MSc Business Information Technology
Master Thesis

Knowledge Graph Question
Answering

o8
it
i
“%?3‘/ ®&pe Bolin Huang
Supervisor:
dr. A. Abhishta
¢2 dr. L.O. Bonino da Silva Santos
%El A. Kolk BSc.
O C

March, 2025

Business Information Technology
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

UNIVERSITY OF TWENTE.

Acknowledgments

This thesis marks the end of my master’s study in Business Information Technology. The
journey began more than two years ago when I arrived at the University of Twente in a
transition from a business student to a practitioner focusing more on tech. My interest
in information technology started to sprout during my bachelor years in business studies
when data-driven approaches emerged to make such an impact on all businesses across
different industries. Witnessing how IT had reshaped the redefined the business process
inspired me to dive into the study and research of this domain. It is not an easy journey
from the beginning, as I face numerous new concepts and knowledge frameworks. It is also
not easy to come to a new culture and live, change and adapt to the new environment.
Despite all these difficulties, embarking on an audit of this journey, I am so proud of how
far I have come.

I would like to express my deep gratitude to my academic supervisors at the University
of Twente, Abhishta and Luiz. They have always accompanied me during my thesis and
provided timely guidance. They give tips on thinking and solving problems from different
perspectives, which often benefit me. I have learned a lot from them for being academically
rigorous and conducting a project systematically. I would also like to express my deep
thanks to my supervisor at Kadaster, Anjo. He has always inspired me with his expertise
during the project and offered me extra motivation. His patience and guidance have helped
me tremendously. Kudos to Lexi, who taught me a lot about linked data with her practical
experience. I also want to thank Janneke Michielsen and Erwin Folmer for offering me the
opportunity to complete my thesis internship at the Data Science Team of Kadaster.

The unwavering support of my friends has been my driving force. I sincerely thank every-
one for their integral support to me throughout this journey. I would like to extend my
heartfelt thanks to Jialiang Liang and Fengpeng Huang for always being there to share
both my delight and sorrow. Their companionship has been invaluable in helping me nav-
igate through the toughest times. I am also grateful to Akash Ramakrishnan and Amal
Reji, who made my life in Enschede memorable. I cherish all the moments with them in
our cooking sessions, trips and parties. The happy times with them have been my source
of joy and solace.

The following chapters present my research on this topic, and I sincerely hope you find
reading it enjoyable and insightful. I also hope that, in some small way, it contributes
meaningfully to the domain.

Bolin Huang

Enschede, March 2025

Abstract

Knowledge graph question answering(KGQA) has garnered significant research interests
and has evolved quickly in both academia and industry. It combines the strengths of
artificial intelligence and linked data to connect humans with heterogeneous knowledge-
intensive data sources in an interactive way. However, the current approaches of KGQA
are mostly difficult to adapt to knowledge graph with different schemas universally. A
lot of approaches also rely on substantial training to build the question answering model,
which is difficult to maintain as the data sources iteratively update. In this thesis, we
propose KNOCK, which stands for KNowledge-driven Ontology and Chain-of-Thought-
based KGQA, an approach utilizing the synergy strengths of ontology embedding and
Chain-of-Thought(CoT) prompting to construct a Retrieval-augmented Generation(RAG)
system to enhance the performance of question answering on knowledge graphs. Via a bib-
liometric survey, we define our methodological framework and implement our prototype
modeling in a CRISP-DM process. We ground our research in the question answering
system of Kadaster Knowledge Graph(KKG), a knowledge database of the Dutch national
cadastral and mapping agency. By analyzing the current question answering system of
KKG, we identify its limitations and implement our approach on KKG to verify its feasi-
bility. By conducting this research project, we aim to validate our approach and answer
how we can establish a KGQA system more efficiently with less training cost and ensure
the system is more resilient to knowledge source update. This research also makes con-
tributions to the KGQA application in the domain of cadastral data management and
geographical information system(GIS).

Keywords: Knowledge Graph Question Answering, Ontology Embedding, Chain-of-Thought
Prompting, Retrieval-augmented Generation, Cadastre

Contents

Introduction

1.1 Research Background

1.2 Problem Statement
1.2.1 Status Quo
1.2.2 Motivation L
1.2.3 Research Questions

Literature Review

2.1 Literature Review Methodology
2.1.1 Motivation and Purpose of the Bibliometric Survey
2.1.2 Selection Criteria

2.2 Related Work
2.2.1 Knowledge Graph Question Answering
2.2.2 Subgraph Extraction and Ontology Embedding
2.2.3 Chain-of-Thought Prompting
2.2.4 Retrieval-augmented Generation

2.3 Implications of the Literature Review

Methodology and Experimental Set-up

3.1 Methodology
3.1.1 Cross-industry Standard Process for Data Mining

3.2 Experimental Set-up
3.2.1 Business Understanding
3.2.2 Data Understanding
3.2.3 Data Preparation L L o
3.24 Modeling
3.25 Evaluation
3.26 Deployment

Result and Discussion

4.1 Basic Retrieval Question Results
4.1.1 Query Accuracy
4.1.2 Output Accuracyo

4.2 Edge Case Question Question Results
4.2.1 Query Accuracy
4.2.2 Output Accuracyo

4.3 Novel Retrieval Questions and New Features

13
13
13
15
16
17
18
25
44
45

5

Conclusion

5.1 Recapping the Research Questions
5.2 Contribution
5.3 Future Research

Reference

Appendix

A

B O Q ®W

Bibliometric Survey

A.1 Search Keywords
A.2 Search Queries
A.3 Inclusion and Exclusion Criteria of Publications on Scopus.
A.4 Bibliographic Coupling
A5 Topic Modeling e
A6 Word Cloud Analysis

Full Documents of Customized Triple Patterns
The Complete CoT Prompt
The Few-shot Examples

Questions and Queries

57
o7
58
59

60

67

68
68
69
71
72
75
75

80

82

85

91

List of Figures

3.1 CRISP-DM Process Model 15
3.2 Graphmodels of KKG 18
3.3 Some ontology triples of graph:model-sor. 19
3.4 Geometry Chain: From Building&Plot to Province 24
3.5 The Complete Property Path: From Building&Plot to Province 33
3.6 Task Introduction of the CoT Prompt 35
3.7 The Polysemy of "Utrecht" 37
3.8 Query Snippet 1 oL 39
3.9 Query Snippet 2 L 40
3.10 Query Snippet 3 41
3.11 Query Snippet 4 L L 41
3.12 Query Snippet 5 L 41
3.13 Few-shot Example 42
3.14 The PDCA Cycle o 46
4.1 Semantic Equivalence Results of Basic Retrieval Questions 50
4.2 Result Accuracy of Basic Retrieval Questions 50
4.3 Semantic Equivalence Results of Edge Case Questions 53
4.4 Result Accuracy of Edge Case Questions 53
A.1 Articles per Search Query for Knowledge Graph Embedding 70
A.2 Articles per Search Query for KGQA Enhancement with LLM 71
A.3 Bibliographic Coupling Knowledge Graph Embedding 73
A.4 Bibliographic Coupling KGQA Enhancement with LLM 74
A.5 Wordcloud of Cluster 1 - Knowledge Graph Embedding 76
A.6 Wordcloud of Cluster 2 - Knowledge Graph Embedding 76
A.7 Wordcloud of Cluster 3 - Knowledge Graph Embedding 77
A.8 Wordcloud of Cluster 4 - Knowledge Graph Embedding 77
A.9 Wordcloud of Cluster 5 - KGQA Enhancement with LLM 78
A.10 Wordcloud of Cluster 6 - KGQA Enhancement with LLM 78
A.11 Wordcloud of Cluster 7 - KGQA Enhancement with LLM 79
C.1 The Complete CoT Prompt Part 1 83
C.2 The Complete CoT Prompt Part 2 84
D.1 Few-shot Example 1 86
D.2 Few-shot Example 2 o 87
D.3 Few-shot Example 3 88
D.4 Few-shot Example 4 89

D.5 Few-shot Example 5

List of Tables

2.1 Selection criteria L 9
3.1 Namespace Prefixesand Full IRIs 20
4.1 The Basic Retrieval Question Category 48

4.2 FEdge Case Questions Lo e 52

4.3 Novel Retrieval Questions 54
A.1 Search Keywords Table 1 68
A.2 Search Keywords Table 2 68
A.3 Search Queries 69
A.4 Inclusion and Exclusion Criteria of Publications on Scopus. 72

List of Abbreviations

KG

KB
KGQA
KBQA
QA
NLP
KKG
LLM
CoT
RAG
CRISP-DM
W3C
OWL
RDF
SHACL
XML
JVM
PDCA

Knowledge Graph

Knowledge Base

Knowledge Graph Question Answering
Knowledge Base Question Answering
Question Answering

Natural Language Processing
Kadaster Knowledge Graph

Large Language Model
Chain-of-Thought
Retrieval-augmented Generation
Cross-Industry Standard Process for Data Mining
World Wide Web Consortium

Web Ontology Language

Resource Description Framework
Shapes Constraint Language
Extensible Markup Language

Java Virtual Machine
Plan-Do-Check-Act

Chapter 1

Introduction

A Knowledge Graph(KG) is a graph-structured database using a knowledge representation
model to represent a collection of facts [1]. It can be interfaced to perform downstream
tasks such as asking questions about the facts and inferring new knowledge from the
existing facts [2]. The knowledge retrieval from a KG for question answering is termed
Knowledge Graph Question Answering(KGQA). While answering simple questions on KGs
has been extensively studied and has achieved significant success in practice, the perfor-
mance of KGQA over complicated questions, such as those requiring multi-hop reasoning,
is still challenging when grounded in real-world KGs [3], despite the rapid advances of the
language models. Lots of prior research has focused on i.i.d. generalization, for example
using the distribution of questions in the training set that is identical to the distribution
of questions in the test set. but in practical KGQA, the limitations of i.i.d distribution
are conspicuous. Gu et al. have pointed out that for a large-scale knowledge base, it is
difficult to train the realistic KGQA system only with i.i.d. generalization, because ac-
curately capturing the true user distribution in the knowledge graph is challenging, and
randomly sampling training examples from the vast data space would result in significant
data inefficiency. [4]. The challenge of training a KGQA system is also highlighted by the
fact that the distribution shift between the training set and the test set is ubiquitous [5],
especially when the data heterogeneity of real-world KGs is considered.

KGs often have complex schemas, including entities, relations, and their interconnections.
These schemas define the data structure of the KGs. Successful KGQA must perform
robust entity linking to accurately identify the correct entities within the data model based
on the given question. Additionally, precise relation extraction is essential to discern the
relationships between these entities. Achieving this requires advanced semantic parsing
and query generation capabilities to transform natural language questions into machine-
readable logical forms [6], like structured queries including join, filter, aggregate and other
operations, which are non-trivial over a knowledge graph. To generate satisfying answers
to the questions, these entities and relations need to be organized into logical reasoning
in the form of natural language. A common problem of the structure of the knowledge
graph is that they are often incomplete, missing some entities and relations [7] [8]. This
usually adds complications to relation extraction in the KGQA tasks. It is also noted that
the questions can sometimes be ambiguous, containing varied implications in different
contexts [9] [10]. For example, in the question "What is LLM?", LLM can refer to either
Large Language Model, or Master of Laws, depending on the context of the question. The

robust KGQA systems are supposed to be resilient to these ambiguities.

1.1 Research Background

Kadaster is the Dutch national organization in charge of land registry, national mapping
and other public cadastral affairs in the Netherlands. It keeps track of data on buildings,
addresses, plots of land, roads and underground networks of cables and pipes, as well as
other geographical information for the Netherlands. Besides, it also registers data about
moveable properties such as ships, aircrafts and the rights and rights holders thereof [11].
Moreover, Kadaster acts as an advisory body for land-use issues and national spatial data
infrastructures [12].

Kadaster has been employing linked data and semantic web technologies in practice and
conducting state-of-the-art research in these domains for years. It has built its own
knowledge graphs to represent open data sources in practice [13]. As a government ad-
ministration, Kadaster is responsible for providing open cadastral data sources including
BAG(Dutch: Basisregistratie Adressen en Gebouwen, English: Base Registration of Ad-
dresses and Buildings. BAG consists of all addresses and buildings and their properties
in the Netherlands, such as year of construction, surface area, energy labels, purpose of
use and location on the map) [11] [14], BRK(Dutch: Basisregistratie Kadaster, English:
Base Registration of Land Registry. BRK consists the cadastral registration of immovable
property and rights in rem and the cadastral map showing the location of the cadastral
parcels (including parcel number) and the boundaries of the state, provinces and mu-
nicipalities) [15], BRT(Dutch: Basisregistratie Topografie, English: Base Registration of
Topography. BRT contains digital topographical files at different scales, in which both
the drawn up maps and the object-oriented files are available as open data) [16] [17]
and BGT(Dutch: Basisregistratie Grootschalige Topografie, English: Base Registration
of Large-Scale Topography. BGT is a standardized uniform detailed digital map of the
whole Netherlands with objects such as buildings, roads, water, railway lines and green-
ery recorded in an unambiguous manner) [18]to the general public [19]. These data are
regularly accessed by municipalities, provinces, and other government institutions [20].
In addition, public stakeholders, including real estate brokers, accountants, and ordinary
people, can also benefit from the data for different purposes. This implies that any user,
who has questions about their house, their environment, or the geoinformation of the
Netherlands as a whole, can benefit from this data portal.

However, it is unrealistic to expect every data user to wield professional expertise in
knowledge graph, linked data and API. Thus ease of use of these open data must be
achieved. One solution to streamline the utilization of the data is to use the chatbot.
A chatbot is an intelligent conversational computer system that simulates human chat
in order to provide online assistance and guidance automatically [21]. It enables user
to ask questions in natural language to obtain answers in the same format, containing
information from the pertinent data sources. It usually has a user-friendly interface in
order to make users feel relaxed and interactive. The chatbot has been employed for some
time in customer service and support. It is suitable for users to retrieve information in an
easier manner. It is especially helpful when the information is stored in a strictly structured
model, such as a knowledge graph, which usually requires users to perform information
extraction with sufficient linked data expertise if the traditional query methods are used.
With a properly integrated chatbot, users can circumvent the traditional methods and

still obtain target information from these structured graph databases without necessarily
being experts in semantic web technologies.

Therefore, it is inspired for Kadaster to have developed its own chatbot integrated with
the Kadaster Knowledge Graph(KKG). The chatbot is named Loki(Acronym for Location-
based Kadaster Information, Dutch: Locatie-gebaseerde Kadaster Informatieverstrekking),
and it is currently deployed on the website of Kadaster Labs for open access. As the
front-end web interface. Loki connects users with an underpinning question answering
system, and this system built on KKG is the key underlying factor that makes QA on
KKG successful. The question answering system of Loki is deployed on a T5 language
model [22]. When the user enters a question, the text serves as input to the question
answering system. Then the pre-trained question answering system coverts the text into a
machine-readable logical form, in this case, a SPARQL query, and use the SPARQL query
to query related information from KKG, The queried structured information is eventually
transformed back to text as the output answer to the user. However, the current question
answering system still faces significant limitations and performance bottlenecks. We will
further discuss these challenges in the following sections.

1.2 Problem Statement

In this section, the current challenges and limitations faced by the existing question an-
swering system of Loki are outlined. The section serves to identify the gaps in the sys-
tems ability to handle complex and novel queries, and proposes potential solutions to
enhance its performance. It consists of two subsection. The subsection Status Quo pro-
vides an overview of the systems current capabilities and challenges, while regarding these
challenges, the subsection Research Question formulates the core research question and
associated subquestions that guide this study. Together, these subsections establish the
foundation for the research objectives and methodologies discussed in subsequent chapters.

1.2.1 Status Quo

The current question answering system is validated to perform well in i.i.d generalization
for the pre-defined questions. The pre-defined questions are part of the question-SPARQL
pairs in the training data of the question answering system. These question-SPARQL
pairs are manually constructed for the chatbot, a process that is highly labor-intensive
and necessitates the involvement of linked data experts. Only questions that share the
same schemas with the question-SAPRQL pairs in the training data can be answered by
the current question answering system. Consequently, the system is yet to be capable of
answering questions that are excluded from the question-SAPRQL pairs in the training
data. In other words, it performs insufficiently when facing questions with novel com-
positions of schemas or unseen schemas, providing very limited flexibility. In addition,
the compositions of the vast entities and relations of KKG are enormous, leading to a
very large number of possible cadastral questions based on the linked data of KKG, while
the manually designed question-SPARQL pairs can only include a tiny fraction of these
possible questions. Therefore, the utilization of the graph data in the current question
answering system is low. To enhance the systems robustness and flexibility in handling
a broader range of queries related to cadastral data in the KKG, it is essential to enable
automated inference of the data schema, otherwise the system will have to rely on more
manually crafted question-SPARQL pairs, which is labor-intensive and thus impractical
because given the scale of a KKG-sized knowledge graph, it is infeasible to manually

enumerate all possible questions and generate corresponding SPARQL queries for each,
highlighting the necessity of automated schema inference.

An intuitive solution is to feed all the semantic elements of KKG as the training data to
fine-tune a language model so that it can learn all the schemas and their combinations
in the knowledge graph. The fine-tuned language model can therefore serve as the ques-
tion answering system. The limitations of this solution are evident. KKG is a dynamic
knowledge graph in a frequent update cycle. New cadastral data is coming in every day to
update the knowledge graph instances. The one-time fine-tuning is unable to handle the
following updated data. To ensure the question answering system is up-to-date and can
give correct answers, we will have to keep fine-tuning the model every day and maintain
version control of the implementation. This is not the priority of Kadaster and it incurs a
considerable amount of extra cost as well. Another intuitive solution is to use basic prompt
engineering as it is resilient against data updates without iterated training hassles. More
specifically, it is to instruct a language model with a prompt that entails all the knowledge
graph entities and relations of KKG. It works towards a similar effect to fine-tuning and
enables the LLM to perform inference on the knowledge graph elements with the prompt.
However, there are billions of instances and sematic triples in KKG. Considering the num-
ber of triples in this one big knowledge graph and the token limitations of the prompt in
most LLMs, it is impossible and infeasible to feed the complete instance data and their
exhaustive pertinent questions in the prompt.

As for the language model, although T5 is a decent language model, Kadaster expects to
use a newer and more powerful LLM to improve the question answering system. Current
prevailing LLMs, such as GPT [23], LLaMA [24] and Gemini [25] have displayed excellent
capabilities in sequence-to-sequence text generation and question answering. Therefore,
we should also look into implementing a stronger LLM instead of T5 on the task.

1.2.2 Motivation

Embarking on an audit of these limitations and challenges, it is motivated to develop a
system to accommodate the robust inference on the knowledge graph under the circum-
stance that the graph data is dynamically updated. Prompt engineering can thus still
be a good strategy. Due to prompt token limitations and the vast graph size, the entire
knowledge graph cannot be included in the prompt. Therefore, it is necessary to construct
a compact subgraph that retains the essential semantic and structural properties of the
KKG, but with a compressed size. The problem is how we can use a knowledge-intensive
and still compact-in-size subgraph that functions as an underlying layer of the full knowl-
edge graph, to improve the inference of the LLM on the KKG linked data, through which
we enable the system to better accommodate the question answering task, even for novel
question schemas.

For a right subgraph extraction that creates the representative subgraph of a large knowl-
edge graph, it is imperative to distinguish the key elements of the knowledge graph.
Gutiérrez-Basulto and Schockaert have highlighted that ontology serves as rules to define
the dependencies among difference relations in the knowledge graph, and the embedding
of ontology with geometric model is more compatible than some prevailing KG embedding
approaches [26]. Blagec et al. [27] have showed that in an ontology-based knowledge graph,
the ontology model is an underlying component and ontology design plays an important
role in the construction of knowledge graph. [28] has explicitly clarify how ontology works

as a foundation layer of knowledge graph. And in [29], Chah explored Google Knowledge
Graph from an interpretation of its underlying ontology, which underpins the semantic
search feature of Google Search Engine. These research findings indicate that the on-
tology is the underlying layer and schema of a knowledge graph and captures the key
connection of the knowledge representation model. Meanwhile, when the new cadastral
data comes in, it usually updates the instance data but the ontology data remains static.
So it is immune from data dynamics. Hence in this research project, we can extract the
ontology of KKG to construct the representative subgraph. It is noted that in the context
of KKG, the ontology refers to the concepts coming from potentially different domain
ontologies, vocabularies and taxonomies and how these concepts are interrelated. These
domain ontologies represent and classify the instance data of KKG. The concepts may also
contain a small amount of necessary name individual data. Considering the enormous size
of instance data in KKG, but the very lightweight size of the ontology, which is still highly
informative, this remains as a pragmatic solution for subgraph extraction.

After the subgraph extraction, the system needs to match the question content to the
subgraph elements, namely ontology elements in this context, when the chatbot user
poses a question in the system. This is the core and also the bottleneck of Knowledge
Graph Question Answering. The automatic matching and natural language processing
of this step should be executed in the LLM. However, considering artificial intelligence
cannot inherently comprehend natural language and the semantic meaning of ontological
axioms in the same way humans do, the questions and ontology must be vectorized into
mathematical representations that are machine-readable, which are also referred to as
embeddings in the context of machine learning. Afterwards, it is possible to compare
the similarity of the word embeddings of the questions and the ontology embedding in a
mathematical sense for a good matching performance. Therefore, we need to investigate
and identify the most suitable embedding techniques for the ontology and the associated
questions.

With the suitable embedding model, the ontology embedding and word embedding can be
accomplished and matched correctly. In this correct matching case, the next step to look
for the pertinent instance data in the knowledge graph can begin. We are supposed to
use a SPARQL query here to query the instance data from the graph. When a question
is entered by the user, our embedding model can identify the most relevant ontology
elements the question refers to. In order to generate the SPARQL query correctly, we
need to construct a proper prompt with this embedding matching result. The pre-defined
prompt should guide the LLM to formulate the SPARQL query based on the ontology
elements identified by the embedding matching and the instance data involved in the
question. The ontology can function as an external retrievable data source to facilitate
the SPARQL generation within the LLM, which mirrors the operational principles of
Retrival-augmented Generation(RAG) [30]. In order to design and refine the prompts to
effectively guide the query generation, it is essential that we refer to the cutting-edged
prompt engineering techniques to design the most suitable prompt for our model. We
propose using Chain-of-Thought Prompting [31]. Research should be done to review how
well these prompt engineering approaches can serve the task. If the model can stably
produce accurate SPARQL queries for the given question, it enables the following step in
which the LLM formulates the correct output answer to the question based on the query
results.

1.2.3 Research Questions

Accordingly, we can formulate the core research question of this research based on the
unsolved obstacles we are facing at the moment:

Given the current challenges in Kadaster Knowledge Graph(KKG), how can
we utilize ontology embedding and CoT prompting to build a resilient RAG
system to solve a KGQA problem?

We have also defined our subquestions based on the insights we learned from our prelimi-
nary research work to serve the core research question:

1. How can the ontology elements of KKG be accurately aligned with relevant natural
language questions using ontology embeddings?

2. How can we design effective RAG and prompts with an LLM to generate accurate
SPARQL queries against the knowledge graph?

3. How can the SPARQL queries generated in the previous step, along with the corre-
sponding questions, be utilized to improve the KGQA system?

To solve these questions, we will first conduct a bibliometric survey to systematically
study the literature of the prior research. For this data science project, we are going to
leverage the CRISP-DM framework as the implementation methodology. Then we will
design the experimental strategy in the CRISP-DM cycle for our KNOCK approach based
on what we learn from the prior research and the problem context at Kadaster. We will
develop the prototype of a new question answering system with ontology embedding and
CoT prompting, following our designed methodology and experimental framework. After
the establishment of the prototype, we conduct the experiment by testing KKG-related
questions. We will implement a comprehensive evaluation to assess the results of the
experiment and provide validation to our proposed approach.

This thesis is organized in the following structure: Chapter 2 specifies the related work in
the prior research. Chapter 3 articulates the methodology we implement for this research
and formulates the experimental set-up of the prototyping process. Chapter 4 presents
and discusses the experimental results and the implications we discover from the research.
Chapter 5 provides a conclusive review of the research project, summarizing key findings to
address the research questions and proposing the potential directions for future research.

Chapter 2

Literature Review

Our research is grounded on the question answering system on a structured knowledge
database, namely the Kadaster Knowledge Graph(KKG). There are often synonymous
terms used interchangeably by scholars to refer to this research domain, such as Knowl-
edge Base Question Answering [1] [3] [6] [32] [5] [33], Knowledge Graph Question Answer-
ing [34] [35] [36] [8] [37] [38], as well as their acronyms KBQA and KGQA. These terms
should be considered as criteria for the preliminary selection of related works. In addition,
a key component of our research is exploring how to perform accurate transformation from
natural language questions to a logical form(SPARQL query) in the question answering
system. This marks the prior research in the domain of semantic parsing as a significant
reference for our research.

