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Abstract

The COVID-19 pandemic demonstrated the need for effective intervention strate-
gies to mitigate the spread of infectious diseases, while keeping the societal impact to
a minimum. Traditional epidemic research often assumes either a homogeneous so-
cial network or fixed interventions. The assumption of homogeneous social networks
ignores any geometric influence, while the assumption of fixed interventions neglects
the dynamic relationship between disease prevalence and adherence to interventions.
This thesis introduces a novel framework to combine adaptive intervention strategies
with geometric random graphs. By introducing adaptive interventions that respond
to local and global infection levels, we investigate the impact of different social dis-
tancing approaches, including distance-based, weight-based, and infection probability-
based interventions. Through extensive simulations on randomly generated as well as
real-life networks, we find that both targetting high-degree nodes and targetting long
distance edges are effective in reducing peak and total infections. Furthermore, our
results show that local information might be beneficial, by focussing interventions on
the infected areas. However, the adaptive methods do not consistently outperform the
threshold methods, which implies that the feedback relation between adherence to the
measures and the disease prevalence does not always have a positive impact.

Keywords: Epidemic modelling, adaptive interventions, geometric random graphs,
social distancing, network-based models.
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1 Introduction

As of March 2025, the COVID-19 pandemic has claimed the lives of more than 7 million
people [5]. Next to this, the pandemic and the attempts to mitigate the viral spread have
caused enormous financial, physical and mental damage. The COVID-19 pandemic has
demonstrated that the world was not prepared for such a virus, and a new pandemic could
again be a catastrophe for healthcare and economics on a global level. This highlights the
utmost importance of research aimed at understanding the spread of viruses. The COVID-
19 pandemic also added a new dimension to the study of disease spread. Never before did
we see so-called non-pharmaceutical interventions (NPIs) on a global scale. NPIs include
a range of public health measures, primarily implemented by governments, aimed at re-
ducing viral transmission. Examples of NPIs are lockdowns, handwashing guides, curfews,
social distancing, face covering, and travel restrictions. All these intervention strategies
aim to reduce the spread of the virus, but the effectiveness of some of these interventions
has been questioned. Since some of these interventions can have a huge societal impact, it
is important to examine their effectiveness.

Multiple papers have investigated the influence and effectiveness of interventions on
epidemic spread using mathematical models [9, 10, 13, 16, 20]. In epidemiology, mobil-
ity and geographic locations are important components, which can change the course of
the epidemic. Especially when considering interventions that influence mobility, such as
social distancing or travel restrictions. We can use the geometric networks to model the
intervention strategies that rely on geometric distance between individuals. In geometric
networks or graphs, vertices have a geometric position. However, most existing epidemic
models are compartment models, assuming homogeneous populations and lacking a ge-
ometric structure. There are a few papers that have used network-based models which
include a geometric structure to investigate the effectiveness of NPIs [14, 19, 21]. All
these papers implement fixed interventions, which means they are implemented at a spe-
cific time point, and do not change over time. While this reflects the interventions taken
by governmental bodies, it does not take compliance with the interventions into account.
The COVID-19 pandemic demonstrated that not every individual is willing to adhere to
strict interventions, and that this can seriously affect the effectiveness of these strategies.
Especially when the prevalence of the infection is low, people tend to ignore certain rules
[22]. This thesis introduces a new framework for modelling adaptive intervention strategies
that depend on disease prevalence. To our knowledge this is one of the first studies that
combines network-based models with adaptive intervention strategies. The goal of this
study is to get better insight into the feedback relation between the disease prevalence
and the adherence to interventions. This leads to our research question: ‘How do adap-
tive intervention strategies on geometric random graphs influence the spread of infectious
diseases?’. This thesis conducts an extensive simulation study on the effects of the inter-
vention strategies on different disease models, networks and model setups.

Our findings suggest that targeted intervention strategies outperform random strate-
gies, especially those targeting high-degree nodes. Additionally, it suggests that local
information can improve the mitigation of viral spread, by focussing on the infected areas.
However, the adaptive intervention strategies do not significantly outperform the threshold
strategies. This implies that the feedback relation between adherence to the interventions
and the disease prevalence is not always beneficial.
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This thesis is organised as follows: Section 2 introduces the existing models and needed
background information. Section 3 reviews the scientific work related to this thesis. Section
4 explains the setup of the model, while Section 5 shows some theoretical results. Section 6
presents the results of the simulations of this model, followed by a discussion and conclusion
in Sections 7 and 8, respectively.
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2 Background information

In this section we will introduce the needed background information for the rest of this
thesis.

2.1 Compartment models

One of the most used classes of models to predict the spread of viruses is the class of
compartment models [17]. Compartment models subdivide a population into different
compartments, and use differential equations to model epidemic spreading.

2.1.1 SIR model

The widely used SIR model divides a population into three classes: Susceptible, Infected
and Recovered. This model was first mentioned by Kermack and McKendrick in 1927 [15].
Based on the settings and parameters of the model, population members can progress
between the three compartments S, I and R. In the basic SIR model, people in the suscep-
tible compartment S can progress to the infected compartment I, and people in the infected
compartment can progress to the recovered compartment R. The classical SIR model can
be described by the following ordinary differential equations (ODEs):

dS

dt
= −βIS, (1)

dI

dt
= βIS − δI, (2)

dR

dt
= δI, (3)

where S, I and R are the number of Susceptible, Infected, and Recovered/Removed indi-
viduals respectively, such that S + I + R = N , with N the total number of individuals
in the system. Here, β is the infection rate and δ is the recovery rate. β and δ can differ
greatly per disease. Based on the parameters β, δ and N , the course of the epidemic can
be calculated numerically. The SIR model gives a good representation of diseases with
long-lasting immunity, such as measles and hepatitis A.

2.1.2 SIS model

A well known alternative to the SIR model is the SIS model. In the SIS model individuals
can recover, but move back to the Susceptible compartment, instead of to a Recovered com-
partment. This relates to infections for which there is no long-lasting immunity. Examples
of diseases without long-term immunity are Malaria, Influenza and Gonorrhoea, and are
called re-emerging diseases [2]. The rate of change for the Susceptible compartment can
be described by

dS

dt
= δI − βIS

N
. (4)

Since there are only two compartments, all individuals leaving the Susceptible compartment
move into the Infected compartment, and vice versa. Therefore,

dI

dt
= −dS

dt
= −δI +

βIS

N
. (5)
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In the SIS model, diseases rarely die out completely. Instead, the epidemic will often
reach an equilibrium state, in which the amount of infected and susceptible individuals
stabilizes. In Section 5 we approximate the equilibrium for a SIS model on a geometric
graph when interventions are applied.

2.1.3 SITS model

A combination of the SIR and SIS model is the SITS model. Instead of moving from
Infected to Recovered, individuals move from Infected to the Temporary immune compart-
ment. This compartment acts similar to the recovered compartment: individuals in this
compartment cannot be infected, and cannot infect others. The only difference is that
individuals can move back from the temporary immune compartment to the susceptible
compartment, hence S-I-T-S. Every temporary immune individual can lose its immunity
with rate η. This gives an average immune period of 1

η . The deterministic SITS model can
be described by the following ODEs:

dS

dt
= −βIS

N
+ ηT, (6)

dI

dt
=

βIS

N
− δI, (7)

dT

dt
= δI − ηT. (8)

2.1.4 Other compartment models

Many more variants of the previously mentioned compartment models exist. The SEIR
model is for example another variant on the basic SIR model. The SEIR model introduces
the Exposed compartment. Before getting infected, individuals first move to the Exposed
compartment, which means they are exposed to the infection, but are not ill yet, which
means they cannot transfer the infection to others. Individuals stay in the Exposed com-
partment for an average incubation period Tinc, which makes the rate for transferring from
the Exposed compartment to the Infected compartment ω = 1

Tinc
. For a homogeneous

population, the SEIR model can be described by the following ODEs:

dS

dt
= −βIS

N
, (9)

dE

dt
=

βIS

N
− ωE, (10)

dI

dt
= ωE − δI, (11)

dR

dt
= δI. (12)

The SEIR model is widely used in the modelling of viruses like COVID-19, since such
diseases show the presence of an incubation period, which does influence the expected
course of the epidemic.

