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Abstract

Gait entrainment occurs when a human synchronizes the period of their gait cycle
to the period of an external, rhythmic input. Gait entrainment can be done with an
ankle exoskeleton; the exoskeleton delivers small torque pulses to the human ankle
provoking a subconscious adaptation of gait cadence.

Researchers from the Neuromuscular Robotics research group at the University
of Twente use the JLO, a lower limb exoskeleton, to study gait entrainment. The
JLO’s current controller was designed using model-free techniques, and provides
sub-standard torque tracking, severely limiting the ability to investigate gait entrain-
ment. Therefore, the goal of this thesis is to create a model of the exoskeleton
that facilitates controller design, and to use that model in designing a controller that
minimizes the error between the desired torque pulses and the measured pulses.

To this end, the JLO is modeled as a nonlinear system. The combination of feed-
back linearizing control and feedforward control results in a lower root mean square
error (RMSE) than the JLO’s current, model-free controller. Simulation experiments
showed that when tracking torque pulses, the proposed controller has an RMSE of
0.6361 Nm, while the current controller has an RMSE of 0.7368 Nm. The feedback
linearizing controller thus improves the current torque tracking capabilities of the
JLO exoskeleton, and better facilitates the study of gait entrainment as a rehabilita-
tive strategy.
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Summary

The JLO is a lower-limb ankle exoskeleton that can be used to apply torque pulses
to the ankle. Torque pulses are a method to incite gait entrainment during walking,
so the ability to apply consistent pulses is a prerequisite for gait entrainment studies.
The quality of the torque pulses supplied by the exoskeleton is partly determined by
the exoskeleton’s controller, and the torque tracking of the JLO’s current controller
left room for improvement. The current controller is the product of model-free con-
troller design, so the goal of this thesis was to explore any improvements in torque
tracking offered by model-based controller design.

In service of modeling the JLO, this thesis coupled a transfer function that describes
the closed-loop motor dynamics, to a nonlinear model of the spring force transmitted
from the motor to the ankle via a Bowden cable. Characterization of the motor’s
closed dynamics revealed limits on the motor’s velocity and acceleration which was
another factor affecting torque tracking. In spite of these limitations, simulations
showed that combining a feedforward controller with a feedback linearizing controller
resulted in a root mean square of 0.6361 Nm when tracking torque pulses with a
magnitude of 10 Nm. The error of the new controller is lower than that of the current
feedback controller, which is 0.7368 Nm.

While The JLO model presented in this thesis was sufficient for controller design,
future iterations of the model should focus on experimental validation of the designed
controller, and on expanding the JLO model to more accurately portray the friction
and hysteresis present in the Bowden cable.
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Chapter 1

Introduction

At 70 years, the global average life expectancy in 2021 is more than double what
it was in 1900 [1]. Accompanying this increase in life expectancy is an increase
in the prevalence of abnormal gait patterns, as age-related diseases often present
with a degradation of gait characteristics. Aging predisposes us to neurodegenera-
tive disorders, e.g., Parkinson’s disease, and these disorders often present with an
increased variability in gait parameters [2].

The importance of rehabilitation for gait disorders cannot be overstated; rehabilita-
tion improves autonomy, and the quality of life of the patients [3]. Whereas past re-
habilitative techniques demanded the continuous intervention of a physiotherapist,
there is currently a pivot towards robot-assisted rehabilitative strategies. Robot-
assisted rehabilitative strategies have experienced an uptick because they reduce
the physical strain on the physiotherapist, and they can better guarantee the re-
peatability of the exercises [4].

A potential form of robot-assisted rehabilitation is cueing. Cueing is the use of ex-
ternal stimuli, like tactile vibrations or a metronome, to aid movement continuity [5].
Sejdic et al. [6] showed that auditory cues reduced stride interval variability in fif-
teen healthy participants, and [7] hypothesized that rhythmic auditory stimulation
improved the gait velocity, cadence, and stride length of nineteen patients with idio-
pathic Parkinson’s disease.

Cueing has thus been proposed as a way of tackling gait disorders because human
locomotion is susceptible to entrainment; entrainment being the human capacity
to synchronize our movement with an external, rhythmic stimuli [8]. Ahn et al. [9]
showed that subjects modulated their gait frequency untill it coincided with the fre-
quency of a series of plantarflexion torque pulses applied at the ankle. Regardless
of the gait phase in which the torque pulses were first applied, in entrained gait, the
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2 CHAPTER 1. INTRODUCTION

torque pulses occurred at a point in the gait phase where they assist ankle push-
off [10].

1.1 Motivation

Similar to [9], the mechanism for instigating entrainment in this thesis is a series
of plantarflexion torque pulses applied at regular intervals to the ankle. The pulses
are designed have a period that is 25–50 ms shorter than a person’s average stride
duration; the idea being that a person will modify their walking such that their gait
cycle has the same period as that of the torque pulses.

Accurate, and repeatable experiments on gait entrainment require a lower limb ex-
oskeleton that can deliver torque pulses at any point in the gait cycle. In [11],
torque pulses that have a trapezoidal shape as depicted in Figure 1.1 were ap-
plied using the JLO, which is a lower-limb exoskeleton developed at the University
of Twente [12]. The exoskeleton is shown in Figure 1.2. The exoskeleton was de-
signed to be lightweight, robust and capable of supporting users during dynamic
movements like walking, running, and jumping. The exoskeleton is able to provide
up to 20 Nm of plantarflexion torque to the user, and the controller has a bandwidth
of 8 Hz [12].
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Figure 1.1: A series of the desired torque pulses to be applied to the ankle. The
torque pulses have a trapezoidal shape.



1.1. MOTIVATION 3

Figure 1.2: A participant wearing the JLO exoskeleton on their right foot [11].

Exoskeletons such as the JLO typically have a low-level and a high-level controller.
The high-level controller determines the torque to be sent to the exoskeleton, and
the low-level controller enforces the torque demanded by the high-level controller.
The low-level controller most commonly used with the JLO is the PD* controller
proposed by Zhang et al [13]. The controller’s proportional term acts on the error
between the desired torque and the measured torque, but the derivative term acts
on the motor velocity, instead of the derivative of the torque error. The PD* controller
was designed using model-free techniques which entailed tuning the controller gains
untill the system response was deemed satisfactory.

Mahdian et al. [11] studied the JLO’s ability to deliver torque pulses during all phases
of the gait cycle. Per their research, combining the PD* controller with the iterative
learning controller proposed by [13] improved the torque tracking root mean square
error (RMSE) of the JLO from 3.5 Nm to 2 Nm [11]. Zhang et al. [13], however,
reported an RMSE of 0.57 Nm when the PD* controller was used with an iterative
learning controller.

Furthermore, although combining the iterative learning controller with the PD* con-
troller improved torque tracking compared to only the PD* controller, the improve-
ment is not consistent for all phases of the gait cycle. Torque tracking in periods
of high ankle velocity, like early stance or ankle push off, remain suboptimal [11].
Mahdian et al. [11] ascribed this discrepancy in RMSE to the velocity limits of the
JLO’s actuator.