Since the information needed for question answering is structured and stored in KKG, there
are organized interlinked entities to represent the ontologies of the information model.
However, it is noted that KKG contains an enormous size of linked data with billions
of triples. It is thus impossible to load the full knowledge graph with all instances into
the prompt of an LLM to generate the SPARQL queries. Our alternative is to construct
a compact-size subgraph from KKG and use the ontologies of KKG as the subgraph
components. The subgraph should consist of sufficient higher-level ontology information
like classes, properties, et cetera of KKG. The subgraph should be well curated to make
sure its ontology size is appropriate. On one hand, if it is too large, it will incur more
noise and a higher computational cost in inference temporally and financially. On the other
hand, if its size is too small, it doesn’t contain sufficient information to represent KKG.
After constructing the compact subgraph with representative ontologies, we need to pair
the subgraph with the natural language questions set to instruct the LLM to generate valid
SPARQL queries against KKG. The subgraph is comprised of selected KKG ontologies
while the question set consists of natural language text. These two representations can
not be compared and matched directly. They need to be converted into mathematical
representations in lower dimensional space to analyze the semantic similarity. This step
requires transforming the ontology into feature vectors like ontology embeddings, and
storing the vectors in a vector database. While a question is answered in the LLM, the
question is also transformed into feature vectors like word embeddings, and compared
with ontology vectors stored in the vector database to find out what specific ontology the
question is referring to. Therefore, researching how to transform ontology into vectors in a
machine-understandable and reusable manner and store them in a vector space is key to the

following ontology match, thus we place Ontology Embedding into the related works. Once
the relevant ontology components are matched, this information is given to the prompt
for the generation of SPARQL query. Hence, prompt engineering techniques are needed
in this knowledge-intensive task. As we propose using CoT prompting, prior research
on the domain of CoT prompting will be examined. We also use Retrieval-augmented
Generation(RAG) [30] here, with the ontology vector database serving as an external data
source to guide the LLM with additional knowledge. Accordingly, Retrieval-augmented
Generation serves as an important part of the related works as well.

2.1 Literature Review Methodology

Bibliometric survey is an important statistical analysis to the existing literature of a
certain batch of research topics over time [39]. A bibliometric survey is implemented for
the literature study of the related work. In this section, we provide a concise summary of
the bibliometric survey. A complete review of the bibliometric survey can be found in the
Appendix.

2.1.1 Motivation and Purpose of the Bibliometric Survey

Bibliometric survey offers perceptions into quantifiable aspects of scientific publications,
like the number of an author’s publications and citations. These indicators effectively help
researchers with capturing scholarly output in their research domain [40]. Basically the
purpose of a bibliometric survey consists of three part.

2.1.1.1 Analyzing Existing Literature

Citation analysis on currently existing publications is a commonly performed bibliometric
survey method [41]. Bibliometric survey allows researchers to systematically analyze the
body of scientific literature within a specific field. By examining patterns, trends, and
relationships, researchers gain insights into the intellectual landscape. Key aspects of
analysis include identifying influential authors, journals, and research topics. Researchers
can also explore citation patterns to understand how knowledge flows across publications.

2.1.1.2 Identifying Trends

The purpose of a bibliometric survey extends beyond mere analysis of existing literature.
It also helps identify emerging trends and shifts in research focus. By analyzing publication
patterns over time, researchers can pinpoint areas of growth or decline. Trend identifica-
tion aids policymakers, funding agencies, and scholars in making informed decisions. For
instance, it can guide resource allocation or highlight areas needing further investigation.

2.1.1.3 Highlighting Key Contributions

Moreover, bibliometric survey allows us to recognize impactful research contributions.
This includes identifying highly cited papers, influential authors, and groundbreaking
studies. Highlighting key contributions fosters collaboration, encourages further research,
and acknowledges the work of scholars who have significantly shaped their fields.

2.1.2 Selection Criteria

The literature selection and analysis are conducted with VOSviewer [42], a prevalent tool
for bibliometric survey and systematic literature review. We further implement topic
modeling to cluster publications in different topics via BERTopic [43]. With the results
of topic modeling, we have formulated the following selection criteria for the literature
selection. Each criterion has its representative literature documents. These criteria are
demonstrated in Table 2.1.

Document Selection Criteria
The documents should be associated with Knowl-
edge Graph Question Answering(KGQA) & Knowl-
edge Base Question Answering(KBQA).
The documents should focus on knowledge or ontology
embedding.
The document should investigate the application of
LLM and prompt engineering techniques to enhance
the accuracy of output in KGQA systems.

TABLE 2.1: Selection criteria

2.2 Related Work

The bibliometric survey facilitates a systematic review of relevant topics in existing re-
search. By analyzing the literature in these areas, we derive insights that inform the
development of our research framework and experimental methodology.

2.2.1 Knowledge Graph Question Answering

In both academic and industrial scenarios, KBs and KGs are widely implemented as a type
of expert system with a structured data model to address complex knowledge-intensive
problems via reasoning through the bodies of knowledge [44]. Both [45] and [46] have pro-
posed novel embedding methods for entity linking(EL) in knowledge base and knowledge
graph. These general methods are not only tailored for question answering but also for
other knowledge-intensive downstream tasks such as knowledge base population, content
analysis and relation extraction. Luo et al. [47] have proposed integrating a relation-aware
attention network with the BERT model to enhance the entity linking and relation detec-
tion processes in knowledge-intensive question answering, which is supposed to strengthen
the association of the questions and the knowledge base facts. It has attained state-of-the-
art accuracy when evaluated on the SimpleQuestion dataset. To tackle the disambiguation
problem in entity linking, Zhu et al. [48], Zwicklbauer et al. [49] [50] have proposed embed-
ding approaches to decrease ambiguity while mapping web text to the entities in knowledge
graph. The research of Mai et al. [51] [52] highlights the combination of knowledge graph
and geographic question answering in this cluster. They even go one step ahead to encode
geographic coordinates into the knowledge graph and perform knowledge graph embed-
ding afterwards to tackle questions related to distance and locations in the QA system,
which we don’t have in KKG yet. Pan et al. [53] have proposed a roadmap to facilitate
the synergistic effect of KG and LLM, exploring the potentials of enhancing one with
the other. For knowledge graph reasoning, Bi et al. [54] have proposed a neural network
model for unrestricted multi-hop question answering to solve both one-to-many mapping

reasoning and many-to-one mapping reasoning issues. They later have also proposed a
reward integration and policy evaluation to boost correct reasoning in KGQA [55]. Fur-
thermore, for the multiple relations related to one identical entity, namely a one-to-many
dilemma, Zhu et al. [56] have proposed a two-level hierarchical reinforcement learning ap-
proach to enhance multi-hop reasoning in KG. Similarly, Wang et al. [57] have proposed
a deep reinforcement learning framework for knowledge graph reasoning as well. Wang et
al. [58] have employed a knowledge graph prompting technique to handle multi-document
question answering task, exploring the graph construction and graph traversal modules.
Besides, Guo et al. [59] have introduced a framework to utilize ChatGPT and Llama2 in
conjunction with knowledge graphs to facilitate precise and interpretable multi-hop rea-
soning in KGQA. Jiao et al. [60] have proposed a semantic matching approach to boost
the effectiveness of the logical forms generated from the input questions. It is ensured that
the logical form is coupled with the knowledge graph for valid query execution in question
answering.

2.2.2 Subgraph Extraction and Ontology Embedding

There are substantial research outputs on advanced subgraph extraction from knowl-
edge graphs. Yow et al. [61] have summarized and discussed the cutting-edged machine-
learning-based subgraph extraction techniques. Aghaei et al. [62] have discussed three
types of tailored subgraph extraction approaches , namely, filter-based approaches, heuristic-
based approaches and neural-based approaches, and proposed a subgraph extraction tech-
nique based on Personal Page Rank algorithm for knowledge graph question answering
system. Sun et al. [63] have proposed PullNet, a weakly supervised integrated framework
that uses graph CNN to construct question-specific subgraph and retrieve answers on sub-
graphs for KGQA. Zhang et al. [64] have argued the limitations of heuristic- or reasoning-
based subgraph extraction approaches and introduced a novel trainable subgraph retriever
(SR) that operates independently of the subsequent reasoning process. This decoupling
facilitates a modular framework that can be seamlessly integrated with any subgraph-
oriented KBQA model. It significantly outperforms existing retrieval methods in both
retrieval accuracy and question-answering performance. These approaches all utilized
complex mathematical reasoning or machine learning techniques to curate a subgraph and
answer the query based on this subgraph. They have respectively achieved outstanding
performance on academic benchmarks. As for ontology embedding, Ristoski et al. [65] have
proposed the graound-breaking Rdf2vec methodology to embed RDF graphs. And Por-
tisch and Paulheim have advanced the framework of Rdf2vec by introducing novel random
walk strategies to generate embeddings that emphasize either similarity or relatedness [66].
For OWL ontology embedding, Smaili et al. [67] have developed the Onto2vec approach
for the ontology embedding in biological knowledge representation such as protein-protein
interaction. Later they enhanced the method and introduced Opa2vec [68], which lever-
ages the ontology metadata more effectively to better generate vector representations for
various types of biomedical ontology. Based on the work of Onto2vec and Opa2vec, Zhapa-
Camacho et al. [69] developed mOWL, a full python implementation for machine learning
tasks with OWL ontology, including ontology embedding and zero-shot learning. In ad-
dtion, Chen et al. [70] have also introduced the method OWL2vec* tailored for OWL
ontology embedding, which leverages the graph structure, lexical information and logical
constructors of the ontology for embeddings. These approaches are well evaluated and
prove to be inspiring for similar ontology embedding tasks on KKG. We can utilize and
tailor these methods on the embedding of our ontology for effective knowledge extraction.

10

As for word embedding, there are already quite a lot of mature solutions. One prevailing
example is word2vec [71], which is also leveraged in a lot of ontology embedding apporaches
for semantic analysis and learning. Due to the limitation of bag-of-words model, Mikolov et
al. further advanced word2vec to better word embedding in sentences and documents [72].
Other prevalent methods include BERT [73], and recently emerging in-context learning
LLMs such as GPT [74] and Claude [75]. Different embedding models can be studied
and evaluated to select the most suitable embedding model, or models combination, to
perform the embedding task.

2.2.3 Chain-of-Thought Prompting

Wei et al. [31] have researched how CoT prompting can effectively boost the reasoning
ability of LLMs. Gilbert et al. [76], regarding the token limitation issues in prompt
engineering, have researched on the performance of using compressed text information
to prompt an LLM. Nguyen et al. [77] have studied the potential of using large language
models such as Llama, T5 or Mistras with CoT prompting for semantic parsing tasks,
namely to transform natural language questions into SPARQL queries for semantic graph
search. Ye and Durrett [78] have proposed an explanation selection method specifically
designed for CoT prompting, aiming at enhancing the quality of the prompts to achieve
superior question answering performance. Zhang et al. [79] have researched on leveraging
CoT prompting and LLM-restructured small data to train relatively compact-sized "baby"
language model to outperform the vanilla large language model like RoOBERTa. Chen et
al. [80] have researched and examined the different performance of prompts on ChatGPT-
series models, with or without CoT prompting, on classification and reasoning tasks of
biomedical applications, and compared the results with the ones generated by fine-tuning
transformer models on the same applications. Zahera et al.[81] have proposed to utilize
CoT prompting for the translation from natural language questions to SPARQL queries.
They integrate CoT prompting with the LLM LlaMA2-code to form the framework CoT-
SPARQL to generate SPARQL queries for natural language questions and achieve state-
of-the-art results on QALD-10 and QALD-9 datasets.

2.2.4 Retrieval-augmented Generation

Muludi et al. [82] have utilized GPT-3.5 Turbo to construct and evaluate the performance
of RAG to enhance QA and reduce hallucination via external knowledge base support.
Ding et al. have proposed a [83] strategy to utilize RAG to solve the fine-tuning challenge
of a large language model while facing dynamic data update and facilitate the reproduction
of factual information. Roychowdhury et al. [84] have leveraged LLM and RAG for a QA
system in the domain of telecom. Suess et al. [85] have proposed a RAG conversational
question answering system for car-specific questions, implying that RAG is very useful
in boosting the domain-specific question answering system. Ryu et al. [86] have also
highlighted the difficulties inherent in domain-specific question answering, especially in the
domain where hallucination and misinformation are highly risky, such as the legal domain.
They have proposed a RAG technique to evaluate the LLM-generated texts associated with
legal domain against legal documents. Urban and Binnig [87] have proposed an approach
to enhance RAG strategy, in which they expand databases with LLM to transform queries
into execution plans so that it can process multi-modal data in a scalable manner.

11

2.3 Implications of the Literature Review

This chapter has thoroughly reviewed the pertinent literature of prior research closely
associated with our research question. Current approaches to KGQA often focus on
the question answering over the prevalent open knowledge graphs, such as Wikidata [88]
and DBpedia [89]. These open knowledge graphs are neatly structured and follow strict
paradigms. In practice, knowledge graphs can have distinct schemas from these prestige
open graphs and face data quality bottlenecks, often caused by missing graph elements.
The current approaches often struggle with adaptability across knowledge graphs with
varying schemas. Additionally, many methods depend on extensive training to construct
the question-answering model, making maintenance challenging as data sources undergo
iterative updates. There has been limited research tailored to solve this problem. Also,
as the rapid advancement in LLMs and prompt engineering consistently gives impressive
performance on question answering tasks, the potential of combining the strengths of on-
tology embedding and CoT prompting to construct an RAG system to address KGQA
problem has nevertheless not been explored yet. We strive to bridge the gap in the do-
main by integrating the ontology-based inference approach with the advancements in CoT
prompting and RAG to construct a KGQA application with a robust performance and
economic training cost. The methodology and experimental set-up details of our approach
will be presented in the following chapter.

12

Chapter 3

Methodology and Experimental
Set-up

This chapter outlines the methodological approach used in this research, mainly the Cross-
Industry Standard Process for Data Mining (CRISP-DM), and the experimental set-up
process of implementing the methodological approach to build our QA system artifact.

3.1 Methodology

The CRISP-DM methodology provides a robust structure for addressing the research ob-
jectives while ensuring both data science rigor and practical relevance. It offers a system-
atic framework for designing and evaluating information systems artifacts. Integrating
CRISP-DM into our project allows for iterative development, evaluation, and refinement
of the proposed solution, aligning with the data-driven nature of the research problem and
the need for practical applicability in Kadaster’s problem senario of KGQA.

3.1.1 Cross-industry Standard Process for Data Mining

CRISP-DM is a widely adopted methodology that provides a structured approach to data
mining and data science projects. Originally developed in the late 1990s by a consor-
tium of leading data mining users and suppliers [90], CRISP-DM has become a de facto
standard for organizing and executing data-driven projects across various industries [91].
Its popularity stems from its flexibility, robustness, and comprehensive nature, making it
suitable for both academic research and practical applications. It consists of six phases:
business understanding, data understanding, data preparation, modelling, evaluation and
deployment. Its iterative nature also accommodate flexibility and continuous improve-
ment of the project, aligning well with the often cyclical process of academic research
and industrial development. In the context of our research project focusing on knowledge
graph question answering, with both academic and industrial components, CRISP-DM
can provide a valuable structure for organizing and executing the work.

1. Business Understanding
This initial phase focuses on understanding the project objectives and requirements
from a business perspective, for which we clearly define the research objectives and
industrial applications of the knowledge graph question answering system. This can

13

include identifying specific use cases, determining evaluation metrics, and establish-
ing project constraints.

. Data Understanding

In this phase it is supposed to collect and explore the data to gain insights into the
data characteristics such as data structure and data quality. It is also important to
identify the potential issues and understanding the datas limitations and strengths.
During the Data Understanding phase, we would explore available knowledge graphs,
the representativeness of ontology in the graph, question-answer datasets,and any
other relevant data sources. This phase might involve analyzing the structure and
content of existing knowledge graphs, as well as examining the characteristics of
typical questions in the domain of interest.

. Data Preparation

Data preparation involves the meticulous cleaning and transformation of raw data
before it undergoes processing and analysis. This critical preliminary step often
includes reformatting data, rectifying errors, and merging multiple datasets to en-
hance the overall data quality and richness. In our case it would encompass tasks
such as formatting ontology data and complementing data annotations, preprocess-
ing question-answer pairs, and potentially augmenting existing graph datasets. This
phase also involves techniques like entity linking or relation extraction to enhance
the knowledge graph.

. Modelling

The Modeling phase would firstly focus on implementing embedding algorithms that
can effectively traverse and extract information from the ontology of knowledge
graphs. This could include experimenting with various ontology embedding meth-
ods, and reasoning approaches. After that we may apply various natural language
processing (NLP) and machine learning techniques to utilize large language mod-
els(LLM) that can accurately answer questions using the knowledge graph. This
phase involves experimenting with different algorithms, such as transformer models
or graph neural networks, and tuning parameters to achieve the best results.

. Evaluation

In the Evaluation phase, the performance of the developed models would be assessed
using established metrics such as accuracy, F1 score, or mean reciprocal rank. The
models should also be examined to check whether it meets the business success
criteria set up in step 1. This phase would also encompasses analyzing errors and
identifying areas for improvement. In general, evaluation step reviews the work
accomplished and check whether there is anything overlooked or whether all steps
were properly executed. Based on the assessment, findings are summarized, and
necessary corrections are made if needed. Subsequently, decisions are made regarding
the next steps: Based on the previous three tasks, determine whether to proceed to
deployment, iterate further, or initiate new projects.

. Deployment

Finally, the Deployment phase would involve publishing and presenting our results to
our stakeholders, sharing findings with the academic community, and implementing
the models in practical applications. From an industrial perspective, this means inte-
grating the enhanced KGQA system into practical applications of Kadaster, whether

14

for further industrial use or scientific research. The phase may include scaling the
system, optimizing for real-time performance, or developing user interfaces. Fur-
thermore, monitoring its performance, and making necessary adjustments based on
user feedback are necessary for further research.

Data
Understanding

N

Business, (
Understanding

Data
Preparation
S |
Deployment | ~
" Modeling

Evaluation

FIGURE 3.1: CRISP-DM Process Model

3.2 Experimental Set-up

This section presents a detailed account of the experimental set-up designed to build the
process of combining ontology embedding and LLM to boost the KGQA performance
on a real-case knowledge graph and evaluate the efficiency of this integrated approach
on KGQA tasks. Our experimental design aims to address several key challenges in the
domain:

1. The effective retrieval of relevant information from the extensive ontology data of
the knowledge graph.(The selection of embedded ontology)

2. The integration of semantic knowledge represented in the ontology data with state-
of-the-art large language models(LLMs).(Ontology embedding and the RAG chain
design)

3. The generation of accurate and contextually appropriate responses to diverse query
types.(The design of the CoT prompt and the design of the few-shots learning).

15

To tackle these challenges, we have devised a comprehensive experimental framework that
leverages the strengths of ontology embedding, RAG, and CoT prompting. This approach
allows us to harness the semantic richness of knowledge graphs while benefiting from
the natural language understanding capabilities of large language models. The approach
is also aligned with our research methodology process, namely CRISP-DM, providing a
systematic framework for our experimental process.

The CRISP-DM methodology consists of six main phases: Business Understanding, Data
Understanding, Data Preparation, Modeling, Evaluation, and Deployment. We have
adapted this process to suit the specific needs of our KGQA research, ensuring a compre-
hensive and rigorous experimental approach.

3.2.1 Business Understanding

In light of KGQA from a utilitarian perspective, a common application is to use the graph-
structured knowledge model to store the interlinked axioms of entities and the relationships
that underlie these entities. Knowledge graph highlights the relationships between con-
cepts and things and has been frequently connected to linked open data initiatives [92], as
well as large-scale data analytics [93]. First coined by E. W. Schneider in 1972 [94], the
term has drawn ubiquitous commercial attention since Google announced its own Knowl-
edge Graph and integrated it into Google search engine in 2012 [95]. Since then, a lot of
companies have implemented their own knowledge graphs or knowledge bases. It’s closely
related to the application of artificial intelligence. For example, Apple utilizes knowledge
graph to augment its famous digital assistant Siri; Microsoft also uses knowledge graph to
reinforce its search engine Bing to compete with Google [96]. Other cases include Amazon’s
Alexia [97], Meta’s Facebook Graph Search [98], as well as LinkedIn knowledge graph [99].
In these cases, a knowledge graph is often used as a service-oriented information repository
to offer support to the front-end agent that interacts directly with the customers, such
as an intelligent assistant, chatbot, or search engine. As more and more tech companies
attach importance to the development and employment of knowledge graph and ontology
technology, the trending sheds light on the promising business value of KGQA.

Kadaster owns a huge amount of open cadastral data of the Netherlands and also takes
in charge of a lot of cadastral data from other Dutch governmental sectors. A lot of
Dutch government administrations benefit from the data of Kadaster. For example, if
a new highway is going to be built, the topographical data and real-estate data on the
way must be analyzed for prior planning and decision-making [14]. These data are col-
lected and managed by Kadaster. Additionally, construction and utility companies also
have a big demand for basic registration data about buildings and underground pipelines.
Accordingly, it’s quite important to streamline the retrieval of these data from Kadaster
Knowledge Graph. It’s also noted that it would be very convenient and cost-effective if the
retrieval process only requires minimal domain knowledge in linked data and knowledge
base, and provides a user-friendly interface to enable people with only basic computer
science knowledge to use it without hassles so that users can accomplish the information
retrieval without much assistance from the professional linked data specialists of Kadaster.
Hence, it would be essential to build a versatile intelligent question answering system to
extract information accurately in the context of KGQA. With such an implementation, it
will promote the service quality of Kadaster and foster the collaboration between kadaster
and other Dutch government administrations, construction companies and environmental
service vendors, facilitate data usage, and improve the data quality in Kadaster.

16

3.2.2 Data Understanding

The version of KKG we used is 2022.7.6. Its linked data consists of ontology and instance
data. The instance data constitutes more than 99% in size of the knowledge graph. There
are eight different OWL (Web Ontology Language) ontologies in KKG and each of them
is represented as one RDF graph model!. The ontologies are listed as follows:

o imbrt(graph:model-imbrt)

o imbaglv(graph:model-imbaglv)
o sor-ext(graph:model-sor-ext)

o sor(graph:model-sor)

o nen3610(graph:model-nen3610)
o kad(graph:model-kad)

o tijdelijk(graph:model-tijdelijk)

o cbs-wkb(graph:model-cbs-wkb)

These eight ontologies, together with their number of knowledge statements and the last
updated time are shown in Figure 3.2. The reason of the multiple ontologies is that the
data of KKG comes from different datasets owned by different data owners. KKG owns
different datasets from the following five data sources:

1. The National Facility of the Base Register of dresses and Buildings(Dutch: De Lan-
delijke Voorziening van de Basisregistratie Adressen en Gebouwen (BAG)).

2. The ToplONL of the Base register of topography(Dutch: De ToplONL van de Ba-
sisregistratie Topografie (BRT)).

3. The National Facility of the Base Register of Large-Scale Topography(Dutch: De
Landelijke Voorziening van de Basisregistratie Grootschalige Topografie (BGT)).

4. The Open Part of the Base Land Register(Dutch: Het open deel van de Basisregis-
tratie Kadaster (BRK)).

5. The Public Law Restrictions(Dutch: De Publiekrechtelijke Beperkingen (PB)).

Besides, it also hosts a dataset from the data source of Statistics Netherlands(Dutch: Cen-
traal Bureau voor de Statistiek(CBS)). KKG uses the following national and international
linked data standards:

o GeoSPARQL (OGC).
o NEN 3610 (Geonovum).

« SHACL, OWL, PROV, RDF, RDFS, SKOS (W3C).

"https://data.labs.kadaster.nl/dst/kkg/graphs

17

N ~ ~ v ~ N W

~

So we can also see ontology like graph:model-nen3610 that represents the linked data stan-
dard in the ontologies of KKG. As we emphasize ontology data, we mainly analyze and
process the ontology graph models here. Each ontology is stored in RDF structure in the
triple store of KKG, as Figure 3.3 shows a part of the ontology "graph:model-sor". The on-
tology data is stored in node relations with a triple relationship(subject-predicate-object)
instead of in the table related through keys like in a relational database. Each ontology
can be extracted in the RDF serialization format of TriG or Turtle, both providing a
good readability of the ontology. However, although TriG and Turtle are also popular
serialization formats, they are newer and not as universally supported as RDF/XML. The
latter has been around longer and is more entrenched in legacy systems. Furthermore,
RDF /XML benefits more from the extensive ecosystem of XML tools and technologies,
making it easier to integrate with XML parsers and XML-compatible systems. It is there-
fore better to transform the ontology into RDF /XML format for the following process of
ontology embedding and RAG chain construction. It is also not the best option to handle
eight ontologies separately, so it would be logical to integrate and merge the ontologies
into one big ontology for processing since they are compatible with one another.