Other variants have been suggested. For example, a Vaccinated compartment can be
added, the SEIR and SITS model can be combined to a SEITS model, etc. The imple-
mentation of those models is relatively straightforward, but adding more compartments
makes the analysis of the results much more complex. That is why this thesis will focus
on relatively simple models.

6



2.2 Epidemics on networks

The compartment models in Section 2.1 implicitly assume a homogeneous population where
all individuals interact uniformly. This makes calculation easy, but it is an unrealistic sim-
plification. People have their own social circles, and do not have contact with the whole
population. Next to this, individuals are not identical. Some individuals have a lot con-
tacts, while others keep their contacts to a minimum. While this is an important feature
of social networks, equation-based models assume that all members of a population have
identical rates of disease-causing contacts. To model the inhomogeneous nature of social
networks, we resort to a network-based approach.

Consider an undirected graph G = (V,E), with V a set of vertices, and E ⊆ {(u, v) | u, v ∈
V } a set of edges between vertices in V . A person in a social network corresponds to a
vertex v ∈ V , and can only be infected via vertices u that are incident to v. This struc-
ture can for example also be used in the SIR model. Vertices can have one of the three
statuses: Susceptible, Infected or Recovered. Every time step, infected vertices can infect
susceptible neighbouring vertices with probability β. Infected vertices can recover every
time step with probability δ.

Network-based models are more specific, but also are much more computationally heavy
than equation-based approaches. Equation-based models can be quickly solved numerically,
while the running time for network-based models increases polynomial with the population
size. This is due to the fact that the equation-based models only have one equation per
compartment, while network-based models would have one equation per node in the graph.
Since solving a system with potentially thousands of equations is not feasible, the network
based models are usually simulated multiple times, such that the average of the simulations
will give a good approximation of the expected epidemic.

2.3 Geometric random graphs

To analyse the behaviour of epidemics on different networks, we use so-called random
graphs. Random graphs are graphs whose edges are generated randomly according to spe-
cific parameters or probability distributions. Popular random graph generators include
the Erdös-Réyni model [12] and the configuration model [7]. While these models have
many desirable properties, they have no geometric or spatial structure. With a geometric
structure we mean that the nodes in the network have a spatial position. Real-world net-
works often have a geometric structure, where the probability of two individuals having a
connection increases if they are geometrically close. This is realistic, since people mainly
have short distance connections, and only a few long distance connections. The geometric
structure is needed if we want to model interventions that are based on distance, such as
social distancing or travel restrictions.

A random graph model that includes geometry is the Geometric Inhomogeneous Ran-
dom Graph (GIRG) model [8]. GIRGs are scale-free networks, which are networks whose
degree distributions follow a power law. This means that the fraction P (k) of nodes in
the network having k connections is distributed as P (k) ∼ k−γ , with 2 < γ < 3. Scale
free networks have the property that the majority of the nodes have a small number of
connections, while a few nodes have a very large number of connections. These nodes
are sometimes called hubs. To generate a GIRG, we need to generate a weight wv and
a position xv for each vertex v ∈ V . The weights will independently be sampled from a
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Figure 1: Example of a GIRG with 400 vertices and an average degree of 5.

power-law distribution with density f(w) ∼ w−γ , with 2 < γ < 3. In general for GIRGs,
we uniformly draw positions xv ∈ T d for each vertex v, where T d is the d-dimensional
torus. For simplicity, this thesis will only consider positions sampled from [0, 1]2, for which
all the properties of GIRGs stay the same. The edge probability between vertices u and v
is defined as follows:

puv = min{( wuwv

W ||xu − xv||
)α, 1}, (13)

where α ∈ [1,∞) and W =
∑

v∈V wv. The distance between two vertices ||xu − xv|| is
defined as the two dimensional euclidean distance. For α → ∞, we get

puv =

{
0, if wuwv

W ||xu−xv || < 1

1, if wuwv
W ||xu−xv || ≥ 1

. (14)

From these equations we see that two things influence the edge probability between
two vertices: their weights and the distance between the vertices. Higher weights result
in a higher probability, and a longer distance results in a lower probability. This means
that there will be relatively few long edges. Furthermore, vertices with a high weight will
on average have the highest degree. In Figure 1 we see an example of a GIRG with 400
vertices.

8



3 Related work

Since the recent COVID-19 pandemic and its intervention strategies disrupted the lives of
billions of people, an overwhelming amount of research has been conducted to model the
epidemic spread and the influence of a wide range of modelling choices on the spread. Also
before the COVID-19 pandemic, epidemic modelling has been a well-established research
field. In this section we will give a brief overview of the various areas and focus points of
recent research which relate to this work in some way.

An important factor in the realistic modelling of epidemics is accurately representing
interventions. To realistically model interventions, we need to take human behaviour into
account, since this influences the effectiveness of the interventions. In this thesis we try
to model human behaviour by letting the prevalence directly influence the effectiveness of
the interventions. Multiple other papers have included human behaviour in their models.
Most of them use non-network based epidemic models, such as compartment models. Ep-
stein et al. [11] models fear for the disease as a disease itself, with spreading mechanics
that are similar to a ‘normal’ epidemic. Fenichel et al. [13] considers the utility between
social connections and the risk of infection. Individuals in this model try to maximize their
utility, which is closely related to the mathematics in economics. Saad-Roy and Traulsen
[20] models the adherence to interventions using game theory. In this study, the preva-
lence directly influences the adherence level, which is similar to our work. In general, all
these studies conclude that implementing human behaviour in epidemic models induces a
feedback loop which can cause multiple infection peaks. Multiple other studies look at im-
plementing fixed interventions, using equation-based models, but lack the focus on human
behaviour [9, 10].

While Epstein et al. [11] partly looks at a agent based model, Saad-Roy and Traulsen
[20] and Fenichel et al. [13] do not use an agent-based or network-based model. Like many
traditional epidemiological studies, these studies are equation-based, which means they
use differential equations to describe the dynamic relationships and interactions between
individuals in a system at an aggregate level. Contrary to research that uses equation-
based models, this thesis uses a network-based model. This means that the status of every
individual in the network is tracked and calculated.

There are some other studies that look into epidemic interventions using network-based
models. Jorritsma et al. [14] considers a SITS model on GIRGs. This article discusses the
effect of multiple intervention strategies on the spread of viral infections. In the study, in-
terventions are applied permanently for the entire duration of the epidemic. Syga et al. [21]
considers a SEIR model on a Watts–Strogatz small-world network. They implement their
interventions based on time: there are no interventions in the start, strong interventions
during the peak of the epidemic, and mild interventions in the end. Marquioni et al. [16]
also considers a SEIR model, on scale free networks. They also study fixed interventions,
varying the start and end date. Instead of applying the interventions deterministically, it
is more realistic to apply the interventions after the epidemic reaches a certain prevalence
threshold. This is what done by Panicker and Sasidevan [19]. They use geometric random
graphs, which can evolve by the adaptive actions and mobility of the individuals in the
network. The adaptive actions are only implemented when the prevalence reaches a cer-
tain threshold. This is also what happened during the COVID-19 outbreak: only after the
virus was widely spread, interventions were imposed. While applying uniform interventions
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after a certain epidemic threshold is more realistic, it assumes full compliance with these
measures. The COVID-19 outbreak made clear that full compliance cannot be assumed,
especially when disease prevalence is low, or when the illness is perceived as mild. That is
why this thesis will model interventions of which the compliance depends on the prevalence
of the disease.
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4 Model

We will model the epidemic spread using a time discretization. Every time step will
represent a day. As explained in Section 2.2, every time step we update the disease status
of the nodes in the graph. The options for this status depend on the choice of model.
If the selected model is the SIR model, every node can have one of the three statuses:
Susceptible, Infected, or Recovered. Every time step, infected vertices can infect susceptible
neighbouring vertices with probability β. Infected vertices can recover every time step with
probability δ. If the selected model is the SIS model, every node can only have the status
Susceptible or Infected.

4.1 Generating GIRGs

As explained in Section 2.3, GIRGs can be created by generating weights wv and positions
xv for every vertex v ∈ V . Based on the weights and positions, you find the edge prob-
abilities, which can be converted in the actual graph. Since this is a tedious process, we
use the GIRG generator by Bläsius et al. [6]. This generator takes the desired average
degree as input, which allows us to easily select the average degree of our graph. This
would otherwise depend on the choice of γ in the density function f(w) ∼ w−γ .