Besides the velocity limits, the JLO’s inability to consistently deliver torque pulses
might be an issue with the controller bandwidth, or the exoskeleton setup. This
thesis is thus born out of the need to delineate the JLO’s frictional and elastic char-
acteristics, in a bid to improve the system’s torque tracking.
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1.2 Research goals

The goal is to create a controller for the JLO using model-based techniques for
controller design. The following sub questions will aid in accomplishing this goal:

1. What is a competent model for the motor dynamics?

2. What is a competent model for the stiffness of the system?

3. How can the friction in the system be modeled?

4. What are the factors limiting the magnitude of torque pulses that the JLO can
deliver?

5. How can the controller compensate for the load-side disturbance induced by
the wearer?

1.3 Report organization

The subsequent sections of this thesis provide more information about the model-
ing and control system design process. Chapter 2 details the equations that de-
scribe the exoskeleton and motor dynamics. The process of identifying the transfer
function from the desired motor velocity to the actual motor velocity is presented in
Chapter 3. Chapter 4 is about the process for identifying the stiffness characteristics
of the system. Chapter 5 delves into the design of a feedback linearising controller
and compares it to the current PD* controller, and this thesis is rounded off with a
discussion of the research in Chapter 6, and a conclusion in Chapter 7.



Chapter 2

Modeling the JLO

Figure 2.1 illustrates the exoskeleton setup, and how the individual components are
assembled. The exoskeleton consists of a shank frame which is connected to a
foot frame with a set of ball bearings whose location approximates the ankle’s axis
of rotation in the sagittal plane. The exoskeleton provides a plantar-flexion torque
around the ankle by pulling the Bowden cable upwards [14].

Figure 2.1: Schematic of the ankle exoskeleton [14]. The directions for positive
motion of the ball screw and positive rotation of the ankle are indicated
by the purple-, and red-colored arrows respectively.

Moog’s SMB82 motor powers the exoskeleton, and an aluminum coupler connects
the motor to the Misumi ball screw. The ball screw transmission is used to convert
rotary motion to linear motion. The ball screw pulls the Bowden cable by way of two
aluminum rods that slide through an aluminum block. The Bowden cable is in series
with a spring which is connected to the foot frame of the exoskeleton.

5



6 CHAPTER 2. MODELING THE JLO

The exoskeleton is equipped with a loadcell to measure the force transmitted by the
Bowden cable, and an absolute magnetic encoder measures the exoskeleton angle.
The motor has current sensors from which the motor torque can be calculated, and
an encoder to provide position and velocity information. Real-time control of the
exoskeleton is facilitated by the EtherCAT protocol that is used to connect the motor
and exoskeleton. Signals are sent and received via the TwinCAT software user
interface.

2.1 Equations of motion for the exoskeleton

Figure 2.2 shows an ideal physical model of the exoskeleton system. The equations
of motion are derived from the ideal physical model. Table 2.1 explains the variables
and parameters that appear in Figure 2.2, and in the equations of motion.

Figure 2.2: Ideal physical model showing the electromechanical domain of the ex-
oskeleton.

The ball screw has a transmission ratio of λ (m). On the left hand side of the screw
transmission, the torque input, τ1 is given by:

τ1(t) = τm(t) − Icθ̈m(t) − Bcθ̇m(t) (2.1)

θ1(t) = θm(t). (2.2)

The spring, inertial, frictional, and gravitational forces on the right hand side of the
screw transmission are reflected to a point before the screw transmission:

τ1 = λF1 = λ
[
mc

(
rρ̈(t) − λθ̈m(t)

)
+ Fs(t) + mcg + Ff (t)

]
. (2.3)

τm(t) = Icθ̈m(t) + Bcθ̇m(t) + λ
(
mc

(
λθ̈m(t) − rθ̈e(t)

)
+ Fs + mcg + Ff (t)

)
(2.4)

Equation 2.4 is the combination Equations 2.1, 2.2, and 2.3 rewritten so that the
motor torque is on the left hand side. Furthermore, the equation of motion for the
right hand side of the exoskeleton joint is:

Ieθ̈e + Beθ̇e = τs. (2.5)
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Lastly, the electrical dynamics of the motor are summarized by the following equa-
tions [15]:

u(t) = Li̇(t) + Ri(t) + Keθ̇m(t) (2.6)

τm(t) = Kti(t). (2.7)
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Table 2.1: Important parameters for describing the equations of motion of the ex-
oskeleton.

Symbol Description Value Unit

1

λ Screw transmission ratio 0.005
2π

m
Ke Back electromotive force constant 0.23 Vs
Kt Torque constant 0.40 Nm

A

L Stator inductance 1.5190 H
R Stator resistance 0.9268 Ohm
g Gravitational constant 9.81 ms−2

2

Ic Inertia of motor & screw transmission kgm2

mc Mass of spring & Bowden cable kg
Bc Damping coefficient of motor & screw transmission Nms

rad

Ie Inertia of the shoe kgm2

Be Damping coefficient of the exoskeleton Nms
rad

3

τm Motor torque Nm
θm Motor position rad
θe Exosketon joint angle rad
Ff Bowden cable friction N
τ1 Torque input to the screw transmission Nm
F1 Force output of the screw transmission N
τs Torque measured by the spring Nm
u Voltage supplied to the motor V
i Motor current A
r Exoskeleton moment arm m

Categories 1 and 2 of Table 2.1 contain the known and unknown parameters of the
system, while category 3 contains the system variables. System identification de-
mands that a model be substituted to describe the elastic- and frictional behavior of
the system. Therefore Chapters 3, and 4 focus on models to describe the motor be-
havior, and identifying the elastic properties of the system respectively. The friction
is discussed in Appendix ??.



Chapter 3

Identification of the Motor’s
Closed-Loop Dynamics

The motor has a maximum velocity of 7500 rpm, but has a safety limit of 6000 rpm
that is implemented in the software. The screw transmission endstops further limit
the motor position to between -40–90 rad. Disconnecting the motor from the screw
transmission eliminated these limits for the identification process.

Figure 3.1 shows a simplified block diagram of the motor from the desired motor
velocity, θ̇m,des to the actual motor velocity, θ̇m. The input to the velocity controller
is the error between the velocity setpoint and the actual velocity, eθ̇m

. The feedback
velocity controller determines the desired current, ides.

The error between the desired current and the actual current, ei, is fed to the feed-
back current controller. The applied voltage V is the output of the current controller,
and is summed with the counter-electromotive voltage which is given by Keθ̇m(t) in
Equation 2.6. The result of this summation is the input to the transfer function, Hi/V ,
which captures the relationship between the voltage and the motor current. The
motor torque τm is determined from the current using Equation 2.7. The transfer
function Hθ̈/τ relates the motor torque to the motor acceleration θ̈, and the motor
velocity is obtained by integrating the acceleration.

Figure 3.1: Depiction of the signal flow from the desired motor velocity to the actual
motor velocity.