Name Number of statements Created v Source

graph:model x @ 9 All v

graph:model-imbrt 2,182 2 months ago Uploaded

graph:model-imbaglv 3415 2 months ago Uploaded

graph:model-sor-ext 32,275 2 months ago Uploaded

graph:model-sor 938 3 months ago Uploaded

graph:model-nen3610 305 3 menths ago Uploaded

graph:model-kad 2224 3 months ago Uploaded

graph:model-tijdelijk 20 10 months ago Uploaded

graph:model-chs-wkb 2,293 a year ago Wijk- en Buurtkaart (WBK) 1
Rows per page: 20 - 1-8ofs

FIGURE 3.2: Graph models of KKG

In the KKG ontology, there are various IRIs that denote the namespaces of different
ontology elements, such as a class, property, individual or concept. These IRIs have
their corresponding prefixes as a concise representations of the namespaces. Both the
prefixes and IRIs are key to the reference of ontology data in the SPARQL queries and
the knowledge graph. We have listed all the pertinent prefixes and their IRIs used in the
ontology, which will also be useful in the question answering system, in Table 3.1 below.
In the following sections, when a certain ontology element is mentioned, we use the prefix
form to refer to the mentioned element instead of using the full IRI. This provides better
conciseness and readability in the data reference.

3.2.3 Data Preparation

The data contained in the ontology sor-ext is irrelevant to the question answering sys-
tem, so it is excluded from the ontology selection. The remaining seven ontologies are
selected for further data preparation. The download of the ontologies sor, nen3610, kad,

18

Subject

kad:plusStatus

kad:plusStatus

kad:plusStatus

kad-plusStatus

kadrelatieveHoogteligging

kad-relatieveHoogteligging

kad-relatieveHoogteligging

kad-relatieveHoogteligging

kad-relatieveHoogteligging

kad_shp:Gebouw_plusStatus

kad_shp:Gebouw_plusStatus

kad_shp:Gebouw_plusStatus

kad_shp:Gebouw_plusStatus

kad_shp:Gebouw_plusStatus

kad_shp:Gebouw_relatieveHoogteligging

Predicate

rdftype

rdfs:isDefinedBy

rdfs:range

skos-prefLabel

rdf:type

rdfs:domain

rdfs:isDefinedBy

rdfs:;range

skos:prefLabel

rdf:type

sh:class

shin

shomaxCount

sh:path

rdf:type

FiGURE 3.3:

Object

owl:0ObjectProperty

https://data.kkg.kadaster.nl/kad/model/

kad:PlusStatus

plus status

owkDatatypeProperty

sor-Gebouw

https://data.kkg kadaster.nl/kad/model/

xsdinteger

relatieve hoogteligging

sh:PropertyShape

kad:PlusStatus

[..e9f]

kad:plusStatus

sh:PropertyShape

Some ontology triples of graph:model-sor

19

Graph

https://data.kkg.kadasternl/...

graph:-model-sor

graph:model-sor

graph:model-sor

graph-model-sor

graph-model-sor

graph-model-sor

graph-model-sor

graph:-model-sor

graph-model-sor

graphrmodel-sor

graph:-model-sor

graph:model-sor

graph:model-sor

graphmodel-sor

graph:model-sor

X

Prefix Full IRI

owl http://wuw.w3.0rg/2002/07/owl#

rdf http://wuw.w3.0rg/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.0rg/2000/01/rdf-schema#

xsd http://www.w3.o0rg/2001/XMLSchema#

nen3610 https://data.kkg.kadaster.nl/nen3610/model/def/

nen3610-shp
skos

bag http://bag.basisregistraties.overheid.nl/def/bag#
bag-begrip http://bag.basisregistraties.overheid.nl/id/begrip/
brt http://brt.basisregistraties.overheid.nl/def/toplOnl#
wbk https://data.labs.kadaster.nl/cbs/wbk/vocab/

geo http://www.opengis.net/ont/geosparql#

kad https://data.kkg.kadaster.nl/kad/model/def/

kad-con https://data.kkg.kadaster.nl/kad/model/con/

kad-shp https://data.kkg.kadaster.nl/kad/model/shp/

sor https://data.kkg.kadaster.nl/sor/model/def/

sor-con https://data.kkg.kadaster.nl/sor/model/con/

sor-shp https://data.kkg.kadaster.nl/sor/model/shp/

bgt http://bgt.basisregistraties.overheid.nl/def/bgt#
bgt-pand http://bgt.basisregistraties.overheid.nl/id/pand/
bnode https://data.kkg.kadaster.nl/well-known/genid/

brt http://brt.basisregistraties.overheid.nl/def/top10nl#
brt-gebouw http://brt.basisregistraties.overheid.nl/id/gebouw/
brt-scheme http://brt.basisregistraties.overheid.nl/top10nl/id/scheme/
brt-shp http://brt.basisregistraties.overheid.nl/top10nl/id/shape/
foaf http://xmlns.com/foaf/0.1/

gebouw https://data.kkg.kadaster.nl/id/gebouw/

bouwzone https://data.kkg.kadaster.nl/id/gebouwzone/

gemeente https://data.kkg.kadaster.nl/id/gemeente/

mim http://bpdmc2.org/def /mim#

purl http://purl.org/linked-data/cube#

prov http://wuw.w3.org/ns/prov#

gml http://www.opengis.net/ont/gml#

time http://www.w3.0rg/2006/time#

shacl http://www.w3.org/ns/shacl#

schema https://schema.org/

triplydb https://triplydb.com/Triply/value/

https://data.kkg.kadaster.nl/nen3610/model/shp/
http://wuw.w3.0rg/2004/02/skos/core#

TABLE 3.1: Namespace Prefixes and Full IRIs

tijdelijk and cbs-wkb was done on September 26th, 2024 and the download of the on-
tologies imbrt and imbaglv was done on Octorber 4th, 2024. All ontologies were ex-
tracted and serialized in TriG format. Then they were all transformed into RDF /XML
format with Protégé [100]. The ontologies were then merged together into one ontol-
ogy of a single file with ROBOT! [101] of version 1.9.6 running on JVM version 11.
The merged ontology will be named kkg onto in the following chapters. Based on

"https://robot.obolibrary.org/

20

Table 3.1, a succinct identifier is assigned to each ontology element according to the
namespace of the element and its detailed local name for a concise data reference and
an enhancement of readability. For example, for the ontology class denoted by the
IRI "https://data.kkg.kadaster.nl/kad/model/def/Gebouwtype’, we use the prefix
'kad" to represent the namespace "https://data.kkg.kadaster.nl/kad/model/def/"
and the specific local name "Gebouwtype' that denotes the class name, to form a suc-
cinct "kad:Gebouwtype" as the identifier of this class. Similarly, for object property
"http://bag.basisregistraties.overheid.nl/def/bag#maaktDeelUitVan" and data
property "http://bag.basisregistraties.overheid.nl/def/bag#gebruiksdoel”, we
have "bag:maaktDeelUitVan" and "bag:gebruiksdoel" respectively as their identifier. This
will be used in ontology embedding and and RAG chain built-up as well. We will also use
the concise identifier to refer to a certain ontology element in the following sections.

The data was still not ready yet since some ontology axioms were still missing or provided
incorrect information that would worsen the embedding quality, thus it must be further
preprocessed. We did some model enrichment work here to complement and correct some
information in kkg onto. Specifically, rdfs:comment, which is an ontology axiom that
provides a human-readable definition and explanation to an ontology entity, was incor-
rectly defined in the class nen3610:FunctioneleRuimte(English: Functional Space). We
then modified the rdfs:comment of the class nen3610:FunctioneleRuimte and added a new
class named TransportRuimte(English: Transport Space) with the same prefix nen3610
as nen3610:TransportRuimte. The former annotation of nen3610:FunctioneleRuimte in
its rdfs:comment was given to nen3610:TransportRuimte, because it actually denoted the
definition of nen3610:TransportRuimte and was not precise/representative enough to be a
definition of the nen3610:FunctioneleRuimte.

Likewise, an empty class kad:Gebruiksdoel is removed. The reason is that there are two
classes with the same name but with difference namespaces, namely kad:Gebruiksdoel
and sor: Gebruiksdoel. After careful examine, it is plausible that only sor:Gebruiksdoel
serves for all ontology entities related to the concept Gebruiksdoel(English: Use Purpose)
and kad:Gebruiksdoel is not connected to any instances in the ontology. It is an iso-
lated empty class and therefore is removed from the ontology class. In OWL ontologies,
object properties and data properties play crucial roles in defining relationships between
entities and their attributes. Object properties link individuals (instances of classes) to
other individuals, while data properties link individuals to data values (literals) that are
also set as class instances. Through object properties and data properties, we connect
class instances to constitute triple relations. In the ontology object property, there is
an ontology axiom called rdfs:range, which refers to an ontology class whose instance is
the object of the triple relation, and another ontology axiom called rdfs:domain. which
refers to an ontology class whose instance is the subject of the triple relation. The object
property itself serves as the predicate of the triple relation. Data properties also work
in a similar way. Thus, the class kad:Gebruiksdoel is also deleted from the rdfs:range of
the object property sor:gebruiksdoel because it contains no instances as the triple objects.
Similarly, in the data property sor:oppervlakte (English: surface area), two rdfs:range ex-
isted, namely, xs:nonNegativelnteger and xs:positivelnteger. They indicated that in the
triple relation where sor:oppervlakte was a predicate, the object must be an instance of
xs:nonNegativelnteger and xs:positivelnteger simultaneously. However, in XML schema,
xs:nonNegativelnteger includes all integers that are zero or positive (0, 1, 2, ...), while
xs:positivelnteger includes only positive integers (1, 2, ...). So xs:positivelnteger is a sub-
set of xs:nonNegativelnteger and specifying both as the ranges of the same property is

21

redundant. In addition, it is also recommended to have a single rdfs:range for each prop-
erty instead of multiple rdfs:range values to avoid complications in data validation and
reasoning [102] [103]. Considering the surface area of a building can be any non-negative
values, the redundant xs:positivelnteger was removed from the rdfs:range of the data prop-
erty sor:oppervlakte.

It is also observed that in the ontology, the object property geo:sfWithin has the class
geo:SpatialObject as both rdfs:domain and rdfs:range, which means that both the sub-
ject and object in this triple relation are instances of the class geo:SpatialObject. The
object property geo:sfWithin is part of the GeoSPARQL standard, which is used for rep-
resenting and querying geospatial data on the semantic web. Specifically, geo:sfWithin is
a topological property that indicates a spatial relationship where one geometry is within
another geometry. In KKG, geo:sfWithin plays an important role in the instance level
to build the connections between different national administrative geometries. For ex-
ample, all the instances of sor:Gemeente(English: municipality) lies within instances of
sor:Provincie(English: province) through geo:sfWithin. Similarly, via geo:sfWithin, an
instance of wbk:Wijk(English: district) lies within an instance of wbk:Gemeente, an
instance of wbk:Buurt(English: neighborhood) lies within an instance of wbk:Wijk, an
instance of sor:Gebouw(English: Building) lies within an instance of wbk:Buurt, an in-
stance of sor:Perceel(English: plot, a small piece of land) also lies within an instance
of sor:Gemeente. The triple relation connected by geo:sfWithin were well defined in in-
stance data. However, on the ontology level, the classes sor:Provincie, sor:Gemeente,
wbk:Gemeente, wbk:Wijk, wbk:Buurt, sor:Gebouw and sor:Perceel are not connected via
any properties to construct triple relations, although their intrinsic relations are widely
expressed on the instance level.

Therefore, for model enrichment, the triple relations between these classes that indicate na-
tional administrative geometries should be constructed on the ontology level to be aligned
with the pattern of the instance data, which will help with the ontology embedding and
model reasoning. Our method is to fill the gap in the class, not in the object prop-
erty since the property geo:sfWithin already has an rdfs:domain and an rdfs:range. We
add a parent class geo:SpatialObject respectively to these seven administrative geometry
classes. Now they are all subclasses of geo:SpatialObject. Through the relation between
geo:SpatialObject and geo:sfWithin, the parent class enrichment serves as a foundation of
the triple relation build-up between corresponding administrative geometry classes on the
ontology level to conform to the existing relations in instance data. Listing 3.1 shows the
class sor:Provincie after its parent class geo:SpatialObject is complemented.

Now we seem to have a plausible chain from a very fundamental geometry gebouw (building)
and perceel(plot) to a high-level administrative geometry provincie(province). But it is
noted that the classes sor:Gemeente and wbk:Gemeente are different, and they don’t lie
within each other since they refer to the same administrative level but belong to different
ontologies. On the instance level, each sor:Gemeente instance is connected to the cor-
responding gemeente instance of wbk:Gemeente with the property owl:sameAs. But the
triple relation is still missing on the ontology level. To reflect this relation on the ontology
level, an owl:equivalentClass property has been added to the class sor:Gemeente. An up-
dated class sor:Gemeente is shown in Listing 3.2. The chain that links gebouw(building)
and perceel(plot) to provincie is thus complete as shown in Figure 3.4. The refinement of
the chain to construct a better ontology embedding for the syntactically and semantically
accurate creation of SPARQL queries will be further discussed in the Modeling Section.

22

LisTING 3.1: The Enriched Class sor:Provincie
<!-- https://data.kkg.kadaster.nl/sor/model/def/Provincie -->

<Class rdf:about="https://data.kkg.kadaster.nl/sor/model/def/
Provincie">
<rdfs:subClass0f rdf:resource="https://data.kkg.kadaster.nl/sor
/model/def/0Overheidsorganisatie"/>
<rdfs:subClass0f rdf:resource="http://www.opengis.net/ont/
geosparql#SpatialObject"/>
<terms:subject rdf:resource="http://brk.basisregistraties.
overheid.nl/id/begrip/Provincie"/>
<rdfs:comment xml:lang="nl">Een provincie is een openbaar
lichaam met zelfbestuur en bevoegdheid binnen een gebied
kleiner dan die van het Rijk.</rdfs:comment>
<rdfs:isDefinedBy rdf:resource="https://data.kkg.kadaster.nl/
sor/model/"/>
<rdfs:label xml:lang="nl">Provincie</rdfs:label>
</Class>

LisTING 3.2: The Enriched Class sor:Gemeente
<!-- https://data.kkg.kadaster.nl/sor/model/def/Gemeente -->

<Class rdf:about="https://data.kkg.kadaster.nl/sor/model/def/
Gemeente">
<rdfs:subClass0f rdf:resource="https://data.kkg.kadaster.nl/sor
/model/def/0Overheidsorganisatie"/>
<rdfs:subClass0f rdf:resource="http://www.opengis.net/ont/
geosparql#SpatialObject"/>
<owl:equivalentClass rdf:resource="https://data.labs.kadaster.
nl/cbs/wbk/vocab/Gemeente" />
<terms:subject rdf:resource="http://brk.basisregistraties.
overheid.nl/id/begrip/Gemeente" />
<rdfs:comment xml:lang="nl">Afgebakend gedeelte van het
grondgebied van Nederland, onder zeggenschap van een
openbaar lichaam met diverse bestuurlijke taken, ingesteld
op basis van artikel 123 van de Grondwet en de Gemeentewet
.</rdfs:comment >
<rdfs:isDefinedBy rdf:resource="https://data.kkg.kadaster.nl/
sor/model/"/>
<rdfs:label xml:lang="nl">Gemeente</rdfs:label>
</Class>

23

Gebouw

Buurt

Wijk

y

Perceel Gemeente

h 4

Provincie

FIGURE 3.4: Geometry Chain: From Building&Plot to Province

24

3.2.4 Modeling

The preliminary stages in data understanding and preparation set the foundation for the
ontology embedding and the RAG chain construction of our question answering system
modeling.

3.2.4.1 Ontology Embedding

The purpose of ontology embedding is to vectorize the ontology data of KKG for the
similarity matching between ontology elements and question elements. The vectorized
ontology data will be stored in a vector database as an external data source for the
LLM to generate solution SPARQL queries to the questions, using Retrieval-augmented
Generation. The ontology elements will also be the key elements in the generated SPARQL
queries. This process is a significant part of the RAG chain construction. We have
prepared the ontology data for the embedding in Data Preparation. But not all the
ontologies in hand have to be embedded, we still need to design a pattern to contain
the more representative information of the ontologies in the embedding and neglect the
other parts. The same embedding model will be used for both the ontologies and the
questions to make sure their vectors are comparable and matchable. The embedding of
the questions is easier since the questions are short pieces of texts in natural language
and the current NLP techniques are good enough to handle the cases. The embedding of
the ontologies are more tricky, as they are in the form of RDF/XML, as demonstrated
in Listing 3.1 and 3.2. Not all information in the XML-structured ontology element are
useful for the SPARQL generation. If everything of one ontology element is treated as
plain text and embedded like a natural language question without pre-filtering, there is
useless or redundant information stored in the embedding, which incurs too much noise.
Therefore, it is necessary to select the most useful axioms from an ontology element as
the input of ontology embedding.

Not all the ontology elements are useful for the SPARQL query generation and our ques-
tion answer system as well. In an owl ontology, there are usually several types of key
ontology elements: Classes, Individuals(Instances), and Properties. This is also the case
of our ontology. Classes represent abstract concepts or categories of entities within a do-
main, such as Person, Animal, or Building. They are used to group individuals (instances)
that share common characteristics. They are fundamental components of an ontology and
are used to define the structure and semantics of the data. [104] Individuals, on the other
hand, represent specific objects or entities within the domain of interest. They are the
concrete instances of classes and can have properties that describe their attributes and
relationships with other individuals. Although most of the instance data of KKG are
in different data sets from the ontologies, there are some typical individuals included in
our KKG ontologies. Properties represent relationships between individuals or between
individuals and data values. They are crucial for defining the structure and semantics
of the ontology by specifying how entities are connected and what attributes they pos-
sess. There are three types of properties in our ontologies, including: Object Properties,
Data Properties and Annotation Properties. Object Properties link individuals to other
individuals. Data Properties link individuals to data values and data types. Annotation
properties, such as rdfs:comment and rdfs:label, provide metadata about classes, proper-
ties or individuals. In our question answering task, we concentrate on SPARQL queries
whose clauses rely heavily on the triple patterns that are mainly constituted and speci-
fied by ontology classes and properties. Consequently, our focus is on the embedding of

25

these two types of ontology elements. The knowledge graph is constructed with graph
nodes(entities) and edges(relations). To traverse through the graph and connect different
entities in the query, we need the property paths to involve repeated traversal of edges. A
property path, in the context of RDF graph and SPARQL queries, represents a potential
route between two nodes within a graph. A simple instance of this is a property path of
length one, which corresponds to a single triple relation. The ends of such paths can be
either RDF terms or variables. Property paths facilitate more succinct representations of
certain SPARQL basic graph patterns and enhance the capability to determine the con-
nectivity between two resources through paths of arbitrary lengths [105]. An example of
a property path of our ontologies can be seen in the last line of the WHERE clause of
the SPARQL query below. In this example, a property path, which contains properties
such as owl:sameAs and geo:sfWithin, connect the instances of class sor:Gebouw to the
instances of class sor:Gemeente. The two class nodes are connected with a 4-step prop-
erty path, because there are other intermediate classes, namely wbk:Gemeente, wbk:Wijk,
wbk:Buurt between these two classes, which can be connected directly with properties such
as owl:sameAs and geo:sfWithin in a triple pattern, as we discuss in the geometry chain
example in Data Preparation. In this context, a property path can actually be regarded
as a "chain". It indicates the feature of the knowledge graph and linked data that despite
not being adjacent to each other, these data nodes can be linked to each other as long as
there are sufficient properties to construct a property path, no matter how many steps the
path will take. And this feature can be utilized to query a data node in SPARQL.

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX provincie: <https://data.kkg.kadaster.nl/id/provincie/>
PREFIX sor: <https://data.kkg.kadaster.nl/sor/model/def/>
PREFIX owl: <http://www.w3.o0rg/2002/07/owl#>

SELECT (COUNT(DISTINCT ?7geb) as 7aantal)
WHERE A
?7geb a sor:Gebouw;
sor:oorspronkelijkBouwjaar 7bo.

7gemeente geo:sfWithin provincie:0023.
7gemeente owl:sameAs/ geo:sfWithin/"geo:sfWithin/“geo:sfWithin
7geb.
3
LIMIT 9999

This analysis emphasizes that the classes and properties form an interconnected ecosystem.
It is therefore logical to consider them together in the ontology embedding. More precisely,
we should start the embedding from properties instead of isolated classes, because through
the rdfs:range and rdfs:domain of a property, we can traverse to the classes and find
property paths to expand the network across the whole ontology graph. Eventually, we
discover all useful links to connect every possible nodes. This information is vectorized
and stored in our vector database as the retrieval data of the RAG chain. The LLM
can reason over these data to understand all the possible property paths and generate
SPARQL queries against any path of an arbitrary length to query the linked data of any
node and any edge on this path. This potentially broadens the spectrum of questions that
can be answered, thereby enhancing the system’s flexibility.

We use PG Vector, version 0.3.6, as our vector store. In PGVector, a single data point unit
is typically referred to as a document. A document contains page content and metadata.

26

Page content refers to the actual content or data stored in a vector format, such as the text
of a file, the content of a webpage, or any other data that has been converted into a vector
representation. A metadata, on the other hand, is additional information that describes
the page content. We start the embedding from properties, including object properties
and data properties. And we only make embedding for the useful ontology axioms of a
property. We need to decide the useful axioms to be embedded in a property, then try
to organize the information of these ontology axioms in human-readable text. Next, text
embedding can be implemented to vectorize these texts. Accordingly, these embedding
vectors will be stored in page content. Listing 3.3 demonstrates a property example of the
object property kad:gebouwtype. It is important that we can expand the property path
from a property to classes and other properties. Via rdfs:domain, we can connect to the
subject class sor:Gebouwzone of the triple relation in which this property serves as the
predicate, while via rdfs:range we can connect to the object class kad:Gebouwtype of the
same triple relation. Similarly, in the rest of the object properties and data properties,
we can trace to other classes through rdfs:domain and rdfs:range so these two axioms
should be included in the embedding data. Leveraging the robust reasoning capabilities
of large language models (LLMs), it is plausible to incorporate these triple patterns into
the embedding process to build interconnected property paths. This integration can assist
LLMs in generating SPARQL queries to effectively answer questions. In this context, each
triple relation should be represented in a single document of PGVector. Therefore, a piece
of text containing the triple relation is constructed for each document.

LisTING 3.3: Object Property: kad:gebouwtype
<!-- https://data.kkg.kadaster.nl/kad/model/def/gebouwtype -->

<0ObjectProperty rdf:about="https://data.kkg.kadaster.nl/kad/model/

def/gebouwtype">

<rdfs:domain rdf:resource="https://data.kkg.kadaster.nl/sor/
model/def/Gebouwzone"/>

<rdfs:range rdf:resource="https://data.kkg.kadaster.nl/kad/
model/def/Gebouwtype"/>

<terms:source rdf:datatype="http://www.w3.0rg/2001/XMLSchema#
anyURI">https://kadaster.github.io/imbrt/#attribuut -type-
gebouw</terms:source>

<rdfs:isDefinedBy rdf:resource="https://data.kkg.kadaster.nl/
kad/model/"/>

<skos:definition xml:lang="nl">Het type gebouw, het doel
waarvoor de bebouwing gebruikt wordt (gaat worden / werd).</
skos:definition>

<skos:preflabel xml:lang="nl">gebouwtype</skos:preflLabel>

<skos:scopeNote xml:lang="nl">Indien de betreffende bebouwing
onderdeel uitmaakt van een groter geheel, wordt het
gebouwdeel "uitgesneden" uit de omliggende bebouwing en
voorzien van de bijbehorende attribuutwaarde. Indien het
gebouwdeel niet exact is aan te geven, wordt een op zich
zelf staand gebouw aangebracht aan de rand van het complete
gebouw (op de ware plek of bij de dichtsbij gelegen ingang
van het gebouw) .</skos:scopeNote>

</0ObjectProperty>

The text includes a declarative sentence that functions as a statement of the triple rela-

27

tion in natural language, and a Turtle-like [106] triple pattern that clearly specifies the
subject, predicate and object of the triple relation. The text is set as the page content
of the document. In the Turtle-like triple pattern, we use the concise identifier to repre-
sent the ontology element, which gives details about the namespace and the name of the
resource(class, property or individual). When we extract the triple pattern from a prop-
erty, the subject class and object class are also traced in the ontology and their necessary
axioms, such as identifiers and labels are extracted as well. The sentence is more likely to
be an explanatory statement to the triple pattern that facilitate the understanding and
reasoning of LLMs. It is basically a simple declarative sentence structured linguistically
by a subject, a predicate and an object, which are the subject class, the property and the
object class respectively. For a concise formulation of the sentence, we prioritize to use the
label(either rdfs:label [102] or skos:prefLabel [107]) of the ontology element to denote the
element itself instead of using the element’s identifier in the declarative sentence, since the
label provides a comprehensive but simple description to the element without the names-
pace prefix, which we already have in the Turtle-like triple pattern. This reduces noise
and redundant information in the embedding. In addition, the metadata of the document
can provide annotations to the triple relations, so we clearly specify the information of the
elements of the triple pattern embedded in this document in the document’s metadata,
including the role(subject,predicate,object) this ontology plays in the triple relation, and
its unique identifier. The document example of the triple relation we extracted from the
object property kad:gebouwtype can be seen in the following box. But not all the on-
tology elements have a label. In case an element doesn’t have a label, we use its name
of resource, namely its identifier without the namespace prefix, as its label. This is usu-
ally very similar to the label according to the feature of KKG. For example, if the class
sor:Gebouwzone doesn’t originally have a label in the ontology, we extract "Gebouwzone"
from "sor:Gebouwzone" to serve as its label.

