identifying, measuring, analysing, and reporting costs. The first step
involves identifying the purpose of cost accounting and the specific cost objects, such as prod-
ucts, services, or departments. Costs are then classified based on their nature (direct or indi-
rect), behaviour (fixed or variable), and purpose (product or period costs) (Hansen & Mowen,
2006). Direct costs are assigned directly to cost objects, while indirect costs are allocated using
cost drivers. A cost driver is a characteristic or activity that causes costs to be incurred. It is
a measurable factor that directly influences the costs of a specific activity, product, or service.
The data is then analysed to calculate total and unit costs to identify inefficiencies (Hansen &
Mowen, 2006).
The primary objective of cost accounting is to accurately determine the cost of production
or service delivery, helping management control expenditures and make strategic decisions
(Horngren et al., 2018). The scope of cost accounting goes beyond the mere calculation of
costs. It contains cost control, cost reduction, and cost analysis, forming the foundation for
budgeting, pricing, and financial planning. This function is essential in manufacturing indus-
tries, service sectors, and even non-profit organisations, as it provides insights into resource
utilisation and cost efficiency.

6



2.2 Cost Types

Certain types of costs are often mentioned in cost management and cost accounting. Based on
their nature, we can categorise costs into three distinctions: direct or indirect, fixed or variable,
and product or period (Hansen & Mowen, 2006). This section explains these types of costs.

2.2.1 Direct vs. Indirect costs

Direct costs are expenses that can be directly attributed to the production of specific goods or
services a business sells. These costs are easily traceable and directly linked to the creation of
a product or delivery of service (Horngren et al., 2018). Direct costs typically include raw mate-
rials used for manufacturing, direct labour costs involved, and equipment or machinery that is
specifically used for that production process.
Indirect costs are expenses that cannot be directly attributed to a specific project, product or ser-
vice. According to Horngren (2018), indirect costs are defined as costs that cannot be traced to
the cost object. The costs incurred benefit multiple activities or projects. Indirect costs include
rent, utilities, and maintenance, but also indirect labour and material expenses. The terms indi-
rect costs and overhead are often used interchangeably. However, they have distinct meanings
in cost management and accounting. Overhead costs is a subset of indirect costs that refer to
the expenses of an ongoing business that cannot be directly tied to creating a product. It fo-
cuses on keeping the business running. These are costs like rent, utilities and office supplies
(Hansen & Mowen, 2006).

2.2.2 Fixed vs. Variable costs

According to Hansen and Mowen (2006), “fixed costs are costs that in total are constant within
the relevant range as the level of the activity driver varies” (p. 68). In other words, fixed costs
remain unchanged over a specific period, regardless of fluctuations in production or sales lev-
els. These costs do not vary with output and are incurred irrespective of the volume of goods
produced or sold. Examples include factory rent and insurance premiums (Drury, 2018).
In contrast, variable costs change in direct proportion to production levels (Hansen & Mowen,
2006). For instance, in a bakery, expenses such as flour and packaging materials fluctuate
based on output. The fundamental distinction between these cost types lies in their relation-
ship with production levels: fixed costs decrease per unit as output increases, whereas variable
costs remain directly proportional to production volume (Horngren et al., 2018).

2.2.3 Product vs. Period costs

Product costs are the costs incurred in the manufacturing of goods or the provision of services
(Hansen & Mowen, 2006). These costs are capitalised as inventory and are only recognised as
expenses, specifically as the cost of goods sold, once the product is sold. According to Hansen
and Mowen (2006), “period costs are expensed in the period in which they are incurred. Thus,
none of these costs can be assigned to products or appear as part of the reported values of in-
ventories on the balance sheet” (p. 40). Period costs include selling, administrative, and general
expenses, such as advertising, executive salaries, and office rent. Unlike product costs, which
are directly tied to production and inventoried until the sale of goods, period costs are expensed
immediately in the income statement during the period in which they occur. In summary, prod-
uct costs are inventoriable and directly associated with the production process, whereas period
costs are recognised as expenses immediately and pertain to the overall business operations
rather than manufacturing.
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2.3 Cost Accounting Methods

This section discusses different cost accounting methods. Important aspects of cost accounting
methods are in which manner they allocate costs, how they align with financial regulations, scal-
ability, and granularity of a method, which also affects ease of implementation. Each method
has its own characteristics, so it adjusts according to the needs of specific industries or compa-
nies. The methods included in this section are relevant because they align with the research’s
objectives and might be useful for implementation at Company Y. The methods mentioned in
this section can be divided into three categories, which are shown in Figure 2.1. Volume-based
methods allocate overhead based on production volume or labour hours, while activity-based
approaches link overhead to specific organisational activities. Process-based costing methods
look at production processes or jobs as a whole, often dealing with batches of goods or tailored
products. The methods discussed are summarised at the end of the section in Table 2.1.

Figure 2.1: Cost Allocation Approaches

A few cost accounting methods are excluded from this study. These are hatched red in Fig-
ure 2.1. Material Flow Cost Accounting (MFCA), LEAN costing and Value Stream Costing are
excluded because they focus on waste reduction. Although MFCA can be considered as an
activity-based method if focused on specific activities, it generally is process based. Direct
costing is not included because it does not include indirect costs. Marginal costing is not in-
cluded because it does not include fixed costs. Fixed costs and indirect costs are both needed
in this study. Lastly, target costing is not assessed in this study either, as it is a market-driven
approach which starts with a sales price and determines what the maximum costs can be. This
is not truly about costs.

2.3.1 Traditional Costing

Traditional costing, also known as full costing or absorption costing, is a cost accounting method
that has been widely used among organisations for many years. Traditional costing is a method
that incorporates all manufacturing costs, both direct and indirect expenses. It uses four main
components to determine the total cost of production. It covers direct materials, direct labour,
both variable and fixed manufacturing overhead. According to Horngren (2018), traditional cost-
ing systems allocate overhead to products based on the volume of resources used in production.
It uses a single overhead rate which makes it more simplistic compared to other cost accounting
methods. The overhead rate is a metric that represents the proportion of the overhead costs
relative to a specific allocation measure, such as direct labour or machine hours. Traditional
costing often fails to account for product diversity. With a greater variety of products, the method
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using broad averages can lead to misallocation of costs (Horngren et al., 2018). This lack of
specificity makes it difficult to efficiently adapt to different products.
Companies often use traditional costing as it complies with Generally Accepted Accounting
Principles (GAAP) and International Financial Reporting Standards (IFRS) for external financial
reporting (Horngren et al., 2018). These are accounting rules, standards, and procedures used
to guide financial reporting. Where GAAP is mainly used in the United States, IFRS is used
in the EU. Financial institutions and investors accept the method and, therefore, is better for
facilitating financing and increasing confidence in financial statements.

2.3.2 Standard Costing

According to Drury (2018), standard costing is a method that involves establishing predeter-
mined costs, known as standard costs, for the products or services. This is done for direct
materials, direct labour, and overhead. These predetermined costs are based on historical
data, operational efficiency, market conditions or industry benchmarks. The standard costs
are compared with the actual costs for variance analysis. The organisation can take action by
studying the reasons for variances. Standard Costing is a widely used method in manufacturing
environments for cost control, performance evaluation and decision-making.
Standard costing particularly benefits companies with repetitive and predictable production pro-
cesses, such as manufacturing (Drury, 2018). The automotive industry and the healthcare sec-
tor often use this method. Standard costing is much less complex than other cost accounting
methods, such as activity-based costing (ABC). By using predetermined costs as benchmarks,
detailed cost tracking is not essential. This makes the method less resource-intensive. Using
the industry benchmarks when determining the standard costs gives a more reliable image of
whether the costs are aligned with expected standards. Other methods, like ABC, allocate costs
more accurately but lack a comparison with the expected standard.
Although it is easy to implement compared to other methods, standard costing is not flexible
(Drury, 2018). Working with predetermined costs is challenging in dynamic industries where
cost changes occur frequently in technology, energy, or maintenance. Additionally, labour avail-
ability could be an uncertain factor. If these predetermined standards are outdated, the variance
analysis with its interpretations is not valid.

2.3.3 Activity-Based Costing

ABC is a method for assigning overhead and indirect costs, such as manufacturing overhead
and administrative costs, to products, services or customers more precisely than traditional
costing methods. As of today, the degree of automation within manufacturing is increasing,
the proportion of overhead costs is also increasing. Because of this, ABC is gaining popular-
ity. Instead of using averages, ABC identifies activities that are performed to produce a certain
product. Then, it assigns all the costs necessary to perform that activity. Thereafter, product
costs can be calculated through the degree to which they use these activities. Based on the
intensity of these activities, the method allocates overhead costs proportionally (Kaplan, 1997).
ABC is particularly useful for companies that have a complex product mix. These are companies
that produce a wide range of products, varying in product complexity, batch sizes, customiza-
tion and resources (Horngren et al., 2018). Furthermore, companies prefer ABC over traditional
costing methods when they are dealing with a high percentage of overhead costs. Traditional
costing methods primarily focus on direct costs and allocate overhead in a less precise way.
In contrast, ABC establishes a relationship between all costs (both direct and indirect) and the
activities that drive those costs. In other words, ABC connects overhead costs to production
activities, making the total cost of a product more accurately reflect the true resources it con-
sumes (Noreen, 1991). However, there is a risk of making the system overly complex, which
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reduces the scalability. By adding more activities and cost drivers, it leads to difficulty when
updating them (Noreen, 1991).

2.3.4 Time-Driven Activity-Based Costing

Time-driven activity-based costing (TDABC) is a simplified version of ABC that uses time as the
primary cost driver. It rather focuses on the time required to perform an activity than the detailed
composition of cost data of which an activity consists. Like ABC, TDABC begins with defining
all the activities or processes in an organisation that consume resources. The focus here is
to understand what needs to be done to deliver the product eventually. Once the activities are
defined, the next step is determining howmuch time is needed to perform these activities. This is
done by measuring or estimating the time of executing such an activity under normal operating
circumstances. The typical workload is included, and exceptional cases are preferred to be
excluded. Afterwards, the cost per unit of time is calculated. This involves adding up all the
costs associated with the resources needed for the activity and dividing it by total available time
capacity, for example, total working hours in a period (Kaplan & Anderson, 2007). So, at its
core, TDABC focuses on two key parameters:

• The cost of supplying resource capacity

• The time required to perform activities or transactions

Using time as the primary cost driver is less complicated and, therefore, less time-consuming
than ABC as it streamlines the process of assigning costs. This also makes it easier to update
the method after implementation and makes it more scalable (Kaplan & Anderson, 2007). It
simplifies the process compared to ABC while providing more insight regarding organisational
efficiency and resource utilisation. Therefore, TDABC is a well-suited method for firms looking
for a less complex and less costly implementation than ABC. ABC often relies on extensive
employee surveys and subjective time allocations (Hoozée & Hansen, 2018). While TDABC
simplifies cost allocation by applying standardised time-driven rates, it may be less effective in
cases where resource consumption varies significantly across different activities. In contrast,
ABC offers a more precise allocation method by capturing the complexity of cost behaviour,
making it particularly suitable for environments where tracking resource usage is not straightfor-
ward. This ensures that overhead costs are assigned based on the actual activities performed,
leading to more accurate cost insights and improved decision-making in budgeting and pricing
strategies (Hoozée & Hansen, 2018). TDABC is particularly interesting for companies that rely
on the time spent on certain job processes, such as healthcare. Furthermore, if demand for
certain activities fluctuates much and quickly, a time-based approach is more flexible.

2.3.5 Process Costing

Process costing is a method designed for industries that produce large quantities of homoge-
neous products through continuous production processes. In process costing, costs are accu-
mulated for each production stage or department. These costs cover direct materials, direct
labour, and manufacturing overhead, which are then averaged over the total units produced
within a given period (Drury, 2018). A unique aspect of process costing is its treatment of par-
tially completed goods. To ensure accurate cost allocation, companies calculate the degree of
completion for these goods and convert them into equivalent units. This ensures that costs are
distributed proportionally between finished goods and work-in-progress inventory. It simplifies
cost accounting by grouping costs by process rather than individual units, reducing administra-
tive burden and streamlining cost tracking. This makes it a more practical choice compared to
complexmethods like ABC. By averaging costs across all units, process costing ensures consis-
tent and accurate cost allocation, crucial for pricing decisions and inventory valuation. Process
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costing includes both variable and fixed overheads, providing a complete picture of produc-
tion expenses. Process costing is inherently scalable because it is designed for industries that
produce large volumes of identical or similar units (Drury, 2018). Additionally, it simplifies finan-
cial reporting by using average costs per unit, ensuring compliance with standards like GAAP
or IFRS. Process costing also aids cost control by identifying variances in material usage or
labour efficiency, enabling organisations to optimise operations.
Process costing does have several disadvantages compared to other costing methods. Unlike
job costing, which tracks specific job costs, it averages costs, leading to inaccuracies for di-
verse or custom products (Hansen & Mowen, 2006). Its overhead allocation lacks the precision
of ABC, and it struggles to identify inefficiencies or non-value-adding activities. Process cost-
ing is unsuitable for dynamic or non-homogeneous production environments and can obscure
cost variations within production stages. Additionally, calculating equivalent units for work-in-
progress can be complex (Soudatti, 2024). Overall, it provides less detailed insights, making it
less flexible for decision-making than alternatives like ABC.

2.3.6 Job Costing

Job costing is a cost accounting method used to track and allocate costs associated with pro-
ducing specific products or services. It is especially useful for industries where the products or
services are custom-made or each project is unique. In job costing, costs are assigned to indi-
vidual jobs or batches of products rather than the overall production process. The three main
cost categories tracked are direct materials, direct labour, and overhead (Horngren et al., 2018).
Job costing is often used in made-to-order environments or where products are customised or
produced in relatively small batches rather than mass production. This method is beneficial for
companies that track costs for each client engagement, such as consultancies or accountants.
The high level of detail allows accurate cost tracking, but makes scaling difficult (Horngren et
al., 2018).
Additionally, there is an activity-based approach to job costing. This is a refined approach to
job costing that integrates the principles of ABC. Within a job, the method assigns costs to spe-
cific activities or tasks. It differs from normal job costing as it is not based on broad measures
such as direct labour or machine hours without considering the specific activities causing those
costs. For example, in construction, activity-based job costing could separate costs for excava-
tion, formwork, and concrete pouring as distinct activities. In contrast, normal job costing would
take these together under a single cost code (Fayek, 2001). In short, by combining ABC with
job costing, benefits of ABC such as improved cost tracking and standardisation across projects
are complemented. However, disadvantages such as increased effort for data gathering and
complexity in implementation are also part of the combination.

Table 2.1: Overview Cost Accounting Methods

Method Description Key Features Best Suited For
Traditional
Costing

Allocates all manufac-
turing costs, including
direct and indirect, using
a single overhead rate.

• Simple to imple-
ment
• Uses broad aver-
ages
• Complies with
GAAP/IFRS
• Less accurate for
diverse products

• Organisations with uni-
form products
• Financial reporting and
regulatory compliance

Continued on next page
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Table 2.1: Overview Cost Accounting Methods (Continued)

Method Description Key Features Best Suited For
Standard
Costing

Uses predetermined
costs (standards) for
materials, labour, and
overhead to compare
with actual costs.

• Enables variance
analysis
• Good for cost con-
trol
• Less complex but
lacks flexibility

• Repetitive production
processes
• Stable industries (auto-
motive, healthcare)

ABC Assigns overhead and
indirect costs based on
activities that drive costs
rather than broad mea-
sures.

• More precise than
traditional costing
• Tracks cost drivers
at activity level
• Suitable for com-
plex product mixes
• Can be complex
and expensive to im-
plement

• Companies with high
overhead costs
• Businesses with diverse
product lines

TDABC A simplified version of
ABC that uses time as
the primary cost driver to
allocate overhead.