9



10 CHAPTER 3. IDENTIFICATION OF THE MOTOR’S CLOSED-LOOP DYNAMICS

Wyeth [16] posits that treating the motor as a velocity source, as suggested by
Robinson [17], can assure good torque control, even in the presence of friction
losses. A well-tuned velocity controller should be able to handle low-frequency
torque disturbances, and the series elastic element decouples high-frequency torque
disturbances at the load side [16]. The motor is thus considered a velocity source,
and the next section details the identification of the transfer function from the desired
velocity to the actual velocity.

3.1 Process for identifying the motor velocity trans-
fer function

The motor is controlled in velocity mode so only velocity commands could be sent to
the motor. The motor was excited with step signals, and each step input lasted 0.2
seconds. Figure 3.2 shows an example of the step command sent to the motor. The
experiment was repeated for 17 velocities ranging from 10 rpm, up to and including
7000 rpm.
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Figure 3.2: Example of step input commanded to the motor velocity controller.

The data were sampled at 4000 Hz. The collected velocity signals were divided
into 3 segments to which a Hanning window was applied. The system in Figure 3.1
is lumped into one closed-loop transfer function for the identification process. The
data were used to estimate the nonparametric frequency response function using
the estimator

Ĥf = Syu

Suu
, (3.1)
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where
Syu = 1

N
F(θ̇m)F(θ̇m,des) (3.2)

and
Suu = 1

N
F(θ̇m,des)F(θ̇m,des). (3.3)

F(·) denotes the fast Fourier transform the time-domain-based data.

A 2nd or a 3rd order transfer transfer function are candidate models for fitting the
nonparametric frequency response function to a parametric model. The 2nd order
transfer function is represented by

Ĥt(s) = s + ω2
n

s2 + 2ζωns + ω2
n

, (3.4)

where ζ is the damping ratio, and ωn is the natural frequency. The actuator could
have higher order dynamics hence the benefits of the 3rd order below will also be
investigated.

Ĥt(s) = s2 + (ω2
np + 2ζωnp)s + ω2

np

(s + p)(s2 + 2ζωns + ω2
np) , (3.5)

Assuming that the motor transfer function has the form of the 2nd order system given
in Equation 3.4 allows initial values for the estimation of the parameters ζ, and ω to
be obtained from the step response plots [18]. Both parameters are generated as
follows:

The peak overshoot, M is

M = θ̇max − θ̇ss

θ̇ss
, (3.6)

where θ̇max is the peak value attained by the motor actual velocity, and θ̇ss is the
velocity when the motor reaches its steady state. The damping ratio is determined
from the percentage overshoot in the following way:

ζ =

√√√√ ln2 M

ln2 M + π
. (3.7)

The damped frequency ωd is a measure of how fast the system is oscillating, and is
estimated from the step response. The natural frequency ωn is determined from the
damped frequency as given below:

ωn = ωd√
1 − ζ2 (3.8)

MATLAB’s lsqnonlin optimization function was used to determine the parameters ωn,
ζ, and p, using the initial guesses, and the following cost function:

V = 1
N

N∑
i=1

(
1√
fi

γ2
i

∣∣∣∣∣ln
(

Ĥf (fi)
Ĥt(fi)

)∣∣∣∣∣
)2

, (3.9)
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where N is the number of data points, f are the frequencies, and γ2(f) is the coher-
ence and can be calculated as follows:

γ2(fi) = |Syu(fi)|2
Syy(fi)Suu(fi)

. (3.10)

The coherence gives an indication if two signals are linearly related, and weighting
the cost function by the coherence emphasizes the reliable frequencies. Further-
more, Equation 3.9 is also weighted by 1√

f
to compensate for the comparative

sparsity of data points in the low frequency region compared to the high frequency
region of the logarithmic frequency axis.

3.2 Results of the motor identification process
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Figure 3.3: Step response of the motor for a command of 500 rpm and 2000 rpm.

Figure 3.3 shows an example of the motor’s step response to velocity commands
of 500 rpm and 2000 rpm. The motor step responses show the presence of an
acceleration limit, and Figure 3.4 shows that the motor acceleration plateaus after
2000 rpm. The motor acceleration for each of the step input is defined as the slope
of the step response for velocities between 10% and 50% of the commanded value.
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Figure 3.4: Acceleration limits for the commanded velocity step input.

Taking the average of the slew rates for all velocities from 2000 rpm to 7000 rpm
reveals the acceleration limit of 24678 rad/s2. In the presence of this acceleration
limit, only the step response data for 100, 250, 350, 500, 750 rpm were used in the
estimation of the motor velocity transfer function. The peak overshoot, M = 18.3%.
The damping ratio, ζ is 0.691. The damped frequency ωd is 65 Hz, making the
natural frequency ωn 71.48 Hz.

Figure 3.5 shows the results of the transfer function identification process. The
responses of the 2nd, and 3rd order models are overlapping. The fit error is the mean
square error as given in Equation 3.9. With a fit error of 8.5021 · 10-4, the 3rd order
model narrowly outperforms the 2nd order model which has a fit error of 8.5084 · 10-4.
The error is based on the frequency response of the parametric and nonparametric
models, and has no unit. The chosen transfer function is the 2nd order model given
by:

s + 3.993 · 105

s2 + 666.9s + 3.993 · 105 .

The step response plot of both the 2nd order, and the 3rd order models further vali-
date the choice of the second order model. Figure 3.6 shows an overlap between
response of the 2nd order transfer function in blue, and the 3rd order model in black.
The 2nd order model is less complex than the 3rd order model, and is henceforth
used in simulating the motor closed-loop dynamics.

Alongside the position and velocity limits, the acceleration limit is included in the
motor model by converting the transfer function in Equation 3.2 from the frequency
domain to the time domain as given below:

...
θ m = sat(θ̈m,des) + 3.993 · 105θ̇m,des − 666.9θ̈m − 3.993 · 105θ̇m. (3.11)
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Figure 3.5: Bode magnitude plot of the 2nd-, and 3rd order transfer function models.
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3.3 Discussion of the motor closed-loop dynamics
identification process.

The initial guesses for ζ, and ωn were generated using only the step response for a
step input of 500 rpm, whereas the identification of the motor’s closed loop transfer
function was done using the step response data for 100, 250, 350, 500, and 750
rpm. It is possible that averaging the values of ζ and ωn for all 5 step responses
would yield a more accurate result. However, the log loss function in Equation 3.9 is
convex so the parameters are found at the global minimum regardless of the initial
guess.

The nonparametric frequency response function was used to estimate the transfer
function from desired motor velocity to actual motor velocity. The 2nd and 3rd or-
der models were suggested because the motor step responses showed oscillatory
behavior indicating a 2nd order system at minimum. Also, the nonparametric fre-
quency response function showed a roll-off of 10/decade which indicates a system
that behaves like an integrator in the high frequency region, i.e., the system transfer
function has a relative degree of 1.