4.2 Modelling interventions

In this section we will explain in which ways we will model adaptive interventions with
dependence on the disease prevalence.

4.2.1 Distance based

During the recent COVID-19 pandemic interventions limited or discouraged travelling. To
analyse how this influenced the virus spread, we can use the geometric structure of GIRGs.
Interventions on travel often target connections with a large distance between them. This
is why as an effect of the intervention in our model, long edges will be deleted. There
are multiple ways to implement this. An intuitive method is to calculate the Euclidean
distance between every two nodes u, v that are connected with an edge. If this distance is
bigger than a predefined threshold, which can be dependent on the prevalence, the edge
will be deleted for time step t. The effectiveness of the intervention, or compliance with
the intervention will be based on the prevalence I of the epidemic. For example, if the
population consists of 100 individuals, and 50 of those individuals are infected, I equals
50
100 = 0.5. We can make the threshold dependent on the prevalence with the following al-
gorithm. In the algorithm we introduce a parameter SDP , which stands for social-distance
power. This parameter influences how effective or strict the intervention will be. If SDP
is large, the interventions will be more effective or strict. In Section 6 we will discuss the
influence of this parameter.

For every edge (u, v) we check if the distance duv = ||xu − xv|| exceeds the threshold.
If

duv >
√
2 · (1− It)

SDP (15)

we delete edge (u, v) for time step t. The algorithm will be performed every time step,
since the prevalence It can change every time step. When I is large, (1− I) will be small,
which means that a lot of edges will be deleted. When I = 0, which means there are no
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infections, no edges will be deleted, which is desired. This algorithm deletes the edges that
are longer than

√
2 · (1 − I)SDP . Since the vertex positions are sampled from [0, 1]2, the

maximum possible edge length is between u and v with xu = (0, 0) and xv = (1, 1), which
gives duv =

√
2.

4.2.2 Weight based

Since the GIRG model assigns a weight to every vertex, we can also use this to model social
distancing. Decreasing the weights wu and wv of vertices u and v decreases the probability
of the existence of edge (u, v), so multiplying all weights with a factor between 0 and 1 will
result in fewer edges. Since the prevalence I is a value between 0 and 1, we can use this
as factor to scale the weights:

wv,t = wv · (1− It)
SDP , ∀v ∈ V, (16)

where, wv,t is the weight of vertex v at time t. Again, the parameter SDP determines
the strictness of the interventions. After the weights have been updated, the edges will be
regenerated. This method will delete edges (u, v) that are present in the original graph
when wuwv

W ||xu−xv || ≥ 1, and wu,t·wv,t

Wt||xu−xv || < 1.

This intervention method can be realistic, since on average, it proportionally has the
same impact on every individual in the network. A high weight individual might lose more
connections, but also has more connections in total. This relation can be seen from Lemma
3.4 of Bringmann et al. [8]. It states that for any v ∈ V we have E[deg(v)] = Θ(wv). This
translates to the fact that the node degrees are proportional to their weights. Since we
scale all our weights with the same factor, the proportions between the node degrees will
also stay the same. This means that high-degree nodes, or so-called hubs, will lose more
edges on average. We will also show this in Section 5. This can be relevant, since hubs
can serve as super-spreaders, which significantly accelerates disease transmission over a
network.

4.2.3 Adaptive infection probability

The distance- and weight-based methods model interventions by changing the network
structure. While this models the decrease of social contacts during an epidemic, it does
not model interventions that try to decrease the infectiousness, such as wearing face masks,
washing hands, and keeping 1.5 meter distance. To model this behaviour we will scale down
the infectiousness β per time step to βt, based on the prevalence at time t: βt = β · (1−It).
For example, if the infection probability β = 0.3, and It = 0.4 at time t, our adjusted
infection probability will be βt = β · (1 − It) = 0.3 · 0.6 = 0.18. Again, we add a power
SDP , to adjust the effectiveness of the interventions. This gives

βt = β · (1− It)
SDP . (17)

4.2.4 Random percolation

To compare our specific intervention models, we need a benchmark intervention strategy.
For this we will use random percolation. Instead of deleting specific edges, we will randomly
delete edges every time step t, based on the prevalence It. Random percolation allows us
to compare structured interventions (distance and weight based) with randomly deleting
edges.
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We delete an edge e if

(random[0, 1])SDP < It (18)

where random[0, 1] is a random number uniformly sampled from the interval [0, 1].
This means that if SDP = 1, and for example It = 0.5, on average half of the edges will
be deleted. If SDP is higher, more edges will be deleted. Again, if It = 1 all edges will be
deleted, and if It = 0 no edges will be deleted, which is what we want.

4.2.5 Threshold models

Instead of adapting our interventions directly based on the current disease prevalence It,
other papers, for example Panicker and Sasidevan [19], have opted to implement fixed
interventions when a certain epidemic threshold is reached, and to stop the interventions
when the prevalence is again below the threshold. To compare our results directly to this
method, we have implemented this option in our own model. This means that we only
apply our intervention methods if the threshold M is reached. If this threshold is reached,
we need to specify the chosen fixed interventions. We introduce the parameter F that
determines the strength of the fixed interventions. F = 0 leads to a complete lockdown,
while F = 1 is equivalent to no interventions, which results in its range being 0 ≤ F ≤ 1.
In our intervention methods, F replaces (1− I)SDP .

In the distance based threshold method, we remove edge (u, v) if

duv >
√
2 · F. (19)

In the weight based threshold method we scale the weights by F :

wv,t = wv · F. (20)

In the infection probability threshold method, we adjust our infection probability with
a factor F :

βt = β · F. (21)

In the random percolation threshold method every edge has an deletion probability of
1− F .

4.3 Imperfect information

4.3.1 Local information

All the aforementioned intervention methods use a global prevalence I, on which the effec-
tiveness of the interventions depends. This assumes that all individuals in the network have
access to up-to-date and correct information about the global prevalence. Even though this
might be possible by (inter)national news networks, we live in an era where misinformation
is widespread. People might care more about infections in their own social circles than
the prevalence in the whole network. So, instead of looking at the global prevalence, we
calculate the local prevalence for each individual in the network. We define the modelling
option local information with local prevalence Iv as

Iv = #infected neighbours of v
deg(v) , ∀v ∈ V .
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This means that if an individual v has 5 social connections, of which 2 are infected, the
observed prevalence is Iv = 2/5 = 0.4. Since for every node v there is a different prevalence
Iv instead of global prevalence I, we need to adjust our intervention methods to this.

In the distance based algorithm we cannot immediately interchange I with Iv, since
every edge is incident to two nodes, u and v. To use both Iu and Iv, we define Iuv = Iu+Iv

2 ,
taking the average of Iu and Iv. We can then use this to adjust the distance based method.
We delete edge (u, v) if

duv >
√
2 · (1− Iuv)

SDP (22)

We can also use the local information for the adaptive infection probability method.
To use the local information, we will adjust the infectiousness β per individual: βv = β ·Iv.
Per connection (u, v) between an infected an healthy individual, we use the average infec-
tiousness βuv = βv+βu

2 to calculate the infection probability.

The weight based method is not implemented with local information. For random
percolation, local information is not applicable, since it is not based on the actions of
individuals in the network.

4.3.2 Information delay

As said before, information flows are rarely perfect. Often there is a delay before informa-
tion gets to people. Especially when talking about infectious diseases, there usually is a
delay between the moment of infection, and the moment the virus is noticed and counted
in the infection numbers. This is why we introduce the modelling option of information
delay. If It is the true prevalence at time t, and we use an information delay of D time
steps, our perceived prevalence at time t will be

Iper,t =

{
It−D if t ≥ D

0 if t < D
. (23)

Information delay can be used in combination with all the mentioned intervention
models, as well as in combination with local information. In Section 6.5 we will investigate
if delay always has negative impact, or if some delay could have benefits.
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5 Theoretical results

5.1 Expected degree of GIRG

Given a vertex with a specific weight in a GIRG, we can approximate its expected degree.
Michielan et al. [18] shows that the average degree of a GIRG can be approximated as
follows. Here, p[wi, wj , xi, xj ] is the probability of an edge between vertices i and j with
their respective weights and positions. (a ∧ b) is defined as the minimum of a and b.
The notation Ey means that the averaging occurs with respect to random element y. For
calculation reasons, we calculate the results in one dimension.