• Easier to update
than ABC
• Uses standardised
time-driven rates
• Balances precision
and scalability

• Time-intensive indus-
tries (e.g., healthcare)
• Businesses seeking a
simplified ABC approach

Process
Costing

Allocates costs based
on production pro-
cesses, averaging costs
across homogeneous
units.

• Simplifies cost
tracking
• Uses equivalent
units for unfinished
goods
• Not suitable for
custom products

• High-volume, continu-
ous production industries
(chemicals, food, pharma-
ceuticals)

Job
Costing

Allocates costs to indi-
vidual jobs or projects
rather than mass pro-
duction processes.

• Tracks direct mate-
rials, labour, and over-
head per job
• High level of cost
tracking detail
• Not easily scalable

• Custom manufacturing
• Service industries (con-
sulting, construction)

2.4 Regression

Regression analysis is a statistical technique widely used to model and analyse the relation-
ships between a dependent variable, often called the outcome or response variable, and one or
more independent variables, referred to as predictors, regressors or explanatory variables. This
method is fundamental in understanding complex data patterns, estimating causal effects, and
predicting future outcomes (Montgomery et al., 2012). Its versatility makes it essential across
various fields, including economics, engineering, and production management. In the domain
of production, regression analysis is particularly relevant for estimating costs, analysing produc-
tivity, and optimising resource allocation.
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2.4.1 Simple Linear Regression

The simplest form of regression analysis is simple linear regression, where the relationship
between a single independent variable X and a dependent variable Y is examined. The model
can be expressed as Equation (2.1).

Y = α+ βX + ϵ (2.1)

where α is the intercept or constant. It represents the mean value of the response variable
when all the predictor variables in the model are set to zero. β represents the slope of the line
(indicating the effect ofX on Y ), and ϵ stands for the error term capturing unexplained variability
(Montgomery et al., 2012). This approach is often used in production to explore how one factor,
such as labour hours, influences costs. For instance, if labour hours increase by one unit, the
corresponding change in production costs can be quantified by β (Chatterjee & Hadi, 2006).

2.4.2 Multiple Linear Regression

When analysing multiple variables simultaneously, multiple linear regression (MLR) becomes
necessary. This model extends simple linear regression to include several independent vari-
ables, thereby significantly enhancing its explanatory strength. Unlike simple regression, which
attributes changes in the dependent variable to a single factor, multiple regression allows for
the inclusion of multiple predictors, providing a more comprehensive view of the factors influ-
encing the outcome. For example, in a manufacturing setting, production costs might depend
not only on labour hours but also on material costs, energy consumption, and machine main-
tenance. Incorporating these variables into a multiple regression model makes it possible to
separate their individual effects and identify the most impactful cost drivers. This comprehen-
sive approach ensures a deeper understanding of the production process and supports more
informed decision-making (Chatterjee & Hadi, 2006). Here, X1, X2, . . . , Xk represent different
predictors, each contributing to the variation in Y , as can be seen in Equation (2.2).

Y = α+ β1X1 + β2X2 + . . .+ βkXk + ϵ (2.2)

2.4.3 Multicollinearity

Multicollinearity implies near-dependence among the independent variables. According to Chat-
terjee (2006), “the presence of near-linear dependencies can dramatically impact the ability to
estimate regression coefficients” (p. 117). It refers to the situation where there is a high correla-
tion between the independent variables in the model. This can impose unstable and unreliable
estimates of the coefficients. Furthermore, it creates difficulty in interpreting the individual ef-
fects of correlated predictors.
There are a few possibilities for detecting multicollinearity. One key diagnostic tool for this is
the Variance Inflation Factor (VIF) (Kim, 2019). It is calculated according to Equation (2.3).

V IF =
1

1−R2
(2.3)

WhereR2 is the coefficient of determination from regressing one explanatory variable on all oth-
ers. A V IF between 5 and 10 indicates multicollinearity and a V IF above 10 indicates severe
multicollinearity. However, VIF cannot identify which specific predictors cause multicollinearity.
A correlation matrix is a way of diving deeper into the multicollinearity of individual variables.
The correlation matrix displays the pairwise (between two variables) correlation coefficient, r.
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Equation (2.4) calculates r (Chatterjee & Hadi, 2006).

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(2.4)

Where xi, yi are the data points of variables X and Y and x̄, ȳ are the mean values of variables
X and Y . If two or more predictors have high correlations (r above 0.8), they are likely to be
multicollinear. A crucial note is that a low pairwise correlation does not mean there is no multi-
collinearity (Alin, 2010).
Variance Decomposition Proportions (VDP) can be used to detect multicollinearity for specific
variables. VPDs are calculated from the eigenvectors and show howmuch variance in a regres-
sion coefficient is inflated due to multicollinearity (Kim, 2019). Eigenvalues and eigenvectors are
calculated from the correlation matrix. Each eigenvalue represents a component’s contribution
to the total variance. A very small eigenvalue indicates that some predictors are highly corre-
lated. Then, the Condition Index (k) is calculated. k values above 30 suggest multicollinearity.
Equation (2.5) calculates k, where λmax is the maximum eigenvalue and λs refers to the sth
eigenvalue.

ks =

√
λmax
λs

(2.5)

Apart from detecting multicollinearity, there are a few techniques used to handle multicollinearity
in regression models. Examples are Ridge regression, Lasso regression, and Principal Com-
ponent Regression (PCR). Ridge regression reduces multicollinearity by adding a penalty to the
regression model that shrinks the size of the coefficients. This prevents any one predictor from
dominating the model due to its correlation with others, resulting in more stable and reliable pre-
dictions. However, it keeps all predictors in the model. Lasso regression, like Ridge, includes a
penalty, but it tends to shrink some coefficients to exactly zero. This means it not only reduces
the effect of correlated predictors but also eliminates less important variables entirely, which
simplifies the model. PCR tackles multicollinearity by transforming the original predictors into
a set of uncorrelated components using Principal Component Analysis (PCA). The regression
is then performed on these components, ensuring that the predictors used are not correlated,
though at the cost of interpretability (Herawati et al., 2018).

2.4.4 Validation Strategies

Validation methods are essential in assessing how well regression models generalise to unseen
data. These techniques play a critical role in counteracting the “optimism principle”, whereby
models tend to perform better on the data used for training than on future observations due
to overfitting (Picard & Cook, 1984). Overfitting arises when a model captures not only the
underlying patterns but also noise or random fluctuations, leading to poor generalisation. The
result is that the model performs well on training data but not on unseen data (Montesinos López
& Crossa, 2022). Cross-validation helps avoid overfitting by ensuring the model does not overly
adapt to training data (Cheng et al., 2017). Below are two widely used validation methods
described, highlighting their purpose, mechanics, and relevance.
Data splitting involves dividing a dataset into two subsets: one for training and one for validation
or testing. A typical split allocates 70% of the data for model training, leaving 30% to test
the model’s predictive performance. This approach evaluates the extent to which the model
generalises to unseen data by reserving the validation set as an unbiased estimate of predictive
error (Martens & Dardenne, 1998). However, this method has limitations, particularly for small
datasets, where the reduced sample size in the training subset can lead to increased variability
in parameter estimates (Picard & Cook, 1984).
Cross-validation addresses the limitations of data splitting by repeatedly dividing the data into
training and validation subsets. A common form, k-fold cross-validation, partitions the data into
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k subsets (or folds), with each subset serving as the validation set in turn, while the remaining
folds are used for training. The performance metrics are averaged across iterations, providing
a more reliable estimate of the model’s generalisation ability. For small datasets, leave-one-out
cross-validation (LOOCV) is particularly advantageous, as it uses each observation as its own
validation set, ensuring maximal use of available data (Martens & Dardenne, 1998).

2.4.5 Performance Metrics

While Section 2.4.4 focuses on ensuring that the model’s performance is reliable and gener-
alisable, this section focuses on evaluating model quality. Performance metrics for regression
evaluate how well a regression model predicts continuous outcomes. The choice of metrics
depends on the context and the importance of specific types of errors. Common metrics are
described in this section.
First, the Mean Absolute Error (MAE) is explained. MAE is calculated as the average of the
absolute differences between predicted and actual values, providing a clear measure of the
average magnitude of errors in the original units of the target variable. Its primary advantage
lies in its interpretability, as it directly indicates how far off predictions are, on average (Azadi
& Karimi-Jashni, 2016). Additionally, MAE is less sensitive to large outliers than metrics that
square the errors, making it a more robust measure in datasets with extreme values (Khan et al.,
2022). However, since it relies on absolute differences, MAE does not strongly penalise rare,
large errors, nor does it emphasise reducing variance in the errors. Equation (2.6) calculates
the MAE.

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.6)

Root Mean Squared Error (RMSE), by contrast, involves squaring each prediction error, averag-
ing these squared errors, and then taking the square root of the result. This process increases
the penalty for larger deviations, making RMSE particularly effective in scenarios where large
errors are especially undesirable (Chicco et al., 2021). However, this sensitivity to outliers can
also be a disadvantage, as it strengthens their influence on the metric. RMSE is less intuitive
than MAE due to the squaring step. RMSE is determined with Equation (2.7).

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (2.7)

Mean Absolute Percentage Error (MAPE) expresses the absolute error as a percentage of the
actual value, computed by dividing the absolute error by the actual value, averaging the result,
and multiplying by 100 to express it as a percentage (Chicco et al., 2021). This metric is espe-
cially valuable for understanding errors in relative terms rather than absolute terms, making it
suitable for comparing predictive performance across datasets with different scales. However,
MAPE has limitations. It becomes undefined or misleading when actual values include zeros
or very small numbers, and it disproportionately weights instances with smaller actual values.
The MAPE is mathematically expressed in Equation (2.8).

MAPE =
100%
n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (2.8)

Selecting the appropriate metric depends on the objectives of the analysis and the specific
characteristics of the dataset. MAE and RMSE focus on measuring absolute errors and their
squared counterparts, respectively. MAPE provides insight into relative errors and is particularly
useful when comparing performance across scales. Each metric has unique advantages and
limitations in terms of interpretability, sensitivity to outliers, and applicability across data scales.
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2.4.6 Goodness-of-fit

In this section, goodness-of-fit metrics are discussed. These measure evaluate how well the
regression model fits the data. The two measures discussed in this section are the R2 and the
adjusted R2. R2 measures the proportion of the total variation in the dependent variable that is
explained by the regression model (Akossou & Palm, 2013). R2 is mathematically expressed
in Equation (2.9).

R2 = 1− SSR
SST

= 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(2.9)

Where the SSR is the sum of squared residuals, the unexplained variability, and the SST is
the sum of squares, the total variability. Residuals are the differences between the observed
values and the predicted values by a regression model (Montgomery et al., 2012).
However, adding more independent variables to a model will never decrease R2 as it can only
stay the same or increase, even if the added variables are only weakly related to the dependent
variable. Therefore, R2 tends to get larger as you keep adding predictors, even if those predic-
tors do not genuinely improve the model. This is where the adjusted R2 comes in. The adjusted
R2 modifies the R2 to account for the number of predictors in the model, and the sample size.
Equation (2.10) determines the adjusted R2.

Adjusted R2 = 1−
(
SSR/(n− k − 1)

SST/(n− 1)

)
(2.10)

The adjusted R2 penalises the model for adding independent variables that do not improve
the model’s explanatory function (Cheng et al., 2014). The penalty depends on the number of
independent variables (k) and the sample size (n). Because of this, the adjusted R2 is able to
decrease when predictors are added. This metric is often used to compare models with different
predictors (Chatterjee & Hadi, 2006).

2.4.7 Evaluating the coefficients

Where Sections 2.4.5 and 2.4.6 focus on metrics which measure the performance of the over-
all model, this section focuses on statistical tools to conclude the precision and contribution of
individual coefficients in a certain model, also known as inferential statistics. Widely used tools
are calculating the t-value, p-value and the standard error (SE) of the coefficients. This section
describes how these are calculated, how they are related to each other and what they mean in
the context of regression.
Earlier, the RMSE is mentioned, also known as the standard error of the estimate. This mea-
sures the overall variability of the regression’s residuals. The standard error of a regression
coefficient measures how much variability there is in the estimated coefficient for each predic-
tor (Montgomery et al., 2012). This essentially reflects how precise the estimate of the true
effect is. To calculate the SE of a coefficient, firstly, the variance-covariance matrix of the coef-
ficient estimates is calculated (Adeboye et al., 2014). This quantifies the variances of individual
coefficient estimates and the covariances between pairs of coefficients. As can be seen in
Equation (2.11), it is derived from the residual variance (σ2) and the inverse of the design matrix
((X ′X)−1), which is a matrix of the predictors, including the intercept.

Var(β̂) = σ2(X ′X)−1 (2.11)

The residual variance is estimated by dividing the SSR by the sample size (n) minus the number
of predictors (k) minus 1. This is shown in Equation (2.12).

σ̂2 =
SSR

n− k − 1
=

∑
(yi − ŷi)

2

n− k − 1
(2.12)
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The standard error of a coefficient is calculated by the square root of the corresponding diagonal
element of this matrix (Adeboye et al., 2014). This is determined in Equation (2.13).

SE(β̂j) =
√
σ2 · (X ′X)−1

jj (2.13)

A lower SE implies that the estimate of the corresponding coefficient is more precise, while a
higher SE suggests that the estimation is more uncertain. A large standard error would indicate
that one should be cautious about the reliability of that independent variable’s effect (Siegel,
2016).
The t-statistic is highly correlated to the standard error, as can be seen from the Equation (2.14).
It is basically the ratio of the coefficient to its standard error (Siegel, 2016). It can be seen as di-
viding the slope by the uncertainty. The t-value says something about the statistical significance
of each predictor. The t-value is mathematically expressed in Equation (2.14).

t =
β̂j

SE(β̂j)
(2.14)

A larger (absolute) t-value indicates that the coefficient is like to be significantly different from
zero (Montgomery et al., 2012). A smaller value means that the coefficient is not clearly distin-
guishable from zero which means it may not have a large effect, statistically speaking. It is, in
that case, not playing a substantial role in predicting the outcome.
Lastly, the p-value is derived from the t-value. It quantifies the probability of observing the
estimated coefficient under the null hypothesis that βi is zero (Montgomery et al., 2012). It es-
sentially determines the probability (under the assumption that the true effect is zero) of getting
a t-value as large or larger than the one observed, under a t-distribution with the appropriate
degrees of freedom under the null hypothesis.
A low p-value means that it is unlikely that the observed t-value occurred by random chance if
the true coefficient were zero (not contributing) (Siegel, 2016). In other words, a low p-value
suggests that the independent variable is statistically significant in explaining the dependent
variable. The p-value is usually considered low if it is under 0.05, but this depends on the
chosen significance level. The p-value does not say, however, how large the effect of the pre-
dictor is in practical terms. Furthermore, multicollinearity, discussed in Section 2.4.3, inflates
the standard errors, reducing the t-values and increasing the p-values (Siegel, 2016).

2.4.8 Regression Applications

Regression analysis finds extensive application in production management. A key area is cost
prediction, where historical data is used to estimate future production costs. For example, if his-
torical data suggests that material costs and energy consumption significantly impact production
costs, a multiple regression model can provide precise forecasts. Additionally, regression is in-
valuable for process optimisation, as it identifies critical factors affecting productivity, enabling
managers to make informed decisions to enhance efficiency (Montgomery et al., 2012).
A variance analysis is another critical application of regression analysis. MLR can provide a
nuanced interpretation of how individual differences contribute to the overall outcome (Plonsky
& Oswald, 2016). It could be used to identify discrepancies between expected and actual costs.
By modelling cost drivers, regression helps quantify the contributions of various factors to these
variances. Outlier detection within regression analysis further aids in identifying unusual cost
spikes, which might indicate inefficiencies or errors. Scenario analysis using regression models
enables the simulation of changes in key drivers, providing valuable insights into their potential
impact on costs (Chatterjee & Hadi, 2006).
In conclusion, regression analysis is a robust and adaptable tool that offers deep insights into
relationships within production data. Its applications in cost prediction, process optimisation,
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and variance analysis make it an effective tool for production management. By leveraging re-
gression models, organisations can achieve data-driven decision-making, leading to enhanced
efficiency, cost control, and strategic growth.