Document Containing A Triple Pattern

page_content='Gebouwzone gebouwtype Gebouwtype,
subject:<sor:Gebouwzone>predicate:<kad:gebouwtype>object:<kad:Gebouwtype>'
metadata={

'subject': 'sor:Gebouwzone',

'predicate': 'kad:gebouwtype',

'object': 'kad:Gebouwtype',

'id': 'sor:Gebouwzone kad:gebouwtype kad:Gebouwtype;'

}

The triple pattern extraction is implemented in all object properties and data properties
to construct as complete property paths as possible. Each triple relation is embedded and
stored in a document in PG Vector. Besides building property paths from object properties
and data properties, the subclass relations are also important for the completion of the
property paths, since subclasses inherently remain the properties of their parent classes. If
a parent class is connected on the property path, then its subclasses should be connected as
well. This also facilitates the expansion of the property paths network. We try to elaborate
this layer of relation to the LLMs through our embedding data and promote the LLMs’
understanding of this logical relation over its SPARQL inference. The similar embedding
pattern is implemented to extract the subclass relations. We start from ontology classes,
then try to find out the ontology axioms that state potential subclass relations. We

28

construct vector documents of these subclass relations, which are constituted of page
content comprised of a manually designed text to unambiguously specify the subclass
relation, and the metadata of the pertinent classes. An example of class sor:Verblijfsobject
is displayed in Listing 3.4. It is clearly stated that class sor:Verblijfsobject is the subclass
of class kad:AdresseerbaarObject in the axiom rdfs:subClassof. Therefore, we can extract
the subclass relation and track the details of parent classes from the ontology axiom
rdfs:subClassof. We make embedding and store the embedding of one subclass relation
in a single document. In the page content, we construct a declarative text that makes
a clear statement of the subclass relation. It can be seen below in the example. In
pursuit of simplicity, this text only contains this sentence. It is clear enough for the
LLMs to interpret the subclass relations. We do not have to set up any triple patterns
to elaborate this relation. Despite the conciseness of the label of an ontology element,
we decide to use the unique identifier of the class instead of its label in the text. This is
because the namespace prefix is crucial for the class identification. Classes from different
namespaces may share the identical resource names and labels, such as sor:Verblijfsobject
and bag:Verblijfsobject. However, the unique identification of a class is determined by
the combination of its namespace and resource name. Therefore, if we do not have a
triple pattern here to specify the namespace of a class, the namespace prefixes have to be
incorporated in the declarative sentence to prevent ambiguity and incorrect connections.

LisTING 3.4: Class: sor:Verblijfsobject
<!-- https://data.kkg.kadaster.nl/sor/model/def/Verblijfsobject -->

<Class rdf:about="https://data.kkg.kadaster.nl/sor/model/def/
Verblijfsobject">
<rdfs:subClass0f rdf:resource="https://data.kkg.kadaster.nl/kad
/model/def/AdresseerbaarObject"/>
<terms:subject rdf:resource="http://bag.basisregistraties.
overheid.nl/id/begrip/Verblijfsobject"/>
<rdfs:comment xml:lang="nl">De kleinste binnen één of meer
gebouwen gelegen eenheid van gebruik die ontsloten wordt via
een eigen afsluitbare toegang vanaf de openbare weg, een
erf of een gedeelde verkeersruimte, onderwerp kan zijn van
goederenrechtelijke rechtshandelingen en in functioneel
opzicht zelfstandig is.</rdfs:comment>
<rdfs:isDefinedBy rdf:resource="https://data.kkg.kadaster.nl/
sor/model/"/>
<rdfs:label xml:lang="nl">Verblijfsobject</rdfs:label>
</Class>

Document of a Subclass Relation

page_content="'sor:Verblijfsobject is a subclass of kad:AdresseerbaarObject'
metadata={

'class_id': 'sor:Verblijfsobject',

'class_label': 'verblijfsobject',

'parentClass_id': 'kad:Adresseerbaar(Object',

'parentClass_label': 'Adresseerbaar object'

}

29

Besides classes and properties, some individuals should also be considered in the em-
bedding according to the requirements and preferences of users from Kadaster because
these data individuals are associated with the questions that this question answering sys-
tem is expected to answer. These individuals are mainly the instances of the classes
sor:Gebruiksdoel, kad:Gebouwtype and bag:Gebruiksdoel. They are pertinent to impor-
tant geographical entities associated with the cadastral query, such as kerken(English:
churches), ziekenhuizen(English: hospitals), watertoren(English: water towers). We use
the similar embedding method to construct documents for these individuals. In the text,
the key point is to correctly specify that these individuals are the instances of their cor-
responding classes and ensure the accurate interpretation from the reasoning so that the
LLMs can make correct relation expression in the clauses of generated SPARQL queries.

Listing 3.5 shows an example of the individual kad-con:gemeentehuis(English: town hall).
The class information of an individual can be found in the property rdf:type. So for individ-
ual kad-con:gemeentehuis, it is an instance of both classes skos:Concept and kad:Gebouwtype.
This information will automatically be extracted and fill in the declarative statement in
page content of the document. In page content we also list other relevant ontology ax-
ioms of the individuals, such as its label and definition. This provide more information
about the individuals and help LLMs understand and distinguish different instances in
the query generation. It is especially helpful because individuals, offering more details,
provide more specific information than classes and properties, thus they are of a higher
granularity. This allows many different ways to ask the same questions regarding the
individuals. For example, if a question is asked about the towl hall: Waar is het dicht-
stbijzijnde gemeentehuis vanaf mijn adres Drienerlolaan 5, 7522 NB Enschede?(English:
Where is the closest town hall from my address Drienerlolaan 5, 7522 NB Enschede?),
besides "gemeentehuis", the users can also use other words like "raadhuis" and "stadhuis"
to refer to a town hall in Dutch language. Providing the definition of an individual is thus
informative for the LLMs to process liguistic synonyms of the same entities and different
paraphrases of the same questions. The definitions are extracted from the ontology ax-
ioms rdfs:comment, skos:definition or shacl:description. The labels are extracted for the
ontology axioms rdfs:label, skos:prefLabel or shacl:name. We use the package rdflib' here
to streamline the ontological information retrieval of individuals. When the rdf:type infor-
mation is extracted with rdflib, it will automatically add the class owl:NamedIndividual,
because every owl individual is an instance of the class owl:NamedIndividual. But this
information is redundant, so we erase the class owl:NamedIndividual from each document.
A constructed document of the individual kad-con:gemeentehuis is demonstrated below in
the example.

The embedding patterns have so far incorporated the key information of classes, properties
and selected individuals, which forms the underlying layer of KKG and serves as the key
foundation to write SPARQL queries against this knowledge graph. Besides the standard
patterns extracted from the ontology and vectorized in the embedding, some customized
data should also be added to the vector store to align with the data preparation process
to provide better clarification. Precisely, these special customized embedding is mainly
related to the process of building property paths between province class and building/plot
class on the ontology level. Since we fill the gap of the property paths through adding
parent class geo:SpatialObject to these administrative geometry classes, the relations are
reflected through the embedding of the subclass relations. But they are still not yet di-
rectly incorporated in the triple pattern embedding. To address this, it is logical to add

"https://github. com/RDFLib/rdf1lib

30

LisTING 3.5: Individual: kad-con:gemeentehuis
<!-- https://data.kkg.kadaster.nl/kad/model/con/gemeentehuts -->

<NamedIndividual rdf:about="https://data.kkg.kadaster.nl/kad/model/
con/gemeentehuis">
<rdf:type rdf:resource="http://www.w3.0rg/2004/02/skos/core#
Concept"/>
<rdf:type rdf:resource="https://data.kkg.kadaster.nl/kad/model/
def/Gebouwtype"/>
<rdfs:isDefinedBy rdf:resource="https://data.kkg.kadaster.nl/
kad/model/"/>
<skos:definition xml:lang="nl">Gebouw waarin de gemeentelijke
secretarie gevestigd is.</skos:definition>
<skos:inScheme rdf:resource="https://data.kkg.kadaster.nl/kad/
model/scheme/Gebouwtype"/>
<skos:preflabel xml:lang="nl">gemeentehuis</skos:preflLabel>
<skos:scopeNote xml:lang="nl">Dependances van deze secretarie
worden als stadskantoor, hulpsecretarie aangegeven. Indien
het gemeentehuis omwille van ruimtegebrek over verschillende
gebouwen is verspreid, is er geen sprake van dependances.</
skos:scopeNote>
</NamedIndividual>

Document of an Individual

page_content="gemeentehuis is an individual of class ['skos:Concept',
'kad:Gebouwtype'],

{

'individual': 'kad-con:gemeentehuis',

'rdf :type': ['skos:Concept', 'kad:Gebouwtype'l,

'label': 'gemeentehuis',

'definition': 'Gebouw waarin de gemeentelijke secretarie gevestigd is.'
}II

metadata={

'individual': 'kad-con:gemeentehuis',

'rdf:type': ['skos:Concept', 'kad:Gebouwtype'l,

'label': 'gemeentehuis',

'definition': 'Gebouw waarin de gemeentelijke secretarie gevestigd is.'
X

31

the triple pattern relations manually to the embedding. We use the similar method of
extracting the triple relations from owl properties to fill the document of these relations.
An example of the document of the triple relation between the class sor:Gemeente and the
class sor:Provincie is shown in the box below. The complete property path between the
class sor:Gebouw/sor:Perceel and sor:Provincie is addressed in the triple pattern embed-
ding and demonstrated in Figure 3.5. To check the full documents of the cusomized triple
patterns, please check the Appendix.

Document of a Customized Triple Pattern

page_content='Gemeente within Provincie,
subject:<sor:Gemeente>predicate:<geo:sfWithin>object:<sor:Provincie>'
metadata={

'subject': 'sor:Gemeente',

'predicate': 'geo:sfWithin',

'object': 'sor:Provincie',

'id': 'sor:Gemeente geo:sfWithin sor:Provincie;'

}

This subsection basically introduces the specific methods and process of the ontology
embedding, which is the significant foundation of building our question answering system
in the RAG technique. The following section will introduce the prompt engineering part
of the RAG chain, which is another prerequisite of our question answering system.

32

sor:Perceel

FicURrE 3.5: The Complete Property Path: From Building&Plot to Province

geo:sfWithin

33

» sor:Gemeente

sor:Gebouw

geo:sfWithin

wbk:Buurt

geo:sfWithin

whbk:Wijk

geo:sfWithin

wbk:Gemeente

Aowl:isameAs

geo:sfWithin

sor:Provincie

3.2.4.2 Prompt Engineering

Prompt engineering plays a critical role in optimizing the performance of the LLMs by
shaping how these models interpret and respond to tasks. Since LLMs rely on contextual
information provided in their inputs, a well-designed prompt can guide the model’s atten-
tion, elicit reasoning, and improve task-specific outcomes [108]. By structuring prompts
effectively, the model behavior can be aligned with our desired outputs, reducing ambi-
guity and enhancing accuracy [109]. In this section, we introduce how we use Chain-of-
Thought(CoT) prompting as the main prompt engineering technique with the assistance
of few-shot learning to design the system prompt of the question answering system. [31].

3.2.4.2.1 Chain-of-Thought Prompting

CoT prompting helps LLMs handle complex tasks by breaking them down into interme-
diate reasoning steps. It allows models to tackle problems step-by-step, which improves
their ability to reason through complex challenges, and thus is particularly useful for tasks
that require detailed reasoning, such as problem-solving, research, and analysis, suiting
the features of our SPARQL query generation assignment. With CoT prompting, the
model has the potential to maintain a clear line of thought while generating the SPARQL
queries based on the user requirement, leading to better performance.

It is essential that the the prompt is designed to be stepwise aligned with the logical think-
ing process of how human semantic experts write the SPARQL queries for corresponding
questions. First of all, the task background should be given regarding the purpose of
our question answering system. The LLM is instructed that it is a semantic web expert
and it is required to write SPARQL code for input user queries that are formatted in
natural language. Since the system is mainly designed for Dutch users and most of the
user queries are expected to be in Dutch, the model is also instructed that it masters the
Dutch language to better activate its Dutch reasoning ability. Additionally, it is necessary
to specify the data source available to the LLM and the methodology the LLM should
employ to manipulate the data. Specifically, the LLM will be informed that it has access
to the cadastral ontology data that we have processed and stored in the embedding, which
is related to the Dutch cadastral system. And the LLM is required to use RAG technique,
in which the cadastral ontology data serves as the retrieval data, to perform the SPARQL
query generation task. Moreover, to prevent model hallucination, the LLM is instructed
to only reply on the given cadastral ontology data, the context of the prompt and the user
input to solve the problem, prohibiting the use of other unprovided information, in case
the LLM generates answers from its irrelevant pre-trained knowledge. The task introduc-
tion of the CoT prompt is demonstrated in Figure 3.6. It also highlights the essence of
the CoT prompting with the classical entry "Let’s think step by step'.

In the step-wise prompt, the LLM is instructed to break down the problem and approach
the solution step by step. For a general interpretation and analysis on the input question,
the LLM should make sure it understands the linguistic implication of the whole question
explicitly, which is the prerequisite of the following steps. Then the prompt should instruct
the LLM to identify any relevant geographical location in the question context. This is
important because the questions are cadastral-related and are thus usually pertinent to a
certain geographical location of the Netherlands. Also to prevent hallucination and make
sure all the namespace prefixes and ontology elements used in the generated SPARQL
queries actually exist in our ontology, we prompt the LLM that the questions are in Dutch
and it should only use the ontology elements and relations we provide in the retrieval data

34

4 N

You are a sematic web expert and you master advance Dutch language.
You are provided with a vector database as an external data source to
use RAG to solve a sparql generation problem. The data source consists
of ontology data of Dutch cadastral system, including triple relations
between classes and properties(object property or data property),
subclass relations, and individual-class relations. You receive a user
input question regarding Dutch cadastral information. Please only use
the RAG data source, context of this prompt, as well as the question, to
generate a SPARQL query that can extract the relevant data to return
the answer to the question.

Let's think step by step:

- /

FiGure 3.6: Task Introduction of the CoT Prompt

of ontology embedding to perform the task. Since most LLMs still have limited SPARQL
ability [110], this step needs to be prompted more specifically to instruct what ontology
elements the LLM should utilize and how it can traverse over the ontology data to write
queries to connect ontology elements that are steps away for the construction of the correct
property paths. We give very direct prompt here to inform the LLM to implement the
property paths technique of SPARQL in this step, and also give an analogy with the
recursive query of SQL(which is similar to the property paths in SPARQL) to facilitate
the LLM’s understanding on the utilization of property paths. We are convinced that the
pre-trained LLM already have profound knowledge on the syntax of SPARQL and SQL,
which will assist its interpretation of our instruction.

In case the LLM hallucinates with the English translation of the local names of the ontology
elements(for example sor:Provincie becomes sor:Province)that are supposed to be Dutch
cadastral terms in the generated SPARQL queries, which sometimes indeed happens and
leads to a mismatch on the local name of the ontology elements of KKG and thus returns
no valid results from the query execution, we add in this prompt step to instruct the LLM
to name all the variables with only Dutch terms. Although the name of variables doesnt
matter with the validity of the SPARQL query, adding this snippet in the prompt does
drastically reduce the hallucinations and boost the performance. The reason is yet to be
revealed and worth further research and inspection.

With these two steps, the LLM should be able to generate some SPARQL queries snippet
based on the given information but they are not complete for execution yet. Furthermore,
it is also important to ensure the correct SPARQL syntax in query generation. When a SE-
LECT or a COUNT clause is executed, it is expected to select or count the distinct objects

35

and avoid duplication. Therefore, the LLM is prompt to use DISTINCT in a SELECT
and COUNT clause. The SPARQL queries are not executable without the imperative
prefix declarations. So we prompt the LLM to add the necessary prefix declarations on
top of the generated query. What prefix declarations to add is based on the elements used
in the SAPRQL query and is independently judged and executed by the LLM regarding
our prompt.

With these four steps, we ensure the LLLM can generate executable SPARQL queries, but
still not guarantee that the queries can return plausible results. There are still some
question-wise and data-wise details worth considering in the generation process. For ex-
ample, the label, of the Dutch place that is a geographical instance in KKG, is usually the
name of the place with the suffix @nl to represent that the name is in Dutch language.
Therefore, the instance "province:0026" denoting the Province of Utrecht is an instance of
the class "sor:Provincie" and this instance has a label "Utrecht@nl". The SPARQL query
has to state this label with the place name and the @nl suffix to shoot a match to the cor-
rect instance. We instruct the LLM about this to handle the label in the query properly.
Besides this, it is expected that the users don’t always make semantically and grammat-
ically correct questions. They may have typos in the name of places when they input a
question. The current question answering system has not yet performed stably against
the input with typos. To handle these cases, we instruct the LLM to identify the correct
place name and locate the target instance data despite encountering possible typos in the
word. The pre-trained knowledge of the LLM can help with this issue. When a question
expects the answer to return a specific name of place, the name should be obtained from
the label of the instance as well, and thus the query should be designed to ensure that the
execution result will contain the target label.

Similarly, polysemy can occur in questions, resulting in ambiguity when multiple instances
share the same name designation in their label or local name, and the LLM should be
prompted to discern which instance is the most pertinent to the question. For exam-
ple, "Utrecht" can denote the "Woonplaats(English: place of resident) Utrecht" or the
"Gemeente(English: municipality) Utrecht" or the "Provincie(English: province) Utrecht'".
When "Utrecht" is asked in the question, it should be analyzed based on the question
context to interpret what it exactly means to locate the correct instance data. For ex-
ample, if the user asks "How many hospitals are there in the Province of Utrech?"(Dutch:
Hoeveel ziekenhuizen zijn er in de provincie Utrecht?), based on the context, the LLM
will recognize that Utrecht in the question refers to the utrecht instance in the province
class instead of the one in the municipality class. This issue is also partially caused by
the property of the Dutch cadastral system. For many cities in the Netherlands, there are
"Place of Residence'(Dutch: woonplaats) and "Municipality" (Dutch: gemeente) with the
same name and they can both refer to the city itself, like what the Utrecht example indi-
cates. However, although the two concepts sound quite similar to each other, they refer to
different geographical areas of the city, despite the two areas usually having overlapping
components. The two concepts denote two different data elements and serve different
functions in practice. When the user asks "What is the average surface area of the houses
in Utrecht?"(Dutch: Wat is de gemiddelde oppervlakte van de huizen in Utrecht?), it is
very ambiguous whether the user wants to know the data of the Place of Resident Utrecht
or the Municipality Utrecht. Thus we prompt the LLM that if the user gives a city name
without specifying it is a place of resident or a municipality, interpret it as a place of resi-
dent by default. But if the user has explicitly indicated that it is a Place of Residence or a
Municipality, then it it should be interpreted as referring to the respective instance of the

36

place of residence or the municipality. This analytical process is explicitly demonstrated

with the utrecht example in Figure 3.7.

v

v

v

How many churches are there in
Utrecht / the Place of Residence Utrecht?
(Dutch: Hoeveel kerken zijn er in
Utrecht / de woonplaats Utrecht?)

How many churches are there in the
Municipality Utrecht?
(Dutch: Hoeveel kerken zijn er in de
gemeente Utrecht?)

How many churches are there in the
Province Utrecht?

(Dutch: Hoeveel kerken zijn erin de
provincie Utrecht?)

Actual implication:
woonplaats utrecht

Actual implication:
woonplaats utrecht

Actual implication:
gemeente utrecht

v v v

Check the instance Check for the instance Check for the instance
woonplaats utrecht gemeente utrecht provincie utrecht

End

FiGure 3.7: The Polysemy of "Utrecht"

Another similar problem is the synonym issue where the users can use multiple words
to represent the same concept. For instance, the word "plot" in Dutch is commonly
referred to as "perceel", but it can also be represented by the terms ’tuin’ or ’kavel’
to convey the same concept.". For the term "construction year', which is a property
of building(Dutch: gebouw), users can use the Dutch word "bouwjaar" or its synonyms
"oorspronkelijk bouwjaar" and "leeftijd" interchangeably to denote this concept in the
questions. We integrate a few-shot learning paradigm in the CoT to prompt the LLM
to learn to generate the SPARQL queries following the few-shot examples. The few-shot
examples are designed based on the thinking process aligned with our CoT prompt. At
the beginning, we try to break down the few-shot examples and in pieces and simulate the
inference of how each piece of the examples are designed based on the thinking process of
the CoT prompt, and we insert the pieces of query snippets in the prompt in the format of
plain text. However, this doesn’t produce the effect we pursue and the generated SPARQL
queries to the new input questions are just invalid parody of the provided examples,
performing poorly in the test with zero accuracy.

By themselves, language models can’t take actions - they just output text. A big use case
for LangChain is creating agents. Agents are systems that use LLMs as reasoning engines
to determine which actions to take and the inputs necessary to perform the action. After
executing actions, the results can be fed back into the LLM to determine whether more

37

actions are needed, or whether it is okay to finish. This is often achieved via tool-calling

Then we modify the method to accommodate the few-shot examples into the prompt
with the utilization of LangChain agents. The design details of the few-shot learning and
the integration of the few-shot examples are further explained in the Few-shot Learning.
Embarking on an audit of the current steps we have for the CoT prompting, there is still
concern that what if the user input question seeks the cadastral information of a certain
location but misses a clear indication of the exact location address. It can result from
the lack of proficiency of using a chatbot or can simply result from the recklessness of the
user. In this case, we do not want the LLM to enforce to generate any random SPARQL
queries and give unreasonable answers. Therefore, it is prompted that it should review
the question and independently judge whether the location information provided in the
question is sufficient to answer the question. If it is not, then the LLM is not supposed to
generate any SPARQL query, but simply answer that it can not help with this question.
This is also the case for the input questions that are not cadastral-related. Before the
last step, we remind the LLM to review the generated query and check whether all the
necessary prefix declarations are complemented property at the top of the query. In the
final step, we prompt the LLM to only give the generated query as the output without
adding any other context or description. This benefits the automation of the following
procedure of processing and executing the output SPARQL queries to obtain the queried
results.

This step-by-step design of the CoT prompt is tailored specifically for our Dutch cadastral
question-answering task. For the complete version of the prompt, please refer to the
Appendix.

3.2.4.2.2 Few-shot Learning

We have tried to integrate our CoT prompting with zero-shot, one-shot, and few-shot
learning, respectively. It is identified that both zero-shot learning and one -shot learn-
ing perform poorly on the current questions and are unable to marginally surpass the
performance of the current question answering system of Loki.

Few-shot learning(FSL) enables GenAl systems to adapt to new tasks or domains with
minimal labeled data, addressing the limitations of traditional models that require ex-
tensive annotated datasets. FSL is particularly beneficial for domain-specific question
answering systems, such as geographical, medical or legal applications [111], where la-
beled data is scarce, which is a similar situation in our case. Therefore, it is a promising
prompt engineering technique for our domain-specific cadastral question answering sys-
tem. It allows the pre-trained language model to quickly adapt to our specialized cadastral
context without requiring costly and time-consuming annotation processes. Furthermore,
FSL fosters efficiency by reducing computational overhead associated with retraining mod-
els on extensive datasets, making it ideal for the applications of Kadaster since the new
cadastral data is input and updated frequently.