Adding more parameters in the 3rd order model provides more leeway to capture
dynamics like vibrations or time delays. However, the 2nd order transfer function was
chosen over the 3rd order model because the 2nd order model is less complex than
the third order model. As both models have similar fit errors, choosing the 2nd does
not sacrifice a better fit for simplicity.

Both models do not completely describe the actual motor response. From Fig-
ure 3.6, it is obvious that the estimated models do not have as much overshoot
as the actual system. The estimated damping ratio is 0.7852 compared to the ini-
tial guess of 0.691 determined in Equation 3.7. A higher damping ratio of course
translates to less overshoot.

The imperfect fit of both models could be due to the literal implementations of Equa-
tions 3.4 and 3.5 during the nonlinear optimization. Lumping the parameters ζ, ωn,
and p reduced the number of parameters available to fit the data, and could be a
reason for the model underfitting the data. Despite this deficiency, the parametric
model captures the motor’s response time and steady state value. In combination
with the low fit error, the parametric model is a competent model of the actuator.

The motor has a rotor inertia of 1.4·10−4 kgm2. With a stall torque of 3 Nm, the
expected acceleration limit is 21429 rad/s2. The experimentally-determined motor
acceleration, however, is 24678 rad/s2. The source of the discrepancy in the acceler-
ation limits is currently unclear, and could be due to errors in current measurements
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or incorrect information in the motor datasheet. For the simulation experiments in
Chapter 5, the motor acceleration is set to 24678 rad/s2.



Chapter 4

Identification of the Stiffness
Properties

The exoskeleton is powered by a series elastic actuator, making it imperative to
first understand the elastic behavior of the actuator, before moving on to controller
design. A series elastic actuator is an actuator that has an elastic component, like a
spring, in the drive train between the motor and the load. Springs are often modeled
using Hooke’s law, but Bowden cables are notorious for their nonlinear behavior [15].
As the JLO has a spring in series with a Bowden cable in the drivetrain, the next
section details nonlinear mathematical models to describe the force transmission of
the JLO exoskeleton. Unlike in Chapter 3, the motor is connected to the exoskeleton
during the identification process, and system here refers to the JLO as illustrated in
Figure 2.1.

4.1 Process for the identification of the system stiff-
ness

Possible mathematical functions for fitting the shape of the JLO’s force-displacement
plot include a polynomial function and a power law function. These models are
motivated by preliminary experiments on the JLO that reveal a system rife with slack
and hysteresis as shown in Figure 4.1.

The slack is evidenced by the minimal change in the spring force for motor positions
between 0 and approximately 4 rad. Slack behavior occurs because the motor must
first rotate to pull the Bowden cable taut before the spring can deflect. Furthermore,
it is apparent that the force behaves differently when the motor velocity is positive
and the Bowden cable is pulled by the motor, and when the motor velocity is negative
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and the Bowden cable is released.

Figure 4.1: Force-displacement relation when the exoskeleton is actuated by the
motor. Here, the exoskeleton’s ankle joint did not serve as an input, and
the spring deflection is purely due to the motor’s motion.

The proposed polynomial model for the torque transmitted from the motor via the
Bowden cable is

Fs,m =


km,1(λθm) + km,2(λθm)2 + km,3(λθm)3 + km,4(λθm)4

+km,5(λθm)5 if θm > 0,

0 otherwise.

(4.1)

Similarly, the polynomial model for the load-side torque disturbance from a person
wearing the exoskeleton is

Fs,e =


ke,1(rθe) + ke,2(rθe)2 + ke,3(rθe)3 + ke,4(rθe)4

+ke,5(rθe)5 if θe > 0,

0 otherwise.

(4.2)

km,n, and ke,n are stiffness coefficients with units N/mn. θm, and θe are the motor
and exoskeleton positions respectively, in rad. λ is the transmission ratio of the ball
screw in m, and r is the moment arm in m.

The power law model for the torque supplied by the motor is

Fs,m =

km(λθm)pm if θm > 0,

0 otherwise.
(4.3)
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The power law model for the load-side torque disturbance from the human is

Fs,e =

ke(rθe)pe if θe > 0,

0 otherwise.
(4.4)

km, and ke are stiffness coefficients with units N/mpi, where pi is the exponent of the
power law.

The polynomial models are functions of the regressors θm, or θe, and the coefficients
in the polynomial model are determined using linear least squares regression. The
parameters in the power law function are determined using MATLAB’s fmincon func-
tion for nonlinear optimization. The results of the polynomial models informed the
initial guesses for the parameters in the power law. Furthermore, the cost function
used for the optimization is the mean squared error between the predicted spring
torque and the measured spring torque. The cost function used for the optimization
is

W (θm) = 1
N

N∑
n=1

(τs − τ̂s)2, (4.5)

where N is the number of data points used for the estimation. The estimated spring
torque, τ̂s, is the summation of the torque transmitted from the motor, and the torque
contribution of a person wearing the exoskeleton,

τ̂s = r (Fs,m − Fs,e) . (4.6)

Common pitfalls associated with model fitting using optimization routines include
the risk of overfitting, and in the case of gradient descent algorithms, a risk that
the solution arises from a local minimum as opposed to a global one. To tackle
overfitting, the data was split into 5 folds; 4 folds served as the training data and 1
fold as the test data. This is known as k-fold cross validation [19]. The chance of the
solution arising from a local minimum instead of a global one is minimized by using
the mean squared error cost function in Equation 4.5. The mean square error is a
convex function and has one global minimum.

For the stiffness identification, zeroing of the JLO’s load cell, exoskeleton position,
and motor position was done according to [12] prior to all experiments. All data were
sampled at 1000 Hz and filtered in both the forward and reverse directions with a 2nd

order low-pass filter. The filter cutoff frequency is 100 Hz, and the filter coefficients
are given below:

H(z) = 0.0675 + 0.1349z−1 + 0.0675z−2

1.0000 − 1.1430z−1 + 0.4128z−2 .
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Experiment 1: Motor-side stiffness

Sinusoidal velocity signals centered at 0 and with amplitudes of 0.5, 1, 2, and 5
rad/s were commanded to the motor. The motor was also excited with constant
velocity signals with amplitudes of 0.1, 0.2, 0.5, 1, 2, 5, 10 rad/s. The dummy foot
in Figure 4.2 served to keep the exoskeleton upright during the experiments. With
only the motor contributing to the spring deflection, Fs,e = 0.

Figure 4.2: Positioning of the exoskeleton during experiments to determine the
motor-side stiffness.

Experiment 2: Load-side stiffness

For the load-side influence on the measured spring torque, a participant walked on a
treadmill while wearing the JLO on their right foot . The participant walked for 183 s
with a treadmill speed of 1.2 m/s, for 220 s with a treadmill speed of 1.3 m/s, and for
220 s with a treadmill speed of 1.4 m/s. The first and last 10 s of all 3 datasets are
discarded. To keep the bowden cable taut, and restrict any deflection of the spring
to only the deflection imposed by the wearer in Figure 4.3b, the motor position was
restricted as in Figure 4.3a. This restriction also makes Fs,m = 0.
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Figure 4.3: Experiment setup to determine the relationship between the load-side
disturbance and the measured spring torque.(a): Physical lock to elim-
inate the motor as an input during the experiment. (b): Person walking
on a treadmill with the JLO on their right foot.