2.5 Summary

This chapter establishes the theoretical foundation for understanding and managing produc-
tion costs within the company while exploring how regression analysis can diagnose inefficien-
cies and inaccuracies in budgeting. The chapter begins by introducing cost accounting, which
provides managers with tools to analyse and optimise costs by focusing on internal financial
processes rather than solely on external reporting. Within this method, costs are categorised
based on their behaviour, such as direct or indirect, fixed or variable, or product or period costs.
This lays the groundwork for advanced cost tracking and decision-making.
Building on this foundation, the chapter examines several cost accounting methodologies ap-
plicable in different production environments. Traditional costing applies a single overhead rate
across all manufacturing costs, ensuring compliance with financial reporting standards but of-
ten lacking precision in overhead allocation. Activity-based costing (ABC) improves overhead
distribution by tracing costs to specific activities, making it particularly relevant when overhead
forms a substantial proportion of total costs. Time-driven activity-based costing (TDABC) re-
fines this approach by using time as the primary cost driver, enabling more flexible and easily
adjustable cost allocation in response to demand fluctuations. Job costing is suited to custom
and made-to-order production, tracking expenses at an individual project level, while standard
costing establishes predetermined benchmarks for materials, labour, and overhead, facilitating
variance analysis. In contrast, process costing is most suitable for large-scale, standardised
production, where costs are averaged across continuous production cycles. Eachmethod offers
distinct advantages, but all serve to enhance cost visibility and resource allocation, ultimately
contributing to more effective budgeting and pricing strategies.
In addition to cost accounting approaches, the chapter explores regression analysis as a sta-
tistical tool for modelling relationships between costs and their drivers. Simple and multiple
regression models provide varying levels of complexity in assessing how independent vari-
ables, such as labour hours, material costs, or machine usage, affect total production costs.
The predictive accuracy of these models is evaluated using performance metrics such as R2,
adjusted R2, mean absolute error (MAE), root mean squared error (RMSE), and mean absolute
percentage error (MAPE). Validation techniques, including data splitting and cross-validation,
mitigate overfitting and ensure model generalisation to future datasets. Additionally, inferential
statistical measures, such as t-values and p-values, assess the significance of each cost driver,
while diagnostic methods, such as the variance inflation factor (VIF), check for multicollinearity
to prevent inflated variance in the estimates.
In a real-world budgeting context, these regression techniques enable the company to quantify
inefficiencies by comparing predicted cost outcomes with actual expenses. This data-driven
approach supports continuous improvement by allowing managers to separate the causes of
cost overruns, address them proactively, and enhance budgetary decision-making. By inte-
grating cost accounting methods with regression analysis, the company can refine its financial
planning, optimise resource allocation, and improve cost estimation accuracy.
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3 CURRENT SITUATION

This chapter provides an overview of the current cost accounting and production processes at
Company Y, forming the basis for identifying areas of improvement. It begins with an analysis
of the production process, detailing the key stages involved in manufacturing Products A and B,
including fabrication, assembly, insulation, and quality control. The cost structure is then exam-
ined, categorising costs into direct, indirect, and overhead costs, and explaining their allocation
across different business units. Following this, the product costing approach is outlined, de-
scribing how costs are incorporated into project quotations using predefined cost benchmarks.
Finally, the chapter identifies limitations in cost accounting and budgeting that hinder accurate
cost estimation, establishing the groundwork for the following chapters.

3.1 Production Process

This section outlines the key steps in producing Products A and B based on observations,
interviews, and production logs. The production process is a structured series of activities en-
suring the final product meets functional and operational requirements. This process starts with
preparing the container, which forms the framework of the energy plant. Afterwards, the pro-
cess logically flows from painting, assembly, insulation, and quality checks before shipping the
product for delivery. The production process is depicted in Figure 3.1.

Figure 3.1: Production Process
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Computer panels at each production phase collect essential data. When production staff begin
a task, they log in, enter the project number, and register the task’s start along with the materials
used. Upon completion, they finalise the task in the system. This process generates data on
task duration per project and the materials consumed.
The process begins with the fabrication phases of stainless steel (SS) and carbon steel (CS),
where carbon steel is also referred to as black steel. At this stage, the focus is on welding
key structural components, such as pipelines, supports, and container frames. The CS and SS
phases can be performed simultaneously. The SS fabrication phase mostly includes manufac-
turing all pipes, vessels and valves for the container. All these instruments are cut and welded
according to the specific project order. Furthermore, outside frames are made to support the
total construction. Skilled welders carefully construct these parts using precision tools to guar-
antee strong, reliable connections.
During the CS fabrication phase, the focus lies on preparing the container itself and the frames
to support the construction inside the container. Here, the container body is cut and welded with
internal frames to accommodate its components. Sandwich panels are assembled onto the con-
tainer. These panels play a critical role in providing insulation, structural rigidity, and protection
against external environmental factors. Thereafter, the container is prepared for painting. This
includes grinding, which smooths out surfaces and edges in readiness for the next step, the
painting phase. A specialised machine applies protective coatings to prevent corrosion and
wear. Moreover, it provides proper branding on the container. Due to limited in-house capacity,
external partners are sometimes contracted for painting.
During the assembly phase, pipes, valves, and instrumentation are installed inside the con-
tainer. These components are integral to the container’s functionality, as they allow for the
regulation, transportation, and management of materials such as gases or fluids. During the
insulation phase, insulation skids are installed inside the container to enhance its thermal ef-
ficiency and operational safety. At this stage, the reboiler skid is also insulated to maintain
optimal performance.
With insulation completed, the focus shifts to wiring. This phase involves installing electrical
wiring, including connections for the reboiler skid. The wiring ensures that all instrumentation,
sensors, and control systems are powered and interconnected, facilitating automated opera-
tions and monitoring. Proper wiring is critical to the container’s ability to function as part of a
renewable energy system.
Once wiring is complete, the container undergoes Input/Output (I/O) tests. During these tests,
all electrical and mechanical systems are thoroughly examined to verify that they are functioning
correctly. Input and output signals are checked to ensure that control systems communicate
effectively with instrumentation, providing reliable data and system performance.
The next step in the process is the Factory Acceptance Test (FAT). This is a comprehensive
evaluation to confirm that the container meets all functional and quality specifications. FAT en-
sures that the product performs as intended and meets the client’s requirements before it leaves
the factory. If any issues are identified during FAT, they are addressed in the corrections after
FAT phase, where technicians resolve problems and retest systems to ensure compliance.
The final phase of the production process is shipment preparation. At this stage, the large sub-
assemblies are prepared for transport to their installation site. Proper packaging and handling
ensure the product arrives safely.
The production processes of Products A and B are carefully planned and executed by a se-
quence of activities that ensure quality, reliability, and functionality. From initial fabrication and
preparation to assembly, testing, and shipment, each phase contributes to the creation of a
container that meets the strict demands of Company X’s renewable energy installations. This
process, from start to end, takes about eighteen weeks. This structured approach guarantees
a durable and efficient product ready for sustainable energy production.
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3.2 Cost Structure

This section outlines the cost structure of Company Y, and how it aligns with certain cost ac-
counting approaches. The cost structure at Company Y, which foresees the production of Com-
pany X, is organised to account for the financial resources required in production activities. It
categorises costs into three primary types: direct costs, indirect costs, and overhead costs. This
organisation allows resources to be allocated across the different production units and support
functions.
Costs are attributed to specific manufacturing activities within Company Y’s operations. These
activities are divided into four main business units, which form Company Y’s cost structure.
These are the Carbon Steel, Stainless Steel, (Internal) Assembly, and the Electricity activities.
Each unit handles distinct production tasks, as mentioned in Section 3.1. The carbon steel unit
focuses on preparing the container body, including cutting, constructing internal frames, and
painting. The stainless steel unit is responsible for welding components such as pipes, valves,
and vessels. The internal assembly unit integrates these components, adding insulation suited
to the container’s operational environment. The electricity unit manages wiring and the instal-
lation of control panels to ensure system functionality. The direct costs associated with these
units include raw materials like steel sheets and welding rods, as well as labour costs. Labour
expenses are split into salaries for full-time employees and payments for subcontractors. Sub-
contractors are engaged when additional expertise or capacity is required, such as for certified
welding or painting tasks that exceed internal capacity. For example, the painting process,
which requires much space and one to two weeks of time, is frequently outsourced to avoid
production delays.
Indirect costs include expenses that support production but are not directly linked to a specific
product. These costs originate within the business unit itself, such as grinding tools and adhe-
sives, which are indirect materials used specifically by workers in the carbon steel department.
As these materials are exclusively utilised by a particular business unit, they are automatically
allocated to that unit. Other indirect costs, such as utilities for machinery operation and mainte-
nance expenses, follow a similar allocation process. Indirect labour costs, including employee
benefits and performance bonuses, are also included. The allocation of costs from other de-
partments, such as quality management, is addressed separately later in the text, as these are
distributed based on the time spent supporting each business unit.
Departmental costs are also integrated into the cost structure, capturing the contributions of
various support functions. These costs are distributed over the business units based on the
number of employees, with this number established by examining how much time each de-
partment spends on the four main business units. The rate for dividing these indirect costs
over the business units is calculated quarterly. The departments include project coordination,
quality management, warehousing, engineering support, internal logistics, and standardisation.
Project coordination handles scheduling and resource allocation. Quality management ensures
that products meet required standards through inspections and testing. Warehousing manages
inventory and storage of raw materials and finished goods. Engineering support provides tech-
nical guidance for addressing complex production tasks. Logistics oversees the transportation
of materials and products, while standardisation ensures compliance with regulatory and cus-
tomer requirements.
Overhead costs contain operational expenses that cannot be directly traced to production ac-
tivities. These include administrative salaries, office maintenance, legal services, and IT infras-
tructure costs. Overhead is allocated to business units based on the square metres of facility
space occupied by each unit. This allocation method ensures that operational expenses are
distributed across units according to their use of shared resources.
The company’s cost allocation system primarily follows a standard costing approach. Within
this framework, direct costs, including raw materials and labour, are directly assigned to indi-
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vidual business units. Indirect costs, such as utilities, maintenance, and departmental support,
are allocated based on measurable factors like time spent or headcount. Overhead costs are
distributed according to criteria such as the facility space occupied. Although certain elements
align with ABC, particularly in allocating departmental support using time-based measures, the
overall system remains a standard costing approach. Overhead rates are predetermined, peri-
odically recalculated and systematically applied to production units.

3.3 Product Costing

The product costing method used by Company Y, on behalf of Company X, is designed to incor-
porate all relevant costs into the cost price of a single project. The company makes a distinction
between direct costs and indirect costs. Company Y’s approach aligns with the principles of the
standard costing method. Predetermined costs for labour and indirect cost rates are used to
prepare project quotations. After each quarter, a cost variance analysis is conducted to identify
deviations from the initial estimates. These variances inform updates to the rates used in sub-
sequent cost calculations. This section describes how all relevant costs are incorporated into a
single project and is based on interviews with both the production and financial management,
and financial tools used by Company Y.
Direct costs are divided into four categories: labour costs, material costs, subcontractors, and
indirect costs. For each project, the materials required are determined using a predefined list
of standard plant types available for clients. These plants vary based on regional regulations,
such as those in the USA and EU, as well as additional options selected by the client. These
options cater to the operational environment and specific requirements of the plant. For exam-
ple, a plant in Mexico may need enhanced cooling components compared to one in Alaska.
Approximately half of the materials are ordered specifically for each project, while the other half
is sourced from stock, leveraging cost efficiency in bulk purchasing. Labour costs are deter-
mined by the production coordination department, which assesses the manpower required for
the project. This includes both the availability of internal staff and the need for subcontractors,
which may arise from capacity constraints or the requirement for specialised expertise. Sub-
contractors are often engaged for tasks such as certified welding or painting that exceed the
company’s in-house capabilities.
Indirect costs are allocated to the four main business units: Carbon Steel, Stainless Steel, In-
ternal Assembly, and Electricity. Once distributed to these units, the indirect costs are assigned
to individual projects based on the number of hours spent by each business unit on the project.
A standard rate for indirect costs is recalculated quarterly, reflecting deviations observed in the
previous quarter. Indirect costs contain items such as grinding tools and adhesives that are
specific to a particular business unit and are automatically allocated to that unit. The allocation
of costs from other departments, such as quality management, is addressed separately, based
on the proportion of time spent supporting each business unit.
Each project is divided into approximately seventeen production orders, with a detailed quo-
tation prepared for each. This quotation includes direct material, direct labour, subcontractor,
and indirect costs for each of the four main business units. Materials are listed by Company
X and procured by either Company X or Company Y. Labour requirements and subcontractor
involvement are determined using historical data and managerial estimates. For the Carbon
Steel and Stainless Steel business units, labour costs are calculated based on the weight of
the materials being processed. The indirect costs for each business unit are integrated into the
cost price by applying a specific rate to the material, labour, and subcontractor costs. This rate
is based on historical data and updated quarterly to reflect observed deviations. Additionally,
a margin rate is applied to each business unit’s costs to calculate the final project cost. Like
the indirect cost rate, the margin rate is reviewed and adjusted quarterly to align with current
financial data.

22



3.4 Room for Improvement

Currently, there are several aspects of the cost accounting process at Company Y that require
attention for improvement. These areas are critical to aligning the costing methodology more
closely with the dynamic and complex production environment of the company and to enhanc-
ing the overall accuracy and utility of the cost accounting system.
One significant area for improvement lies in the standard costing method currently in use. While
standard costing is highly effective in environments with stable, repetitive operations where pro-
cesses are clearly defined, it is less suitable for the dynamic production environment of Com-
pany Y. As noted by Drury (2018), the standard costing method flourishes in settings where it is
feasible to establish realistic and consistent cost benchmarks. However, Company Y’s opera-
tions involve producing customised installations, making it challenging to rely on predetermined
costs. The customisation and variability inherent in the production process necessitate a more
flexible approach to product costing that can accommodate frequent changes and unique project
requirements. Furthermore, the data collected by the computer panels is not yet used effec-
tively. This data is very valuable for shifting towards a more flexible approach.
Another area with considerable potential for improvement is the budgeting process. At the
moment, the company is primarily focused on revising cost benchmarks for future production.
While this practice ensures that benchmarks are periodically updated, it overlooks the oppor-
tunity to investigate the root cause of the miscalculations. By analysing the components of the
quotation process that consistently fail to accurately estimate costs, the company could identify
specific inefficiencies or recurring issues. Addressing these inefficiencies would improve the
accuracy of cost-price estimations, leading to lower cost variances and helping the company
maintain profitability.
Optimising both the cost accounting method and the budgeting process offers a pathway to
enhancing the product costing procedure. A more tailored approach to cost accounting would
ensure that all relevant costs are incorporated into the cost price of a single project more pre-
cisely. This enhancement would not only strengthen profitability by providing a clearer under-
standing of cost structures but also facilitate better decision-making in financial planning and
strategic development. By addressing these areas, Company Y can establish a more adaptive
and effective framework for managing production costs.