We integrate FSL with CoT prompting to utilize the combined power of two state-of-the-
art prompt engineering techniques to enhance the question answering. We use a five-shot
learning for the implementation. The few-shot examples are designed to align with the
thinking process of the CoT prompt to instruct the LLM to generate SPARQL queries
with the identical logical expression. One of the few-shot examples adapted to answer
the question "How many buildings are there on the street Zandweg in the municipality of

38

Maasdriel that were built before 19807" is shown in Figure 3.13. The original question
is asked in Dutch. It is identified that the target location of this question is the street
Zandweg in the municipality of Maasdriel. From the interrogative word "How many",
we understand that the question seeks a number of count, so the query should begin
with a SELECT on the COUNT clause. Variables are named in Dutch based on our
prompt instruction. The variable geb refers to building(gebouw) in Dutch and the
variable aantal refers to the Dutch word for number. The duplications are supposed to
be eliminated so a DISTINCT clause is needed. The method is to count the number of
buildings on the target street, and then filter the buildings to only remain those that were
built before 1980. In the prompt, we instruct the LLM to use the property path technique
to query the data. Following this approach, we start from the target street Zandweg, an
instance with the Dutch label "Zandweg" of the class sor:OpenbareRuimte(English: public
space, which means street in KKG). The house number, which is "nummeraanduiding" in
Dutch and in short, na as the variable name, constructs a triple relation with the street
instance of the class sor:Openbareruimte via the object property sor:ligtAan(English: lies
on). This is logical since a house number inherently lies on a street. Therefore, a query
snippet can be written as is shown in Query Snippet 1.

I |
| SELECT (COUNT(DISTINCT ?geb) as ?aantal) I
| WHERE {{ :
?openbareruimte a sor:OpenbareRuimte; |
skos:prefLabel "Zandweg"@nl; I
Asor:ligtAan ?na. :
|

|

|

|

?na a sor:Nummeraanduiding.

FI1GURE 3.8: Query Snippet 1

Furthermore, the house number is connected to a residence object(Dutch: Verblijfsobject)
of the class sor:Verblijfsobject on a triple relation with the object property sor:hoofdadres(English:
main address). It is noted that the term Verblijfsobject in KKG refers to a place with
only one independent address, such as an apartment, a house with a single address, or
a factory with a single address. It doesn’t have to be a place of residence(although that
is the literal translation of this Dutch word in English). And a building with multiple
addresses is not one Verblijfsobject but contains multiple Verblijfsobject. A place of resi-
dence in KKG, on the other hand, is a Verblijfsobect with a living function(woonfunctie)
according to the property of the knowledge graph. From a Verblijfsobject, the prop-
erty path continues forward to sor:Gebouw(English: building) through the object prop-
erty sor:maaktDeelUitVan(English: is part of). A building(gebouw) has a data property
sor:oorspronkelijkBouwjaar(English: original year of construction), through which a build-
ing instance possesses a numerical property of its construction year. This value is denoted
by the variable bo, an abbreviation of the Dutch term "bouwjaar', meaning construction
year in English. It will be used to filter the buildings with the anticipated year of con-
struction. The SPARQL query can thus extend with the following snippet shown in Query
Snippet 2. We also add a property geo:hasGeometry into the query of sor:Gebouw to offer
more flexibility for building-related property path extension for other pertinent questions.

39

?na a sor:Nummeraanduiding;
7sor:hoofdadres ?vbo.

?vbo a sor:Verblijfsobject;
sor:oppervlakte ?wo;
sor:maaktDeelUitVan ?geb.

?geb a sor:Gebouw;
sor:oorspronkelijkBouwjaar ?bo;
geo:hasGeometry [

geo:asWKT ?geo_wgs84;
rdfs:isDefinedBy bag:

FiGURE 3.9: Query Snippet 2

The location of interest in the question is the Municipality of Maasdriel. From the building
class sor:Gebouw, we have a property path to step by step connect to the municipality
class sor:Gemeente, via the classes of neighborhood(buurt), district(wijk) and another
municipality class wbk:Gemeente, as shown in Query Snippet 3. In the end, the Filter
clause is applied to select buildings that were built before the year of 1980, as shown in
Query Snippet 4.

A thorough check is conducted on the query clause details to add all the necessary prefix
declarations on the top of the query. This is designed in Query Snippet 5. In this snippet,
we also add some extra prefix declarations that are not necessarily needed in this SPARQL
query. This is because the inference of the LLM on checking the prefix declarations are
not perfect. It is noted that sometimes it misses one prefix declarations and causes the
syntax error of the query. Therefore we add some common-used prefix declarations in the
examples to ensure the integrity of the generated SPARQL code. According to the prompt
instruction, only the query itself is presented in the answer, without extra descriptive
text. Together, the code snippets constitute the complete SPARQL query demonstrated
in Figure 3.13 to answer the question "How many buildings are there on the street Zandweg
in the municipality of Maasdriel that were built before 19807". With similar examples,
the five-shot learning instructs our LLM to embark on a deeper understanding on how to
generate proper SPARQL queries for the questions following the CoT process.

To check the complete version of the five-shot learning examples, including the questions
and their query solutions, please refer to the Appendix.

40

?geb a sor:Gebouw;
sor:oorspronkelijkBouwjaar ?bo;
geo:hasGeometry [
geo:asWKT ?geo_wgs84;
rdfs:isDefinedBy bag:
1

?wbk_buurt a wbk:Buurt;
Ageo:sfWithin ?geb;
geo:sfWithin ?wbk_wijk.

?whk_wijk a whk: Wijk;
geo:sfWithin ?wbk_gemeente.

?whk_gemeente a wbk:Gemeente;
*owl:sameAs ?gemeente.

7gemeente a sor:Gemeente;
owl:sameAs ?wbk _gemeente;
skos:prefLabel "Maasdriel"@nl.

— . | - -

I PREFIX bag: <http://bag.basisregistraties.overheid.nl/def/bagi>
: PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schemat>

| PREFIX sor: <https://data.kkg.kadaster.nl/sor/model/def/>

| PREFIX sor-con: <https://data.kkg.kadaster.nl/sor/model/con/>
: PREFIX kad: <https://data.kkg.kadaster.nl/kad/model/def/>

| PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#>

| PREFIX geo: <http://www.opengis.net/ont/geospargli=

' prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

| prefix owl: <http://www.w3.0rg/2002/07/owl#>

| prefix wbk: <https://data.labs.kadaster.nl/chs/wbk/vocab/>

FIGURE 3.12: Query Snippet 5

41

I Question:
| Hoeveel panden staan er aan de straat zandweg in de gemeente Maasdriel die
| voor 1980 zijn gebouwd?
I (English: How many buildings are there on the street Zandweg in the municipality
: of Maasdriel that were built before 19807)
|
| Example query solution:
: PREFIX bag: <http://bag.basisregistraties.overheid.nl/def/bag#>
| PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schemat>
I PREFIX sor: <https://data.kkg.kadaster.nl/sor/model/def/>
: PREFIX sor-con: <https://data.kkg.kadaster.nl/sor/model/con/>
| PREFIX kad: <https://data.kkg.kadaster.nl/kad/model/def/>
I PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#>
: PREFIX geo: <http://www.opengis.net/ont/geospargl#>
| prefix xsd: <http://www.w3.0rg/2001/XMLSchemat>
I prefix owl: <http://www.w3.0rg/2002/07/owl#>
: prefix wbk: <https://data.labs.kadaster.nl/cbs/wbk/vocab/>
|
| SELECT (COUNT(DISTINCT ?geb) as ?aantal)
| WHERE {{
Popenbareruimte a sor:OpenbareRuimte;
skos:preflLabel "Zandweg" @nl;
Asor:ligtAan ?na.

?na a sor:Nummeraanduiding;
~sor:hoofdadres ?vbo.

?vbo a sor:Verblijfsobject;
sor:oppervlakte ?wo;
sor:maaktDeelUitVan ?geb.

7geb a sor:Gebouw;
sor:oorspronkelijkBouwjaar ?bo;
geo:hasGeometry [
geo:asWKT 7geo_wgs84;
rdfs:isDefinedBy bag:
I

?wbk_buurt a wbk:Buurt;
Ageo:sfWithin ?geb;
geo:sfWithin ?wbk_wijk.

?wbk_wijk a wbk:Wijk;
geo:sfWithin ?wbk_gemeente.

?wbk_gemeente a whk:Gemeente;
~rowl:sameAs ?gemeente.

?gemeente a sor:Gemeente;
owl:sameAs ?wbk_gemeente;
skos:preflLabel "Maasdriel"@nl.

FILTER (?bo < "1980"*xsd:gYear)

1
LIMIT 9999

FIGUuRrE 3.13: Few-shot Example

42

3.2.4.3 Retrieval-augmented Generation

We briefly introduce how we constructed the RAG chain to facilitate the QA process. We
have already set up our system prompt. We have the language model, which is GPT4-
32k, for the QA system. It is quite smooth to build the RAG with existing packages.
We use the framework Retrieval QA of Langchain to construct the RAG chain. It has
built-in functions and methods to receive the user-defined prompt and language model as
arguments. For this Confactual QA task, we expect the system to be more deterministic
instead of creative, so the temperature is set as 0. More technical details regarding the
RAG chain construction are available in the repository of this project.

43

3.2.5 Evaluation

To evaluate the performance of our question answering system artifact, a systematic valida-
tion methodology should be implemented. The key requirement for the designed prototype
is that it is able to answer a broader spectrum of cadastral questions accurately within a
fair execution time. The validation is expected to validate the accuracy of different aspects
of the system.

We utilize three types of questions to validate the designed artifact.

1. Basic Retrieval Questions: Simple queries that can already be answered by Loki
at the moment. These questions are directly derived from the existing question-
SPARQL pairs of the training set of the current question answering system of
Loki(hereafter referred to as the old system). According to Kadaster, the old system
is expected to answer these questions well enough. Each question has a correspond-
ing SPARQL query(hereafter referred to as the ground truth query) to query the
result from KKG to answer the question. By testing these questions, it is demon-
strated that the designed system can at least have equivalent performance on the
tasks of the current question-answering system and therefore the designed system’s
function as a proof of concept is validated.

2. Edge Case Questions: Ambiguous questions, typos, or incomplete information. These
questions can be directly adapted from the basic retrieval questions by adding ty-
pos or giving ambiguous information in the text. By testing these questions, it
is validated that the designed system is resilient against complications, offering a
more robust performance facing different contexts compared to the current question-
answering system.

3. Novel Retrieval Questions: More complicated cadastral questions, which can not be
answered by the current version of Loki but are in line with the interest of the users.
By testing these questions, the novelty of the proof of concept is validated and its
potential to outperform the current question answering system can be evaluated.

To ensure the robustness of the designed system, each question is tested at least three
times against the artifact. This rigorous testing process verifies that the generated queries
are consistently correct in both semantic and syntactic aspects, thereby preventing the
validation bias from the hallucinated results by the LLM [112].

For basic retrieval questions, we examine the validity of our system from the following
perspectives.

1. Query accuracy.

o Exact Match (EM): Percentage of generated queries that exactly match the
ground truth queries.

e Syntax Validity: Ensure all generated queries are syntactically correct.
2. Output accuracy

e Semantic Equivalence: Check if the generated query produces the same result
as the ground truth query (even if the syntax differs).

44

e Result Accuracy: Compare the results of the generated query with the expected
results.

Aligned with the CRISP-DM circle, we implement PDCA (for Plan, Do, Check, Act) [113],
a continuous improvement process for the iterative development and improvement of our
prototype in the evaluation process. We set up the objective of our experiment and
conduct the experiment by testing the questions on our new system for evaluation. As our
evaluation goes on, we may encounter results that do not meet the expected outcomes and
indicate system flaws. We continue to improve the system based on the revealed issues
and iterate the testing from the beginning. We continue this iterative development and
improvement process until we effectively rectify solvable system flaws in the prototype so
that it is deliverable to verify the validity of our KGQA approach.

The PDCA process is implemented iteratively in four stages as follows and is demonstrated
in Figure 3.14:

1. Plan

We define the objective of our continuous improvement process and the necessary
steps to deliver the results.

2. Do
We implement the testing and obtain the execution results for analysis.

3. Check

We evaluate the results in terms of system performance. The data and results
obtained from the implementation phase are systematically assessed. The collected
data is compared to the expected outcomes to identify similarities and differences.

4. Act

We progress on process improvement by utilizing records from the "do" and "check"
phases to identify and analyze system deficiencies. The root causes of these defi-
ciencies are systematically investigated, identified, and addressed through system
modifications. Depending on the results, we can decide to standardize and stabilize
the changes or begin the cycle again. Planning for the next cycle should proceed
with a better baseline. Work in the next do phase should not create a recurrence of
the identified deficiencies. If such issues persist, the corrective actions are ineffective.

The evaluation results are further discussed in Chapter 4.

3.2.6 Deployment

We use GPT-4 32k as the LLM for this task. The embedding model of the designed
question answering system is text-embedding-3-large!. Since it is a SPARQL generation
task, the question answering is supposed to be more coherent and less creative. Therefore,
the temperature of the question answering system is set as zero. So far, the system has
only generated the SPARQL query without executing the query. We build an automated

"https://platform.openai.com/docs/guides/embeddings

45

4 Stages of a PDCA Cycle

Do

Implement the plan on
a small scale and
collect data.

Plan

Define the problem,
set goals, and
develop an
improvement plan.

Continuous
Improvement °

Act

Standardize the
successful changes
and adjust the plan if
needed.

Check

Analyze the data to
see if the plan
achieved the desired
outcome.

¥ GoAudits

FiGURE 3.14: The PDCA Cycle

process to obtain the query output and execute it via the API of KKG and gain the
execution result. By integrating this process with the query generator, we have a complete
process for a question answering system demo.

The designed question answering system only serves as a proof of concept for our idea
of integrating ontology embedding and prompt engineering to enhance knowledge graph
question answering, based on the case of KKG. Therefore, this project only works as a
demo. It is not fully ready for a commercial deployment in an industrial environment.
For a large-scale deployment, further research and analysis are needed to improve the
performance and the user experience of such an artifact. This will be further discussed in
future research.

46

Chapter 4

Result and Discussion

We conducted the experiment between November 21 and December 4, 2024. This section
presents the results of the experiment and our discussion on the implications of the results.
For basic retrieval questions, thirty questions were evaluated using our newly developed
question-answering system (hereafter referred to as the new system). These questions were
sourced from six distinct categories within the question sets of the old system of Loki. The
six question categories are brt closest query, brt filter query, location query, filter query,
property query and top 10 nl query respectively. More elaboration of the categories can
be found in Table 4.1. Within one category, there are many similar questions, which are
paraphrased and asked in different formulations, but pursue the same SPARQL queries and
output answers. Therefore, selecting five random questions from each category is deemed
sufficient to represent the corresponding category. For our evaluation, we randomly select
five questions from each of the six categories, resulting in an evaluation question set of
thirty questions.

The evaluation of basic retrieval questions are to assess whether the new system can fulfill
the fundamental functions of the old system. If the evaluation outcome is positive, the
initial potential of replacing the old system with the new system to boost the performance
of Loki is verified.

4.1 Basic Retrieval Question Results

We input the questions into the new system to obtain the generated SPARQL query
snippets. Then we execute the queries through an API of the query executor of KKG
to obtain the query results, which will be the answers to the questions. We carry out
our validation based on query accuracy and output accuracy, according to our evaluation
approach.

4.1.1 Query Accuracy

For query accuracy, we evaluate with three metrics: Exact Match(EM), Syntax Validity
and Semantic Equivalence.

47

Question Category

Total Number of Questions

Category Details

brt closest query

brt filter query

location query

filter query

property query

top 10 nl query

46

173

33

18

95

20

This category contains
questions regarding the
distance from the address
of interest of the user to a
specific brt property.

This category contains
questions regarding the
characteristics of a user-
specified brt property that
meets a certain condition

filter.

This category contains
questions regarding a
certain type of buildings
or plots in a user-specified
location granularity.

This category contains
questions regarding build-
ings that meet a filter of
their time of construction
in a user-specified location.

This category contains
questions regarding a loca-
tion granularity specified
by a user-given address.

This category contains
questions regarding the brt
properties in TOP10NL,

a topographic dataset
that provides detailed
geographic information

at a 1:10,000 scale and
serves as a foundation for
topographic maps.

TABLE 4.1: The Basic Retrieval Question Category

48

4.1.1.1 Exact Match

This metric quantifies the proportion of generated queries that exactly match the ground
truth queries. Since the uniqueness of the CoT process and the example queries in the few-
shot learning are designed to complement and reinforce each other and they perform in a
way distinctly different from the question-SPARQL pairs of the old system, the hypothesis
is that the generated queries of the new system are very unlikely to be the same as the
ground truth queries of the old system syntactically. The experiment have also proved the
hypothesis to be correct. Not a single query of the new system can exactly be identical to
the ground truth query in syntax. However, it is noted that we do not have to require the
generated queries to match the ground truth queries exactly in all syntactic details. For
the same question, the generated query proves correct if it does not contain any syntactic
errors and can return the same result as the ground truth queries from the execution.
Therefore, EM does not matter in this context and we will not focus on verifying it in the
following evaluations.

4.1.1.2 Syntax Validaity

This metric measures whether the generated queries of the new system are correct in
SPARQL syntax. By executing a query with the query executor of KKG, the query
with syntactic errors will raise and return the syntax error warning. The evaluation has
demonstrated that, for all basic retrieval questions, the new system consistently generates
queries that adhere to the correct SPARQL syntax. Consequently, this validates the
system’s robustness in producing syntactically correct SPARQL queries.

4.1.2 Output Accuracy

Once the query is syntactically correct, it can be executed successfully through the API
of KKG and return a valid answer. We need to verify if this answer output is the ac-
curate output we expect. For output accuracy, we evaluate with two metrics: Semantic
Equivalence and Result Accuracy.

4.1.2.1 Semantic Equivalence

This metric measures whether the query generated by the new system will return the
same query result as the ground truth query for a given question. Via thirty questions
evaluated in the new system, we obtained thirty generated queries. Within these thirty
queries, twenty-two of them return the same results as the ground truth queries. Among
the rest of the eight queries, four of them return the correct results but these four questions
can not be answered correctly by the old system. For three of them, no query is returned
from the old system and the remaining one returns a zero answer with an empty JSON
array. This is a system flaw because the old system is supposed to be able to answer these
questions. One query returns a result different from the ground truth query but the result
are justifiable to be correct. One query can return the correct result but the performance
of the new system on this question is unstable. Hallucinations happened two times within
three consecutive tests and generated incorrect SPARQL queries. We consider it as a
failure to pass the hallucination test and conclude that our new system cannot answer this
question, although it is sometimes correct. This question cannot be answered by the old
system as well so both results are incorrect. Two queries return the incorrect results while
the ground truth queries of the old system return correct results for these two questions.

49

Semantic equivalent
Completely equivalent

New system correct, old system
incorrect

Both correct but different

Both incorrect-

New system incorrect, old system
correct

0 2 4 6 8 10 12 14 16 18 20 22

Number of questions

FIGURE 4.1: Semantic Equivalence Results of Basic Retrieval Questions

4.1.2.2 Result Accuracy

We have compared the equivalence of the results with the results from the old system.
In most cases, the results from the old system are the expected results. However, some
questions are open to more than one possible answer, or the questions cannot be answered
by the old system. Therefore, in addition to semantic equivalence of the results, we also
need to verify the result accuracy of each question for the new system. This metric
evaluates the accuracy of the results from the generated queries by comparing them to the
expected results. If a result from the new system is equivalent to the result from the old
system for a given question, the result and the SPARQL query are considered accurate.
In cases where the old system is unable to resolve the questions, we examine the details
of our generated queries and the structure of KKG to verify the integrity of these results.
In total, we have twenty-seven accurate queries out of thirty, with the other three being
inaccurate ones.

Result Accuracy

Accurate

Inaccurate

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0 225 25.0 27.5

MNumber of questfions

FIGURE 4.2: Result Accuracy of Basic Retrieval Questions

50

4.2 Edge Case Question Question Results

We evaluate how well the new system handles the edge cases, such as ambiguous infor-
mation or typos in the question text. Ambiguous information and typo cases are not
exclusive to each other as a question can be ambiguous because of typos. In general, the
edge case question refers to questions that are not articulated in an unambiguous and
Dutch-grammatically correct way.

We have tested five questions regarding edge cases. We primarily generate edge case
questions by modifying the wording or phrases of basic retrieval questions that our new
system can answer accurately. For example, since cadastral questions are very likely related
to a certain location or address, we add typos in the location names. The experiment shows
that, if we replace the correct location name "Enschede” with a typo "Enshcede" in the
question, the new system can still return the accurate answer pertinent to the Dutch
municipality Enschede while the old system cannot answer the question anymore. Similar
experiment has been conducted on other Dutch municipalities such as Hengelo and Zwolle,
and we have perceived the same situation. An exception we observe is Amsterdam. Even
with typos in the spelling of Amsterdam, the old system can answer the questions correctly
as the new system. All the tested edge case questions and their original questions can be
viewed in Table 4.2.

4.2.1 Query Accuracy

All the queries generated by the new system against the edge case questions are syn-
tactically valid. There are no syntax errors in these queries. However, except for the
question "How many buildings are there in Amsterdam that were built between 1980 and
19857", the old system cannot generate an accurate query against the edge cases we test,
or generate invalid queries. The invalid queries generated by the old system are usually
syntactically correct, but semantically inaccurate.

4.2.2 Output Accuracy

The queries of the new system are all executed successfully and return non-empty answers
to all the tested edge case questions. We compare the answers with the answers of the
selected basic retrieval questions, from which our edge case questions are adapted. They
are the same answers. Therefore, they meet the requirements of both semantic equivalence
and result accuracy. The old system can sometimes generate syntactically correct queries
to edge cases but these queries are semantically inaccurate so that they only return empty
answers from the execution. Hence, in terms of semantic equivalence, only the answers to
the Amsterdam-related question are completely equivalent in the new system and the old
system. Regarding the rest of the four edge case questions, the new system’s answers are
correct, whereas the old system’s answers are not. This is demonstrated in Figure 4.3. As
for result accuracy, all the answers of the new systems are accurate as presented in Figure
4.4.

The performance gap can be attributed to the reasoning abilities of different language
models. One one hand, the GPT-4-32k model we utilize on the new system has a strong
reasoning ability. The pre-trained LLM already possesses a substantial knowledge base
before we insert a CoT prompt to instruct it. And we have also included typo handling in
our CoT prompt. Together with in-context learning, the LLM is able to catch the accurate
interpretation of the question, even if there are typos on certain words. This robust

51

Edge Case Question

English Translation

Edge Case Type

Hoe hoog is de afstand
tot de ziekenhuis (van mijn
adres Hengelosestraat 100,
Enshcede)?

Wat voor kerken zijn er
dichtbij vanaf Deldener-
straat 134, Henglo?

Welke politiebureau is
het dichstbij vanaf Grote
Markt 18, Zwoole?

Geef me alle woningen in
Utrecht.

Hoeveel gebouwen
er in Ammsdetam die
tussen 1980 en 1985 zijn
gebouwd?

zijn

How far is the hospi-
tal (from my address
Hengelosestraat 100, En-
schede)?

What churches are close to
Deldenerstraat 134, Hen-
glo?

Which police station is
closest from Grote Markt
18, Zwolle?

Give me all the houses in
Utrecht.

How many buildings are
there in Amsterdam that
were built between 1980
and 19857

Typo. "Enshcede" should
be "Enschede’.

Typo. "Henglo" should be
"Hengelo".

Typo. "Zwoole" should
be "Zwolle". "dichstbij"
should be "dichtstbij".

Ambiguous information.
"Utrecht" can refer to the
province, the municipality
or the place of residence
of the same name. If
not specified, we define
it to refer to the place of
residence, namely "woon-
plaats" in Dutch.

Typo. "Ammsdetam"
should be "Amsterdam".

TABLE 4.2: Edge Case Questions

92

Semantic equivalent

Completely equivalent

New system correct, old system
incorrect

Both correct but different

Both incorrect;

New system incorrect, old system
correct

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0

Number of questions
FIGURE 4.3: Semantic Equivalence Results of Edge Case Questions

reasoning capability of LLMs is also observed by Saporov and He [114]. On the other hand,
the old system is using a T5 model, which has a relatively limited reasoning capability. In
addition, the old system’s training set with the fixed combination of the question-SPARQL
pairs may not be as resilient in handling typos or ambiguous information in the question
as CoT prompting.