4.2 Results of the stiffness identification

Motor-side contribution to spring torque

The polynomial model has an average normalized root mean square error (NRMSE)
of 0.0294 for the estimation data. This value is 0.0295 for the validation data. The
NRMSE is averaged over the five data folds. Normalization was done using the
range of the measured signals (33 Nm). The parameters of the polynomial model
are

k1 = 1.1713 · 103 N/m

k2 = 1.1622 · 105 N/m2

k3 = 4.2222 · 106 N/m3

k4 = 1.4824 · 108 N/m4

k5 = 1.3460 · 109 N/m5.

(4.7)

Based on these results, the lower bounds for the optimization function for the power
law model are 1 · 103 N/mpm and 1, for ks,m, and pm respectively. The upper bounds
are 2·109 N/mpm and 5, and the initial guess is 1·104 N/mpm and 2. The parameters for
the power law are from the fold with the lowest NRMSE. The NRMSE for the power
law model is 0.0292 for both the estimation and validation data sets. This makes
ks,m = 4.9039 · 104 N/mpm , while pm = 1.6274. Figure 4.4 shows a comparison of the
sensor data to the data estimated by both spring models.
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Figure 4.4: Sensor data versus the estimation of both motor-side stiffness models.

Load-side contribution to spring torque

The polynomial model has an NRMSE of 0.0634 for both the estimation and valida-
tion datasets. The NRMSE is again averaged over the five data folds. The parame-
ters of the polynomial model are

k1 = 1.8620 · 104 N/m

k2 = 5.7695 · 106 N/m2

k3 = 1.1860 · 109 N/m3

k4 = 5.4640 · 1010 N/m4

k5 = 1.6704 · 109 N/m5.

(4.8)

Based on these results, the lower bounds for the optimization function for the power
law model are 1 ·104 N/mpe and 1, for ks,e, and pe respectively. The upper bounds are
2 ·109 N/mpe and 5, and the initial guess is 1 ·104 N/mpe and 2. The parameters for the
power law are from the fold with the lowest NRMSE on the estimation data, and are
ks,e = 4.9256 · 105 N/mpe , while pe = 1.6668. The NRMSE for the power law model is
0.0764 for the estimation data, and 0.0763 for the validation data. Figure 4.5 shows
a comparison of the sensor data to the data estimated by both spring models.
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Figure 4.5: Sensor data versus the estimation of both load-side stiffness models.

Lastly, Figure 4.6 shows that the motor-side stiffness coefficients, ks,m, and pm under-
estimate the load-side disturbance torque from the experiment shown in Figure 4.3.
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mated by the motor-side spring torque model, and the load-side spring
torque model
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4.3 Discussion of the exoskeleton’s stiffness charac-
teristics

None of the candidate models describe a spring relationship that is based solely on
physical principles. In the power law model for example, the spring constant ks has a
unit of N/mp. Nevertheless, the power law model was chosen to describe the motor-
side stiffness. This is because analytical solutions for the inverse of a power law
function exist; the same cannot be said for the inverse of the 5th order polynomial.
The power law model thus makes it possible to use control techniques based on
model inversion to design a controller.

The polynomial model is the chosen stiffness model for the load-side stiffness, be-
cause it has a lower NRMSE than the power law model. From Figure 4.6, it is clear
that the coefficients of the motor-side model do not capture the load-side torque
generated by someone wearing the exoskeleton. This is likely due to the exper-
iment design because in determining the load-side disturbance, the slack in the
system was manually removed before the motor position was restricted.

Lastly, although both the power law and polynomial spring models have low relative
root mean square errors, neither contains terms to explicitly account for hysteresis. A
spring model that takes hysteresis into account could better characterize the torque
generated by the spring. In their work, Austin et al. [20] model the nonlinear force-
deflection curve with a set of piecewise linear equations. Their series elastic actuator
is made from rubber; a viscoelastic material that is subject to effects such as creep
and hysteresis. Modeling the JLO’s stiffness with a similar model could yield a more
accurate result.



Chapter 5

Controller Design and Simulation

Control hierarchies for exoskeletons often involve a high level controller that de-
termines the desired torque, and a low level controller that enforces the demanded
torque. Control system engineers employ a host of approaches in designing the low-
level controllers for exoskeletons; some of these approaches include proportional-
integral-derivative control (PID), impedance control, adaptive control and iterative
learning.

The spring model identified in Chapter 4 is nonlinear, whereas classical feedback
control is typically implemented on linear systems, or linearized systems. A lin-
earized approximation of a nonlinear system may be obtained by applying Taylor’s
expansion around an equilibrium point. The disadvantage, however, of system lin-
earization is that the controller’s performance is only guaranteed in a small region
around the equilibrium point [21]. Alternatively, techniques like feedback lineariza-
tion, adaptive control, etc. can be used to design controllers for nonlinear systems,
and the next section presents the design of a feedback linearizing controller for the
JLO.

5.1 Feedback linearizing control

Feedback linearizing control involves the use of control laws that transform the non-
linear system into a linear system, thus allowing linear control design techniques to
be applied. Feedback linearization allows a nonlinear affine system whose dynamics
are represented by

ẋ = f(x) + g(x)u
y = h(x).

(5.1)

to be transformed into a linear system by shaping the control input, u. For the JLO
exoskeleton, the spring torque is modeled as the summation of the torque applied
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by the motor displacement, and the torque applied by the wearer

τ̂s = τ̂s,m − τ̂s,e

τ̂s = r (Fs,m − Fs,e) .
(5.2)

Fs,e is neglected in the following steps for controller design. This is because the
model of the load-side disturbance, τ̂s,e, is used in a feedforward manner, and is
added to the desired spring torque for compensation. This would make

τ̂+
s = τ̂s + τ̂s,e

τ̂+
s = rks,m(λθ+

m)pm ,
(5.3)

Equation 5.3 explicitly denotes the addition of the compensation torque to the spring
torque. The derivative of Equation 5.3 is

˙̂τ+
s = ∂r

∂θe

θ̇eks,m

(
λθ+

m

)pm

︸ ︷︷ ︸
f(x)

+ pmrks,m

(
λθ+

m

)pm−1
λ︸ ︷︷ ︸

g(x)

θ̇+
m︸︷︷︸
u

. (5.4)

The f(x) term exists because the moment arm, r, is a function of the exoskeleton
angle, and is

r = ab sin(α − β − θe)
l

. (5.5)

The descriptions and values for the parameters in Equation 5.5 can be found in the
appendix of the JLO’s design document: [12].