3.5 Summary

This chapter provides an overview of Company Y’s current operational and financial practices,
highlighting the production process, cost structure, product costing method, and areas needing
improvement. The production process encompasses all tasks required to assemble and pre-
pare customised renewable energy plants, ranging from cutting and welding metal frames to
performing insulation, wiring, and quality checks. Production data are partially collected on the
factory floor through computer panels, creating a foundation for more detailed cost tracking in
the future. Regarding the cost structure, the chapter outlines how direct costs, such as mate-
rials and labour, are traced to specific business units, while indirect costs, such as utilities and
maintenance, are allocated based on operational metrics like hours or headcount. Overhead
expenses are distributed according to facility space usage. Although some elements resemble
ABC principles, the overarching method remains standard costing, relying on periodically up-
dated overhead rates. The chapter concludes by noting limitations in the current cost allocation
and budgeting process. These shortcomings are especially problematic in a custom manu-
facturing environment, as standard costing does not capture the variability inherent in different
projects.
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4 SELECTING COSTING & REGRESSION METHODS

Selecting the most appropriate cost accounting method is critical for effective financial manage-
ment in a complex manufacturing environment. This chapter evaluates various cost account-
ing methods and regression techniques to address Company Y’s specific challenges, such as
handling customised products, low production volumes, and extensive production cycles. By
incorporating regression analysis into the evaluation process, the study ensures a data-driven
approach to identifying cost drivers and assessing the budgeting process. The implementation
of these methods support the development of a tailored solution that aligns with Company X’s
strategic objectives and operational realities.

4.1 Establishing Criteria

When determining the most suitable cost accounting method, it is vital to establish a set of cri-
teria that reflect both the operational characteristics and strategic priorities of the organisation.
The following criteria have been identified, based on interviews with employees, as critical for
Company X.
Production characteristics: consisting of the sub-criteria low production volume, customised
products, and extensive production cycles.
Scalability: the ability to adapt if production scales up or diversifies. This is important if the
cost accounting method needs to be applied to other products at Company X or if the produc-
tion volume increases in the future. Company X is always innovating for new products.
Implementation feasibility: ease of adoption, including compatibility with existing ERP sys-
tems or Excel tools.
Accuracy and detail: precision in allocating direct and indirect costs to improve decision-
making.
Strategic alignment: supporting business goals of Company X, which is mainly improving bud-
geting and financial planning to maintain profitability.
Another criterion that might seem relevant is compliance with financial standards such as the
GAAP and IFRS. However, the goal of this cost accounting model is to support internal decision-
making. In contrast, compliance with financial standards is necessary for external reporting re-
quirements, as investors and financial institutions rely on these reports. This is why this criterion
is not included in the selection.

4.2 Weighting the Criteria

This section explores what weighting method fits best in selecting the right cost accounting
method for Company X. The weighting of criteria is executed including a consistency check is
shown thereafter. With the proper weights determined, the right cost accounting method can
be chosen.
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4.2.1 Selecting a proper weighting method

To ensure that the right cost accounting method is chosen in this chapter, the right method to
assess the weight of the criteria established in Section 4.1 is vital. A few factors influence the
decision to choose the right weighting approach (Ayan et al., 2023).
The weighting process must balance complexity with available time and resources. When dead-
lines are tight or expertise is limited, a simpler approach ensures clarity and efficiency. In
contrast, more detailed methods yield deeper insights when sufficient resources are available.
The number of criteria also influences complexity. Smaller sets are easier to manage, while
larger sets require a structured and systematic approach to ensure fair evaluation and accurate
weighting. The type of data used is also crucial. Quantitative data supports evidence-based
decisions, while qualitative inputs, like expert opinions, need structured interpretation. Stake-
holder involvement influences the process, as collaboration becomes essential when multiple
perspectives are considered (Odu, 2019). Maintaining consistency and objectivity reduces bias,
increases confidence in results and aligns with strategic objectives.
Based on the factors that influence the decision described above, the Analytic Hierarchy Pro-
cess (AHP) emerges as the most suitable weighting method. AHP is the most suitable method
for the following reasons. With a manageable number of seven criteria, AHP provides suffi-
cient depth without becoming overly resource-intensive. It facilitates an organised comparison
process, ensuring that all criteria are appropriately weighted based on their relative importance
(Odu, 2019). AHP accommodates both types of inputs, translating qualitative judgments into
numerical weights while incorporating measurable data where available. AHP includes built-
in consistency checks, which evaluate whether judgments made during pairwise comparisons
are logically consistent. This feature reduces the likelihood of subjective bias and ensures
the reliability of the weighting process. For a decision as critical as selecting a cost accounting
method, maintaining consistency is crucial to building confidence in the results (Toloie-Eshlaghy
et al., 2011). The criteria and their relevance to Company X’s operations require a method that
can handle nuanced trade-offs between operational efficiency, strategic goals, and scalability.
AHP’s flexibility in weighting and ranking criteria ensures that the process aligns closely with
the company’s specific needs and priorities.

4.2.2 Assigning Weight to Criteria

AHP is a structured decision-making method designed to evaluate and prioritise multiple criteria
or alternatives. It simplifies complex decisions by breaking them into a hierarchy that consists
of the overall goal, the criteria, sub-criteria, and alternatives. For this study, the overall goal is
selecting the cost accounting method, then we have the criteria, including production charac-
teristics as sub-criteria, and the alternatives, namely the costing methods (ABC, Job costing,
etc.) (Saaty, 1990). AHP relies on pairwise comparisons to assess the relative importance of
each criterion and the performance of alternatives with respect to those criteria. Through this
process, numerical weights are calculated for each criterion, and overall scores are determined
for each option based on their relative importance. In this comparison, there are nine different
scales of importance from one criterion to the other. The value 1 means that they are equally
important, 3 means the one is moderately important over the other one, 5 stands for strong
importance all the way up to 9, which indicates extreme importance (Taherdost, 2017). The two
pairwise comparisons for the criteria and sub-criteria can be found in Tables 4.1 & 4.2. These
scores were given based on interviews with production and finance employees.
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Table 4.1: Criteria Pairwise Comparison

Criteria Production Scalability Implementation Accuracy Strategic Average
Weight

Production
characteristics

1 5 4 1 5 0.380

Scalability 0.20 1 0.33 0.20 0.50 0.058
Implementation
feasibility

0.25 3 1 0.33 2 0.135

Accuracy and
detail

1 5 3 1 4 0.342

Strategic
alignment

0.20 2 0.50 0.25 1 0.085

Table 4.2: Sub-criteria Pairwise Comparison

Sub-criteria Low production
volume

Customised
products

Extensive
production cycles

Average
weight

Low production vol-
ume

1 0.20 0.33 0.106

Customised prod-
ucts

5 1 3 0.633

Extensive produc-
tion cycles

3 0.33 1 0.260

Each column is normalised by dividing each cell by its total column value. Thereafter, the av-
erage weight of each row is calculated, which can be found in Tables 4.1 & 4.2 as well. The
average weight of the sub-criteria is multiplied by the average weight of the production charac-
teristics to calculate the final weights of the sub-criteria.
One of the key features of AHP is its built-in consistency check, which ensures that the judg-
ments made during the pairwise comparisons are logical and unbiased. This makes the method
particularly effective in reducing subjectivity. The Consistency Ratio (CR) is calculated by the
following steps (Saaty, 1990):

1. The pairwise comparison matrix (Tables 4.1 & 4.2) is multiplied by the weight vector (av-
erage weight column in Tables 4.1 & 4.2) to calculate a consistency vector.

2. The estimate of the eigenvalue associated with each row is calculated by dividing the
consistency vector by the weight vector. Thereafter, λmax is calculated as the average of
all the estimated eigenvalues.

3. Thereafter the Consistency Index (CI) is determined by Equation (4.1) where λmax is the
largest eigenvalue and n is the number of criteria (Taherdost, 2017).

CI =
λmax − n

n− 1
(4.1)

4. Then the Consistency Ratio (CR) is calculated with Equation (4.2).

CR =
CI

RI
(4.2)
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Random Index (RI) is a benchmark based on the number of criteria. In this case, with five
main criteria, the RI is 1.12. For the three sub-criteria, the RI is 0.58. A CR of less than 0.1 is
considered acceptable. The RI of the criteria table turns out to be 0.02 and the RI of the sub-
criteria table turns out to be 0.03. Both of these values indicate that the pairwise judgements
are comfortably consistent (Saaty, 1990). Full calculations can be found in Appendix A.2.
Implementing AHP, consistent weights for each criterion were established. These are used for
the cost accounting method selection process in Section 4.3. The low production volume has a
weight of 0.040. The customised products criterion has a weight of 0.241, while the extensive
production cycles criterion has a weight of 0.099. Scalability weighs 0.053, implementation
feasibility weighs 0.135, accuracy and detail weighs 0.342, and strategic alignment weighs
0.085.

4.3 Evaluating Cost Accounting Methods

In this section, the cost accounting method for the costing model is chosen. This is done with the
weighted criteria of the previous section. Normally, AHP is continued for the alternatives level
(the cost accounting methods) to come to the final conclusion. For each criterion, a pairwise
comparison is made by evaluating all the possible cost accounting methods against each other.
The pairwise comparison between the cost accounting methods is, in this case, too detailed.
Instead, a simpler method is chosen to reduce subjectivity. The last step of choosing the cost
accountingmethod is done through aWeighting ScoringModel (WSM). It is described as simpler
compared to AHP, as it does not require a pair-wise comparison (Chourabi et al., 2019). It can
be mathematically expressed as Equation (4.3).

Total Score =
n∑

i=1

(wi · si) (4.3)

where wi is the weight of criterion i and si is the score for criterion i. The score can, in this case,
be either 0 or 1. A score of 0 means that the cost accounting does not sufficiently support that
criterion, and a score of 1 means that the method does sufficiently support the criterion.
With the criteria and alternatives defined, we immediately move on to the scoring of the alter-
natives based on the criteria. The scoring of the costing methods is grounded in the theoretical
framework outlined in Chapter 2. The results are shown in Table 4.3.

Table 4.3: Scores Alternatives
Scores Low

volume
Customised Long

cycles
Scalability Implementation Accuracy Strategic

Traditional 0 0 0 0 1 0 0
ABC 1 1 1 1 0 1 1
TD ABC 1 1 1 1 0 1 1
Job 1 1 1 0 1 1 1
Standard 0 0 0 1 0 0 1
Process 0 0 0 1 1 0 0

Traditional costing allocates overhead using a single rate or a limited set of rates, typically
based on direct labour or machine hours. This method is straightforward to implement and
compatible with spreadsheets or ERP systems, making it accessible for basic cost manage-
ment (Horngren et al., 2018). However, its simplicity is a disadvantage when dealing with
diverse product complexities or customised production in low volumes. In such cases, costs
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are often inaccurately distributed, which can mislead financial planning and undermine budget-
ing. Scalability, while technically feasible, becomes increasingly inaccurate as product diversity
grows, making traditional costing unsuitable for Company X’s dynamic production environment.
ABC enhances accuracy by linking costs to activities, such as setups or inspections, and al-
locating expenses based on the extent of activity utilisation by each product. This approach
is particularly valuable for environments like Company X’s, where products are customised,
and production cycles are lengthy. Modern ERP systems often support ABC, which improves
managerial decision-making by offering detailed cost insights (Kaplan, 1997). However, the
method’s data-intensive nature increases implementation complexity and future supervision.
Despite this, the strategic value of ABC lies in its ability to align overhead allocation with actual
resource consumption, supporting Company X’s goal of budget refinement. ABC is particularly
effective when it is easy to track which activities contribute to specific products, even if the exact
resource usage within those activities is harder to determine (Hoozée & Hansen, 2018).
TDABC simplifies ABC by using time as the primary cost driver, requiring only the cost of re-
source capacity and the time taken for activities (Kaplan & Anderson, 2007). This method is
well-suited to capturing time variations in producing customised products with lengthy cycles,
as seen in Company X’s operations. Compared to ABC, TDABC is easier to implement and
update, as it eliminates the need for detailed activity data. However, there are disadvantages
when applied to Company X’s situation. TDABC relies heavily on a reliable time-tracking system
and is sensitive to measurement errors. If employees forget to record time spent on specific
production orders or frequently switch between tasks, inaccuracies can arise. Furthermore,
some cost pools may not be effectively measured using time as a cost driver, making TDABC
impractical for certain areas (Hoozée & Hansen, 2018). While TDABC is more accurate when
tracking resource usage across activities, it is less effective in linking these activities to individ-
ual product costs. Despite its data intensity, TDABC provides a scalable and efficient tool for
cost tracking, aligning with Company X’s strategic objectives of financial accuracy and efficient
resource utilisation.
Job costing tracks costs on a project basis, recording direct materials, labour, and overhead for
each unique job (Horngren et al., 2018). This method excels in environments like Company X’s,
which are characterised by low production volumes and high customisation. While it provides
precise direct cost tracking, its scalability becomes challenging with increasing job complexity
or volume. By integrating activity-based elements, job costing can enhance overhead allocation
accuracy (Fayek, 2001), making it a viable option for Company X’s emphasis on project-specific
cost insights.
Standard costing, which is mainly used currently by Company X, relies on predetermined cost
standards for materials, labour, and overhead, comparing these to actual costs to identify vari-
ances in budgeted amounts (Drury, 2018). While effective in stable, high-volume production
settings, it is less suitable for Company X’s customised and evolving product environment. Fre-
quent updates are required to maintain accuracy, diminishing the simplicity of this approach.
This is also necessary if the production is scaled up, but it is feasible. Additionally, standard
costing lacks the granularity needed to handle complex overhead allocation, limiting its value
for detailed cost management in innovative, project-based environments.
Process costing aggregates costs across continuous production flows, yielding average costs
per unit (Drury, 2018). This method is ideal for homogeneous, high-volume production but fails
to differentiate costs in customised or varied production environments like that of Company X.
Its inability to provide detailed cost allocation makes it unsuitable for improving cost precision in
complex manufacturing settings. While process costing is less suited for diverse product lines,
it handles increased production volumes effectively (Soudatti, 2024). Its straightforward imple-
mentation and compatibility with ERP or Excel systems further enhance its appeal as a cost
management method.
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By multiplying the scores in Table 4.3 with the weights established in Section 4.2.2, we can
calculate the total weighted scores for each method. ABC and TDABC both come out high-
est with a score of 0.865. Job costing is close, with a score of 0.808. Process, standard and
traditional costing are less suitable, with scores of 0.292, 0.143 and 0.135, respectively. Given
Company Y’s production environment, the most suitable options are TDABC and standard ABC.
Both methods offer flexibility and scalability for capturing cost variations across activities, align-
ing with the company’s strategic objectives of improving cost accuracy and financial planning.
However, there is a disadvantage to TDABC compared to ABC when looking at the situation of
Company Y. TDABC uses time as the main cost driver. It would be very impractical to measure
some cost pools with time as a cost driver. Furthermore, as mentioned earlier, TDABC needs
to rely on a reliable time-tracking system and is very sensitive to mistakes. TDABC is more
accurate when it is easy to track how resources are used in different activities, but it is harder
to track how those activities contribute to individual products. ABC is more accurate when it is
easy to track which activities contribute to specific products, even if it is difficult to see exactly
how resources are used in those activities. So, in manufacturing, one might know exactly how
much time and effort each step in production takes per product, but it is harder to measure the
exact resource cost for each activity. In conclusion, ABC is more suitable than TDABC in the
context of Company X. This cost accounting method is thereby implemented in this study.

4.4 Improving the budgeting process through regression

In this section, a regression method is selected to identify areas of improvement in the budget-
ing process of Company Y. Regression analysis is a powerful tool for identifying and addressing
inaccuracies in the quotation process. Examining relationships between cost components and
total variance provides a systematic way to understand why cost estimates deviate from ac-
tual values. One key advantage of regression analysis is its ability to pinpoint which factors in
the quotation process contribute most to inaccuracies. Independent variables, such as labour
costs, material expenses, or subcontractor fees, can be assessed for their impact on the de-
pendent variable, such as the total cost incurred. This helps identify whether specific elements
are consistently over or underestimated, offering actionable insights to refine the process. For
instance, the model can reveal if complex projects systematically underestimate labour costs
or if indirect costs are disproportionately allocated. These insights are invaluable for reducing
discrepancies and ensuring more accurate cost forecasting. First, we need to translate the cur-
rent situation into characteristics that enable us to find the right regression method for solving
this problem. We start with finding out what variables we will use. Then, we investigate what
data characteristics are present, how the model is balanced, and how the regression analysis
aligns with the research objectives. To conclude, the regression method used for this study is
determined.
To find out what needs to be improved in the budgeting process, we need to establish what
influences the additional costs. Where the actual total cost is our dependent variable, we also
have independent variables. These variables are our cost drivers. There are five main cost
components which are just for budgeting a single project. These are material costs, labour
costs, subcontractors costs, indirect costs (excluding overhead) and overhead costs. These
five cost components form the independent variables.
The data set contains 71 data points before cleaning the dataset. We also need to make sure
that the function of the regression method is aligned with the research objective. The research
objective is to find out what part of the estimated costs is structurally badly estimated. This
means that we need to find out what independent variable has the highest impact on the overall
cost deviation of production.
Taking these characteristics of the current situation into consideration, MLR is most suitable.
The situation explores a single continuous dependent variable and multiple predictors. The rule
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of thumb is that each predictor needs a minimum of ten data points (Stevens, 1996), which is
the case. MLR is useful for understanding the relationship between variables and quantifying
how each independent variable affects the dependent variable. This is exactly the relationship
that needs to be studied in the budgeting process analysis. The limitation of the method is that if
the independent variables are highly correlated, which makes the model non-linear, alternative
options should be explored.