Semantic equivalent

Accurate

Inaccurate

0.0 0.5 1.0 1.5 20 25 3.0 35 40 45 5.0

Number of questions

FIGURE 4.4: Result Accuracy of Edge Case Questions

4.3 Novel Retrieval Questions and New Features

We have also tested new questions aligned with the interest of Kadaster against our new
system. These questions can not be answered by the old system yet. We will also discuss
some new features that we develop on the new system. These new features not only
facilitate flexible customizations of the questions but also strengthen the performance
stability compared to the old system. With these features, the new system is enabled to
answer a wider range of questions according to the needs of users.

93

The tested new questions can be seen in Table 4.3. There are more new questions to be
answered, because technically our ontology embedding methodology, in combination with
the CoT prompting and the strong reasoning ability of GPT-4-32k, should enable the new
system to answer many new questions that can be concatenated from the property paths,
which means almost any questions relevant to the classes, properties, and selected indi-
viduals that are on the interconnected property paths. However, we cannot enumerate all
the possible new questions, so we just utilize the following new questions as representative
questions for testing, because the answers to these types of questions are helpful to the
daily work of Kadaster or other public stakeholders but the current methods to retrieve
this information are more time-consuming.

Original Question

English Translation

Answer

Welke gemeente heeft de
meest verblijfsobjecten
met kantoorfunctie in de
provincie Gelderland?

Welke gemeente heeft de
meest openbare ruimte in
de provincie Overijssel?

Wat is de
oppervlakte
(met woonfunctie) in
Apeldoorn?

gemiddelde
van huizen

Welke woonplaats heeft de
meeste gebouwen die voor
1700 zijn gebouwd?

Hoeveel gebouwen zijn er
in Amsterdam en Rotter-
dam die voor 1800 zijn
gebouwd?

Geef me de top 3 woon-
plaats met de meeste
gebouwen die voor 1700
zijn gebouwd.

Which municipality has
the most residential ob-
jects with office function
in the province of Gelder-
land?

Which municipality has
the most public space in
the province of Overijssel?

What is the average sur-
face area of houses (with
residential ~ function) in
Apeldoorn?

Which place of residence
has most buildings built
before 17007

How many buildings are
there in Amsterdam and
Rotterdam that were built
before 18007

Give me the top 3 places
of residence with the most
buildings built for 1700.

Arnhem

Enschede

116.646366977664688

Amsterdam

5130

Amsterdam, Utrecht, Lei-
den

TABLE 4.3: Novel Retrieval Questions

For the novel retrieval questions, we do not evaluate with the matrix we use for basic
questions and edge case questions, because the old system can not answer these questions
anymore. We validate the new system by comparing the results with the knowledge graph
data. The full queries of the tested novel retrieval questions can be found in the Appendix.

54

As for new features, our new system allows questions to be expressed in more flexible
ways. In the one-to-one training-based old system, only questions in the fixed question
set can be answered. With the new system, we do not have to design the questions
manually with a large amount of labor, as the reasoning ability of the LLM has drastically
broadened the spectrum of answerable questions. More examples can be seen in Table
. For example, in the question "How many buildings are there in {city} that were built
{filter }{year}?"(Dutch: Hoeveel gebouwen zijn er in {city} die {filter}{year} gebouwd?),
the old system can only accommodate conventional ways of asking the question in the
pre-defined question structure, such as "How many buildings are there in Rotterdam that
were built before 19007"(Dutch: Hoeveel gebouwen zijn er in Rotterdam die vé6r 1900
zijn gebouwd?) or "How many buildings are there in Amsterdam that were built between
1980 and 19857"(Dutch: Hoeveel gebouwen zijn er in Amsterdam die tussen 1980 en 1985
zijn gebouwd?). The "between'(Dutch: tussen) in the question by default does not include
the data of the boundary year in the old system, which are the year 1980 and 1985 in
the case. In the new system, it includes the boundary years by default, and we can
flexibly customize whether to include the boundary or not by specifying "including" or
"excluding" in the question, such as "How many buildings are there in Amsterdam that
were built between 1980 and 1985, excluding 1980 and 19857"(Dutch: Hoeveel gebouwen
zijn er in Amsterdam die tussen 1980 en 1985 zijn gebouwd, exclusief 1980 en 19857).
Or we can specify to include one boundary and exclude the other. We can also ask the
question in different rephrasings thanks to the strong reasoning ability of the LLM, which
is not possible in the old system if these rephrasings are not included in the training set.
We can specify more wanted details in the question, so that the query will return more
information. For example, in the question "What are the buildings in The Hague built
after 19907"(Dutch: Wat zijn de panden in ’s-Gravenhage met bouwjaar na 19907), we can
try to ask the system to return more property details of the filtered buildings according to
our needs by adapting the question to "What are the buildings in The Hague built after
19907 Also provide the year of construction, surface area and wgs84-coordinates of these
buildings."(Dutch: Wat zijn de panden in ’s-Gravenhage met bouwjaar na 19907 Geef
ook de bouwjaar, oppervlakte en wgs84-coordinaten van deze panden.). By adding more
details, we obtain the answer including the year of construction, surface area and wgs84
coordinates of these buildings. We can also access to the information of other building
properties by further customizing the question.

In addition to facilitating question customization, the new system also exhibits robust
multilingual capabilities. Although we presume most of the users of Loki will be in the
Netherlands, which implies that the questions will be mainly asked in standard Dutch, the
new system accommodates more languages besides Dutch. In our limited experiment, it
demonstrates a consistently high proficiency in answering questions asked in Frisian, which
is another language in the Netherlands, and also the official language of the Dutch province
of Friesland. It can also answer questions in English and German. The multilingual
feature is partly thanks to the multilingual reasoning ability of the pre-trained LLM,
and partly thanks to our instruction in the prompt. We ensure in the CoT prompt
that for any input questions related to Dutch cadastre, the new system can progress
the inference to the accurate ontology and instance elements in KKG, which are mainly
formulated in standard Dutch. This pattern in the prompt was initially designed to render
the new system more fault-tolerant to typos and grammatical errors in the questions
and not to infer the questions to irrelevant or non-existent knowledge graphs. Enhanced
by the built-in multilingual reasoning ability of GPT-4-32k, its ability to process Dutch

95

cadastral questions presented in multiple languages is significantly improved. As a result,
the new system accommodates a broader range of users from diverse cultural backgrounds
by supporting multiple languages. And this is achieved simply through proper prompt
engineering. No costly retraining on the language model is needed.

The new system also exhibits a consistently stable performance to, which is superior to the
old system. The old system performs very unstably in answering some basic questions of
certain municipalities, such as Nijmegen, Ede and Zwolle. The reason why the old system
has a problem with answering questions related to these municipalities is unknown. But
the new system has no problem in solving questions of these municipalities and the data
of these municipalities are in KKG. This implies that there can be errors in the training
process of the old system. The new system demonstrates stable performance on the basic
retrieval questions across difference instances while the old system has difficulty in certain
instances in the knowledge graph. This proves that the new system demonstrates a more
robust performance than the old system.

o6

Chapter 5

Conclusion

This chapter presents the conclusion of our research project by recapping and answer-
ing the core research question and the subquestions. In this research, we formulated the
KGQA problem based on the current gap in the domain and the bottlenecks of KGQA
in the practical scenario of Kadaster. We conducted a bibliometric survey to complete a
systematic review of the literature of the prior research in the relevant domains. Based
on the study of the related work, we designed our methodological framework and exper-
imental strategy with a CRISP-DM cycle. Then we implemented the prototyping and
experiment. Intertwined with the prototyping, we conducted a systematic evaluation on
the experimental results to continue improving the performance and prove the validity
of our proposed approach. We will illustrate our critical findings and elaborate on the
prospects for the future work of this research.

5.1 Recapping the Research Questions

According to the current situation and bottlenecks faced by the KGQA system at Kadaster,
we outlined the following core research questions and subquestions to be solved. We will
present the answers to our subquestions one by one grounded in our critical findings and
together they constitute the answer to the core research question.

Given the current challenges in Kadaster Knowledge Graph(KKG), how can
we utilize ontology embedding and CoT prompting to build a resilient RAG
system to solve a KGQA problem?

1. How can the ontology elements of KKG be accurately aligned with relevant natural
language questions using ontology embeddings?

2. How can we design effective RAG and prompts with an LLM to generate accurate
SPARQL queries against the knowledge graph?

3. How can the SPARQL queries generated in the previous step, along with the corre-
sponding questions, be utilized to improve the KGQA system?

Answering SQ1: How can the ontology elements of KKG be accurately aligned
with relevant natural language questions using ontology embeddings? We pre-

o7

pared the ontology data that was suitable for our task in Data Preparation. We have
extracted the ontology concepts from the ontology of KKG based on a designed schema
and embedded the concepts into vector representations. These concepts encompass the
key information derived from the domain ontologies, vocabularies and taxonomies and
how these entities are interrelated in KKG. We designed a property path schema to il-
lustrate the triple relations between different entities for better query inference. We have
implemented the same embedding model for the word embedding of the questions in the
question answering system to ensure that the questions will be accurately aligned with rel-
evant ontology elements of KKG based on their semantic similarity in the identical vector
space. We elaborate the details of this part in Ontology Embedding in Chapter 3.

Answering SQ2: How can we design effective RAG and prompts with an LLM
to generate accurate SPARQL queries against the knowledge graph? We have
constructed a retrieval dataset by storing the ontology embedding we created in SQ1 in
a vector database. We utilized this dataset as the retrieval data of the RAG system and
designed a customized CoT prompt specialized in our task. We integrated a few-shot
learning section in the CoT prompt to better guide the RAG system to generate accurate
SPARQL queries. We carefully designed the learning examples of the few-shot learning to
align them with the CoT process to achieve a synergetic effect. For the language model,
we have used the LLM(GPT-4-32k) aligned with our embedding model. We formulate the
experimental details of this section in Prompt Engineering in Chapter 3.

Answering SQ3: How can the SPARQL queries generated in the previous step,
along with the corresponding questions, be utilized to improve the KGQA
system? We have streamlined a process to execute the SPARQL queries generated from
SQ2 automatically with the API of a built-in SPARQL executor of the KKG and return
the execution results as the answers to the questions. We have evaluated the SPARQL
accuracy and answer accuracy to validate the feasibility of our approach. We have also
tested novel questions based on the combination of the existing schemas of KKG on our
system to verify its adaptivity and robustness to improve and replace the current KGQA
system at Kadaster. The experimental results and the discussion of the evaluation are
presented in Chapter 4.

5.2 Contribution

We have had an overview on the needs of ease-of-use knowledge retrieval at Kadaster and
performed an audit on its current KGQA system. The current system is built with training
on a manually-designed question-SPARQL set. We have identified that the performance
of the current approach is too limited to fulfill the expectation of sufficient knowledge
retrieval function because of its lack of inference ability and failure in solving questions
from schema combinations. We have proposed the idea of establishing a new system based
on a new approach combining ontology embedding and CoT prompting to enhance the
question answering system. And we have designed a prototype to evaluate the approach
and validate the feasibility of our idea on the KKG. Via the validation, we have verified
that it is possible to improve the quality of KGQA by clearly presenting the knowledge
graph schema with the ontology and strengthening the reasoning of the language model.

o8

5.3 Future Research

This thesis has researched validating the idea of utilizing ontology embedding and CoT
prompting to enhance a KGQA system based on KKG. For the prototyping, we have
only developed a backend for the question answering system, which is sufficient to verify
the feasibility of this idea. But for the implementation in a production environment,
we have to make the system ease-of-use and provide potential users with a comfortable
user experience. A user-friendly frontend should therefore be further developed for and
integrated with our KGQA system and the Kadaster infrastructure in future research.
More work like dockerization can be done to further develop the prototype into a software
application for stable deployment and distribution. Moreover, answering one question
takes the new system around 10-25 seconds, depending on the question’s complexity and
the performance of the cloud infrastructure. More optimization work in system build-up
can be done to shorten the time.

Since this is a KGQA system specialized in the cadastral domain, a majority of the ques-
tions are location-related, which requires the user to give a location or an address of interest
in the question input(which can also be viewed in the evaluated question set in the Ap-
pendix). In our designed system, the method of handling the input location tp implement
a direct location inference on the knowledge graph via the generated SPARQL query. To
ensure the query details are aligned with the knowledge graph structure, we give concrete
instruction to the LLM in the few-shot learning examples. As a result, a limitation bound
to this feature is that it strictly requires the user to enter the location in the question in
a fixed format, which is the same format as the location registered in the Dutch cadas-
tral system. An example is that for an address containing the Dutch province of North
Holland, whose legislative name in the Dutch cadastral system is "Noord-Holland" with a
dash between two words. If the users ask a question with this address, they have to enter
"Noord-Holland" to refer to the province. Entering "Noord Holland" or "Noordholland"
without the dash, or an uncapitalized form will not work. This also applies to other levels
of location. We expect the system to be more flexible and not limit the users too much
on this aspect in the future. A better way to implement this is to use a location server,
allowing the location of interest to be auto-detected from the question and matched to the
pertinent location in KKG even if the entered spelling is a bit different. This is supposed to
be further improved in future research. Furthermore, higher knowledge graph quality will
also improve the KGQA. As we utilize ontology embedding and knowledge graph schema
inference as the foundation of KGQA, a more complete knowledge graph will facilitate
better inference and reasoning in the knowledge graph. At the moment Kadaster Knowl-
edeg Graph still suffers from incomplete knowledge graph elements and relations, which
is a common issue in the domain of knowledge graph and knowledge base. It requires
a lot of work on data preprocessing before ontology embedding. KKG also accommo-
dates different semantic web languages such as RDF(which provides the basic structure
for representing and linking data in the triple formats), OWL(which defines the ontology
and enable inference and relationships) and SHACL(which validates RDF data against
predefined rules to ensure it is structured correctly.). The ontology embedding method,
along with other ontology embedding or knowledge graph embedding approaches in prior
research, can not be directly applied to the SHACL data, which is still a constraint in the
domain and is worth further research. Above all, the validation of the proof-of-concept
was only conducted in KKG. Future research should explore its applicability to other KGs
such as DBpedia and Wikidata to fully harness its potential.

99

Reference

Yunshi Lan et al. “A survey on complex knowledge base question answering: Meth-
ods, challenges and solutions”. In: arXiv preprint arXiv:2105.11644 (2021).

P Russel Norvig and S Artificial Intelligence. “A modern approach”. In: Prentice
Hall Upper Saddle River, NJ, USA: Rani, M., Nayak, R., & Vyas, OP (2015). An
ontology-based adaptive personalized e-learning system, assisted by software agents
on cloud storage. Knowledge-Based Systems 90 (2002), pp. 33—-48.

Yunshi Lan et al. “Complex knowledge base question answering: A survey”. In:
IEEFE Transactions on Knowledge and Data Engineering (2022).

Yu Gu et al. “Beyond IID: three levels of generalization for question answering on
knowledge bases”. In: Proceedings of the Web Conference 2021. 2021, pp. 3477—
3488.

Yiheng Shu and Zhiwei Yu. “Distribution Shifts Are Bottlenecks: Extensive Eval-
uation for Grounding Language Models to Knowledge Bases”. In: Proceedings of
the 18th Conference of the European Chapter of the Association for Computational
Linguistics: Student Research Workshop. 2024, pp. 71-88.

Donghan Yu et al. “Decaf: Joint decoding of answers and logical forms for question
answering over knowledge bases”. In: arXiv preprint arXiv:2210.00063 (2022).
Saiping Guan et al. “Shared embedding based neural networks for knowledge graph
completion”. In: Proceedings of the 27th ACM international conference on infor-
mation and knowledge management. 2018, pp. 247-256.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla. “Sequence-to-sequence knowl-
edge graph completion and question answering”. In: arXiv preprint arXiv:2203.10321
(2022).

Philipp Christmann et al. “Look before you hop: Conversational question answering
over knowledge graphs using judicious context expansion”. In: Proceedings of the
28th ACM International Conference on Information and Knowledge Management.
2019, pp. 729-738.

Pavan Kapanipathi et al. “Leveraging Abstract Meaning Representation for Knowl-
edge Base Question Answering”. In: Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021. Ed. by Chengqing Zong et al. Online: Association
for Computational Linguistics, Aug. 2021, pp. 3884-3894. DOI: 10.18653/v1/2021.
findings-acl.339. URL: https://aclanthology.org/2021.findings-acl.339.
Kadaster. Het Kadaster registreert, beheert en faciliteert - Kadaster.nl particulier
— kadaster.nl. https://www.kadaster.nl/over-ons/het-kadaster/wat-doet-
het-kadaster. [Accessed 14-03-2024].

Kadaster. About us - Kadaster.nl particulier — kadaster.nl. https://www.kadaster.
nl/about-us. [Accessed 14-03-2024].

60

Kadaster. Kadaster Labs — labs.kadaster.nl. https://labs.kadaster.nl/. [Ac-
cessed 05-03-2024].

Kadaster. Alles over de BAG - Kadaster.nl zakelijk — kadaster.nl. https://www.
kadaster.nl/zakelijk/registraties/basisregistraties/bag. [Accessed 14-
03-2024].

Kadaster. Waar bestaat de BRK uit? - Kadaster.nl zakelijk — kadaster.nl. https:
//www . kadaster .nl/zakelijk/registraties/basisregistraties/brk. [Ac-
cessed 14-03-2024].

Kadaster. Geschiedenis Kadaster; overzicht jaartallen en gebeurtenissen - Kadaster.nl
particulier — kadaster.nl. https://www.kadaster.nl/over-ons/het-kadaster/
geschiedenis/mijlpalen. [Accessed 14-03-2024].

Basisregistratie Topografie (BRT) - Kadaster.nl zakelijk — kadaster.nl. https://
www.kadaster.nl/zakelijk/registraties/basisregistraties/brt. [Accessed
15-03-2024].

Kadaster. Basisregistratie Grootschalige Topografie (BGT) - Kadaster.nl zakelijk —

kadaster.nl. https://www.kadaster.nl/zakelijk/registraties/basisregistraties/

bgt. [Accessed 14-03-2024].

Kadaster. Loki in het algoritmeregister - Kadaster.nl particulier — kadaster.nl.
https://www.kadaster.nl/over-ons/beleid/algoritmeregister/loki. [Ac-
cessed 05-03-2024].

Kadaster. Kadaster Labs — labs.kadaster.nl. https://labs.kadaster.nl/cases/
loki. [Accessed 05-03-2024].

Guendalina Caldarini, Sardar Jaf, and Kenneth McGarry. “A literature survey of
recent advances in chatbots”. In: Information 13.1 (2022), p. 41.

Colin Raffel et al. “Exploring the Limits of Transfer Learning with a Unified Text-
to-Text Transformer”. In: Journal of Machine Learning Research 21.140 (2020),
pp. 1-67. URL: http://jmlr.org/papers/v21/20-074.html.

Alec Radford et al. “Improving language understanding by generative pre-training”.
In: (2018).

Hugo Touvron et al. “Llama: Open and efficient foundation language models”. In:
arXiv preprint arXiv:2302.13971 (2023).

Gemini Team et al. “Gemini: a family of highly capable multimodal models”. In:
arXiv preprint arXiv:2312.11805 (2023).

Victor Gutiérrez-Basulto and Steven Schockaert. “From Knowledge Graph Embed-
ding to Ontology Embedding? An Analysis of the Compatibility between Vector
Space Representations and Rules”. In: International Conference on Principles of
Knowledge Representation and Reasoning. 2018. URL: https://api.semanticscholar.
org/CorpusID:51935922.

Kathrin Blagec et al. “A curated, ontology-based, large-scale knowledge graph of
artificial intelligence tasks and benchmarks”. In: Scientific Data 9.1 (2022), p. 322.
Fatima N Al-Aswadi, Huah Yong Chan, and Keng Hoon Gan. “From ontology to
knowledge graph trend: ontology as foundation layer for knowledge graph”. In:
Iberoamerican Knowledge Graphs and Semantic Web Conference. Springer. 2022,
pp. 330-340.

Niel Chah. “OK Google, What Is Your Ontology? Or: Exploring Freebase Classifica-
tion to Understand Google’s Knowledge Graph”. In: arXiv preprint arXiv:1805.03885
(2018).

61

[38]

[39]

[40]

[41]
[42]
[43]
[44]

[45]

Patrick Lewis et al. “Retrieval-augmented generation for knowledge-intensive nlp
tasks”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 9459—
9474.

Jason Wei et al. “Chain-of-thought prompting elicits reasoning in large language
models”. In: Advances in neural information processing systems 35 (2022), pp. 24824~
24837.

Yu Gu et al. “Knowledge base question answering: A semantic parsing perspective”.
In: arXiv preprint arXiv:2209.04994 (2022).

Kangqi Luo et al. “Knowledge base question answering via encoding of complex
query graphs”. In: Proceedings of the 2018 conference on empirical methods in
natural language processing. 2018, pp. 2185-2194.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. “Improving multi-hop ques-
tion answering over knowledge graphs using knowledge base embeddings”. In: Pro-
ceedings of the 58th annual meeting of the association for computational linguistics.
2020, pp. 4498-4507.

Weiqiang Jin et al. “Improving embedded knowledge graph multi-hop question an-
swering by introducing relational chain reasoning”. In: Data Mining and Knowledge
Discovery 37.1 (2023), pp. 255-288.

Lihui Liu et al. “Joint knowledge graph completion and question answering”. In:
Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data
mining. 2022, pp. 1098-1108.

Yungi Qiu et al. “Stepwise reasoning for multi-relation question answering over
knowledge graph with weak supervision”. In: Proceedings of the 13th international
conference on web search and data mining. 2020, pp. 474-482.

Aleksandr Perevalov et al. “Knowledge graph question answering leaderboard: A

community resource to prevent a replication crisis”. In: arXiv preprint arXiv:2201.08174

(2022).

Peter Vinkler. The evaluation of research by scientometric indicators. Elsevier,
2010.

Anton Ninkov, Jason R Frank, and Lauren A Maggio. “Bibliometrics: methods for
studying academic publishing”. In: Perspectives on medical education 11.3 (2022),
pp. 173-176.

B Ian Hutchins et al. “The NIH Open Citation Collection: A public access, broad
coverage resource”. In: PLoS biology 17.10 (2019), e3000385.

Nees Van Eck and Ludo Waltman. “Software survey: VOSviewer, a computer pro-
gram for bibliometric mapping”. In: scientometrics 84.2 (2010), pp. 523-538.
Maarten Grootendorst. “BERTopic: Neural topic modeling with a class-based TF-
IDF procedure”. In: arXiv preprint arXiv:2203.05794 (2022).

Frederick Hayes-Roth, Donald A Waterman, and Douglas B Lenat. Building expert
systems. Addison-Wesley Longman Publishing Co., Inc., 1983.

Wei Shen et al. “Entity linking meets deep learning: Techniques and solutions”.
In: IEEFE Transactions on Knowledge and Data Engineering 35.3 (2021), pp. 2556—
2578.

Hui Chen et al. “Bilinear joint learning of word and entity embeddings for entity
linking”. In: Neurocomputing 294 (2018), pp. 12-18.

Da Luo, Jindian Su, and Shanshan Yu. “A BERT-based approach with relation-
aware attention for knowledge base question answering”. In: 2020 International
Joint Conference on Neural Networks (IJCNN). IEEE. 2020, pp. 1-8.

62

[56]

[57]

[58]

Ganggao Zhu and Carlos A Iglesias. “Exploiting semantic similarity for named
entity disambiguation in knowledge graphs”. In: Expert Systems with Applications
101 (2018), pp. 8-24.

Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. “Doser-a knowledge-
base-agnostic framework for entity disambiguation using semantic embeddings”. In:
The Semantic Web. Latest Advances and New Domains: 13th International Con-
ference, ESWC 2016, Heraklion, Crete, Greece, May 29-June 2, 2016, Proceedings
13. Springer. 2016, pp. 182-198.

Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. “Robust and collective
entity disambiguation through semantic embeddings”. In: Proceedings of the 39th
International ACM SIGIR conference on Research and Development in Information
Retrieval. 2016, pp. 425-434.

Gengchen Mai et al. “Relaxing unanswerable geographic questions using a spa-
tially explicit knowledge graph embedding model”. In: Geospatial Technologies for
Local and Regional Development: Proceedings of the 22nd AGILE Conference on
Geographic Information Science 22. Springer. 2020, pp. 21-39.

Gengchen Mai et al. “SE-KGE: A location-aware knowledge graph embedding
model for geographic question answering and spatial semantic lifting”. In: Trans-
actions in GIS 24.3 (2020), pp. 623-655.

Shirui Pan et al. “Unifying large language models and knowledge graphs: A roadmap”.
In: IEEE Transactions on Knowledge and Data Engineering (2024).

Xin Bi et al. “Unrestricted multi-hop reasoning network for interpretable ques-
tion answering over knowledge graph”. In: Knowledge-Based Systems 243 (2022),
p- 108515.