Exj [p(wi, wj , xi, xj)] = 2

∫ 1
2

0
(

wiwj

W ||xi − xj ||
∧ 1)α dxj

= 2

∫ 1
2

0
(

wiwj

W ||xj ||
∧ 1)α dxj

r0 =
wiwj

W

and

0 ≤ ||xj || ≤
1

2
,

so if r0 ≥ 1
2 the integrand is always 1. So we look at the case when r0 < 1/2:

Exi,xj [p(wi, wj , xi, xj)]

= 2

∫ r0

0
(

r0
||xj ||

∧ 1)αdxj + 2

∫ 1
2

r0

(
r0

||xj ||
∧ 1)αdxj

= 2

∫ r0

0
1 dxj + 2

∫ 1
2

r0

(
r0
xj

)αdxj

= 2(r0 + rα0

∫ 1
2

r0

1

xα
dx)

= 2(r0 + rα0 [
x1−α

1− α
]
1
2
r0)

= 2(r0 + rα0 (
2α−1 − r1−α

0

1− α
))

= 2r0 +
2αrα0 − 2r0

1− α

= r0(2 +
2

α− 1
) +O(rα0 )

So we conclude

Exi,xj [p(wi, wj , xi, xj)] =

{
1, if wj ≥ W

2wi

(
2wiwj

W )(1 + 1
α−1) + o(

wiwj

W ), otherwise

Integrating over the weight gives us
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Ewj [Exi,xj [p(wi, wj , xi, xj)]]

≈
∫ W

2wi

1
(1 +

1

α− 1
)
2wi

W
w−γ+1dw +

∫ ∞

W
2wi

w−γdw

= (1 +
1

α− 1
)
2wi

W
(

W
2wi

2−γ − 1

2− γ
) +

W
2wi

1−γ

γ − 1

= (1 +
1

α− 1
)

2wi

W (γ − 2)
+O((

wi

n
)γ−1).

From this we conclude that that probability of an edge between i and any j is propor-
tional with the weight of i, divided by the size of the network n. Since this probability is
between i and the other n− 1 vertices, our expected degree is proportional to weight wi.

Distance based method
The distance based method reduces the maximum length by a factor (1−I) when SDP = 1,
so 0 ≤ ||xj || ≤ (1−I)

2 . This is also changes the integral bounds. This gives us

Exj [p(wi, wj , xi, xj)] = 2

∫ 1
2
(1−I)

0
(

wiwj

W ||xi − xj ||
∧ 1)α dxj

= 2

∫ 1
2
(1−I)

0
(

wiwj

W ||xj ||
∧ 1)α dxj .

Again, r0 =
wiwj

W , but 0 ≤ ||xj || ≤ (1−I)
2 . So if r0 ≥ (1−I)

2 , the integrand is 1. This
gives us

Exj [p(wi, wj , xi, xj)] = 2

∫ (1−I)
2

0
dxj = (1− I).

If r0 <
(1−I)

2 :

Exi,xj [p(wi, wj , xi, xj)]

= 2

∫ r0

0
(

r0
||xj ||

∧ 1)αdxj + 2

∫ 1
2
(1−I)

r0

(
r0

||xj ||
∧ 1)αdxj

= 2

∫ r0

0
1 dxj + 2

∫ 1
2
(1−I)

r0

(
r0
xj

)αdxj

= 2(r0 + rα0

∫ 1
2
(1−I)

r0

1

xα
dx)

= 2(r0 + rα0 [
x1−α

1− α
]
1
2
(1−I)

r0 )

= 2r0 +
2αrα0 (1− I)1−α − 2r0

1− α

= r0(2 +
2

α− 1
) +O(rα0 ).

So we conclude

Exi,xj [p(wi, wj , xi, xj)] =

{
1− I, if wj ≥ (1−I)W

2wi
2wiwj

W (1 + 1
α−1) + o(

wiwj

W ), otherwise
.
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Integrating over the weight gives us

Ewj [Exi,xj [p(wi, wj , xi, xj)]]

≈
∫ (1−I)W

2wi

1
(1 +

1

α− 1
)
2wi

W
w−γ+1dw +

∫ ∞

(1−I)W
2wi

(1− I)w−γdw

= (1 +
1

α− 1
)
2wi

W
(
( (1−I)W

2wi
)2−γ − 1

2− γ
) + (1− I)

( (1−I)W
2wi

)1−γ

γ − 1

= (1 +
1

α− 1
)

2wi

W (γ − 2)
+ 2(1 +

1

α− 1
)(1− I)2−γ(

( W
2wi

)1−γ

γ − 2
)

+(1− I)2−γ
( W
2wi

)1−γ

γ − 1

= (1 +
1

α− 1
)

2wi

W (γ − 2)
+O((

wi

n
)γ−1).

So, in the limit the influence of the distance based intervention method disappears.

Weight based method
In the weight based method we multiply the weights with a factor (1− I), when SDP = 1.
This leads to

Exj [p(wi, wj , xi, xj)] = 2

∫ 1
2

0
(

(1− I)2wiwj

(1− I)W ||xi − xj ||
∧ 1)α dxj

= (1− I) · 2
∫ 1

2

0
(

wiwj

W ||xj ||
∧ 1)α dxj .

This means that our original expectation is now multiplied with a factor (1− I). This
factor will not influence the rest of the calculations, so we can conclude that all expected
degrees are decreased by a factor (1 − I). This means that the weight based method
proportionally decreases social connections. High-degree nodes will lose more edges than
low-degree nodes in total, but proportionally they lose they same percentage of edges.
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5.2 SIS equilibrium

The SIS model tends to end up in an equilibrium state, where the amount of infected and
susceptible individuals is stable. In a SIS model without underlying network structure,
we can exactly find this equilibrium. If our infection probability is β and our recovery
probability is δ, we can set up the following differential equations to find the equilibrium,
as we have seen in Section 2.1.2:

dS

dt
= δ · I − β · S · I ·N = −dI

dt
(24)

To find the equilibrium of this model, we need to set dI
dt = 0. This results in

S · I · β ·N = δ · I. (25)

Since S = 1− I, we can substitute this, and we find I = 1− δ
β·N .

As mentioned before, in the compartment model without network structure, every
individual can infect any other individual in the system. This is a highly unlikely, since
people only meet a limited amount of individuals of the total population. To account for
this in the equilibrium calculations, we need to introduce a term Θ, which is the probability
that a healthy node links to an infected node. To exactly find the equilibrium of a SIS
epidemic on a given graph, we would need to set up differential equations for every node,
which would describe the relations with its neighbours. Since this is not feasible, we make
the assumption that nodes with the same degree behave similarly. With this assumption
we can set up differential equations for the density of infected nodes ρk for a given degree
k:

dρk
dt

= −ρk + λk(1− ρk)Θ, (26)

where λ = β
δ , and Θ is the probability that any given edge points to an infected node.