4.5 Implementation Strategy

ABC is applied to the cost price model using Microsoft Excel due to its accessibility and ease
of use for employees at Company X. This choice ensures that refinements can be made with
minimal training. The implementation process systematically utilises historical data, including
production logs, monthly financial reports, and past quotations, to execute the cost accounting
method step by step. After the model was finalised, it underwent a robustness assessment
through sensitivity analysis. Key parameters are incrementally adjusted (first by 10%, then by
20%, for example) while others remain constant. The resulting variations in cost estimates
highlight potential risk areas. Parameters causing large fluctuations indicate areas requiring
more robust data collection or stricter process controls. This validation process ensures that
the model remains adaptable to varying operational conditions.
Regression analysis begins with data preparation, forming the foundation for reliable analysis.
Production order data is consolidated into a unified dataset, incorporating both independent
and dependent variables, as outlined in Section 4.4. Data cleaning follows to address missing
values. A robust validation strategy, as discussed in Section 2.4.4, is implemented to ensure
the generalisability of the results. Cross-validation techniques, such as Leave-One-Out-Cross-
Validation, further enhance the model’s robustness by dividing the training set into multiple folds.
This iterative process allows the model to be trained and validated on different subsets of data,
reducing the risk of overfitting. The training set is used to build the model, while the test set
evaluates its performance on unseen data.
Bringing together data preparation, appropriate tool selection, rigorous validation, and aware-
ness of methodological constraints ensures a robust approach to studying the budgeting pro-
cess. Once the final regression model was developed and validated, it was applied to the test
data to identify systematic biases.

4.6 Summary

This chapter focuses on selecting the most appropriate cost accounting and regression analysis
methods. The chapter begins by establishing key selection criteria, ensuring that the chosen
methods align with the company’s context. To determine the relative importance of these crite-
ria, AHP was applied, allowing for a structured weighting process. ABC and TDABC emerged
as the most suitable options. However, TDABC relies heavily on time tracking, making it less
practical for Company Y’s operations. Consequently, ABC was chosen as the most appropriate
cost accounting method for this study. To enhance the budgeting process, a MLR model was
selected to identify systematic inaccuracies in cost estimation. Multiple linear regression was
considered appropriate as it allows for the analysis of multiple cost drivers influencing the total
production cost. The model was designed to quantify how labour, material, subcontractor, indi-
rect, and overhead costs contribute to deviations in cost estimations. Finally, an implementation
strategy was outlined for integrating ABC into the cost price model and applying regression anal-
ysis. This includes testing the ABC model for robustness through multiple sensitivity analyses,
cross-validating the regression model, and analysing performance metrics of the regression
model to mitigate overfitting risks.
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5 DEVELOPING TOOL & ANALYSING RESULTS

This chapter details the implementation of the selected cost accounting within Company Y’s
cost price model and regression methods. The primary objective is to enhance cost visibility and
improve variance detection through the combination of an ABC model and an MLR analysis. By
incorporating thesemethods, the study aims to provide a data-driven approach to cost allocation
and variance identification, ultimately supporting strategic financial management.
The implementation process consists of the following steps. First, an ABC cost price model is
developed to allocate direct and indirect costs more accurately. Second, a regression analysis
using MLR is conducted to identify key cost drivers and quantify their impact on overall cost
deviations. Afterwards, both models are assessed based on their performance and robustness
through sensitivity analysis, cross-validation techniques, and error metrics to ensure reliability
and applicability within Company Y’s operational environment.

5.1 Data Preparation

A crucial step before implementing the ABC model and conducting the regression analysis is
to ensure that the dataset is structured, realistic, and representative of actual production costs.
Assessing the accuracy of the cost price model is preferable to determine its feasibility for imple-
mentation within Company Y’s production system. However, there is not enough data available
for a direct validation of the model’s accuracy. Instead, a sensitivity analysis is conducted to
evaluate the model’s behaviour under varying conditions. This analysis requires a baseline de-
rived from historical data to serve as a reference point, which is possible with the available data.
By systematically applying relative changes to key parameters, the model’s sensitivity can be
examined using established sensitivity analysis techniques. This approach identifies the pa-
rameters that exercise the greatest influence on cost outcomes, highlighting the aspects that
must be estimated precisely once sufficient data becomes available. Through this method, the
robustness of the cost price model can be assessed, ensuring its reliability for future integration
into Company Y’s operational framework.
The dataset used for the regression analysis is less detailed than the one used for the ABC
model. The dataset that is available for the regression analysis initially contained 71 data
points for each cost component. However, upon reviewing the data, certain entries were iden-
tified where actual costs were recorded, but the corresponding budgeted values were missing.
Given that the objective of this analysis is to identify inefficiencies within the budgeting process,
such incomplete entries would introduce bias, distorting the outcomes. Consequently, these
entries were excluded to maintain integrity. Following this, the dataset was reduced to 50 data
points, ensuring that all retained observations contain both actual and budgeted values, thereby
allowing for a reliable assessment of cost estimation accuracy. For the regression analysis, the
use of dummy data is not feasible, as it would compromise the validity of the results. The
analysis relies on real data to ensure meaningful insights into cost deviations and budgeting
inefficiencies.
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5.2 Implementing ABC

This section describes the implementation of ABC to improve cost allocation accuracy within
Company Y. The process starts by identifying key activities and cost pools, including those
directly related to production, such as stainless steel and electrical work, as well as supporting
cost pools like quality management, logistics, and corporate overhead. Cost drivers are then
assigned to each activity and cost pool based on resource consumption, such as labour hours or
the number of production orders. The cost driver rates are calculated to distribute indirect costs
proportionally (Arnaboldi & Lapsley, 2005). Finally, the ABC model is constructed by combining
direct costs with allocated indirect costs using the calculated cost driver rates. This structured
approach ensures precise cost attribution to projects.

5.2.1 Activities and Cost Drivers

First, we need to identify the activities that form the production process addressed in Section
3.1. The four activities that contribute directly to building renewable energy installations are the
following. We have the stainless steel, carbon steel, internal assembly and electrical activities.
Secondly, it is essential to identify the cost pools required for the entire operation that do not
directly contribute to production. These include quality management, production controlling,
production coordination, and production management. Additionally, there are supply costs (re-
lated to procurement), warehousing, and logistics, as well as corporate overhead. Corporate
overhead covers expenses related to sales, office operations (such as rent and utilities), finance
and accounting, administration and HR, andmanagement. These cost pools are grouped based
on their shared causal effects on costs, allowing for the assignment of appropriate cost drivers
to each pool. This grouping ensures that each cost pool is traceable to the activities that gen-
uinely consume the associated resources (Sarasanty & Asmorowati, 2023).
A specific cost driver is assigned to each activity and cost pool, selected to reflect how the ac-
tivity consumes resources. Cost drivers are factors that influence cost fluctuations and directly
impact expenditure levels (Gunasekaran & Sarhadi, 1998). The cost drivers corresponding to
each activity or cost pool are presented in Table 5.1, where POs represent production orders.

Table 5.1: Cost Drivers per Activity/Cost pool

Activities Cost Driver
Stainless steel SS Labour hours
Carbon steel CS Labour hours
Internal Assembly Assembly Labour hours
Electrical Electrical Labour hours
Cost Pools Cost Driver
Quality Management Number of inspections
Production Controlling Number of POs
Production Coordination Number of POs
Production Management Number of POs
Supply Weight
Warehousing Number of POs
Logistics Weight
Corporate Overhead Labour hours
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The cost pools contribute to the production of a single project to some extent. However, cor-
porate overhead does not, as these costs remain fixed regardless of production volume. To
allocate these costs to a single project, labour hours are used as a general but precise mea-
sure. Although sales costs could be attributed to a project, for example, based on the number
of invoices, they are minimal and therefore negligible. Since Company X primarily manages
the sales process rather than Company Y, these costs have a limited impact on production ex-
penses. Consequently, sales costs are incorporated into the corporate overhead cost pool.
For each activity or cost pool, the cost driver rate is calculated (Tornberg et al., 2002). The cost
driver rate is calculated in Equation (5.1).

Cost Driver Rate =
Total Cost in Pool

Total Volume of Cost Driver
(5.1)

For instance, the total indirect costs for the stainless steel activity were €1,000,000 in one year,
and the total hours of labour for that activity was 10,000. The cost driver rate would be €100
per hour. Likewise, the cost driver rates for each one are calculated. This is partly done with
real data and partly with assumptions. Most of the financial data was real, and most of the
production data was assumed. The assumptions were either made by experts in the company
or estimated based on historical data. The assumptions based on historical data were checked
with experts within the company to assess if they resembled the real situation.

5.2.2 ABC Model

With the activities, cost pools, and corresponding cost driver rates defined, the model can be
constructed. The model’s input consists of direct costs alongside variables required to ensure
that all indirect costs are accurately allocated to the corresponding project. Direct costs include
material costs, direct labour costs, and subcontractor costs. The direct labour costs are deter-
mined bymultiplying the number of hours associated with each sub-activity by the corresponding
salaries. Figure 5.1 illustrates the relationship between the inputs and cost driver rates. The
light blue inputs represent the inputs that (partly) influence the direct costs of a project, while
the white inputs correspond to the indirect costs. To enhance visibility, the lines originating from
the number of POs are shown in blue.

Figure 5.1: Relation between Inputs and Cost Driver Rates

The output of the model is presented in Appendix A.3.1, which is a summation of five main cost
components mentioned in Section 4.4. It is important to note that the output makes a distinction
between indirect costs and overhead costs. Typically, overhead costs are considered a subset
of indirect costs. However, in this model, they are treated as separate cost pools due to the
accounting structure used in Company Y.
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5.3 Regression Analysis

In this section, the MLR model is used to conduct a regression analysis. This enables us to see
which cost component of the quotation process is systemically wrong, leading to an inaccurate
total cost. The goal is to identify which specific areas of the budgeting process are driving the
differences between the budgeted and actual total costs.

5.3.1 Regression Model Setup

The formula of the MLR model is mathematically expressed in Equation (5.2).

Cost Error = β0 + β1 × Budgeted Material+ β2 × Budgeted Labour+ · · ·+ ϵ (5.2)

The dependent variable is the cost error made in the budgeting process. A positive error would
indicate that the total budget is higher than the actual cost, and a negative error indicates an
underestimate. Equation (5.3) determines the cost error.

Cost Error = Total Budget− Total Cost Actual (5.3)

The independent variables in the model represent the budgeted costs across all cost compo-
nents, including material costs, labour costs, subcontractor costs, indirect costs, and overhead
costs. Additionally, the model includes an intercept term β0 The ideal value of the intercept
is zero. The intercept reflects the baseline cost error when all budgeted components are zero
(Montgomery et al., 2012), though this scenario is not realistic because budgets typically are not
zero. A non-zero intercept suggests a systematic discrepancy between budgeted and actual
costs that is not accounted for by individual components.
Each coefficient β1, β2, . . . , β5 represents the expected change in the overall cost error for a
one-unit increase in that specific budget component while holding all other components con-
stant (Chatterjee & Hadi, 2006). If a coefficient is positive, it indicates that as the corresponding
budget component increases, the estimation error increases. This means that higher values
in that budget component are associated with a greater overestimation if the error is positive
or reduced underestimation. If a coefficient is negative, it indicates that as the corresponding
budget component increases, the estimation error decreases. In other words, increasing that
component’s budget is associated with a lower error or a shift towards underestimation.
Since cost error is defined as the difference between budgeted and actual costs, a positive er-
ror indicates overestimation (budget exceeds actual costs), whereas a negative error indicates
underestimation. The model is, therefore, designed to isolate the individual impact of each cost
component, identifying which elements contribute most to budget deviations while controlling
for overall budget magnitude.

5.3.2 Multicollinearity

Multicollinearity occurs in MLR when two or more independent variables are highly correlated.
This means that one variable can be predicted from the others, making it difficult to determine
their individual impact on the dependent variable. As a result, the regression coefficients be-
come unstable, meaning small changes in the data can lead to large differences in the results.
Additionally, the p-values become unreliable, making it harder to identify which variables are
truly important (Chatterjee & Hadi, 2006). In this case, multicollinearity might be a problem of
a more theoretical nature. The predictors included in this regression analysis are naturally in-
terdependent, meaning that multiple predictors partially capture the same underlying patterns
in the data. As a result, interpreting the individual effects of each predictor becomes more
complex, as their contributions to the dependent variable cannot be entirely separated. While
multicollinearity does not necessarily undermine the model’s predictive power, it can lead to
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misleading conclusions regarding the significance and relative importance of individual cost
components. Therefore, this limitation should be acknowledged when drawing insights from
the regression results, ensuring that any conclusions regarding cost drivers and budgeting in-
efficiencies are made with caution.
To check for multicollinearity, a correlation matrix heatmap was created, as shown in Appendix
A.3.2. This heatmap shows how strongly the independent variables are related to each other.
In this case, the predictors show a high correlation, which is expected given the nature of the
data. To further address the issue, the Variance Inflation Factors (VIF) are calculated for each
cost component. As mentioned in Section 2.4.3, VIF is one of the key measures to detect mul-
ticollinearity (Kim, 2019). The results of this calculation are shown in Table 5.2. When the VIF
is 1, there is no multicollinearity present. a VIF between 1 and 5 is considered low, above 5 is
considered high, and above 10 is considered severe (Kim, 2019). However, since addressing
multicollinearity in detail is beyond the scope of this research, no further steps were taken to
correct it. Still, this should be kept in mind when interpreting the final results of this study.

Table 5.2: VIF values

Feature VIF
Constant 1.94
Material Budget 11.27
Labour Budget 28.98
Subcontractor Budget 3.30
Indirect Budget 5.78
Overhead Budget 3.18

5.3.3 Cross-Validation Approach

As mentioned in Section 2.4.4, leave-one-out cross-validation (LOOCV) is particularly useful
for small datasets (Martens & Dardenne, 1998). According to the rule of thumb, at least 10
data points are needed for each predictor present in the model (Stevens, 1996). As there are
50 data points available for 5 predictors, this would be the bare minimum. Considering this
makes LOOCV a good cross-validation method to implement in the MLR model in this study.
LOOCV maximises the use of training data and provides a nearly unbiased estimate of the out-
of-sample error compared to other cross-validation methods. This is because each validation
set closely represents the full data distribution (Auddy et al., 2024). A limitation of LOOCV is
that it is computationally expensive with larger datasets, but, in this case, that is not an issue.