Xin Bi et al. “Boosting question answering over knowledge graph with reward inte-
gration and policy evaluation under weak supervision”. In: Information Processing
& Management 60.2 (2023), p. 103242.

Anjie Zhu et al. “Step by step: A hierarchical framework for multi-hop knowledge
graph reasoning with reinforcement learning”. In: Knowledge-Based Systems 248
(2022), p. 108843.

Qi Wang, Yongsheng Hao, and Jie Cao. “ADRL: An attention-based deep reinforce-
ment learning framework for knowledge graph reasoning”. In: Knowledge-Based
Systems 197 (2020), p. 105910.

Yu Wang et al. “Knowledge graph prompting for multi-document question answer-
ing”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. 17.
2024, pp. 19206-19214.

Tiezheng Guo et al. “Knowledgenavigator: Leveraging large language models for en-
hanced reasoning over knowledge graph”. In: Complex & Intelligent Systems (2024),
pp- 1-14.

Jie Jiao et al. “gMatch: Knowledge base question answering via semantic matching”.
In: Knowledge-Based Systems 228 (2021), p. 107270.

Kai Siong Yow et al. “Machine learning for subgraph extraction: Methods, appli-
cations and challenges”. In: Proceedings of the VLDB Endowment 16.12 (2023),
pp. 3864-3867.

Sareh Aghaei, Kevin Angele, and Anna Fensel. “Building knowledge subgraphs in
question answering over knowledge graphs”. In: International Conference on Web
Engineering. Springer. 2022, pp. 237-251.

Haitian Sun, Tania Bedrax-Weiss, and William Cohen. “PullNet: Open Domain
Question Answering with Iterative Retrieval on Knowledge Bases and Text”. In:

63

[64]

[65]

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-1JCNLP). Ed. by Kentaro Inui et al. Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 2380-2390. DOI: 10.18653/v1/D19-
1242. URL: https://aclanthology.org/D19-1242.

Jing Zhang et al. “Subgraph Retrieval Enhanced Model for Multi-hop Knowledge
Base Question Answering”. In: Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers). Ed. by Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio. Dublin, Ireland: Association for
Computational Linguistics, May 2022, pp. 5773-5784. DOI: 10.18653/v1/2022.
acl-long.396. URL: https://aclanthology.org/2022.acl-1long.396.

Petar Ristoski and Heiko Paulheim. “Rdf2vec: Rdf graph embeddings for data
mining”. In: The Semantic Web—-ISWC 2016: 15th International Semantic Web
Conference, Kobe, Japan, October 17-21, 2016, Proceedings, Part I 15. Springer.
2016, pp. 498-514.

Jan Portisch and Heiko Paulheim. “Walk this way! entity walks and property walks
for rdf2vec”. In: Furopean Semantic Web Conference. Springer. 2022, pp. 133-137.
Fatima Zohra Smaili, Xin Gao, and Robert Hoehndorf. “Onto2vec: joint vector-
based representation of biological entities and their ontology-based annotations”.
In: Bioinformatics 34.13 (2018), pp. i52-i60.

Fatima Zohra Smaili, Xin Gao, and R. Hoehndorf. “OPA2Vec: combining formal
and informal content of biomedical ontologies to improve similarity-based pre-
diction”. In: Bioinformatics 35 12 (2018), pp. 2133-2140. URL: https://api .
semanticscholar.org/CorpusID:13745253.

Fernando Zhapa-Camacho, Maxat Kulmanov, and Robert Hoehndorf. “mOWL:
Python library for machine learning with biomedical ontologies”. In: Bioinformatics
39.1 (2023), btac811.

Jiaoyan Chen et al. “Owl2vec*: Embedding of owl ontologies”. In: Machine Learning
110.7 (2021), pp. 1813-1845.

Tomas Mikolov et al. “Distributed representations of words and phrases and their
compositionality”. In: Advances in neural information processing systems 26 (2013).
Quoc Le and Tomas Mikolov. “Distributed representations of sentences and docu-
ments”. In: International conference on machine learning. PMLR. 2014, pp. 1188—
1196.

Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

Josh Achiam et al. “Gpt-4 technical report”. In: arXiv preprint arXiv:2303.08774
(2023).

Anthropic. Introducing the next generation of Claude — anthropic.com. https :
//www.anthropic.com/news/claude-3-family. [Accessed 09-02-2025]. 2024.
Henry Gilbert et al. “Semantic compression with large language models”. In: 2023
Tenth International Conference on Social Networks Analysis, Management and Se-
curity (SNAMS). IEEE. 2023, pp. 1-8.

Le-Minh Nguyen et al. “Semantic Parsing for Question and Answering over Schol-
arly Knowledge Graph with Large Language Models”. In: JSAI International Sym-
posium on Artificial Intelligence. Springer. 2024, pp. 284-298.

Xi Ye and Greg Durrett. “Explanation Selection Using Unlabeled Data for Chain-of-
Thought Prompting”. In: Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing. Ed. by Houda Bouamor, Juan Pino, and Kalika

64

[84]

[85]

[36]

Bali. Singapore: Association for Computational Linguistics, Dec. 2023, pp. 619—
637. DOL: 10.18653/v1/2023 . emnlp-main.41. URL: https://aclanthology.
org/2023.emnlp-main.41.

Zheyu Zhang et al. “Baby’s CoThought: Leveraging Large Language Models for
Enhanced Reasoning in Compact Models”. In: arXiv preprint arXiv:2308.01684

(2023).

Shan Chen et al. “Evaluating the ChatGPT family of models for biomedical reason-
ing and classification”. In: Journal of the American Medical Informatics Association
31.4 (2024), pp. 940-948.

HamadaM.ZAHERA et al. “Generating SPARQL from Natural Language Using
Chain-of-Thoughts Prompting”. In: International Conference on Semantic Systems.
2024. URL: https://api.semanticscholar.org/CorpusID:271202322.

Kurnia Muludi, Kaira Milani Fitria, Joko Triloka, et al. “Retrieval-Augmented Gen-
eration Approach: Document Question Answering using Large Language Model.”
In: International Journal of Advanced Computer Science & Applications 15.3 (2024).
Yilang Ding et al. “A General Approach to Website Question Answering with
Large Language Models”. In: SoutheastCon 2024. 2024, pp. 894-896. pDoOI: 10 .
1109/SoutheastCon52093.2024.10500166.

Sujoy Roychowdhury, Nishkarsh Jain, and Sumit Soman. “Unlocking Telecom Do-
main Knowledge Using LLMs”. In: 2024 16th International Conference on COM-

munication Systems € NETworkS (COMSNETS). IEEE. 2024, pp. 267-269.

Md Rashad Al Hasan Rony et al. “CarExpert: Leveraging Large Language Models
for In-Car Conversational Question Answering”. In: Proceedings of the 20238 Con-
ference on Empirical Methods in Natural Language Processing: Industry Track. Ed.
by Mingxuan Wang and Imed Zitouni. Singapore: Association for Computational
Linguistics, Dec. 2023, pp. 586-604. DOT: 10.18653/v1/2023.emnlp-industry.56.
URL: https://aclanthology.org/2023.emnlp-industry.56.

Cheol Ryu et al. “Retrieval-based Evaluation for LLMs: A Case Study in Korean
Legal QA”. In: Proceedings of the Natural Legal Language Processing Workshop

2023. Ed. by Daniel Preoiuc-Pietro et al. Singapore: Association for Computational
Linguistics, Dec. 2023, pp. 132-137. poI: 10.18653/v1/2023.n11p-1.13. URL:
https://aclanthology.org/2023.n11p-1.13.

Matthias Urban and Carsten Binnig. “Demonstrating CAESURA: Language Mod-
els as Multi-Modal Query Planners”. In: Companion of the 2024 International Con-
ference on Management of Data. 2024, pp. 472—-475.

Wikidata — wikidata.org. https://www.wikidata.org/wiki/Wikidata:Main_
Page. [Accessed 27-02-2025].

Home - DBpedia Association — dbpedia.org. https://www .dbpedia.org/. [Ac-
cessed 27-02-2025].

Riidiger Wirth and Jochen Hipp. “CRISP-DM: Towards a standard process model
for data mining”. In: Proceedings of the 4th international conference on the practical

applications of knowledge discovery and data mining. Vol. 1. Manchester. 2000,
pp. 29-39.

Colin Shearer. “The CRISP-DM model: the new blueprint for data mining”. In:

Journal of data warehousing 5.4 (2000), pp. 13-22.

Ahmet Soylu et al. “Enhancing public procurement in the European Union through
constructing and exploiting an integrated knowledge graph”. In: The Semantic

Web-ISWC' 2020: 19th International Semantic Web Conference, Athens, Greece,
November 2-6, 2020, Proceedings, Part II 19. Springer. 2020, pp. 430-446.

65

[93] Lisa Ehrlinger and Wolfram W6SS. “Towards a definition of knowledge graphs.”
In: SEMANTiICS (Posters, Demos, SuCCESS) 48.1-4 (2016), p. 2.

[94] Edward W Schneider. “Course Modularization Applied: The Interface System and
Its Implications For Sequence Control and Data Analysis.” In: (1973).

[95] Google. Introducing the Knowledge Graph: things, not strings — blog.google. https:
//blog . google/products/search/introducing-knowledge-graph-things-
not/. [Accessed 19-03-2024].

[96] Saurabh Shrivastava. Bring rich knowledge of people, places, things and local busi-
nesses to your apps — blogs.bing.com. https : //blogs . bing . com/ search -
quality-insights/2017-07/bring-rich-knowledge - of - people - places-—
things-and-local-businesses-to-your-apps. [Accessed 19-03-2024].

[97] Qi Zhu et al. “Collective knowledge graph multi-type entity alignment”. In: The
Web Conference 2020. 2020. URL: https://www.amazon.science/publications/
collective-knowledge-graph-multi-type-entity-alignment.

[98] Tom Stocky and Lars Rasmussen. Introducing Graph Search Beta | Meta — about.fb.com.
https://about.fb.com/news/2013/01/introducing-graph-search-beta/.
[Accessed 19-03-2024].

[99] Qi He, Bee-Chung Chen, and Deepak Agarwal. Building The LinkedIn Knowl-
edge Graph — linkedin.com. https://www.linkedin.com/blog/engineering/
knowledge/building-the-1linkedin-knowledge-graph. [Accessed 19-03-2024].

[100) Mark A. Musen. “The protégé project: a look back and a look forward”. In: AT
Matters 1.4 (June 2015), pp. 4-12. por: 10.1145/2757001.2757003. URL: https:
//doi.org/10.1145/2757001.2757003.

[101] Rebecca C Jackson et al. “ROBOT: a tool for automating ontology workflows”. In:
BMC bioinformatics 20 (2019), pp. 1-10.

[102] World Wide Web Consortium. RDF Schema 1.1 — w3.org. https://www.w3.org/
TR/rdf-schema/. [Accessed 23-12-2024]. 2014.

[103] Pierre-Antoine Champin. rdfs:domain and rdfs:range — perso.liris.cnrs.fr. https:
//perso.liris.cnrs.fr/pierre-antoine . champin/2001/rdf - tutorial/
nodel5.html. [Accessed 23-12-2024]. 2001.

[104] World Wide Web Consortium. OWL 2 Web Ontology Language Structural Specifi-
cation and Functional-Style Syntax (Second Edition) — w3.org. https://www.w3.
org/TR/owl2-syntax/. [Accessed 07-01-2025]. 2012.

[105] World Wide Web Consortium. SPARQL 1.1 Query Language — w3.org. https:
//www.w3.org/TR/sparqlil-query/. [Accessed 08-01-2025]. 2013.

[106] World Wide Web Consortium. RDF 1.1 Turtle — w3.org. https://wuw.w3.org/
TR/turtle/. [Accessed 11-01-2025]. 2014.

[107] World Wide Web Consortium. SKOS Simple Knowledge Organization System Ref-
erence — w3.org. https://www.w3.org/TR/skos-reference/. [Accessed 12-01-
2025]. 20009.

[108] Tom Brown et al. “Language Models are Few-Shot Learners”. In: Advances in
Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran
Associates, Inc., 2020, pp. 1877-1901. URL: https://proceedings.neurips.cc/
paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

[109] Laria Reynolds and Kyle McDonell. “Prompt programming for large language mod-
els: Beyond the few-shot paradigm”. In: Extended abstracts of the 2021 CHI con-
ference on human factors in computing systems. 2021, pp. 1-7.

66

[110]

[111]

[112]

—
—_

)

Lars-Peter Meyer et al. “Assessing SPARQL capabilities of Large Language Mod-
els”. In: arXiv preprint arXiv:2409.05925 (2024).

Yao Ge et al. “Few-shot learning for medical text: A review of advances, trends,
and opportunities”. In: Journal of Biomedical Informatics (2023), p. 104458.
Ziwei Ji et al. “Survey of hallucination in natural language generation”. In: ACM
Computing Surveys 55.12 (2023), pp. 1-38.

W Edwards Deming. Out of the Crisis, reissue. MIT press, 2018.

Abulhair Saparov and He He. “Language models are greedy reasoners: A systematic
formal analysis of chain-of-thought”. In: arXiv preprint arXiv:2210.01240 (2022).

67

Appendix A

Bibliometric Survey

High-quality academic publication sources pave the way for successful bibliometrics. There
are various well-known scholarly publication portals, such as Scopus, Web of Science
(WoS), and arXiv. For this bibliometric survey, analysis is performed using Scopus for its
rich interdisciplary publication coverage and complete bibliomrtrics extraction function-
ality.

A.1 Search Keywords

Knowledge Graph Question Answering Ontology Embedding
Knowledge Base* KGQA* Ontology Embedding*
Knowledge Graph* KBQA* Embedding*
Question Answering* RDF2vec
Knowledge Graph Embedding*

TABLE A.1: Search Keywords Table 1

Large Language Model Prompt Engineering Retrieval Augmented Generation

Large Language Model* Chain of Thought Prompt*
Least to Most Prompt*

TABLE A.2: Search Keywords Table 2

We use some approximate phrase search techniques to include more relevant publications
in which the search keywords show up not in the exactly same form but in a variation
form. For example, in the literature search mechanism of Scopus [55], asterisk * is added
to replace multiple characters anywhere in a word to discover any number or to denote a
character that might or might not be present. So for KGQA*, we find publications with
KGQA or KGQAS(Knowledge Graph Question Answering System, the acronym is used in
some papers to denote KGQA [56]). Also for the term Chain-of-Thought Prompting, some
publications use Chain-of-Thought Prompt or the variation without the hyphen, namely
Chain of Thought Prompting. For the first case, We use the asterisk Chain-of-Thought
Prompt* to include the variations and this applies to Least-to-Most Prompting as well.
For the second case, we use quotation mark "Chain of Thought Prompt*" to include all the
results with or without hyphen between the adjacent words. Actually we use quotation
mark for every term to make sure Scopus only returns the results in which the words of
each term are adjacent to each other to construct the term(e.g. Semantic Parsing), instead

68

of separate(e.g. Semantic AND Parsing). The case sensitivity of the first letter doesnt
matter in Scopus keyword search.

A.2 Search Queries

The search range in Scopus is limited to "Article title, Abstract and Keywords'. The
search queries must be developed in a way to address our subquestions formed in sub-
section 1.3.2. Based on our research question and keyword selection, the research can be
determined to consist of two parts, the first part of Knowledge Graph Embedding and the
second part of Knowledge Graph Question Answering Enhancement with LLM. These two
domains are relatively new but the research on them has flourished in recent years. At
the beginning, we consider using one united big search query to include both two parts,
but the search query combination ("Knowledge Graph*' OR "Knowledge Base*") AND
("Question Answering" OR "KGQA*" OR "KBQA*") AND ("Ontology Embedding" OR
"Embedding*" OR "RDF2vec") AND ("Prompt Engineering" OR "Retrieval Augmented
Generation" OR "Chain of Thought prompt™*" OR "Least to Most Prompt*") turns out to
return no results in Scopus. The reason may be that these two domains are researched
relatively independently so far. So after a careful review of different research domains,
the search query is divided and constructed in the format below. As it is shown that
the search query is curated for both Knowledge Graph Embedding and Knowledge Graph
Question Answering Enhancement with LLM:

Knowledge Graph Embedding ("Knowledge Graph*" OR "Knowledge
Base*") AND ("Question Answering" OR
"KGQA*" OR "KBQA*") AND ("Ontol-
ogy Embedding*" OR "Embedding*" OR
"RDF2vec" OR "Knowledge Graph Em-
bedding*")

KGQA Enhancement ("Large Language Model*") AND ("Ques-
tion Answering" OR 'KGQA*" OR
"KBQA*") AND ("Prompt Engineering"
OR '"Retrieval Augmented Generation"
OR '"Chain of Thought prompt*" OR
"Least to Most Prompt*")

TABLE A.3: Search Queries

The search of Knowledge Graph Embedding was conducted on June 18th, 2024, the same
as the search of KGQA Enhancement with LLM. While determining the search query
of Knowledge Graph Embedding, the search query ("Knowledge Graph*" OR "Knowl-
edge Base™") alone returns 173425 publications, which is an enormous number, because
knowledge graph and knowledge base are general terms that includes a lot of research spe-
cializations, but many of them are not related to knowledge-intensive question answering.
When ("Knowledge Graph*" OR "Knowledge Base*") AND ("Question Answering" OR
"KGQA*" OR "KBQA*"), the number of results is narrowed down to 3257. But still, it’s
a large publication set and not all these publications use knowledge graph embedding to
enhance question answering. So the final string ("Knowledge Graph*" OR "Knowledge
Base*") AND ("Question Answering" OR "KGQA*" OR "KBQA*") AND ("Ontology
Embedding" OR "Embedding*" OR "RDF2vec" OR "Knowledge Graph Embedding*") that

69

combines closely related keywords together is used. This search query is more concrete to
our research question in the perspective of Knowledge Graph Embedding and thus leads
to a results of 532.

Articles per Search String for Knowledge Graph Embedding (Scopus)

Synonyms for
"Knowledge 1 173425
Graph#"

Synonyms faor
"Knowledge
Graph*' + | 3757
Synonyms for
"Question
Answering"

Synonyms for
"Knowledge
Graph*" +

Synonyms for
"Question

Answering" +

Synonymeor T T T T T T T
"Ontology o 25000 50000 75000 100000 125000 150000 175000 200000

Embedding" Articles Count

%]

32

F1GURE A.1: Articles per Search Query for Knowledge Graph Embedding

While determining the search query of KGQA Enhancement with LLM, the search query
("Large Language Model*") alone returns 10611 publications, but similarly not each of
them is relevant to knowledge graph question answering. When a more directed string
combination ('Large Language Model*") AND ("Question Answering" OR "KGQA*" OR
"KBQA*") is tried, the number of results is narrowed down to 585. And since we specif-
ically use prompt engineering techniques and an external graph data source to enhance
the sparql generation of our question answering system, the final string ("Large Language
Model*") AND ("Question Answering" OR "KGQA*" OR "KBQA*") AND ("Prompt En-
gineering" OR "Retrieval Augmented Generation" OR "Chain of Thought prompt*" OR
"Least to Most Prompt*") is utilized and narrowed down the results to 47 in the end.

70

Articles per Search String for KGQA Enhancement with LLM (Scopus)

"Large Language | 10611
Model+"

"Large Language
Model#" +
synonyms for 1 585
"Question
Answering"

"Large Language
Model*" +
Synonyms for
"Qu_estion i a7
Answering" +
Synonyms for
"Prompt
Engineering" 0

T T T T T T T
2000 4000 6000 8000 10000 12000 14000
Articles Count

FIGURE A.2: Articles per Search Query for KGQA Enhancement with LLM

A.3 Inclusion and Exclusion Criteria of Publications on Sco-
pus

Inclusion and Exclusion criteria were set before the search process to reduce the chance
of bias in the article selection process. Requirements for inclusion and exclusion in the
bibliometric survey were developed to weed out any publications that didn’t meet those
standards. These conditions are listed in Table A.4. Consequently, items that satisfy the
inclusion criteria are included in the bibliometric survey if no exclusion criterion excludes
them.

The publications must, above all, address the topics listed in the subquestions. They must
also be published in conference proceedings, scientific journals or books. Any publications
that do not match the quality standard required for a bibliometric survey are filtered out
using the exclusion criteria. One of the selection criteria is the written language, for which
we only select publications written in English. The publishing date is another reason that
an article might be omitted. For Knowledge Graph Embeddings, the initial discussions
began in 2016, and ends in 2024. It is because representative research on ontology embed-
ding methodology like RDF2vec was first published in 2016, and has inspired a lot of other
research output of knowledge graph embedding since then, for the publication number of
them soared after 2016. And for KGQA Enhancement with LLM, the initial discussions
began in 2018 so we start the search date from 2018. Publications published before this
date are therefore excluded from the analysis. Furthermore, publications found through
the search string, but not related to our research question/subquestions are excluded, and
thus the subject area in Scopus is narrowed down to computer science for both search
strings to filter the literature.

71

Inclusion Criteria Exclusion Criteria

Publication includes search | Publication is not written in
string as specified in 2.3.2. English.

Publication is published in a | Publication itself is a confer-
conference proceeding, scien- | ence proceeding or in other
tific journals or book. unqualified formats.

Publication is peer-reviewed Publication focuses on topics
such as visual question an-
swering or machine transla-
tion, which are not related
to our research question/sub-
questions.

TABLE A.4: Inclusion and Exclusion Criteria of Publications on Scopus

A.4 Bibliographic Coupling

At the end, there are 388 English-written publications in total that meets the conditions
for Knowledge Graph Embedding, and 44 for KGQA Enhancement with LLM. Then the
metadata of these publications is extracted from Scopus. The metadata contains the ab-
stract, author(s), publication year, references and other attributes of each publication. The
first-stage topic classification and visualization is implemented on the extracted metadata.
The implementation is done via VOSviewer. For the extracted metadata, bibliographic
coupling analysis has been implemented with VOSviewer based on the unit of publica-
tion document. To guarantee that the publication is representative enough, the plan was
to select documents only with a minimum threshold of citation of 15 and exclude docu-
ments isolated from the bibliometric coupling network, thus 63 publications are filtered for
Knowledge Graph Embedding. However, since Large Language Model is a pretty recent
trending concept and the topic KGQA Enhancement with LLM is quite novel, with a com-
pact size of 44 publications, it is not practical to exclude all publication with less than 15
citations so only the 5 documents isolated from the bibliometric network are excluded and
39 are remained. In order to offset the effect of an unusually large number of references on
the weight of link strength calculations in certain publications, fractional counting is used
instead of full counting. The minimum cluster size is set to 10 to ensure representative-
ness considering the sample size. And finally in VOSviewer, we obtain a map of 4 clusters
for Knowledge Graph Embedding and a map of 3 clusters for KGQA Enhancement with
LLM, as well as the corresponding visualization of the maps. This clusering visualization
is shown in figure A.3 and A.4 respectively.

72

@
wu-(2021)

- parWW) othmam (2019)

zwicklbeﬁg.c (2016a)
01 957. e = ;,.f’E{f«iéklba.r (2016b)

b |u{j17) _ g "£
2 =" ché'nFﬂ“?“&T’ r{'

S papp@ii2017)
~

hua

chen(2019b)

hamilton
jia @021)

7/

wanwozo)“ ‘}\ Vi S g(2021b)
ren‘)ﬁ ; '"*'" \J.,L ‘ \
9‘19) %L chaudhary (2020)

zhu 2022) . do{2022)

yuanif2018)

FIGURE A.3: Bibliographic Coupling Knowledge Graph Embedding

73

kharitonava (2024)

)N
Iiévi.)24)
« anands(2024) . —

muludi(2024) e
~ = Ch9624) yang {2023)
- 7 choif@n24)
L prosser:(2024)
wa b —
s = ' v
= zhou,égml) < ;
= o’ i : shankas (2024)
éW%ZOZﬂ-) roychowdhiury (2024) =
55}5 VOSviewer

huangs(2024)

> ’gilb'023)

butalai2024) =

>4 w 2 rakshis(s
ryu@023) bord§(2024) ® L AT Y

F1cURE A.4: Bibliographic Coupling KGQA Enhancement with LLM

A.5 Topic Modeling

The clustering and visualization of VOSviewer narrow down the scope of publications to
make a compact selection of representative literature. In the next stage, topic modeling
is carried out on the compact selection to classify concrete topics with clusters and locate
the topics that are most related to our research and the representative documents of these
topics. Topic modeling is implemented with BERTopic and is implemented separated for
each research topic. Firstly, a data frame is constructed respectively for the VOSviewer
map and Scopus metadata files. These two data frames are merged together with a man-
ually made key to create a new data frame, like a SQL inner join operation. After the
merge, only metadata of the publications in the VOSviewer map file is retained in the new
data frame. From the new data frame, the abstract of each publication is retrieved and
serve as the input to BERTopic. For sentence embedding in the abstract text, sentence
transformer model all-MiniLM-L6-v2 is utilized. Each cluster is classified into a certain
number of topics with their corresponding representative documents. The classifies topics,
and the abstracts of representative documents are output and are stored locally in a struc-
tured data format for further literature review. Therefore, Json file is used as the output
format because the data is a bit complex and nested. After the preliminary bibliographic
coupling in VOSviewer, most unrelated clusters or publications are filtered out and thus
all the topics here are ensured to be necessarily highly associated with our research for
bibliometric survey.