The −ρk term covers the recovered nodes. The λk(1− ρk)Θ term is the expected number
of healthy nodes with degree k that get infected by an infected neighbour. To find the
equilibrium, we check when dρk

dt = 0. This results in

ρk =
kλΘ

1 + kλΘ
. (27)

Since Θ is the probability that a healthy node links to an infected node, we get

Θ =

∑
k kP (k)ρk
E(k)

, (28)

where P (k) is the probability of a node with degree k, and E(k) is the expected degree.
Since our networks follow a power law, P (k) = k−γ , with 2 < γ ≤ 3. For calculation
purposes, we will set γ = 3. Filling in equation 27 in equation 28 gives

Θ =
∑
k

λΘ

E(k)(k + k2λΘ)
(29)

ΘE(k)λ−1 ≈
∫ ∞

1

Θ

k + k2λΘ
dk (30)

= Θlog(
λΘ+ 1

λΘ
) (31)

Θ =
1

λ(eE(k)λ−1 − 1)
(32)

18



If we fill in this Θ in the formula for ρk, we get

ρk =
k

eE(k)λ−1 + k − 1
. (33)

This formula is for a given degree k, so to find our general equilibrium, we need to average
over k:

ρ =
∑
k

ρkP (k) (34)

=
∑
k

k−2

eE(k)λ−1 + k − 1
(35)

≈
∫ ∞

1

k−2

eE(k)λ−1 + k − 1
dk (36)

=
eE(k)λ

−1 − E(k)λ−1 − 1

(eE(k)λ−1 − 1)2
(37)

Expression 37 gives us an approximated analytical solution for the equilibrium of the
SIS model, but only for the situation where the virus can spread freely, and no interventions
are implemented. To be able to analytically calculate the SIS equilibrium with interven-
tions, we must carefully choose the intervention strategy. All the interventions that delete
edges, and thus change our network, cannot easily be implemented in the differential equa-
tions. The calculations above assume that the node degrees are fixed, while by deleting
edges the node degrees will change. The only intervention strategy that does not change
the network structure is varying the infection probability based on the prevalence, which is
explained in more detail in section 4.2.3. If SDP = 1, β will be a function of the prevalence
ρ: β = β0(1−ρk), where β0 is the infection probability without interventions. Since λ = β

δ ,
λ = λ0 · (1− ρk). Substituting this is equation 26 when dρk

dt = 0 gives ρk = λ(1− ρk)
2kΘ.

Solving for ρk gives

ρk =
−2Θkλ+

√
4Θkλ+ 1− 1

2Θkλ
. (38)

Filling in the equation for ρk in equation 28 for Θ gives

ΘE(D) =
∑
k

−2Θkλ+
√
4Θkλ+ 1− 1

2Θk4λ
(39)

≈
∫ ∞

1

−2Θkλ+
√
4Θkλ

2Θk4λ
(40)

= −1

2
+

2

5
√
Θλ

. (41)

Solving for Θ gives a long expression that will not be written down, but it can be used
to numerically calculate the expected equilibrium value, by substituting it in equation 38,
and average over k.
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6 Simulation results

This section investigates the effectiveness of the adaptive intervention strategies by com-
paring key metrics across multiple parameter settings and scenarios. The focus lies on
understanding the trade off between controlling the epidemic and the societal impact.

6.1 Key metrics

To assess the effectiveness of our intervention strategies, we need to indicate a list of key
metrics. We will focus on the following metrics:

Time and height of the peak: The number of people infected at the peak of the
epidemic is crucial for hospitals. If the peak is too high, hospitals might not have enough
capacity to treat everyone. During the COVID-19 pandemic, one of the main focus points
was to lower and delay the peak of the infection, under the name flatten the curve. If the
peak of the epidemic is very early, not much will be known about the disease, and hospitals
might be less prepared. The later the peak of the disease is, the more time hospitals have
to prepare for the peak. We denote the peak height by Imax = maxt≥1 It, and the time of
the peak tmax = argmaxt≥1 It.

Total infections: The number of people that have been infected during the epidemic
is of main importance, since it gives a clear view of the size of the outbreak. For the SIR
model, the total number of infections is exactly the number of recovered individuals at the
final time step. For the models where reinfection is possible, such as SIS and SITS, the
total infections are counted. This means that the total infections can be higher than the
total population size. We refer the total number of infections by Itotal.

Epidemic duration and second peaks: If the duration of an epidemic is short, the
disruption by it is generally small. The longer it is takes to eradicate a disease, the more
influence it will have on society. In the SIS and SITS models, multiple peaks often occur,
due to the ability of moving back to the Susceptible compartment. It can be the case that
an intervention strategy does have a positive influence on some of the metrics, but does
cause multiple waves to occur. This can lead to a prolonged epidemic duration, which can
be undesirable.

We need to specify what we consider to be peaks, since we do not want to count
every minor fluctuation in the data as a peak. We exclude small fluctuations by setting
a threshold value on the prominence, also known as the relative height. The prominence
of a peak is defined as the minimum drop in height necessary in order to reach a higher
point in the data. Mathematically, for a peak at time t with height h(t), the prominence
is defined as

P (t) = h(t)− min(hmin, left, hmin, right), (42)

where hmin, left and hmin, right are the lowest points encountered when descending from t to
any higher peak on the left and right, respectively. We set a threshold value Pthresh to say
a peak at time t is significant if

P (t) > Pthresh. (43)

.
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This leads to small fluctuations being ignored as peaks.

Societal impact: The way to measure societal impact depends on the intervention
method. The weight based, distance based and random percolation intervention methods
depend on deleting edges from the network. Deleting edges can be seen as decreasing social
contacts, which has a societal impact. The metric to measure societal impact due to edge
deletion will be the edge ratio

RE,t =
|Et|
|E|

, (44)

where |E| is the size of the graph at the begin of the epidemic, and |Et| the size of the
graph at time t. If RE,t is low, it means that a lot of edges are deleted, so the societal
impact is high. The societal impact per time step can be expressed as

SIE,t = 1− |Et|
|E|

. (45)

If we sum this over the duration of the pandemic, we get the total societal impact

SIE =
T∑
t=1

(1− |Et|
|E|

). (46)

This gives a clear indication of the strength of the interventions, as well as the length of
the epidemic.

The infection probability intervention method does not delete edges, but lowers the
infection probability. We can measure its impact in a similar fashion as the edge reduction
methods.

Rβ,t =
βt
β

(47)

measures the ratio of the infection probability per time step.

SIβ,t = 1− βt
β

(48)

is then the societal impact per time step, and finally

SIβ =

T∑
t=1

(1− βt
β
) (49)

sums over the societal impact per time step to get the total societal impact. We can now
directly compare edge reduction methods and the infection probability method, since both
SIE and SIβ are the sum of the relative societal impact. For the local infection probability
method, we take the average of the infectiousness per individual

βt =

∑
v∈V βv,t

n
. (50)
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Figure 2: Heat map of Itotal for different values of β and δ, using the SIR model
without interventions

6.2 Parameter choices

Since the number of possible parameter combinations is vast, we select parameter values
that align with realistic epidemic scenarios. In this section we are mainly interested in
the course of diseases like COVID-19, but with the choice of different parameters, other
disease classes could also be simulated. However, this is beyond the scope of this thesis.

Infection and recovery probability
Two crucial characteristics of a disease are the infection probability β and the recovery
probability δ. In Figure 2 we see a heat map of the ratio of the total number of infections
Itotal, for a SIR epidemic on a GIRG with 1000 nodes, without interventions. We see that
for β > 0.75 the recovery rate does not have a lot of influence, since the ratio of the total
number of infections lies above 0.9. For a low infection probability, the recovery rate has a
large influence. Since in general, the recovery period of COVID-19 lies around 5 to 10 days
[4], we will set the recovery rate to δ = 0.15. Closely related studies, such as Jorritsma et
al. [14] use an infection probability that is close to the recovery probability, so we will use
β = 0.15.

Network
For the simulations, we will use networks with 1000 vertices. This size results in complex
networks that are still small enough to simulate disease spread within a reasonable time
frame. Next to the network size, we need to choose the average degree E[deg(v)], and the
value for α. We will set E[deg(v)] = 8, in accordance with Jorritsma et al. [14]. We will
set α = 1000, which would have the same effect as any other arbitrary large value for α
(see equation 14).

Social distance power
The social distance power (SDP ) determines the effectiveness of the intervention strate-
gies. We will use different values of SDP for the simulations, to give a clear view of the
effect of this parameter.
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Figure 3: Total infections with different values of SDP , for SIR simulation of the
4 methods. Averages are taken over 50 simulations per data point.

Figure 4: Peak infections with different values of SDP , for SIR simulation of the
4 methods. Averages are taken over 50 simulations per data point.

Other parameters
To prevent the disease from dying out before infecting anyone, we set the number of infec-
tions at the start to 10. Model specific parameters, such as the immunity loss probability
η, will be specified when used.

6.3 Comparison of intervention strategies

Now that the majority of the parameters is fixed, we can use them to compare our inter-
vention strategies. In Figure 3 we see the average number of total infections of the four
methods in a SIR simulation. For every point, the average is taken over 50 simulations.
For these simulations, the parameters are as described previously. In Figure 4 we see the
average height of the peaks of the same simulations.