5.4 Performance Evaluation of the Models

In this section, the results from both model evaluations are presented. Firstly, the sensitivity
analysis of the ABC model is shown using One-Factor-at-a-Time (OFAT) analysis, followed by
Morris analysis. Secondly, the statistical analysis of the MLR model coefficients is explained.
The significance of the coefficients is assessed, followed by an evaluation of the model’s fit.
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5.4.1 ABC Model Sensitivity Analyses

The ABC model’s robustness is tested through sensitivity analysis by varying input variables
and observing total cost price fluctuations. This can be done through various techniques. The
context of this sensitivity analysis can be described as follows. There is little real-world data
available, and the goal is to identify which inputs (budgeting amounts) and which cost driver
rates should carefully be calculated if data becomes completely available. Based on this sit-
uation, the sensitivity analysis is conducted through the OFAT technique. Multiple sensitivity
analyses create a more robust understanding of the cost price model. Therefore, the Morris
method is implemented to investigate combinations between parameters.
OFAT is used to measure the impact of an individual parameter on systems outputs while keep-
ing other variables fixed (Koushik, 2022). It helps identify critical factors affecting the cost price
total in this case. It is simpler to implement and interpret compared to other global methods like
Monte Carlo simulation (Delgarm et al., 2018). This is why it is a convenient method for an ini-
tial screening. By screening influential parameters, the model can be adjusted before applying
advanced methods. Furthermore, it is a beneficial method when computational power or time is
limited, which is the case for this study. However, there are limitations. OFAT is often criticised
for its inability to handle complex, non-linear situations, which could lead to misleading conclu-
sions if used solely (Ferretti et al., 2016). Furthermore, it ignores the effect of combinational
changes in parameters. It also depends heavily on the chosen baseline, potentially missing
non-linear behaviour (Koushik, 2022).
The OFAT method is applied in the following steps (Ferretti et al., 2016). This approach op-
erates through parameter variation, where a single input parameter (both the input variables
as well as the cost driver rates) is systematically varied across its range. The baseline for this
analysis is derived from real project data from the previous year. Each parameter is adjusted
within a range of 5%, 10%, and 20%, both increasing and decreasing relative to the baseline
value, while all other parameters remain unchanged. The corresponding changes in the output
are recorded, and the relative impact on the total cost price (TCP) is calculated using Equation
(5.4). This process is repeated for each parameter to isolate its individual effect on the TCP
while maintaining all other variables at their baseline values.

Relative Deviation (%) = Modified TCP− Baseline TCP
Baseline TCP

× 100 (5.4)

By conducting this analysis, we can create a Tornado diagram. A Tornado diagram is a visual
tool used in sensitivity analysis to rank input factors by their impact on the model’s output. This
helps identify key drivers (Borgonovo & Plischke, 2016). This is closely integrated with the ob-
jective of OFAT. The diagram displays horizontal bars representing the sensitivity of the model
output to changes in individual inputs. The bars are sorted by magnitude, with the largest ef-
fects at the top, creating a “tornado” shape.
In Figure A.4 located in Appendix A.3.3, we can see the relative impact of the changes in in-
put variables. In this diagram, material costs and direct labour hours stand out by having the
largest percentage range (range between the highest and lowest deviation) in the total cost
price, 13.13% and 9.13%, respectively. By contrast, inputs such as the assembly labour in the
stainless steel phase, as well as the preparation labour, have a much smaller effect, under 1%.
In practical terms, that means the overall costing model is most sensitive to changes in material
costs and direct labour hours. If Company Y were to improve cost estimates, they would want
to pay particular attention to accurately budgeting these two drivers since a small error in either
could lead to a change in the total cost that is larger than expected. Conversely, the model is
less sensitive to some other inputs, such as the assembly labour for the stainless steel activity,
so errors in estimating those have a relatively smaller impact on the bottom line.
Looking at the Tornado diagram in Figure A.4, it is easy to interpret that the diagram is sym-
metric. This indicates that the model behaves linearly in each input variable. Note that the
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deviations shown in the diagram are the highest and the lowest deviations. If we look at the
detailed results, we can conclude that for each input variable, the highest and lowest deviation
stems from a parameter change of 20% and -20%, which makes sense since the model be-
haves linearly. Zooming into a particular input variable, we can see the linear behaviour in the
changes between the incremental steps. This can be seen in Figure A.5.
However, in the previous OFAT analysis, dependency between input variables was not taken
into account. This is a limitation of the OFAT analysis. For example, increasing the value of the
welding hours in the stainless steel activity also increases the costs related to the direct labour
hours. Taking this into account for all input variables gives us the following Tornado diagram
in Figure A.6. In this figure, we see that material costs still have the largest impact on the to-
tal cost price, which makes sense as it does not depend on other input variables. The impact
from other input variables is now illustrated more realistically. Note that the direct labour hours
did not change. They consist of carbon steel, stainless steel, internal assembly and electrical
labour. However, it is difficult to say if direct labour hours increase, what part of them increases,
affecting indirect costs of these activities, which ultimately influences the total cost price. This
effect is not incorporated into the analysis. Conducting the same analysis for the cost driver
rates, gives us the diagram shown in Figure A.7. Again, in practical terms, these outcomes
highlight corporate overhead cost driver as the main rate to watch if the total cost price has to
be accurately calculated. While it is still important to monitor the smaller drivers, they are less
likely to cause a major swing in overall costs unless they change by a very large amount.
The Morris method, also known as the Elementary Effect (EE) method, is an efficient approach
for high-dimensional models with limited computational resources. This is relevant to this study
as 24 parameters are part of the costing model. The method identifies non-linear effects and in-
teractions between parameters, providing qualitative rankings to prioritise parameters requiring
tighter control (Nguyen & Reiter, 2015). Although originally developed for screening, the Morris
method can also rank inputs by importance (Saltelli, 2002).
The costing model in this study contains dependent inputs. For example, preparation, welding,
and assembly hours together form the total number of stainless steel labour hours. A limitation
of the Morris method is that it does not account for input dependence (Ge & Menendez, 2017).
Based on assumptions validated by company experts, a distribution is made when calculating
a joint rate for both direct and indirect costs per activity. For instance, the stainless steel activity
consists of 31.28% preparation labour, 26.13% assembly labour, and 42.60% welding labour.
The direct cost rates are multiplied by these percentages to form a single direct cost rate for
the stainless steel activity. Subsequently, the indirect cost rate is added to establish a unified
stainless steel cost driver rate. This makes the analysis less granular but allows for investigat-
ing relationships between parameters in the costing model. We now have nine input variables
and 13 cost driver rates, totalling 22 parameters.
First, the input space must be defined. The input space consists of five discrete steps per vari-
able, centred around the baseline value. The steps are incremented by 10%, both positively and
negatively, resulting in the following values for each parameter: (-20%, -10%, 0, 10%, 20%).
Next, the number of trajectories (r) must be determined. A trajectory represents a structured
sequence through the input space, where parameters are systematically perturbed one at a
time (Paleari et al., 2021). This process begins at a randomly selected point within the input
space. Perturbation refers to the adjustment of a parameter’s value to examine its impact on
the total cost price. For k parameters, each trajectory consists of k + 1 points, as each input is
changed once (Menberg et al., 2016).
For this analysis, 50 trajectories are performed. For each trajectory, the elementary effects (EE)
are computed (Menberg et al., 2016), quantifying the impact of individual parameter perturba-
tions on the model output. Equation (5.5) calculates the elementary effects.

EEi =
f(X1, . . . , Xi +∆, . . . , Xk)− f(X)

∆
=
New Output - Original Output

Step size (10%)
(5.5)
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Where delta (∆) is the perturbation or step each of the variables experiences, a 10% change
in this case. This process repeats itself. Eventually, we can compute the mean of absolute
elementary effects (µ∗) and the standard deviation of elementary effects (σ). Equation (5.6)
and Equation (5.7) determine these values (Menberg et al., 2016).

µ∗
i = 0.5

r∑
t=1

|EEit| (5.6)

and;

σ =

√√√√ 1

(r − 1)

r∑
t=1

(EEit − µi)2 (5.7)

With 50 trajectories in the Morris analysis, there are 50 elementary effects per parameter.
Through bootstrapping, 50 numbers are randomly picked with replacements. ’With replace-
ment’ refers to the possibility of picking a number that has already been picked in that sample.
Bootstrapping is a statistical resampling method used to estimate the uncertainty of a sample
statistic (Wood, 2005), in this case, µ∗. For every sample, the average is calculated. This is
repeated a thousand times. So now we have a thousand different means of µ∗. This spread
gives us the confidence interval of µ∗, by taking the 2.5% and 97.5% percentiles.
The outcomes are shown in Appendix A.3.4. The mean of absolute elementary effects and the
sigma are normalised because they should be interpreted relative to the rest of the parameters,
as shown in Table A.3. The confidence interval is normalised by dividing the width of the confi-
dence interval of µ∗ by µ∗ times 100%. This relative confidence interval is more straightforward
for interpretability.
The mean of absolute elementary effects is the main indicator of how influential a parameter
is on the model output. The bigger it is, the more it changes the outcome overall. The table is
sorted according to this value. This measure is more robust for ranking inputs than the mean
elementary effect (µ) (Campolongo et al., 2007). The standard deviation of elementary effects
captures how inconsistent or non-linear a parameter’s effect is across the input space. A high
value suggests that it could behave differently at different points or interact strongly with other
parameters (Menberg et al., 2016). The confidence interval around the mean of absolute ele-
mentary effects, the third column, indicates that if the interval is small, there is high certainty in
that parameter’s estimated influence (Campolongo et al., 2007).
Analysing the outcomes, it can be concluded that material costs and subcontractor costs have
the most significant impact on the total cost price. This is evident from their high mean values
and near-zero standard deviations, indicating a consistently strong influence across different
scenarios. Furthermore, the confidence interval is so small that there is essentially no ambiguity
about their importance. Additionally, the corporate overhead cost driver and internal assembly
labour also show a substantial impact. However, these parameters show a higher standard
deviation, suggesting that their effect varies significantly depending on interactions with other
input variables. This variability indicates the presence of non-linearities or dependencies within
the model. Other parameters that demonstrate substantial but less dominant effects include
carbon steel labour, stainless steel labour, the internal assembly rate, the number of production
orders, and electrical labour. Comparatively smaller influences are observed for the production
controlling cost driver rate and the production coordination cost driver rate, which have a more
limited effect on the final cost estimate. Essentially, all of the confidence intervals are relatively
small, showing the estimates are reasonably robust.
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5.4.2 Analysing the Coefficients

The outcome of the regression analysis is stated in this section. Furthermore, a few sta-
tistical techniques are applied to measure the accuracy and significance of the coefficients
β1, β2, . . . , β5. This is done through several statistical measures. First of all, the standard error
(SE) is measured, which is the variability of the coefficient estimate. Additionally, the t-value
and the p-value are calculated.
The coefficients are calculated in the MLR model. Additionally, the measures to evaluate the
coefficients are also calculated. How this is done is explained earlier in Section 2.4.7. The
outcomes of these can be found in Table 5.3.

Table 5.3: Statistical Values of MLR

Coefficient Std. Error t-Value p-Value
Constant 5422.306 3717.307 1.458665 0.151759
Material Budget 0.326227 0.263071 1.240072 0.221521
Labour Budget -3.41929 0.629942 -5.42795 2.32 E-06
Subcontractor Budget 0.082989 0.186015 0.446143 0.657682
Indirect Budget 0.745235 0.225261 3.308322 0.001877
Overhead Budget 1.441165 0.399824 3.604496 0.000793

First, we see that the coefficient for the constant is large. This means that when all predictor
variables are set to zero, the model’s predicted cost error is around 5422. This could be caused
by several phenomena. The most feasible reason is that the dataset is not centered (Nimon &
Oswald, 2013). Centering is the action of subtracting the means from the values in the dataset.
The dataset consists of POs which vary greatly in size. Some POs have a total budgeted cost
amount of a few thousand, others exceed three hundred thousand. Another reason could be
the multicollinearity. High correlations between predictors can destabilise coefficient estimates,
indirectly affecting the intercept (Nimon & Oswald, 2013). As we concluded in Section 5.3.2,
we are dealing with a high level of multicollinearity, so this is feasible as well.
The other coefficients reflect the contribution of the budgeted amount to the cost error. So, for
instance, if the coefficient of the material budget is 0.326227, it means that when the material
budget increases by 1, and the other budgets are held constant, the cost error will increase
by 0.326227 on average. This suggests that there is an underestimation in material budgets.
For labour budgets, it suggests that there is a large overestimation. The subcontractor budget
has a small underestimation. Furthermore, the indirect cost has a large underestimation and
especially the overhead budget is greatly underestimated.
After looking at the results, we also need to explore if the coefficients are precise and significant.
According to Montgomery (2012), an absolute t-value exceeding 2.015, in this case, is consid-
ered to be suggesting significance. Looking at the table, we can conclude that this is the case
for the labour budget, indirect budget, and overhead budget. The p-value is considered to be
significant if it is lower than 0.05 (Siegel, 2016). This is, as well, the case for the labour budget,
indirect budget, and overhead budget. This essentially indicated that these three cost compo-
nents significantly influence the cost error in the budgeting process. Considering the nature of
these three components, and comparing them to the nature of material and subcontractor costs,
this makes sense. However, it should be noted that the p-values are also sensitive to sample
size and multicollinearity, which inflate the standard errors (Nimon & Oswald, 2013).

39



5.4.3 Model’s fit

In MLR, the goal is to explain the variation in a dependent variable by using several indepen-
dent variables. Two closely related metrics for evaluating how well the regression model fits the
data are R2 (the coefficient of determination) and adjusted R2. However, with using multiple
predictors like in this model, adjusted R2 is preferred (Jianlong et al., 2015) as it, among other
things, takes the number of predictors into account by penalising overfitting. Both of the metrics
are calculated as explained in Section 2.4.6. They are both calculated because comparing one
to the other also gives us insights about the number of predictors. Additionally, the Leave-One-
Out Cross-Validation (LOOCV) method is implemented to assess the model’s generalisation
performance by testing one data point at a time. This approach provides a more realistic es-
timate of real-world performance, as it evaluates the model’s ability to predict unseen data.
Cross-validation measures how well the model explains out-of-sample data, meaning data not
included in the training set. This process helps identify and mitigate overfitting, where the model
becomes too closely adapted to the training data and struggles to generalise effectively (Cheng
et al., 2017). By applying LOOCV, the model is not overly tailored to the specific dataset but in-
stead captures broader underlying trends. The resulting values of R2 and adjusted R2 obtained
through LOOCV are calculated as well.
The R2 and adjusted R2 values of the full dataset are 0.82 and 0.80, respectively. The metrics
are relatively high, which is positive. This means that 80% of the variance in the cost error
is explained by the model. However, the R2 metrics are more biased in small samples com-
pared to the number of predictors or when explanatory power is low (Akossou & Palm, 2013).
A small sample was used for this study. According to Akossou and Palm (2013), a large dif-
ference between these values signals overfitting due to irrelevant predictors or a small sample
size compared to the number of predictors. In our case, the R2 and adjusted R2 differ little
from each other, which is a positive sign. A large gap between the two indicates that there are
redundant variables, which is not the case (Jianlong et al., 2015).
The values of R2 and adjusted R2 obtained through LOOCV are 0.75 and 0.72, respectively.
The metrics are lower than those calculated from the full dataset. If the opposite were true, it
would indicate that the model is overly optimistic, which is not the case. The difference between
the R2 values from the full dataset and LOOCV provides insight into the model’s fit. A signifi-
cant decline in R2 suggests poor robustness, particularly in small datasets, as it indicates the
model memorises noise rather than learning general patterns (Martens & Dardenne, 1998). In
this case, the gap between the R2 values is 0.076, while the difference in adjusted R2 is 0.085.
These values indicate that the drop in performance is relatively small, suggesting the model
maintains a reasonable level of generalisation and does not suffer from severe overfitting.
To assess the fit of the regression model beyond R2 and adjusted R2 values, we compare these
values with the Root Mean Squared Error (RMSE).WhileR2 is useful for understanding howwell
the model explains variance, RMSE gives a direct measure of the model error. Combining them
helps identify issues such as high bias, high variance, or non-linear relationships (Chakraborty
& Elzarka, 2017). The goal of this study is not to predict cost error but to identify system-
atic estimation errors. Although RMSE indicates predictive ability, combining it with R2 can tell
something about the model’s fit, confirming whether the relationships between cost components
and budget deviations are well captured. Conclusions drawn from a well-fitted model are much
more reliable as they are based on statistically significant patterns rather than random noise.
The RMSE is calculated with Equation (2.7). Normalising the RMSE by range gives a better
understanding of how high or low the RMSE is. The normalised RMSE is 7.10% for the train-
ing set and 8.48% for the LOOCV, both below the 10% threshold considered low (Chakraborty
& Elzarka, 2017). A high R2 with a low RMSE indicates that the model captures patterns in
cost estimation well and, therefore, provides meaningful insights. However, a slightly higher
LOOCV’s normalised RMSE indicates that there is a moderate degree of overfitting. Since the
difference is relatively small, the model still maintains a reasonable level of generalisability.
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5.5 Summary