The motor velocity bandwidth is much faster than the bandwidth of the linearizing
controller, so the desired and actual motor velocity are assumed equal. Per feedback
linearization, the right choice of the control input will allow linear analysis on the
system. This choice often amounts to plant inversion. Based on Equation 5.4,
choosing θ̇+

mdes
as

θ̇+
mdes

= 1
prksmλpθp−1

mdes

(
− ∂r

∂θe

θ̇eksm

(
λθ+

mdes

)p
+ v

)
, (5.6)

and substituting Equation 5.6 in Equation 5.4 makes

τ̂+
s = v, (5.7)

where v is a control law. The JLO has a loadcell so the modeled spring torque, τ̂s

is the measured spring torque, τs, in reality. The following control law is proposed to
stabilize the system along τs:

v = τ̇s,des + kp(τs,des − τs). (5.8)
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The control law makes
τ̇s = τ̇s,des + kp(τs,des − τs), (5.9)

which is equivalent to
ėτs + kpeτs = 0, (5.10)

where
eτs ≜ τsdes

− τs. (5.11)

kp is the proportional gain of the controller, and Equation 5.10 is a 1st order, linear,
homogeneous, differential equation that governs the evolution of the torque error.
The control law stabilizes the trajectory because

lim
t→∞

e(t) = 0

regardless of the initial conditions, thus assuring global stability. The human gait
cycle has a frequency of about 1 Hz [22], and because the solution to the 1st order
equation governs the controller bandwidth [18], setting kp to 62.83 should result in
a controller with a bandwidth of 10 Hz which is fast enough to track changes during
the gait cycle.

5.2 Simulink modeling

The controller performance is validated via simulation. The JLO is modeled in
Simulink as shown in Figure 5.1. The motor’s closed-loop dynamics are represented
by Equation 3.11. The motor’s velocity and acceleration limits are 628 rad/s, and
24678 rad/s2, respectively. Software endstops for the motor position are at -40 rad
and 90 rad. The motor contribution to the measured spring torque is represented by
Equation 4.3.

Figure 5.1: Schematic showing interconnection between the identified motor and
spring models, and the feedback linearizing controller.

The exoskeleton’s moment arm, r, is related to the exoskeleton angle, θe, using
Equation 5.5. The plantarflexion-dorsiflexion data (θe) used in the simulation was
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obtained from having a participant walk on a treadmill with a treadmill speed of 1.3
m/s, and with the exoskeleton on their right foot. Figure 5.2 shows the plantarflexion-
dorsiflexion angles averaged over 82 s of walking data.

For Figure 5.2, measurements from the force-instrumented treadmill were used to
determine the gait phase. The gait phase has units of %; 0% coincides with initial
contact, and 100% coincides with the terminal stance of of gait. Initial contact occurs
when the leading foot first strikes the ground, and terminal stance occurs on the next
heel strike of the same foot [23]. Positive angles represent dorsiflexion of the ankle,
while negative angles represent ankle plantarflexion.
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Figure 5.2: Exoskeleton angles during the gait cycle.

The desired torque pulses were the torque pulses illustrated in Figure 1.1, and given
in [11]. Each pulse lasted 0.1 s, and had a period of 0.975 s, which is 0.025 s shorter
than the duration of a typical gait cycle [22]. The peak torque was 10 Nm because 10
Nm is approximately 10% of the maximal ankle torque during normal walking [10].

The feedback linearizing controller given by Equations 5.6– 5.11 was modeled in
Simulink. Lastly, the PD* controller was also implemented in Simulink to enable
comparison with the feedback linearizing controller. Figure 5.3 shows a schematic
of the PD* controller. The proportional gain of the PD* controller (kp,pd) was 100, and
the derivative gain (kd,pd) was 0.8 as in [11], such that

θ̇m,des = kp,pdeτ + kd,pdθ̇m. (5.12)
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Figure 5.3: Schematic showing interconnection between the identified motor and
spring models, and the PD* controller.

5.3 Results of controller design

Step responses

Figure 5.4 shows the torque tracking of both the PD* controller, and the feedfor-
ward + feedback linearizing controller, in the presence of the load-side disturbance
τ̂s,e. The data in Figure 5.4 were from a 92 s long simulation. Post simulation, the
data were segmented by gait phase, and averaged to get the system response per
gait phase. The RMSE for the torque tracking of the PD* controller is 0.3748 Nm,
whereas that of the feedback linearizing controller is 0.1188 Nm.
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Figure 5.4: Step response of the system when it is controlled with the PD* controller,
and with the feedback linearizing controller.
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Figure 5.5 shows 7 s of the (unaveraged) step response data, plotted over the gait
phase. The dashed lines on the plot represent an acceleration, velocity, or position
limit. Unlike the position limit, the velocity and acceleration limits contribute to the
degradation in torque tracking that occurs around 20% and 60% of the gait phase
in Figure 5.4. The motor limits could be causing the motor to overcompensate for
the increased torque error introduced by the disturbance torque. From Figures 5.4,
and 5.5, it is clear that feedforward compensation anticipates the disturbance, and
improves torque tracking.
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Figure 5.5: Effect of the motor’s acceleration, velocity, and position limits on the step
response for both controller.

Figure 5.6 shows the response to a unit step input when the JLO is controlled with
the linearizing controller, and in the absence of the load-side disturbance. The rise
time, which is the time it takes the system to go from 10% to 90% of the commanded
signal is approximately 39 ms. A rule of thumb for the rise time, Tr, of a first order
system is

Tr = 2.2
kp

[18]. (5.13)
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With kp = 62.83, Equation 5.13 translates to a theoretical rise time of 35 ms, making
the simulated controller a close match with the theoretical one.
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Figure 5.6: Response of the system to a step input of 1 Nm.

Pulse responses

Figure 5.7 shows the response of both controllers to a series of torque pulses that
were applied throughout the gait cycle. The feedback linearizing controller has an
RMSE of 0.6361 Nm, and the PD* has an RMSE of 0.7368 Nm.
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Figure 5.7: System response to torque pulses when the system is controlled with
the PD* controller, and with the feedback linearizing controller.
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Figure 5.8 shows the system response of the linearizing controller with, and without
the compensation term for the load-side disturbance. Eliminating the compensation
term for the torque generated by the wearer worsens the controller performance.
The RMSE becomes 0.7295 Nm, compared to an RMSE of 0.6361 Nm when the
feedforward compensation was included.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

0

2

4

6

8

10

12

S
p

ri
n

g
 t

o
rq

u
e

 (
N

m
)

Response of the linearizing controller with-

and without the compensation term
With compensation term

Without compensation term

Desired torque

Figure 5.8: System response to torque pulses with the linearizing controller, and in
the presence or absence of the compensation term τ̂se.

5.4 Discussion of the controller design

The complex interplay of the motor’s position, velocity, and acceleration limits affect
the system response. As an example, the ankle velocity during gait peaks at pre-
swing [24], which occurs around 60% of the gait cycle, and is also when the motor
limits are reached, per Figure 5.5. The velocity and acceleration limits contribute
to the overshooting observed in Figure 5.4, because the motor overcompensates to
minimize the torque error. The motor position limits might become more apparent
for users whose ankle range of motion in the sagittal plane better equals the ex-
oskeleton’s range of motion (-0.70–0.52 rad), compared to the range of angles from
Figure 5.2.