A.6 Word Cloud Analysis

By performing a word cloud analysis on the document clusters obtained through topic
modeling, we can identify the most frequent and prominent keywords within each clus-
ter. This allows us to pinpoint the most relevant publications associated with a specific
topic. To ensure meaningful results, stop words have been preemptively removed from the
analysis, preventing their frequencies from influencing the keyword distribution.

Here are the word clouds of the four clusters of the topic Knowledge Graph Embedding;:

75

Cluster 1

ttent
E\]/lSeUr;'a lonqueStlon art
task entity

knowledge p_entities
5 b edsemantlc

answer
methodq uestlon answering

formatlon

now dge base
embedding

FIGURE A.5: Wordcloud of Cluster 1 - Knowledge Graph Embedding

Cluster 2

knowledge graph

event
f (A o hdils i) it
a ; embedding

question "ms Ner 1n<T | systen @ answer

q query information

FIGURE A.6: Wordcloud of Cluster 2 - Knowledge Graph Embedding

76

Here are

Cluster 3

relqylon

A entltles A

knowledge grap

KG model two method
task reasoning LM

exlstingquestion answering

based

FIGURE A.7: Wordcloud of Cluster 3 - Knowledge Graph Embedding

Cluster 4

krafbtwledgek-Ij

relatlonf

embeddin i

UESthﬂ answerln

queStlongrae h

entity

learning

method

E A.8: Wordcloud of Cluster 4 - Knowledge Graph Embedding

the word clouds of the three clusters of the topic KGQA Enhancement with LLM:

77

Cluster 5

SEJS'EE“d lmedical
USlngj estion a WO* rin e : domaln
g UNUEEEas) SnCHeraE b%Saeger
: LLM,result

o} application

dataperformance large language

F1cUure A.9: Wordcloud of Cluster 5 - KGQA Enhancement with LLM

Cluster 6
retrieval

model data task daoncs‘;{,.TSPt

question answering
dataset domain

language model RAG
| | M Powledge graph per formance

s large language
isinglNTOrmation question

FiGURE A.10: Wordcloud of Cluster 6 - KGQA Enhancement with LLM

knowledge

78

Cluster 7
Liser

rformance generation §
kl |owledge :
(T

=

show 1gurat1ve mé

| an U :gp Ill___)'ll"—\’-l G) gener‘ated-g
mplanauOﬂ I -8 method

=

Text
uestion answering—l large language

-C!dataset p—

FicURE A.11: Wordcloud of Cluster 7 - KGQA Enhancement with LLM

79

Appendix B

Full Documents of Customized
Triple Patterns

sor:Gemeente Same as wbk:Gemeente

page_content='Please bear in mind that the equivalence applies to the
individual level of class sor:Gemeente and class wbk:Gemeente in the
knowledge graph (owl:sameAs)'

metadata={
'description': 'instance of sor:Gemeente owl:sameAs instance of wbk:Gemeente'

}
Plot Lies in Municipality

page_content='Perceel within Gemeente,
subject:<sor:Perceel>predicate:<geo:sfWithin>object:<sor:Gemeente>'
metadata={

'subject': 'sor:Perceel',

'predicate': 'geo:sfWithin',

'object': 'sor:Gemeente',

'id': 'sor:Perceel geo:sfWithin sor:Gemeente;'

}
Building Lies in Neighborhood

page_content='Gebouw within Buurt,
subject:<sor:Gebouw>predicate:<geo:sfWithin>object:<wbk:Buurt>'
metadata={

'subject': 'sor:Gebouw',

'predicate': 'geo:sfWithin',

'object': 'wbk:Buurt',

'id': 'sor:Gebouw geo:sfWithin wbk:Buurt;'

3

80

Neighborhood Lies in District

page_content='Buurt within Wijk,
subject:<wbk:Buurt>predicate:<geo:sfWithin>object:<wbk:Wijk>'
metadata={

'subject': 'wbk:Buurt',

'predicate': 'geo:sfWithin',

'object': 'wbk:Wijk',

'id': 'wbk:Buurt geo:sfWithin wbk:Wijk;'

}

District Lies in Municipality

page_content='Wijk within Gemeente,
subject:<wbk:Wijk>predicate:<geo:sfWithin>object:<wbk:Gemeente>'
metadata={

'subject': 'wbk:Wijk',

'predicate': 'geo:sfWithin',

'object': 'wbk:Gemeente',

'id': 'wbk:Wijk geo:sfWithin wbk:Gemeente;'

X

Municipality Lies in Province

page_content='Gemeente within Provincie,
subject:<sor:Gemeente>predicate:<geo:sfWithin>object:<sor:Provincie>'
metadata={

'subject': 'sor:Gemeente',

'predicate': 'geo:sfWithin',

'object': 'sor:Provincie',

'id': 'sor:Gemeente geo:sfWithin sor:Provincie;'

3

81

Appendix C

The Complete CoT Prompt

The prompt is too long to be contained in one page so we divide it into two parts.

82

:You are a sematic web expert and you master advance Dutch language. You are provided with a vector database as an external data source to use
1 RAG to solve a spargl generation problem. The data source consists of ontology data of Dutch cadastral system, including triple relations between

1 classes and properties(object property or data property), subclass relations, and individual-class relations. You receive a user input question

| regarding Dutch cadastral information. Please only use the RAG data source, context of this prompt, as well as the question, to generate a SPARQL
| query that can extract the relevant data to return the answer to the question.

| Let's think step by step:

: 1. Analyze the question carefully. If you find any name of places of Netherlands in the question, it is the pertinent location to this question. The
) location can be a house address, a town(woonplaats/gemeente), a province(provincie) or a street(straat). If you figure out that a specific house
:address is needed but not provided in the question, ask "Wat is het adres waar u in geinteresseerd bent?".

I
12. The question is in Dutch. Use only Dutch to name the variables in your spargl query. While creating the SPARQL query, you only use the triple

i relations, subclass relations, and individual-class relations stored in the vector data source. With these ontology relations, please traverse the

: property paths to navigate through a sequence of relationships, which is useful for finding connections between entities that are several steps apart
1in the ontology. You can also use recursive query to connect the difference entities in the queryif necessary. Sometimes you need to use an inverse

!relation to trace back to a subject entity if necessary. For example, "Asor:ligtAan" or "Asor:maaktDeelUitVan".
3. Always use "DISTINCT" on the variable if you need to select or count this certain variable. We don't need duplications in the result.

4. Don't forget any prefix declaration of the sparqgl query. Check the prefix declaration you need in the query line by line and write them at the top.
You should only use the following prefixes:
‘owl': 'http://www.w3.0rg/2002/07/owl#',

I
I
I
|
I
I
|
I
I
i
I
'rdf': 'http://www.w3.0rg/1999/02/22-rdf-syntax-ns#',

1
: 'rdfs": 'http://www.w3.0rg/2000/01/rdf-schemat#’,

I

I

|

I

I

I

|

I

I

I

I

I

I

I

|

|

I

I

I

|

I

I

I

I

I

I

|

I

I

|

|

I

|

I

|

I

I

I

I

I

I

I

i

: 'nen3610": 'https://data.kkg.kadaster.nl/nen3610/model/def/’, i
: 'nen3610-shp': 'https://data.kkg.kadaster.nl/nen3610/model/shp/', :
1 'skos": 'http://www.w3.0rg/2004/02/skos/core#’, |
{ 'bag': 'http://bag.basisregistraties.overheid.nl/def/bag#',]
|'bag_begrip': "http://bag.basisregistraties.overheid.nl/id/begrip/", ;
1'brt': 'http://brt.basisregistraties.overheid.nl/def/top10nl#', :
1'wbk': 'https://data.labs.kadaster.nl/cbs/wbk/vocab/', i
) 'geo': 'http://www.opengis.net/ont/geosparql#', |
: 'kad': 'https://data.kkg.kadaster.nl/kad/model/def/', :
: 'kad-con': 'https://data.kkg.kadaster.nl/kad/model/con/', :
| 'kad-shp': 'https://data.kkg.kadaster.nl/kad/model/shp/", |
I'sor": 'https://data.kkg.kadaster.nl/sor/model/def/, :
|'sor-con': 'https://data.kkg.kadaster.nl/sor/model/con/', :
|'sor-shp': 'https://data.kkg.kadaster.nl/sor/model/shp/', :
! "bgt": "http://bgt.basisregistraties.overheid.nl/def/bgt#", :
: "bgt-pand": "http://bgt.basisregistraties.overheid.nl/id/pand/", :
: "bnode": "https://data.kkg.kadaster.nl/well-known/genid/", :
1 "brt": "http://brt.basisregistraties.overheid.nl/def/top10nl#", |
] "brt-gebouw": "http://brt.basisregistraties.overheid.nl/id/gebouw/", :
| "brt-scheme": "http://brt.basisregistraties.overheid.nl/top10nl/id/scheme/", :
| "brt-shp": "http://brt.basisregistraties.overheid.nl/top10nl/id/shape/", :
: "foaf": "http://xmlns.com/foaf/0.1/", :
L "gebouw": "https://data.kkg.kadaster.nl/id/gebouw/", :
1 "bouwzone": "https://data.kkg.kadaster.nl/id/gebouwzone/", :
1 "gemeente": "https://data.kkg.kadaster.nl/id/gemeente/", |
"http://bpdmc2.org/def/mim#", :
: "http://purl.org/linked-data/cube#", :
|

|

I

I

I

I

I

I

I

|

|

I

|

| "prov": "http://www.w3.org/ns/prov#",

1 "gml": "http://www.opengis.net/ont/gml#",
http://www.w3.0rg/2006/time#",

| shacl": "http://www.w3.org/ns/shacl#",

: 'xsd': 'http://www.w3.0rg/2001/XMLSchema#',

i 'uom': <http://www.opengis.net/def/uom/0GC/1.0/>,

i 'geof': <http://www.opengis.net/def/function/geosparql/>

FiGure C.1: The Complete CoT Prompt Part 1

83

! 5. You should not include irrelevant ontology that are not in the data source or in the prompt, in the generated SPARQL query. If you have a
I location name of Netherlands in the label of filter, add @nl after the name. Sometimes the user input location may have a typo and you

1 should correct it in the query. Make sure all the location names are written in the complete form of the Dutch way. For example, you should
: use 's-Gravenhage instead of Den Haag or The Hague, use 's-Hertogenbosch instead of Den Bosch.

|

|
: 6.The concepts of Woonplaats and Gemeente are different. They can have the same name, such as woonplaats 'Utrecht' and gemeente

| 'Utrecht’, but mean different things. In the question, if the user gives a city name without specifying it is woonplaats or gemeente, consider it
I as woonplaats. For example, if the user asks "Hoeveel kerken zijn er in Utrecht?", the user means Woonplaats Utrecht. But if the user asks

: "Hoeveel kerken zijn er in gemeente Utrecht?", that means Gemeente Utrecht.

|

| 7. For the concept "perceel", there are synonyms such as "tuin" and "kavel" to be used interchangeably in the question. For the concept
| "bouwjaar", which is a property of "gebouw", synonyms such as "oorspronkelijk bouwjaar" and "leeftijd" are used interchangeably in the
: question. For the concept "status"”, synonyms such as "bouw status" is used interchangeably in the question.

|

8. "huis" and "woning" refer to a verblijfsobject(vbo) with woonfunctie as gebruiksdoel.

|
|
i
|
19. If you are asked to show an administrative entity, like "Laat me mijn wijk/gemeente zien, adres Gustav Mahlerlaan 10, Amsterdam.",
| besides the data iri and geometry of the entity, you should also show the name of the administrative entity.

I

|

: 10. Following this chain-of-thought process, you can learn from some example questions and their corresponding SPARQL query solutions
| {formatted_examples}.

|

I

: 11.1f you need a specific address to answer the question but is not provided by the question, or the question is not cadastral related, don't
1 generate a query. Say you can't help with the question.

12. Check again if you make sure all necessary prefix declarations are added properly to the query.

13. In the answer, only give the sparql query. Don't output any context or description.
Context: {{context}}
Question: {{question}}

Answer:

FiGURE C.2: The Complete CoT Prompt Part 2

84

Appendix D

The Few-shot Examples

85

|
| Original question in Dutch:
: Hoeveel ziekenhuizen zijn er in de provincie Gelderland?

|
| English Translation:
: How many hospitals are there in the province of Gelderland?

: Query Solution:

| PREFIX bag: <http://bag.basisregistraties.overheid.nl/def/bagh>
: PREFIX kad: <https://data.kkg.kadaster.nl/kad/model/def/>

| PREFIX geo: <http://www.opengis.net/ont/geospargl#>

| PREFIX sor: <https://data.kkg kadaster.nl/sor/model/def/>

: PREFIX sor-con: <https://data.kkg.kadaster.nl/sor/model/con/>
| PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX provincie: <https://data.kkg.kadaster.nl/id/provincie/>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schematt>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

prefix whk: <https://data.labs.kadaster.nl/cbs/wbk/vocab/>

SELECT (COUNT(DISTINCT ?geb) as ?aantal)
WHERE {{
?vbo a sor:Verblijfsobject;
sor:oppervlakte ?wo;
sor:hoofdadres ?na;
sor:maaktDeelUitVan ?geb.

?geb a sor:Gebouw;
sor:oorspronkelijkBouwjaar ?bo;
geo:hasGeometry [

geo:asWKT ?geo_wgs84;
rdfs:isDefinedBy bag:
1.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
OPTIONAL {{ |
?per a sor:Perceel; |
sor:hoortBij ?na; :
sor:oppervlakte ?po; |
1 :
|

OPTIONAL {{ |
?gebz sor:hoortBij ?vbo; :
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

kad:gebouwtype/skos:preflLabel ?tg.
1

?wbk_buurt a wbk:Buurt;
rdfs:label ?buurt_naam;
geo:hasGeometry [
geo:asWKT ?buurt_geo wgs84;
I
~geo:sfWithin ?geb;
geo:sfWithin ?wbk_wijk.

Pwhbk_wijk a whk:Wijk;
rdfs:label ?wijk_naam;
geo:hasGeometry [
geo:asWKT ?wijk_geo_wgs84;
I
geo:sfWithin ?wbk_gemeente.

?whbk_gemeente a wbk:Gemeente;
rdfs:label ?wbk_gemeente_naam;
~owl:sameAs ?gemeente.

?gemeente geo:sfWithin ?provincie;
skos:prefLabel ?gemeente_naam.

?provincie a sor:Provincie;
skos:preflLabel "Gelderland" @nl.

FILTER (?tg = "ziekenhuis"@nl)

j
U

E=

|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
: MIT 9999
|

FIiGUre D.1: Few-shot Example 1

86

| Original Question in Dutch:
: Hoeveel panden staan er aan de straat zandweg in de gemeente Maasdriel die voor 1980 zijn gebouwd?
|
| English Translation:
: How many buildings are there on the street Zandweg in the municipality of Maasdriel that were built before 19807
|
| Query Solution:
| PREFIX bag: <http://bag.basisregistraties.overheid.nl/def/bag=>
| PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schemai>
| PREFIX sor: <https://data.kkg.kadaster.nl/sor/model/def/>
I PREFIX sor-con: <https://data.kkg.kadaster.nl/sor/model/con/>
| PREFIX kad: <https://data.kkg kadaster.nl/kad/model/def/>
| PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#>
: PREFIX geo: <http://www.opengis.net/ont/geosparql#>
| prefix xsd: <http://www.w3.0rg/2001/XMLSchematt>
| prefix owl: <http://www.w3.0rg/2002/07/owl#>
: prefix wbk: <https://data.labs kadaster.nl/cbs/wbk /vocab/>
|
I SELECT (COUNT(DISTINCT ?geb) as ?aantal)
! WHERE {
?openbareruimte a sor:OpenbareRuimte;
skos:preflabel "Zandweg" @nl;
Asor:ligtAan ?na.

?na a sor:Nummeraanduiding;
Asor:hoofdadres ?vbo.

?vbo a sor:Verblijfsobject;
sor:oppervlakte ?wo;
sor:maaktDeelUitVan ?geb.

?geb a sor:Gebouw;
sor:oorspronkelijkBouwjaar ?bo;
geo:hasGeometry [
geo:asWKT ?geo_wgs84;
rdfs:isDefinedBy bag:
15
?wbk_buurt a wbhk:Buurt;
“geo:sfWithin ?geb;
geo:sfWithin ?wbk_wijk.

?wbk_wijk a wbk:Wijk;
geo:sfWithin ?wbk_gemeente.

?wbk_gemeente a wbk:Gemeente;
Aowl:sameAs ?gemeente.

?gemeente a sor:Gemeente;
owl:sameAs ?wbk gemeente;
skos:prefLabel "Maasdriel"@nl.

FILTER (?bo < "1980"*xsd:gYear)

}
LIMIT 9999

FIGURE D.2: Few-shot Example 2

87

| Original Question in Dutch:

| Hoeveel woningen staan er aan de richtersweg in de woonplaats Ugchelen?

|
|
|
| English Translation:
|
|

|
| Query Solution:

I PREFIX bag: <http://bag.basisregistraties.overheid.nl/def/bagt>
| PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schematt>

| PREFIX sor: <https://data.kkg.kadaster.nl/sor/model/def/>

| PREFIX kad: <https://data.kkg.kadaster.nl/kad/model/def/>

| PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#>

| PREFIX geo: <http://www.opengis.net/ont/geospargl#>

: PREFIX sor-con: <https://data.kkg.kadaster.nl/sor/model/con/>

|
| SELECT (COUNT(DISTINCT ?geb) as ?aantal)
I WHERE {
?woonplaats a sor:Woonplaats;
skos:prefLabel "Ugchelen"@nl;
Asor:ligtin ?openbareruimte.

?openbareruimte a sor:OpenbareRuimte;
skos:preflLabel "Richtersweg" @nl;
Asor:ligtAan ?na.

?na a sor:Nummeraanduiding;
sor:huisnummer ?huisnummers;
Asor:hoofdadres ?vbo.

?vbo a sor:Verblijfsobject;
sor:oppervlakte ?wo;
sor:maaktDeelUitVan ?geb;
sor:gebruiksdoel sor-con:woonfunctie.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

: ?geb a sor:Gebouw;

| sor:oorspronkelijkBouwjaar ?bo;
| geothasGeometry [

: geo:asWKT ?7geo_wgs84;
| rdfs:isDefinedBy bag:

| I

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

OPTIONAL {
?per a sor:Perceel;
sor:hoortBij ?na;
sor:oppervlakte ?po;

}

OPTIONAL {
?gebz sor:hoortBij ?vbo;
kad:gebouwtype/skos:preflabel ?tg.

}

— =

IMIT 95999

FiGURE D.3: Few-shot Example 3

88

How many houses are there on Richtersweg in the town of Ugchelen?

| Original Question in Dutch:
|
|
I

: English Translation:

| Which municipality in the province of South Holland has the most public space (streets)?

I

: Query Solution:

| PREFIX bag: <http://bag.basisregistraties.overheid.nl/def/bag#=
| PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf schematt>

: PREFIX sor: <https://data.kkg.kadaster.nl/sor/model/def/>

| PREFIX sor-con: <https://data.kkg.kadaster.nl/sor/model/con/>
| PREFIX kad: <https://data.kkg.kadaster.nl/kad/model/def/>

: PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#>

| PREFIX geo: <http://www.opengis.net/ont/geosparql#>

| PREFIX owl: <http://www.w3.0rg/2002/07 [ow #>

: prefix wbk: <https://data.labs.kadaster.nl/cbhs/wbk fvocab/>

|
| SELECT ?gemeente (COUNT(DISTINCT ?openbareruimte) as ?aantal)
" whHERE {
?openbareruimte a sor:OpenbareRuimte;
Asor:ligtAan ?na.

?na a sor:Nummeraanduiding;
Asor:hoofdadres ?vbo.

?vbo a sor:Verblijfsobject;
sor:oppervlakte ?wo;
sor:maaktDeelUitVan ?geb.

?geb a sor:Gebouw;
sor:oorspronkelijkBouwjaar ?ho;
geo:hasGeometry [

geo:asWKT ?gebouw_geo wgs84;
rdfs:isDefinedBy bag:
1.

OPTIONAL {
?per a sor:Perceel;
sor:hoortBij ?na;
sor:oppervlakte ?po.

}

OPTIONAL {
?gebz sor:hoortBij ?vbo;
kad:gebouwtype/skos:prefLabel ?tg.
}

?wbk_buurt a wbk:Buurt;
rdfs:label ?buurt_naam;
geo:hasGeometry [
geo:asWKT ?buurt_geo wgs84;
I;
~geo:sfWithin ?geb;
geo:sfWithin ?wbk_wijk.

?whbk_wijk a whbk:Wijk;
rdfs:label ?wijk_naam;
geo:hasGeometry [
geo:asWKT ?wijk_geo wgs84;
I
geo:sfWithin ?wbk_gemeente.

?wbk_gemeente a wbk:Gemeente;
rdfs:label ?whk_gemeente naam;
~rowl:sameAs ?gemeente.

?gemeente skos:preflLabel ?gemeente_naam;
geo:sfWithin ? provincie.

?provincie a sor:Provincie;
skos:prefLabel "Zuid-Holland" @nl.

}
GROUP BY ?gemeente

| ORDER BY DESC{COUNT(DISTINCT ?openbareruimte))
ILUMIT 1

FIGURE D.4: Few-shot Example 4

89

'welke gemeente in de provincie Zuid-Holland heeft de meest openbare ruimte?

: Original Question in Dutch:

| Mag ik het dichtstbijzijnde gemeentehuis vanaf het adres Bisschopstraat 19A-02 Rotterdam zien?
|

: English Translation:

1 Can | see the nearest town hall from the address Bisschopstraat 19A-02 Rotterdam?
|

: Query Solution:

| PREFIX bag: <http://bag.basisregistraties.overheid.nl/def/bag#>

| PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schematt>

: PREFIX sor: <https://data.kkg.kadaster.nl/sor/model/def/>

| PREFIX sor-con: <https://data.kkg.kadaster.nl/sor/model/con/>

: PREFIX kad: <https://data.kkg.kadaster.nl/kad/model/def/>

| PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#>

| PREFIX geo: <http://www.opengis.net/ont/geosparql#>

: PREFIX nen3610: <https://data.kkg. kadaster.nl/nen3610/model/def/>

| prefix brt: <http://brt.basisregistraties.overheid.nl/def/top10nl#>

| prefix uom: <http://www.opengis.net/def/uom/0G(C/1.0/>

: prefix geof: <http://www.opengis.net/def/function/geospargl/>

: SELECT ?gebouwShape ?gemeentehuis geometrie wgs84 ?gemeentehuis ?afstand
| WHERE {{
?woonplaats a sor:Woonplaats;

skos:prefLabel "Rotterdam" @nl;

Asor:ligtin ?openbareruimte.

?openbareruimte a sor:OpenbareRuimte;
skos:preflLabel "Bisschopstraat"@nl;
Asor:ligtAan ?na.

?na a sor:Nummeraanduiding;
sor:huisnummer 19;
Asor:hoofdadres ?vbo.
Optional{{?na sor:huisletter "A"}}
Optional{{?na sor:huisnummertoevoeging "02"}}

?vbo a sor:Verblijffsobject;
sor:maaktDeelUitVan ?geb.

?geb a sor:Gebouw;
sor:oorspronkelijkBouwijaar ?bo;
geo:hasGeometry [

geo:asWKT ?gebouwShape;
rdfs:isDefinedBy bag:
1.

?gemeentehuis a sor:Gebouwzone;
kad:gebouwtype ?gebouwtype;
geo:hasGeometry/geo:asWKT ?gemeentehuis_geometrie wgs84.
?gebouwtype skos:preflLabel "gemeentehuis" @nl.
BIND(geof:distance(?gebouwShape, ?gemeentehuis_geometrie wgs84, uom:metre) as ?afstand)
1
ORDER BY ?afstand
LIMIT1

FiGURE D.5: Few-shot Example 5

90

Appendix E

Questions and Queries

The details of the questions and queries in the experiment are available in the GitHub
repository of this project.

91