This chapter outlines the development and evaluation of the cost price model, incorporating an
ABC approach and multiple linear regression (MLR) analysis. The ABC model enhances cost
allocation by associating indirect costs with relevant cost drivers, while the regression analysis
identifies systematic errors in budget estimations. To assess the accuracy and reliability of both
models, sensitivity analysis and cross-validation techniques were applied. The findings high-
light key cost components contributing to overall cost deviations and provide insights into areas
requiring improvement in cost estimation accuracy.
The ABC model analysis identified material costs, carbon steel labour, and the corporate over-
head cost rate as the most influential factors in determining the total cost price. Sensitivity
analysis demonstrated that deviations in these components had a significant impact, with ma-
terial costs causing fluctuations of up to 13.13% and carbon steel labour leading to deviations
of 13.1% in the total cost price. Corporate overhead cost driver rate and the internal assembly
labour emerged as highly influential factors due to their effect on other parameters, highlighting
the need for a more precise allocation procedure.
The regression analysis revealed systematic biases in cost estimations. Labour costs were
found to be consistently overestimated, with a coefficient of -3.42 and a statistically significant p-
value below 0.001. Conversely, indirect and overhead costs were significantly underestimated,
with coefficients of 0.75 and 1.44, respectively. Material and subcontractor costs exhibited min-
imal impact on cost deviations, with coefficients of 0.33 and 0.08, and were not statistically
significant. The model achieved an R2 value of 0.80, indicating strong explanatory power. The
adjusted R2 remained close to R2, suggesting minimal overfitting. Additionally, leave-one-out
cross-validation (LOOCV) produced slightly lower R2 values, confirming that the model gener-
alises well beyond the training dataset. A relatively low normalised RMSE also shows that the
model fits the data reasonably well.
These findings underscore the importance of refining cost estimation for labour, indirect and
overhead costs, given their strong influence on total cost deviations. Addressing multicollinear-
ity in labour and indirect cost components further enhances the model’s accuracy and predictive
reliability, ensuring more robust budgeting processes and improved financial planning.
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6 CONCLUSIONS & RECOMMENDATIONS

This chapter presents the key conclusions derived from the research, addressing the central
research question of how a structured cost accounting method, combined with regression anal-
ysis, can enhance cost insights at Company X. As the production of Company X is carried out by
Company Y, the study mainly focused on this company. Following the conclusions, the discus-
sion section reflects on the implications of these findings, acknowledging the study’s limitations
and practical constraints. Based on the research findings, specific recommendations are for-
mulated to support Company Y in refining its cost accounting and budgeting practices. Finally,
suggestions for future research are outlined.

6.1 Conclusions

This research addresses expenses that frequently deviate from initial estimates, leading to fi-
nancial discrepancies due to unforeseen production costs. The study examined how implement-
ing a structured cost accounting method, combined with regression analytics, could enhance
cost visibility and improve financial decision-making. Therefore, the research question was for-
mulated as follows:

How can implementing a new cost accounting method and regression analytics improve
Company X’s insight into production costs?

The results of the literature review and AHP indicate that activity-based costing (ABC) is themost
suitable cost accounting method for Company Y, as it provides a more accurate allocation of
indirect costs than the currently used standard costing method. ABC allows for the allocation of
costs based on actual resource consumption, making it particularly beneficial in the company’s
dynamic project-based environment. Although time-driven activity-based costing (TDABC) was
considered as an alternative, its reliance on precise time-tracking data was identified as a limi-
tation. Furthermore, ABC is more accurate when it is easy to track which activities contribute to
specific products, even if it is difficult to see exactly how resources are used in those activities.
A cost price model was made while applying ABC to the production environment of Company
Y. A key finding of the OFAT (One-Factor-at-a-Time) sensitivity analysis done on the cost price
model. This analysis measures the impact of one variable by incrementally changing the in-
put while holding all other variables constant. It showed that material costs (13.13%), carbon
steel labour (13.1%), and the corporate overhead cost driver rate (9.12%) are the most signif-
icant influence on total cost estimations. The Morris sensitivity analysis, used to investigate
relationships between variables, showed that the corporate overhead cost driver rate and in-
ternal assembly labour had a substantial impact on the cost price due to their interaction with
other factors influencing the cost price. Variations in these cost components result in substan-
tial fluctuations in the overall cost price, highlighting the need for more precise budgeting and
monitoring of these factors. The study also demonstrated that the company’s current standard
costing approach does not sufficiently reflect these cost dynamics, further supporting the need
to shift towards a more granular cost allocation method.
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The regression analysis provided further insights into the underlying inefficiencies in the com-
pany’s cost estimation process. The study found that labour costs are systematically overes-
timated, while indirect and overhead costs are consistently underestimated. This imbalance
in cost estimation contributes to deviations between budgeted and actual costs, reducing the
reliability of financial planning. The analysis also showed that material costs and subcontractor
costs do not play a big role in financial discrepancies. The multiple linear regression (MLR)
model developed in this study accounted for approximately 80% of the variance in cost devi-
ations. However, the presence of multicollinearity among certain cost components suggests
that further refinement of the regression model is necessary to improve the interpretability of
individual cost drivers described in the model.
To answer the research question, the study confirms that the implementation of a more struc-
tured cost accounting method, coupled with regression-based budget analysis, significantly
enhances insight into production costs at Company Y. ABC broke down the production and
operational processes into specific activities and assigns cost based on the consumption of
resources. It identifies the true cost drivers. Furthermore, indirect costs are allocated more
accurately. The regression analysis provides more insight into production costs by analysing
the budgeting process. The transition towards ABC, combined with a refined budgeting pro-
cess supported by regression analysis, represents a critical step towards achieving greater
transparency and control over production costs. While further refinements and validations are
necessary, this research demonstrates that structured cost accounting and data-driven budget-
ing methodologies are essential for improving financial oversight and strategic decision-making
in a complex manufacturing environment.

6.2 Discussion

This section critically reflects on the research findings, considering their broader implications
and potential limitations. It assesses the validity and reliability of the results while acknowledg-
ing constraints that may have influenced the outcomes. Additionally, it discusses the practical
and theoretical relevance of the study. By doing so, this section provides a foundation for inter-
preting the conclusions and formulating recommendations.
The findings of this study highlight several key insights regarding the budgeting process and
cost estimation methods within the company. While the regression analysis provides a struc-
tured approach to identifying cost drivers, it does not account for external factors that may
influence budget deviations. External factors that could have possibly influenced the budget
deviations are inflation, interest rates, market volatility, supplier issues, etcetera. This limitation
emphasises the challenge of relying solely on historical financial data to measure budgeting
inefficiencies.
Integrating a refined cost-tracking systemwithin the existing enterprise resource planning (ERP)
framework introduces both technical and organisational challenges. The implementation re-
quires reconfiguring ERP functionalities to support real-time cost data collection, integrating
automated alerts for budget deviations, and developing custom reporting dashboards for fi-
nancial analysts. These modifications ask for targeted training for project managers, financial
analysts, and production supervisors, ensuring accurate data collection and effective cost in-
terpretation. Collaboration between departments will intensify. Moving from an end-of-quarter
financial reconciliation to continuous cost monitoring imposes additional responsibilities on fi-
nancial analysts, requiring frequent variance analysis and proactive budget adjustments. Fur-
thermore, real-time access to cost data enhances decision-making efficiency by enabling im-
mediate responses to cost overruns. For instance, if labour costs exceed the estimated budget
by a predetermined threshold, automated notifications will prompt project managers to inves-
tigate and mitigate discrepancies. To maximise the system’s effectiveness, structured training
programmes should be established, ensuring that employees develop the necessary expertise
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to integrate cost insights into their daily operational decision-making.
The study also has limitations that influence the generalisability of its conclusions. One ma-
jor constraint is the availability of data. Due to the limited dataset, the accuracy of the cost
price model incorporating ABC could not be validated. While the study provides insights into
the application of ABC and the factors that must be considered when calculating cost prices,
the effectiveness of the model remains unproven. The reliance on assumptions further adds
an element of subjectivity to the findings. Despite validation through expert consultation within
the company, assumptions introduce potential biases that may affect the findings of this matter.
Additionally, ABC is an internal management tool. Despite external reporting not being a focus
of this research, it should be remembered that ABC alone is not enough for financial reporting.
Another important limitation concerns the presence of multicollinearity within the regression
analysis. The model includes predictors that exhibit high intercorrelation, which can distort
coefficient estimates and reduce the reliability of the findings. This issue complicates the in-
terpretation of individual cost drivers, as it becomes difficult to isolate the impact of specific
variables. Addressing multicollinearity would require either the removal of redundant predictors
or the application of advanced statistical techniques such as principal component regression or
ridge regression.
Despite these limitations, the study contributes valuable insights into cost estimation challenges
within project-based manufacturing environments. It emphasises the necessity of a dynamic
approach to cost forecasting, integrating both quantitative modelling techniques and qualitative
expert judgement.

6.3 Recommendations

This section addresses recommendations to the company based on the conclusion provided in
Section 6.1. Actionable steps are provided to tackle existing issues identified in this research.
These steps focus on improving data gathering, accurately allocating indirect costs and mitigat-
ing labour overestimation.
To improve cost estimation and financial forecasting, Company Y must enhance its data gather-
ing and collection procedures. The research indicates that cost-tracking inconsistencies or lack
of insight arise due to limitations in data availability, outdated cost allocations, and insufficient
real-time monitoring. Therefore, the most potential lies in structuring their data architecture.
The IT department will lead the integration of computer panels on the production floor to auto-
mate data collection, reducing human errors and ensuring consistency. Production supervisors
will oversee data accuracy and real-time monitoring, while finance will analyse and report the
collected data. The implementation process takes about 18 months for a business such as
Company Y (Sarker, 2024; Katuri, 2025; Mabert et al., 2003). Initially, a comprehensive as-
sessment of the current system’s capabilities will be conducted over two months, followed by a
selection of ERP software and system design in months two to six. The system integration with
data migration in months six to eight, and the testing phase takes frommonths nine to ten. Train-
ing takes another month, after which the system goes live for deployment. Post-implementation
support and evaluation take up the rest of the time. According to Mabert, Soni, and Venkatara-
manan (2003), medium-sized manufacturing companies, such as Company Y, spent 3.08% on
average on an ERP implementation. Besides size, factors that influence total costs are the
extent of customisation and implementation strategy. Costs mainly consist of software costs,
hardware costs, consulting costs, training costs, implementation team costs and maintenance
costs. Annual maintenance costs around 20% of the initial investment (Katuri, 2025).
A more precise cost accounting method, such as ABC, should be adopted to refine cost price
estimation. Implementing ABC would allow for a more accurate allocation of indirect and over-
head costs, which, as demonstrated in the regression analysis, are currently not systematically
assigned to production orders. The finance department will be responsible for identifying key

44



activities and cost pools, determining cost drivers, and calculating accurate cost driver rates as
demonstrated in the study. The IT department will integrate ABC into the existing ERP system,
while production management will validate the accuracy of identified activities and cost drivers.
The implementation process lasts about 12 months and begins with a detailed analysis and
identification of relevant cost components in the first two months. Cost driver selection will fol-
low in month three, with rate calculations and validation occurring in month four. ERP system
integration and preliminary ABC implementation will take place in months five and six. Training
for financial and production staff is scheduled for month seven, and full ABC implementation
will be completed in month eight. Evaluation afterwards is important to refine the method un-
til the twelfth month. Some factors influencing the cost of implementation are the size of the
company, the complexity of operations, and the fixed-to-variable cost ratio (Needy et al., 2003).
Costs consist of components such as software licensing, consulting, training, data integration
with the ERP system, and maintenance (Cokins, 2006; Wegmann, 2008).
By improving cost allocation in Company Y, Company X can establish a stronger foundation for
project pricing, reducing the risk of underestimating costs and, consequently, setting prices too
low. This refinement in cost estimation would not only enhance profitability but also strengthen
the company’s competitive position in the renewable energy sector.
To mitigate the overestimation of labour in production orders, a more dynamic approach should
be implemented. Instead of relying on fixed labour standards, the actual labour spent on parts
within the production should continuously be monitored to adjust estimations. Production super-
visors will monitor real-time data and investigate any alerts triggered by deviations, while pro-
duction planners will regularly assess estimation accuracy and adjust labour standards based
on historical data. The IT department will establish a centralised database connected to the
computer panels and integrate it into the ERP system. Thresholds for deviations in labour time
will be set to trigger alerts. Initial database setup and ERP integration will take place in month
one, with alert mechanisms developed in month two. Testing of themonitoring and alert systems
will occur in month three, followed by training sessions for supervisors and planners in month
four. By month five, the transition to estimation based on historical averages will be finalised.
Full implementation and ongoing monitoring will be in place by month six. Statistical analysis,
such as the regression analysis in the study, can be used to detect recurring deviations for
long-term data trends. If deviations often occur due to worker inefficiency, training programmes
can be introduced. If the tasks require less or more labour than estimated, the standard work
procedures can be updated.