The linearizing controller appears to outperform the PD* controller, an advantage
that persists even in the onset of swing phase which occurs around 60% of the gait
cycle [24]. The linearizing controller has a bandwidth equal to 10 Hz, making it
faster than the PD* controller whose bandwidth is 8 Hz [12]. This is advantageous
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because higher bandwidth equals a quicker response time. However, the PD* con-
troller gains used in this thesis resulted in an aggressive controller that seemed to
outperform the JLO’s actual PD* controller [11]. This could also explain why the PD*
controller has a much larger overshoot in Figure 5.4, compared to the linearizing
controller. However, similar to [11], this work does show that the addition of a pre-
dictive term to anticipate the load side disturbance improves the system response
to torque pulses. Discrepancies between this work and [11] could be due to mod-
eling uncertainties; the real system has the friction and hysteresis of the Bowden
cable which is unmodeled in Simulink. Continuing research on the JLO should fo-
cus on creating a competent friction model, and validating the feedback linearizing
controller on the real system.

Feedback linearization is a powerful technique for dealing with nonlinear systems. It
allows linear controller design techniques to be used on nonlinear systems, without
the need for linearizing the system around an equilibrium point. This control strategy
has some disadvantages, namely its sensitivity to modeling uncertainties, and that it
requires the derivative of the measured torque which could lead to noise amplifica-
tion. Time constraints prevented research into other control strategies for nonlinear
systems, like model reference adaptive control (MRAC) or gain scheduling. Both
of these are adaptive control methods that could fare well with a less exact system
model, and are suggested as a starting point for future controller design.
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Chapter 6

Discussion

The first research goal of this thesis was to define a competent model for the mo-
tor powering the JLO exoskeleton. This competent model is the 2nd order transfer
function given in Chapter 3, which describes the closed loop dynamics between the
desired motor velocity and the actual motor velocity. Identifying a transfer function,
as opposed to the parameters in the subsystems in Figure 3.1, simplified the iden-
tification process. However, the identified transfer function constrains the motor to
act as a velocity source.

Switching the motor’s control mode to torque mode would better facilitate the iden-
tification of a motor torque transfer function, because it would amount to identifying
a transfer function using the process laid out in Chapter 3. Furthermore, the JLO’s
motor uses nested control, and torque control is the inner-most loop. The velocity
controller is currently the outermost loop, because position control not used. Switch-
ing to torque mode would eliminate the computational time spent on the velocity
loop, and could lead to a faster response from the motor.

Modeling the motor as a source of torque could also have benefits for the stiff-
ness model, which was the second research objective. According to the instructions
in [12], the motor position and the load cell force must be zeroed prior to using the
JLO. A user calibrating the JLO must make the Bowden cable taut during this calibra-
tion, but this tautness is subjective. The motor-side stiffness model from Chapter 4
uses the motor position to determine the torque transmitted from the motor to the
exoskeleton. The accuracy of the motor-side stiffness model thus hinges on proper
calibration of the exoskeleton. A stiffness model that relates the motor torque to the
spring torque should lead to results that are unaffected by calibration errors.

The power law model for the motor-side stiffness was used to fit the shape of the
force-displacement plot, and does not explicitly account for hysteresis. A stiffness

35



36 CHAPTER 6. DISCUSSION

model like the one used in [20] uses piecewise linear functions to model a viscoelas-
tic material, and could be a better model for describing the stiffness of the JLO. Al-
though the power law is a simpler model than a set of linear functions, the piecewise
linear functions would enable the JLO’s users’ to develop controllers using linear
control design techniques.

For modeling the friction, the LuGre friction model was used to fit the experimental
data. The motor was operated in velocity mode, which complicated further identifica-
tion of the dynamic parameters of the LuGre model. Per [25] and [26], the dynamic
parameters of the LuGre model are best identified with a motor that is controlled in
torque mode. One reason for this is that controlling the motor in velocity mode yields
noisy motor torque signals that make it difficult to determine the break away torque.
Only the static friction parameters were identified in this research. The complete
LuGre model is however expected to give a better fit in comparison to static models
because it can capture stiction, frictional hysteresis, and stick-slip motion [27].

Unfortunately, Bowden cable systems are plagued with friction, so the accuracy of
the JLO model created in this thesis is lessened in the absence of a good friction
model. A good understanding of friction can lend to the design of control laws to
counteract its effects. Friction models are often used to predict the motor torque
that will compensate for the friction disturbance which improves torque tracking [26].
However, [28] underscored that the use of an inner position or velocity control loop,
like that used in the JLO, is still advantageous when friction and backlash are large,
and [16] also agreed that good velocity control still permits decent torque tracking.

On the question of compensating for the disturbance torque that a person wear-
ing the exoskeleton introduces, Section 5.3 showed that the estimated disturbance
torque improved torque tracking when used in a feed forward manner. This conforms
with results from [13], and [11] who both used a model-free feed-forward compen-
sation to improve torque tracking in their exoskeletons.

The controller designed in this thesis contributes to the advancement of gait entrain-
ment as a rehabilitative procedure. This is because the improved torque tracking
allows for a more predictable and accurate application of the desired torque pulses,
and the quality of the torque control can be a limiting factor in the quality of a robot-
assisted rehabilitative procedure [29].

Finally, The JLO has been in active use since 2022, so mechanical wear and tear
could be affecting torque tracking. Other factors affecting the torque tracking of the
JLO are the acceleration, velocity, and position limits of the motor, as well as the
choice of reference signal. A reference signal with smooth, continuous derivatives
is a better choice for good reference tracking. Although the desired torque pulses
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for the simulation experiments in Chapter 5 are trapezoidal signals, an alternative
function for creating the reference signals is a logistic function because the derivative
of the logistic function is continuous.
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Chapter 7

Conclusions and recommendations

The goal of this thesis was to create a model-based controller that improved the
torque tracking of the JLO ankle exoskeleton. Ergo, the equations of motion of the
exoskeleton were detailed in Chapter 2. The motor dynamics were modeled using
a 2nd order transfer function in Chapter 3. The low fit error of the 2nd order model
made it a good representation of the motor’s closed loop dynamics.

The motor model also includes position, velocity, and acceleration limits. The accel-
eration limit is dictated by the motor’s torque limit, while the velocity limit is a safety
limit imposed via software. Position limits are imposed either by the endstops of
the ball screw transmission or the dorsiflexion-plantarflexion range of motion of the
person donning the exoskeleton. These limits influence the JLO’s ability to deliver
the desired torque pulses, as is shown in Chapter 5. The motor’s torque limit is
set to 2.85 Nm and is lower than the nominal torque of 3 Nm. There is less room
for adjusting the motor’s velocity limit, but adjusting the torque limit is an accessible
improvement could better torque tracking

The model of the JLO is a novel contribution of this thesis. In Chapter 3, the motor
was modeled as a velocity source, and the system stiffness was modeled with non-
linear equations that relate the measured spring torque to the motor position and the
exoskeleton angle in Chapter 4. The stiffness model does not account for hysteresis
so updates to the stiffness model can use the work of Austin et al. [20] as inspiration.
They model a series elastic actuator using piecewise linear equations that encode
hysteresis.