We see that for all four methods the total infections decrease as SDP gets bigger,
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Figure 5: Total societal impact for different values of SDP , for SIR simulation of
the 4 methods. Averages are taken over 50 simulations per data point.

which is as expected. We see that the random percolation and weight based methods gen-
erate the lowest Itotal, while the distance based method has significantly larger outcomes.
The random percolation method has significantly lower peaks, while the peak heights for
the weight and infection probability methods are remarkably similar. One could think
this means that the distance based method is the least efficient of the four methods, but
this is not necessarily true. What this figure does not show is the societal impact. Since
the algorithms have a different implementation of the SDP parameter, the effect on the
methods might not be equivalent. In Figure 5 we see the societal impact of the simulations.

We see that the distance based method has a significantly lower societal impact, while
the random percolation method has a substantial societal impact. The weight based
method and infection probability method show very similar societal impact. To fairly com-
pare the four methods, we want to select SDP values for which all the methods have a sim-
ilar societal impact. If we take a societal impact of 10, we approximately get SDP = 1.65
for random percolation, SDP = 2.5 for weight based, SDP = 2.4 for infection probability
based, and SDP = 13 for distance based. Per method, we run 200 simulations, and plot
the average disease trajectories. In Figure 6 we see the averaged disease trajectories of
the four methods laid over each other. Here we see that the weight based method leads
to the lowest total number of infections, while the distance based method is the most ef-
fective method when it comes to reducing the peak. The random percolation method is
the least effective in both decreasing the peak and decreasing the total number of infections.

In the left picture of Figure 7 we see the average societal impact per time step. We
clearly see that the distance based method creates a much stronger initial intervention, but
it is also released earlier than the other methods. This causes the total societal impact for
the different methods to be similar. This can be seen in right picture of Figure 7, where the
cumulative societal impact per method is plotted. We see that at the end of the epidemic,
the total societal impacts per method are very similar, which is desirable if we want to
fairly compare the effectiveness of the methods.
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Figure 6: SIR Disease graphs of the four methods with SDP = [2.4, 13, 2.5, 1.65]
respectively. Left: Infections. Right: Recovered. Averages are taken over 200
simulations per method.

Figure 7: SIR Societal impact graphs of the four methods with SDP =
[2.4, 13, 2.5, 1.65] respectively. Left: Societal impact per time step. Right: Cu-
mulative societal impact. Averages are taken over 200 simulations per method.

25



Figure 8: Total societal impact plotted against different SDP values for the four
methods, on the SIS model. Averages are taken over 50 simulations per data point.

Figure 9: SIS Societal impact graphs of the four methods with SDP =
[1.7, 6, 2, 1.7] respectively. Left: Societal impact per time step. Right: Cumula-
tive societal impact. Averages are taken over 200 simulations per method.

SIS
In the SIS model, recovered individuals become susceptible immediately. To see the effect
of the different social distancing models, we again plot the societal impact per SDP value,
which can be seen in Figure 8. We can now choose SDP values to let the four methods
have a similar societal impact. We set SDP = 6 for distance based, SDP = 2 for weight
based, and SDP = 1.7 for the infection probability and random percolation methods.

In Figure 9 we see the infections curves for these values of SDP and the corresponding
societal impact. We notice that with the distance based intervention, the disease has mul-
tiple peaks before it reaches an equilibrium. The other methods reach their equilibrium
already after the first peak. This can be explained by the fact that the distance based
method ‘overshoots’ the equilibrium with stronger interventions, and then also releases
the interventions too quickly. We also notice that with similar societal impact, the weight
based method leads to the lowest equilibrium of infections.
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Figure 10: Total societal impact for different values of SDP , for SITS simulation
of the 4 methods. Averages are taken over 50 simulations per data point.

SITS
For the SITS model we need to fix the average length of immunity, which determines the
parameter η, which is the probability of losing immunity. We choose the average length
of immunity to be 120 days, which is reasonable according to the Association of American
Medical Colleges [3]. This gives η = 1

120 . We again simulate the disease spread for multiple
values of SDP . The peak infections are practically the same as in Figure 4, since the deim-
munization has almost no effect on the initial peak. In Figure 10 we see the societal impact
for increasing values of SDP per method. We see again see that the random percolation
method causes the most societal impact, and the distance based method the least. We take
SDP values 2, 4, 4.1, and 22 for random percolation, infection probability based, weight
based and distance based, respectively, since this leads to similar societal impact.

In Figure 12 we see the societal impact per time step and the cumulative societal
impact. Similar to the SIR simulations, the distance based method has a higher societal
impact peak, but cumulative it is comparable to the other methods. In Figure 11 we see
the averaged SITS curves relating to the four methods. Since the curves are averaged over
200 simulations per method, possible second peaks in single simulations are not visible.
In Figure 13 we see some data about second peaks in the simulations. We see that with
the distance based method the average number of peaks is higher, as well as the average
height and time of the second peaks.
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Figure 11: SITS Infection graphs of the four methods with SDP = [4, 22, 4.1, 2]
respectively. Averages are taken over 200 simulations per method.

Figure 12: SITS societal impact graphs of the four methods with SDP =
[4, 22, 4.1, 2] respectively. Left: Societal impact per time step. Right: Cumula-
tive societal impact. Averages are taken over 200 simulations per method.
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Figure 13: Bar plots for the number of peaks, height of the second peaks and
the time of the second peak, for the SITS simulations. Averages are taken over 200
simulations per method.

6.4 Effect of local information

The local information option has been implemented for the distance based method and
infection probability method. In Figure 14 we see the disease trajectories of the local
methods plotted against the global methods. This is again done with the same parameters
as in Section 6.3, on the SIR model. We see that the local methods result in lower peaks.
Especially the local distance based method mitigates the disease spread substantially. On
the left picture of Figure 15 we see the comparison of the societal impact. We see that
the local methods start earlier, but have less strict intervention peaks than their global
counterparts. However, the local distance intervention method goes on for a longer period.
On the right picture of Figure 15 we see the cumulative societal impact. Since the local
distance based method continues for a longer time, the total societal impact is higher.
Interestingly, the local infection probability method outperforms its global counterpart in
all metrics. It delays the peak, the peak is lower, and the number of total infections is
lower. Additionally, it has a lower societal impact than the global version.

To more fairly assess the difference between the global and local distance based meth-
ods, we want to choose a lower SDP value for the local distance based method. In Figure
16 we see the SIR curves for the distance based method, now including the local distance
based method with SDP = 6 and SDP = 8. We see that for these values, the local
method still outperforms its global counterpart. In Figure 17 we see the corresponding
societal impact plots. While for SDP = 13 the local method had a higher societal impact,
for SDP = 6 and SDP = 8 the societal impact is lower than for the global method. So, we
conclude that for these parameter settings, the local method is outperforming the global
method in both peak reduction, total infections and societal impact, for the distance based
method, as well as for the infection probability based method.
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Figure 14: Infection plots of SIR simulations for the infection probability method
and the distance based method, for local and global methods. SDP = 13 for the
distance based method, SDP = 2.4 for the infection probability method. Averages
are taken over 200 simulations per method.

Figure 15: Societal impact plots of SIR simulations for the infection probability
method and the distance based method, for local and global methods. SDP = 13
for the distance based method, SDP = 2.4 for the infection probability method.
Left: societal impact per time step. Right: cumulative societal impact.
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Figure 16: SIR disease graphs of the global and local distance based method.
Left: infections part of the population. Right: recovered part of the population.
Averages are taken over 200 simulations per method.

Figure 17: Societal impact graphs of the global and local distance based method.
Right: societal impact per time step. Left: cumulative societal impact. Averages
are taken over 200 simulations.
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Figure 18: Total SIR infections plotted against days delay for multiple methods.
The average is taken over 50 simulations per data point.

Figure 19: Peak SIR infections plotted against days delay for multiple methods.
The average is taken over 50 simulations per data point.

6.5 Effect of delay

When modelling delay, we have to make the parameter choice of how much delay there is.
To give a clear overview of the effect of delay on the four models and the two local versions,
Figure 18 shows the total infections per value of delay, per intervention method. We see
that for all the methods the total infections increase as the delay increases. Since the delay
causes a slower reaction to the disease, this is as expected. Interestingly, after more than
seven days of delay, all the methods converge to same number of total infections, which
implies that the intervention methods are practically useless. This makes sense, since the
peak of the disease spread in the simulations often lies before day 10. In Figure 19 we
see the height of the peak for different delay values. We again see similar behaviour: the
values converge quickly, now for 5 or more days delay.