6.4 Future Research

This research has provided valuable insights into cost estimation and forecasting within Com-
pany Y. However, several areas require further investigation to refine and extend these findings.
Future research should focus on improving the robustness of regression analysis, validating cost
models over the long term, and exploring alternative cost accounting methodologies.
An area for further research is addressing the multicollinearity identified in the regression analy-
sis. While this study identified potential issues with predictor correlations, future research could
apply Principal Component Analysis (PCA) to mitigate theoretical multicollinearity by transform-
ing correlated variables into uncorrelated components. Alternatively, regularisation techniques
such as ridge regression could be employed to stabilise coefficient estimates and improve pre-
dictive reliability in the presence of practical multicollinearity. A more refined regression model,
with reduced collinearity, would enhance the accuracy of cost error predictions and strengthen
the reliability of cost drivers identified in this study.
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Another subject for future research is the long-term validation of costing models on accuracy.
Due to data constraints, the applied cost models could not be tested on accuracy but only on
robustness and see what areas need precise consideration. Future studies should evaluate
these models’ accuracy against real-world data when it becomes available. Furthermore, long-
term validation would improve the reliability of these models. This would allow for assessing
their accuracy in predicting actual costs and provide insights into how well the ABC approach
and regression models function in dynamic production environments. A longitudinal analysis,
in which cost forecasting models are tested over multiple projects and across different time pe-
riods, would provide a more definitive validation of their effectiveness.
If time-based cost data becomes more readily available in a centralised database, future re-
search could also explore the feasibility of TDABC. TDABC offers a dynamic and scalable ap-
proach by linking cost allocations directly to time estimates rather than fixed activity cost drivers.
By comparing TDABC with the ABC model currently proposed, further insights could be gained
into the suitability of each method for different project types and production environments. A
comparative analysis between these cost accounting methods would help determine which ap-
proach, or a combination of them, provides the most precise and flexible cost estimation.
Extending the regression analysis by incorporating additional predictors could further improve
the accuracy of the cost error forecasting. Future studies should explore (qualitative) factors that
contribute to cost deviations, such as complexity metrics (e.g., number of components, number
of sum-assemblies, degree of customisation), project size indicators, or external market factors
such as inflation rates and material cost fluctuations. These additional predictors could help
identify recurring cost patterns and improve the accuracy of budget planning. Furthermore,
the application of time-series regression models could allow for the tracking of cost build-up
over different project phases. If repeated observations are collected across multiple projects or
costs are tracked continuously over time, advanced regression methods could reveal trends,
project-specific effects, and efficiency improvements that result from experience and process
refinements over time.
Finally, a direction for future research is, if the dataset is sufficiently large, the exploration of
AI-driven cost forecasting models. Machine learning techniques could enhance cost estimation
by identifying complex relationships in data that traditional regression models may not capture.
Supervised learning models, such as Random Forests, Gradient Boosting models or Artificial
Neural Networks, could predict cost overruns with greater accuracy and minimise human error.
Random Forests improves accuracy by reducing variance, Gradient Boosting models improve
predictions by correcting errors from previous iterations. Artificial Neural Networks need a large
dataset and are harder to interpret compared to the previous two, but can capture hidden pat-
terns in cost fluctuations. This data-driven approach would provide a more adaptive and scal-
able methodology for cost estimation, enabling Company Y to optimise its budgeting strategies.
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A APPENDIX

A.1 Introduction

Figure A.1: Problem Cluster
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A.2 Selecting Costing & Regression Methods

Table A.1: Step 1 and 2 of consistency check

Criteria
Weight
vector

Consistency
vector

0.380 1.976 5.195802775
0.058 0.290 Consistency

vector
5.035731187

0.135 x Matrix = 0.687 ———————- = 5.092370948
0.342 1.756 Weight vector 5.138547793
0.085 0.429 5.029358064

Sub-criteria
Weight
vector

Consistency
vector

0.106 0.31965812 Consistency
vector

3.011201867

0.633 x Matrix = 1.945621206 ———————- = 3.071973401
0.260 0.790082167 Weight vector 3.032968775

Table A.2: Step 3 and 4 of consistency check

Criteria
Lambda max = 5.098362154
CI = 0.024590538
RI = 1.12
CR = 0.021955838

Sub-criteria
Lambda max = 3.038714681
CI = 0.01935734
RI = 0.58
CR = 0.033374725
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A.3 Developing Tool & Analysing Results

A.3.1 ABC Model

Figure A.2: Output
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A.3.2 Correlation Matrix Heatmap

Figure A.3: Correlation Matrix Heatmap
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A.3.3 OFAT Analysis

Figure A.4: Tornado Diagram of Input Variables

Figure A.5: Material Costs Impact

55



Figure A.6: Tornado Diagram of Input Variables with dependency
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Figure A.7: Tornado Diagram of Cost Driver Rates
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A.3.4 Morris Method

Table A.3: Outcomes Morris method

Parameter µ∗ σ µ∗ conf.

Corporate overhead rate 100.00% 572551.1 2.27%
Material costs 95.95% 0.00e+00 7.46E-16%
Subcontractor costs 79.43% 0.0 8.11E-14%
Internal assembly labour 78.68% 1000000.0 3.23%
Carbon steel labour 63.40% 789842.0 3.13%
Stainless steel labour 48.93% 589200.0 3.09%
Number of production orders 41.90% 365352.7 2.19%
Internal assembly rate 41.73% 741705.3 4.28%
Carbon steel rate 28.76% 503839.5 4.10%
Stainless steel rate 27.45% 456140.7 3.92%
Electricity labour 26.24% 280428.8 2.87%
Engineering rate 13.62% 267173.5 3.80%
Electricity rate 13.11% 275022.1 4.21%
Warehousing rate 13.07% 231992.9 3.28%
Logistics rate 5.64% 53698.2 3.22%
Quality management rate 5.62% 112887.8 4.44%
Number of inspection 5.30% 96772.2 4.65%
Weight 5.11% 86028.5 4.02%
Supply rate 4.56% 97179.6 4.73%
Production management rate 4.15% 95152.7 4.04%
Production coordination rate 1.98% 46358.2 4.54%
Production controlling rate 1.95% 50435.1 5.00%

A.4 Systematic Literature Review

Table A.4: Inclusion criteria

Inclusion crite-
ria

Argumentation

Similar com-
pany

If the article is related to the costs of a company or sector comparable to
the one in which this research is conducted, it will be included.

Cost account-
ing methods

The article will be included if it analyses one or multiple cost accounting
methods.
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Table A.5: Exclusion criteria

Exclusion
criteria

Argumentation

Language This literature review will exclude studies that are not written in English. English is
the primary research language, so more people will review these studies, making
them more reliable.

Focus Studies unrelated to cost accounting, cost estimation or cost management will
be excluded.

Peer-
reviewed

The article will not be included if it isn’t peer-reviewed. This ensures the credibility
of the sources as they are checked by other experts.

Publication
date

Articles published before 2000 will be excluded to ensure they are still relevant.

Area Studies related to the production environment will be included to ensure the ar-
ticles are relevant enough. If not, the article will be excluded.

Table A.6: Search strings

Key concepts Related terms Narrower terms Broader terms
Cost accounting Costing, cost analysis,

cost development, cost
allocation, costing tech-
niques

Activity-based cost-
ing, job costing, cost
drivers, product cost-
ing, traditional cost-
ing

Cost management,
financial analysis,
financial manage-
ment, cost control

Production Manufacturing, assembly make-to-order, cus-
tomization, unique
product, complex
product

Supply chain, pro-
duction processes

Project Project-based, project-
oriented, project-specific

Process, job Project management

Table A.7: Search log

21/10/2024Scopus (”cost accounting methods” OR ”costing methods” OR
”cost accounting”) AND (”project-based business*” OR
”project-based compan*” OR ”project-based organiza-
tion*” OR ”per project”) AND (”job costing” OR ”project
costing” OR ”activity-based costing” OR ”cost alloca-
tion”) AND (”product*” OR ”material*” OR ”project re-
quirement*”)

3 Too specific,
documents
were not
useful.

Date Source Search Query Hits Remarks

Continued on next page
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Table A.7: Search log (Continued)

21/10 Scopus (”project accounting” OR ”project-based accounting”)
AND (”costing methods” OR ”cost management”) AND
(”job order costing” OR ”activity-based costing” OR
”process costing”) AND (”unique product*” OR ”custom
product*” OR ”project-specific material*”)

0 Too specific

24/10 Scopus (“cost accounting” OR costing) AND compar* AND
method*

629 Too many
sources,
difficult to
screen. 2
included

24/10 Scopus (“cost accounting” OR costing) AND compar* AND
method* AND production AND NOT “life cycle”

80 3 included

27/10 Web
of Sci-
ence

(”Cost Accounting” OR costing ORCost analysis) AND
Method AND NOT( ”Life cycle” OR ”life-cycle”) AND
production AND (analy* OR compar*) AND (assembl*
OR manufactur*) AND NOT ”lot-size”

6259 Too broad

27/10 Web
of Sci-
ence

(”Cost Accounting” OR costing ORCost analysis) AND
Method AND NOT( ”Life cycle” OR ”life-cycle”) AND
production AND (analy* OR compar*) AND (assembl*
ORmanufactur*) ANDNOT ”lot-size” AND “cost of pro-
duction”

89 The term
‘cost of pro-
duction’ did
not attract
the right
documents.

27/10 Web
of Sci-
ence

(”Cost Accounting” OR ”Cost analysis”) AND method*
AND NOT (life-cycle OR ”life cycle”) AND NOT ”lot-
size”AND compar* AND Production

297 Too broad

27/10 Web
of Sci-
ence

(”Cost Accounting” OR ”Cost analysis”) AND (“unique
product” OR “custom* product”)

2 Not useful.

27/10 Web
of Sci-
ence

(“cost accounting” AND production AND assembl*
AND process*)

6 4 duplicates.

27/10 Business
Source
Com-
plete

Cost accounting methods AND NOT life cycle 441 Too broad

27/10 Business
Source
Com-
plete

Cost accounting methods AND production AND NOT
life cycle

83 Useful ones
also avail-
able on
Scopus

28/10 Scopus ( ”costing methods” OR ”cost management” OR ”cost
accounting” OR ”Cost accounting methods” ) AND
(project* OR ”project management” )

18,246Too broad

Date Source Search Query Hits Remarks

Continued on next page
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Table A.7: Search log (Continued)

28/10 Scopus (”cost accounting methods” OR ”costing techniques”
OR ”management accounting”) AND (project* OR
”project management”))

353 Too broad

28/10 Scopus (”cost accounting” OR ”costing estimation” OR ”cost
estimation”) AND costing AND (project* OR ”project
management”) AND NOT “life cycle” OR “life-cycle”)

219 Not related

29/10 Scopus ”cost accounting” AND production AND estimat* AND
compar* AND NOT environment*

137 1 included

29/10 Scopus ”cost development” AND estimat* AND compar* 34 Not relevant
29/10 Scopus ( ”cost accounting” AND ”complex product*” ) 16 1 included
29/10 Scopus ( ”cost accounting” AND ”custom* manufactur*” ) 3
29/10 Scopus ( ”cost accounting” AND make-to-order ) 25 no good

combina-
tion of the
two search
terms avail-
able.

29/10 Scopus (”cost estimat*” AND make-to-order) 9 2 duplicates.
Interest-
ing papers
for later
on in this
research.

29/10 Scopus ”cost accounting” AND assembl* AND production AND
process*

97 Useful, 1 in-
cluded.

2/12 Scopus “Job costing” 96 Narrow
down

2/12 Scopus “Job costing” AND (production OR assembl*) 27 2 incl, 2 du-
plicates.

2/12 Scopus “Process costing” 92 Narrow
down

2/12 Scopus “Process costing” AND (production OR assembl*) 24
2/12 Scopus “Direct costing” 95 Narrow

down
2/12 Scopus “direct costing” AND (production OR assembl*) 24
2/12 Scopus (“Full costing” OR absorption) AND (production OR as-

sembl*)
29 Not relevant

2/12 Scopus “Costing techniques” AND (production OR assembl*) 56 Too specific
2/12 Scopus costing AND ( productionOR assembl* ) AND (method

OR technique* ) AND compar*
460 Too broad

Date Source Search Query Hits Remarks
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Table A.8: Included articles

Source Author Year Title
Journal of Industrial
Ecology

Walz, Matthias;
Guenther, Edeltraud

2021 What effects does material flow
cost accounting have for compa-
nies?: Evidence from a case stud-
ies analysis

Custos e Agronego-
cio

Corrêa, R.G.F.; Klie-
mann Neto, F.J.;
Denicol, J.; Kah-
mann, A.

2015 Proposal and implementation of a
costing system for beef produc-
tion

Gestao e Producao Da Silva Medeiros,
H.; Santana, A.F.B.;
Da Silva Guimarães,
L.

2017 The use of costing methods in
Lean Manufacturing industries: A
literature review

Engineering Eco-
nomics

Stonciuviene, N.;
Usaite-Duonieliene,
R.; Zinkeviciene, D.

2020 Integration of activity-based cost-
ing modifications and LEAN ac-
counting into full cost calculation

Australasian Ac-
counting, Business
and Finance Journal

Vedernikova, O.;
Siguenza-Guzman,
L.; Pesantez, J.;
Arcentales-Carrion,
R.

2020 Time-driven activity-based cost-
ing in the assembly industry

Cost Engineering Fayek, A.R. 2001 Activity-based job costing for in-
tegrating estimating, scheduling,
and cost control

Procedia CIRP Alami, D., El-
Maraghy, W.

2020 Traditional and activity based ag-
gregate job costing model

Lecture Notes in Me-
chanical Engineering

Zamrud, N.F.
Abu, M.Y. Kamil,
N.N.N.M.,Safeiee,
F.L.M.

2020 A comparative study of prod-
uct costing by using activity-
based costing (Abc) and time-
driven activity-based costing (td-
abc) method

Table A.9: Conceptual matrix

What effects does mate-
rial flow cost accounting
have for companies?: Evi-
dence from a case studies
analysis

• Material Flow Cost Ac-
counting (MFCA);
• Material Flow Analysis
(FCA);
• Environmental cost ac-
counting;

MFCA provided a better basis for
the calculation of costs and mate-
rial flows.
It reveals hidden costs and ineffi-
ciencies.
MFCA enabled financial analysis of
material losses that were impossi-
ble with traditional cost accounting.

Title Concepts Key Findings

Continued on next page
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Table A.9: Conceptual matrix (Continued)

Proposal and implemen-
tation of a costing system
for beef production

• ABC;
• Standard costing

The costing system combined
Activity-Based Costing (ABC)
for indirect costs and Standard
Costing for direct costs.
The system provides more accu-
rate cost information to identify
opportunities for cost reduction.
The challenges mentioned were
defining accurate cost drivers
and needing more detailed data
collection on the farm.

The use of costing meth-
ods in Lean Manufactur-
ing industries: A literature
review

• Activity-based costing;
• Lean Manufacturing;
• Time-driven activity-
based costing;
• Value stream costing

Activity-Based Costing (ABC):
• It takes time to develop and im-
plement
Time-Driven Activity-Based Cost-
ing (TDABC):
• Easy to apply
• Provides better visibility of cost
items
• Depends on time equations for
effectiveness
Value Stream Costing (VSC):
• Measures cost through value
stream based on a lean model
A few documents were recom-
mended for deepening the litera-
ture.

Integration of activity-
based costing mod-
ifications and LEAN
accounting into full cost
calculation

• Activity-Based Costing;
• Time Driven Activity
Based Costing;
• Service-Based Cost-
ing;
• Duration Based Cost-
ing;
• LEAN accounting;
• Full Cost Calculation

ABC provides accurate product
costing but is labour-intensive and
difficult to implement in complex
organizations.
Time-Driven ABC simplifies ABC
by using time as the primary cost
driver, but it may be limited to
manufacturing applications.
Service-Based Costing and
Duration-Based Costing offer use-
ful elements for allocating costs
based on customer complexity
and production duration.
LEAN accounting focuses on value
streams but lacks methodology for
allocating indirect costs.

Title Concepts Key Findings

Continued on next page
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Table A.9: Conceptual matrix (Continued)

Time-driven activity-
based costing in the
assembly industry

• Time-driven Activity-
based costing (TDABC);
• Traditional costing;
• Assembly industry

TDABC identified inefficiencies
in resource usage that traditional
costing could not detect.
Manual assembly processes
showed fewer differences be-
tween TDABC and traditional
costing than semi-automated
processes.
Implementing TDABC was chal-
lenging for strategic and support
processes due to low standardisa-
tion.

Traditional and activity
based aggregate job
costing model

• Activity-based costing;
• Direct cost;
• Job shop

The paper introducesMILPmodels
for both traditional and ABC cost-
ing methods. It addresses the dif-
ferences in cost allocation and the
mathematical formulation. The re-
sults show that the ABCmethod of-
fers a competitive advantage by re-
ducing operating costs

Activity-Based Job Cost-
ing for
Integrating Estimating,
Scheduling, and Cost
Control

• Accounting; Budget;
• Cost control;
• Data collection;
• Estimating;
• Job costing;
• Scheduling

Unlike traditional job costing meth-
ods, this alignment allows for
more precise tracking of costs.
The paper presents a compre-
hensive framework for enhancing
job costing practices in construc-
tion through an activity-based ap-
proach. This method aims to im-
prove accuracy in cost tracking, fa-
cilitate better decision-making, and
ultimately lead to more successful
project outcomes.

A comparative study of
product costing by using
activity-based costing
(Abc) and time-driven
activity-based costing
(tdabc) method

• Activity-Based Costing;
• Comparative study;
• Time-Driven Activity-
Based Costing

This paper presents a compara-
tive study of Activity-BasedCosting
(ABC) and Time-Driven Activity-
Based Costing (TDABC) methods
for product costing in a manufac-
turing company. The paper shows
that TDABC has greater accuracy,
is more structured, and has more
detail in activity breakdowns.

Title Concepts Key Findings
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