Chapter 5 showcases the results of designing a feedback linearizing controller for
the exoskeleton. The identified spring models in Chapter 4 are nonlinear, hence
feedback linearization was used in designing the controller. The designed controller
has a bandwidth of 10 Hz, compared to 8 Hz of the JLO’s current PD* controller.
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Simulation experiments also show that the new controller provides more consistent
torque pulses across the gait cycle unlike the PD* controller. Combining the lineariz-
ing controller with a feedforward term to compensate for the disturbance torque gen-
erated by the human results in a lower RMSE than the linearizing controller solely
achieves.

To conclude, future work on the JLO could include updating the software safety ar-
chitecture to make torque control of the motor a viable option, and updating the mo-
tor’s torque limit. It is also a good idea that any future redesigns of the exoskeleton
make the calibration of the JLO less prone to human error.
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Appendix B

Friction modeling

Using compliant elements like Bowden cables in series with a drive system is a
proven strategy for improving torque tracking in exoskeletons. This strategy can
help to minimize effects such as backlash in the gearbox or cogging, although this
comes with a loss of bandwidth [3]. Bowden cables, specifically, allow the motor
to be relocated which results in a reduction of the exoskeleton inertia. However,
the downside of adding a Bowden cable is that its complex friction profile can prove
an additional challenge for control of the exoskeleton, especially when the Bowden
cable is kept slack [13].

Dežman et al. [30] expounded on the complexities of including a Bowden cable in
the mechanical design of an exoskeleton, due to its difficult-to-characterize friction
properties. To describe the bowden cable friction, they compared the Stribeck +
Coulomb + Viscous (SCV) friction model variant with a second model variant. The
second variant included terms to account for any adhesive behavior between the
Bowden cable and the Bowden sheath, and showed a 15% better fit to experimental
data than the original SCV model [30].

Agrawal et al. [31] also conducted research on the nonlinearities introduced by the
Bowden cable, and the importance of accurate modeling of the Bowden cable. In
their work, they focused on Bowden cables that are used in pairs, a configuration
that is common in surgical robotics. To that end, they propose a set of differential
equations to describe the motion and power transmission characteristics of Bowden
cables used in a pull-pull configuration.

Furthermore, Jeong and Cho [32] reported on how the frictional nonlinearity of the
Bowden cable varies as the bend angle changes. They proposed a model based
on the Capstan equation augmented with an extra term to account for the inherent
efficiency of the cable.
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Unlike the previously-discussed static friction models, the LuGre model is a dynamic
friction model that is capable of describing complex friction behavior including stick-
slip motion, Stribeck effects, and frictional lag. Although friction is often modeled
using static equations, dynamic models can better explain effects like frictional lag
or stick slip behavior [26], and the LuGre model was used to fit experimental data.

The parameters of the LuGre friction model may be divided in two categories, where
the first category contains a set of four static parameters that map the steady state
velocity to the friction force. This makes the static part of the LuGre model similar
to the SCV model from [30]. The second set of parameters describe the dynamic
friction response [25].

The descriptive equations for the LuGre model are given below.

dz

dt
= q̇ − σ0

g(q̇)z|q̇|, g(q̇) = α0 + α1e
− q

v0

2
, (B.1)

F = σ0z + σ1
dz

dt
+ α2q̇. (B.2)

q̇ is the angular velocity, and F is the friction torque. Equation B.1 captures the
internal friction dynamics, although the state z is unmeasurable. Furthermore, the
steady state friction characteristics are given by

Fss =
(

α0 + α1e
− q

v0

2)
sgn(q̇) + αq̇, (B.3)

Table B.1: Relevant parameters for describing the LuGre friction model
Symbol Description Unit

q̇ Velocity m
s

z Friction internal state m
σ0 Dynamic friction parameter N

m

g(q̇)
A function which describes part of the friction N
for constant velocity inputs

α0 Coulomb friction N
α1 Static friction parameter N
v0 Stribeck velocity m

s

α2 Viscous friction term Ns
m
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B.1 Process for identifying the frictional properties
of the exoskeleton

The exoskeleton was excited using a series of constant velocity signals with ampli-
tudes of 0.1,0.2, 0.5, 1, 5, and 10 rad/s shown in Figure B.1.
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Figure B.1: Constant velocity data used for the identification of friction parameters

The constant velocity signals mean that the acceleration terms vanish. Also, the
spring and Bowden cable masses are considered negligible, so the equation used
for the identification process thus simplifies from Equation 2.4 to

τm(t) = Bcθ̇m(t) + λ (Fs + Ff (t)) . (B.4)

Rewriting Equation B.4 gives

τm(t)
λ

− Fs = Bcθ̇m(t) + Ff (t) (B.5)

The term Bcθ̇m(t) is lumped into the term αq̇ in Equation B.3 because both terms
describe viscous friction, so combining them should improve the accuracy of the
estimation. Thus, the equation relating the motor torque to the friction is

Ff (t) = τm(t)
λ

− Fs =
(

α0 + α1e
− q

v0

2)
sgn(q̇) + αq̇. (B.6)

Similar to Section 4.1, the data are filtered in the forward and reverse directions with
the low-pass filter whose coefficients are given in Equation 4.1. The coefficients
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in the static part of the LuGre model are determined using MATLAB’s fmincon op-
timization routine. The error function, e, and the objective for the optimization, P ,
are

e = τm(t)
λ

− Fs −
(

α0 + α1e
− q

v0

2)
sgn(q̇) − αq̇ (B.7)

P = 1
N

e · e, respectively. (B.8)

The data were split into 5 folds for k-fold cross validation. The lower bounds and
initial guesses for all parameters were set to 0 and 1 respectively. The upper bounds
for all parameters besides v0 was 100. The upper bounds for v0 was 1 m/s.

B.2 Results and discussion of friction identification

The static parameters identified for the LuGre friction model are

α0 = 30 N

α1 = 29 N

α2 = 14.15 Ns/m

v0 = 0.54 m/s.

(B.9)

The static model has an NRMSE of 0.1368 for the estimation data, and 0.1362
for the validation data. From is apparent that the bowden cable friction cannot be
accurately described by a static model. In research, the dynamic parameters of the
LuGre model were estimated by exciting the system using open loop torque signals
that were smaller than the brekaway torque [26]. This was difficult to replicate in the
JLO as the motor is operated in velocity mode, and trying to obtain torque signals
using velocity commands results in noisy output.

Treating the motor as a torque source makes it easier to quantify the effects of
friction. Wyeth [16] posits a well tuned velocity controller should be able to deal with
low-frequency torque disturbances, even in the presence of significant coulomb and
viscous friction losses in the motor and in the gearbox. As the motor is treated as a
velocity source, the friction model is not further considered in this research.
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Figure B.2: Results of the identification of parameters of the dynamic LuGre friction
model.

Figure B.3: Static friction map for the JLO.
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