Strictly enforcing interventions, and releasing them quickly after the peak could possi-
bly lead to second peaks. To test if there are scenarios in which delay can have any positive
effect, we set up the following experiment. To get a ‘slower’ disease, we choose an infection
probability of β = 0.03 and recovery probability of δ = 0.05. Next to that, we start the
disease with 5 instead of 10 initial infections. We now simulate a SITS disease for different
values of delay and SDP , for the different methods. In Figure 20 we see the heat map of
the global infection method of these simulations, with the total infections as metric. Every
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Figure 20: Heat map of SITS total infections for the global infection probability
method, for different SDP and delay values, with β = 0.03 and δ = 0.05. For every
data point, the average is taken over 50 simulations. The lowest value per row is
outlined in red.

data point is the average of 50 simulations. Outlined in red we find the lowest value in
each row, so for each value of SDP .

We already see there are situations in which there are values of delay for which the
total infections is lower than for zero delay. Since these simulations are stochastic, this
can occur without the result being significant. In Figure 20 we see multiple rows, so val-
ues of SDP for which the lowest value is at a delay value bigger than zero. To see how
significant this result is, we now do 100 simulations per parameter combination, and plot
the total infections including a 95% confidence interval for the expected mean of these 100
simulations. In Figure 21 we see the graphs of this. We see that the mean value sometimes
is smaller for a non-zero value of delay. But, the confidence intervals are wide enough that
the lowest value can still be attained for zero days delay.

From this we conclude that for specific parameter settings, in some simulations, the
outcomes might be a bit better when there is delay. But when the average is taken over
multiple simulations, it cannot be shown to be a significant improvement. However, it is
not always strictly outperformed by zero delay, as was the case in the simulations of Figure
18.
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Figure 21: Total SITS infections per value of SDP and days delay, with a 95%
confidence interval of the mean value, for the global infection probability method.

Figure 22: Total threshold infections plotted against different F values per
method, with M = 0.1. Per data point, the average is taken over 50 simulations.

6.6 Adaptive compared to threshold

To compare our adaptive intervention methods with threshold methods, we need to set the
parameters M and F . Recall from section 4.2.5 that M is the threshold on the infection
prevalence after which the interventions will be instated, and that F decides the strength
of the intervention. We arbitrarily choose to fix M = 0.1. We can then plot the influence of
parameter F for the different methods. In Figure 22 we see the total infections of the dis-
ease for different F values. In Figure 23 we see the societal impact for different values for F .

If we want to compare threshold with adaptive methods, we need to pick values for
SDP and F such that the total societal impact is similar. In Section 6.3 we set the values
of SDP to get to a total societal impact of 10. To compare the threshold results with
the adaptive results, we set the values for F to also end up with a societal impact of 10.
We take F = 0.4 for the infection probability and random percolation methods, F = 0.25
for the weight based method, and F = 0.027 for the distance based method. Running
simulations for these values gives the disease graphs as shown in Figure 24. In Figure 25
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Figure 23: Threshold SIR societal impact plotted against different F values per
method, with M = 0.1. Per data point, the average is taken over 50 simulations.

we see the corresponding societal impact. We can see that the cumulative societal impact
is similar between the methods, so we can fairly compare them.

Interestingly, all the threshold methods lead to lower peaks than their adaptive coun-
terparts. From Figure 24 we see that only the adaptive distance based model leads to
slightly fewer infections than the threshold method, while for the other three methods the
threshold model leads to fewer infections. Especially for the weight based method does the
threshold method lead to a lower number of total infections.

Interestingly, the weight based model is performing the best of the four threshold meth-
ods, with stronger interventions, which are also released earlier. This leads to the same
cumulative societal impact. Another interesting observation is the similarity of the infec-
tion probability method and the random percolation method. Even though the one method
deletes edges, and the other lowers the infection probability, the infection curves as well as
the societal impact curves are almost identical.

SIS threshold
In Figure 26 we see the societal impact of the four methods for different F values on
the SIS model. Remarkable is the similarity between the infection probability method,
the random percolation method and the weight based method. Only the distance based
method has a different societal impact with the same F values. To fairly compare the
methods, we set F = 0.05 for the distance based method, and find the corresponding
value F = 0.56 for the other three methods. In Figure 27 we see the infection graph and
the corresponding societal impact for the chosen F values. The societal impact of all the
four methods is now almost equal. The infection graph of the weight based method is the
only one that has a significantly lower equilibrium. The other three methods are again
indistinguishable. In the long run, the adaptive and threshold methods are the same if the
SIS equilibrium is larger than the threshold value. Because the infections are stable, the
adaptive interventions are also stable, which is the same as in the threshold model. The
only difference is that in the threshold model the intervention strength is predefined, while
for the adaptive method, the infection equilibrium defines the intervention strength.
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Figure 24: SIR Comparison of the adaptive (full lines) and threshold (dashed
lines) methods. I (left) and R (right) curves for M = 0.1 and specific F values.
Per line, the average is taken over 200 simulations.

Figure 25: SIR Comparison of the societal impact of the adaptive methods and
the threshold methods. The dashed lines are from the threshold methods, the
full lines from the adaptive methods. For all lines, the average is taken over 200
simulations.

Figure 26: Threshold SIS Societal impact plotted against different F values. Per
data point, the average is taken over 50 simulations.

36



Figure 27: Threshold SIS infections (left) and societal impact (right), with F =
0.05 for the distance based method and F = 0.56 for the other methods. M = 0.1.
For every line, the average is taken over 200 simulations.

6.7 Using flight data as input network

During pandemics, international flights are often reduced to prevent the spreading of the
disease over multiple continents. Since the network of airports and airlines can be rep-
resented as a graph with geographical coordinates, we can use our model for geometric
graphs on this dataset. The cities are the nodes of our network, and the flight segments
between cities are the edges. We use data from SEES:lab [1]. Even though this data is from
the year 2000, it still gives a good representation of today’s international flight network.
Since practically every flight route is taken in both directions, so from A to B and from B
to A, the graph is regarded as undirected. This is helpful, since our network-based model
is also created for undirected graphs.

The network consists of 3499 nodes and 27102 edges. This gives an average degree of
7.75. The node with the highest degree has a degree of 248. This node corresponds to
Paris, France. Other cities in the top 5 of nodes with the highest degree include Frankfurt
am Main, London, Amsterdam and Chicago. This seems plausible since these are all cities
with large international airports.

We simulate a SIR disease over this network of airports. The distance based method is
adjusted by changing the maximum distance

√
2 into 20000 km. The earth’s circumference

is roughly 40000 km, so by taking half of that, we get the maximum distance any flight
route would be.To compare the influence of the network structure of the airports opposed
to GIRGs, we use the same parameters as used in Figures 6 and 7.

In Figure 29 we see the outcomes of these simulations, and the corresponding societal
impact graphs can be seen in Figure 30. If we compare them to Figures 6 and 7, we
see that the outcomes are similar. This is as expected, since the average degree of the
airport network is 7.75, which is close to the average degree of 8, used in the earlier SIR
simulations.

37



Figure 28: Visualisation of the international flight network. The nodes are air-
ports, and the edges are flight connections.

Figure 29: Infection (left) and Recovered (right) graphs of the four methods, on
the airport network. Every line is the average of 200 simulations.

Figure 30: Societal impact (left) and cumulative societal impact (right) graphs
of the four methods, on the airport network. Every line is the average of 200
simulations.
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7 Discussion

In this section we will review the results from this thesis, and interpret their significance.
We will compare the outcomes with the existing literature. Furthermore, we will go into
the limitations of our models, which leads to possible improvements and further research
recommendations.

7.1 Analysis of simulation results

In this thesis, we came up with four methods to model adaptive intervention strategies.
In Section 6.3 we compared the four methods on the SIR, SITS and SIS models. On the
SIR model, the distance based method most effectively reduced the peak, while the weight
based method led to the lowest total number of infections. On the SITS model we saw
similar behaviour, but the strict interventions of the distance based method led to more
peaks and higher second peaks. On the SIS simulations, we saw that all the four methods
converge to an equilibrium state. The distance based method takes multiple oscillations
to get to the equilibrium, while the other methods get to the equilibrium in the first peak.
While the SDP values where chosen such that the societal impact is nearly the same, the
equilibrium of the weight based method lies notably lower than the equilibria of the other
methods.

In Section 6.4 we saw that the local methods outperformed their global counterparts in
every metric. With less societal impact they lead to lower and delayed peaks, and less total
infections. This is a very interesting, but also explainable outcome. The local methods
focus on decreasing the infectiousness or the network connectivity around the infections.
Instead of deleting contacts between two healthy individuals, they only target individuals
that observe a high prevalence in their social network. This means there is no unneces-
sary societal impact, which results in the local methods to be more effective with similar
societal impact. This leads to the question if the effectiveness of local information models
could be utilised in real life interventions strategies. Instead of global policies that are
the same for everyone, policy makers could choose to let individuals decide their extent of
social distancing, based on their locally observed prevalence. This however assumes that
individuals have access to the information of who is contagious in their social network.
Also, such policies might be regarded as vague and impractical, which could lead to low
adherence to the policies. One could also view the effectiveness of the local methods in a
different light. Even if the intervention strategies are the same for everyone, the adherence
to the strategies might depend on local information. If an individual observes a lot of
infections in their social network, they are more likely to adhere to intervention strategies.
In this way, local information might be a useful tool to model human behaviour during
epidemics.

In Section 6.5 we looked into the effects of information delay. On diseases with a high
infection rate, delay has a large negative effect, since the disease has already extensively
spread before the intervention strategies start. On diseases with a slower progression, de-
lay has less impact. If the disease model also includes the possibility of reinfection, there
might be simulations in which delay has a slight improvement over the situation with no
delay. But, this was not shown to be significant.

In 6.6 we compared our adaptive models with threshold models. Interestingly, the
adaptive methods do not significantly outperform the threshold models. This shows that
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steady interventions after a certain threshold can be effective. This however, does not take
into account the realism of the models. While the adaptive model accounts for the human
behaviour to disease prevalence, the threshold model assumes full adherence to the inter-
ventions. Again, the weight based model was the most effective of the four interventions
methods.

Over all the simulations, with multiple model setups, the weight based method showed
to be the most effective method to mitigate viral spread, when the societal impact was
equalized. Then the question arises, why the weight based method is the most effective
and what we can learn from this. The weight based method is effective at targeting high
degree nodes, so-called hubs. While the degree proportions stay the same, the hubs lose
more connections. If hubs get infected, they might cause a significant acceleration of the
disease spread with so-called super-spread events. The main takeaway from this for policy
makers is that targetting the most connected individuals might be worth the effort.

7.2 Comparison with existing literature

While the scientific contributions to the field of epidemic modelling are vast, this is to our
knowledge one of the first works that models disease spread on networks with interventions
that depend on the prevalence of the disease. Since this is a new way of modelling, and
the results are very dependent on the parameter choices, it is hard to directly compare
outcomes from this model with existing literature.

7.3 Limitations and possible improvements

Since the spread of diseases is a very complex process, the models presented in this thesis
are highly simplified. Social networks are much more complex than the networks that we
used. People move, have evolving contacts, and the real social networks are of a different
order of magnitude.

Section 6 gives a general overview of simulation results, but these results heavily de-
pend on the choice of parameters. An already simplified model, like the one presented in
this thesis, has numerous parameters. Extensively researching the influence of the differ-
ent parameters and their interactions with each other, would cost a tremendous amount
of time. Some choices of parameters in the results section have been supported by valid
reasoning, while others have been chosen somewhat arbitrarily. Next to that, the results
have not been validated by real world data. The results should be viewed in a modelling
sense: they give information about what influence specific modelling choices have. They
should not be regarded to be directly applicable for realistic disease representations.

Section 5 shows some theoretical results. While the outcomes are theoretically useful,
they have not been tested empirically, due to time constraints. Next to this, the results
have a lot of approximations, so they might not be very useful in practice. It would have
been interesting to compare the theoretical SIS equilibria with the equilibria in simulations.

In our models we make the choice between the SIR, SIS and SITS model. While all
of these models capture some specific essence of diseases, they are still simplifying. A real
disease is continuous, while we use a discrete compartment model. People do not directly
go from infected to recovered, this is a continuous process. To more realistically model
diseases with compartments, we would need much more compartments. For example, the
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Infected compartment could be split up in Mild, Medium, and Severe sub-compartments.
While this would make the model more realistic, it is also harder to reflect on the out-
comes of such models, because visualising a disease with much more compartments will
be challenging. Another compartment that would be interesting to add is a Vaccinated
compartment, since this adds another dynamic to the model. But again, this adds more
complexity and parameters to the model, so it will be harder to analyse.

Another discretization is made with the time steps. To simulate the spread of the
disease, we have chosen for a time discretization. Every time step, the statuses of the in-
dividuals are being updated. In real life this is also a continuous process. Instead of using
time discretization, we could have chosen to use discrete-event simulations (DES). Here
each event, for example an infection, occurs at a particular instant in time. In between
consecutive events, no change in the system is assumed to occur, so the simulation time
can directly jump to the time of the next event. This makes DES in general faster than
using a time discretization. We however, chose to use time discretization for its simpler
implementation.

While this thesis models the compliance to intervention strategies, we do not claim
to have expert knowledge about human behaviour. In our model, the effectiveness or
compliance to the interventions is directly linked to the disease prevalence. Of course,
human behaviour during epidemics is much more intricate. The human behaviour is more
linked to perceived risk than to the actual disease prevalence. Our model could be used as
starting point for more specific studies to model human behaviour during epidemics.

7.4 Future research

This work lays a foundation for other works to build on. The framework for modelling
adaptive intervention methods on networks has the potential to become an important part
of epidemic modelling, but there is a lot for future work to do. The models could be made
more complex and realistic by adding more compartments, and could be sped up by using
discrete-event simulations. A faster model could be useful to do more simulations with
different parameter settings. The choice of parameters could also be a good direction for
future research. The results could be compared with real world data to find values, for
example for SDP , that align with real epidemics. Next to this, the theoretical results on
the SIS equilibria could be tested against simulation results.

Another interesting direction for future research is the combination of the adaptive
model with the threshold model. The interventions would start after a certain threshold
on the prevalence, but the strength of the interventions would then also depend on the
prevalence. Next to this, we could also combine the distance or weight based model with
the infection probability method. The distance based method would mimic the interven-
tions that focus on long distance travelling, while the infection probability method mimics
the interventions that focus on reducing infectiousness, such as hygiene.
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8 Conclusion

Our research question was ‘How do adaptive intervention strategies on geometric random
graphs influence the spread of infectious diseases? ’. This thesis introduced four methods
to model adaptive interventions that change based on the disease prevalence. The weight
based method scales the weights of the GIRGs based on the disease prevalence. The dis-
tance based method deletes the longest edges. The infection probability based method does
not change the network, but reduces the infectiousness. The random percolation method
randomly deletes edges, and is used as benchmark to compare our strategies with. From
the four methods investigated in this thesis, the weight based intervention method turned
out to be the most effective in reducing the total number of infections for multiple model
setups, such as SIR and SIS. Its effectiveness can be explained due to its focus on super
spreaders. The distance based intervention method also showed its effectiveness, for ex-
ample in reducing the peak infections. The distance based method was especially effective
in combination with local information.

Next to the four intervention strategies, this thesis introduced local information. In-
stead of looking at the global prevalence, we investigated the effect of only looking at the
infection status of neighbours. This thesis showed that local intervention strategies out-
perform their global counterparts by only targeting high-prevalence areas. Furthermore,
we investigated the effect of information delay. In general, delay has a negative effect on
the mitigation of viral diseases, especially when the disease has a high infection rate.

Lastly, it was shown that adaptive intervention strategies do not significantly outper-
form threshold methods, but the adaptive methods do capture human behaviour better
than the threshold methods.

The key contribution from this thesis is that it develops a novel framework on integrat-
ing adaptive intervention strategies on networks into epidemic modelling. These adaptive
methods can be used to add human behaviour to epidemic modelling, since this is cur-
rently an underdeveloped area. We hope that this thesis contributes to the modelling of
epidemics, such that possible future policies can be more efficient and less disruptive.
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