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Abstract

In this thesis the issue of detecting structural changes in the autocovariance function of
a stationary time series is explored. In particular a modified CUSUM-test that detects
changes is the main subject. All necessary background is introduced in as much detail as
possible. Asymptotic properties that are known in the literature but not proven explicitly
will be proven here. Simulations supplement this work to show the size and power of the
test in comparison to two tests in the literature. Two Cusum-tests proposed by Berkes
et al[5], and another based on ordinal-patterns by Betken et al[6]. ARMA-models will be
used to demonstrate the power, runtime, strengths and weaknesses of each test.



Introduction

Time series data is any kind of data with timestamps attached to it. From revenue and
stock prices, to EEG data and weather patterns, time series data is prolific and occurs in
almost every industry. Modelling techniques are well-researched and the state of the art
is advanced in this area. If a structural change were to occur at some point in time these
techniques become less effective, and such changes in regime need to be accounted for.
Structural changes can happen for any number of reasons, some can be seen, predicted,
and readily prepared for, and some are invisible, subtle, and might only be noticed after
the fact. A large franchise opening a branch in a new country can affect revenue for a par-
ticular competing retailer, this can be anticipated and prepared for. Or perhaps a change
in tax policy or some unknown phenomenon reduces revenue, this could be unexpected
and only noticed after the fact. This has been a pressing issue for as long as Time Series
Statistics has been a branch of study, and in this thesis a pivotal question is addressed:
"How can you detect a structural break in your data?"
Such changes could be found manually by data analysis, but for large or constantly up-
dating datasets this is infeasible. A robust method to do this quickly and efficiently has
been an area of study since as early as 1955 with Page[30] proposing a method to detect
changes in mean. More pertinent to this thesis are the methods of detecting autocovari-
ance changes. At the time of writing the state of the art can be found in Dürre & Fried
[39].
CUSUM tests are the main subject of this work, say one wishes to test the following
hypothesis, let (Xi)i∈[1,T ] be a time series:

H0 : E[X1] = E[X2] = · · · = E[XT ]
H1 : ∃k ∈ N s.t. E[X1] = · · · = E[Xk−1] ̸= E[Xk] = E[Xk+1] = · · · = E[XT ]

Under the null hypothesis the sample means µ̂k = 1
k

∑k
i=1Xi and µ̂T = 1

T

∑T
i=1Xi should

be close to each other. After rearranging and taking the difference the standard CUSUM-
test for a change in mean at k is

CS(k) =
∣∣∣∣∣

k∑
i=1

Xi − k

T

T∑
i=1

Xi

∣∣∣∣∣ (1.1)

so under the null hypothesis this difference should be small, to detect a change in mean
one may take the maximum for k ∈ T for this. This is a mean change-point-detection
test.
This is to be extended to test for a change in autocovariance at k using the following
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problem

H0)

 Cov(Y1, Y1)
...

Cov(Y1, Y1+p)

 =

Cov(YT −p, YT −p)
...

Cov(YT −p, YT )

 (1.2)

H1) ∃k < T :

Cov(Yk−p, Yk−p)
...

Cov(Yk−p, Yk)

 ̸=

 Cov(Yk, Yk)
...

Cov(Yk, Yk+p)

 (1.3)

This will require some refinement of the mean change-point-detection test. Namely a
quadratic form of the CUSUM test to detect changes in autocovariance of multiple lags
will be introduced for a stationary time series. Some known results will be shown here,
and proven in more detail than exists in the literature, particularly showing the power of
the test under the null-hypothesis. The results will be verified and tested against some
other contemporary tests for some ARMA models and eventually some datasets taken
from a variety of industries.
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Theoretical Background

2.1 Related Works

Page[30] is the earliest known source to propose methods for finding structural breaks via
changes in the mean of a time series model. Robustness was not a concern at this point.
It wasn’t until works like Quenouille[34] and Jenkins[23] that second-order changes were
looked into. Quenouille via the correlation structure of two lengths of time series, and
Jenkins through spectral analysis of the time series. The subject, of course, was highly
motivated by its promising application to financial data.
Many studies developed and tested techniques in this context (Wichern[41], Picard[32],
Tsay[40], Tang & MacNeil[38], Kim[26], Lee & Park[27].) Wichern use a moving block
procedure to detect variance change in AR(1) processes, likelihood arguments are used
to develop estimates of the changepoint. Davis et al[12] also look at AR processes, and
propose a genetic algorithm to find optimal windows for piecewise modelling using AR
models. Chen & Gupta[10] use a Schwarz information criteria for detecting parameter
changes. For results on AR(p) models see also Huskoba et al[19], [18] and Gombay[16],
where an efficient score vector is used.
Picard[32] compare non-parametric models to parametric using a likelihood ratio test, and
derive the asymptotic distribution of their estimator. Tang & Macneil also showed con-
vergence of their test for ARMA processes. Kim et al[26] look at ARMA processes too,
they use a Monte Carlo method to show size and power of their test and derive asymptotic
properties.
Csorgo & Horvat[11] show results only when the underlying distribution is known. Baufays[4]
improve Wichern’s results using Baysian/Machine learning, for a similar approach to es-
timate the posterior distribution of the shift point see Abraham & Wei[1]. Nyblom[29]
instead test for changes in regression coefficients.
Banjeera & Urga[3] and Perron[31] both provide a good resource of structural stability of
various time series. For further resources see Jandhyala et al[22], who examine various
tests on a broad selection of data.
Galeano & Pena[15] propose a non-parametric test for structural breaks in the variance
matrix of multivariate time series. Recent papers on second order structural breaks see
Killick et al[25], who develop a likelihood-based hypothesis test for a locally stationary
wavelet model (LSW model), and Preuss et al[33], where the estimated spectral distribu-
tion of different segments is compared.
Inclan & Tiao[20] use an iterated cumulative sum of squares (ICSS), which is very similar
to a CUSUM-based test, to detect changepoints in the variance of a multi-dimensional
time series. Gombay et al[16] do the same, only for a CUSUM-based test and test their
results on financial data. Kim[26] took a broad approach; they showed their CUSUM-test
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had good size and power using a Monte Carlo method and also derived the asymptotic
properties. Au & Horvath[2] develop a non-parametric CUSUM-type test using the vech(·)
operation on the outer product of a multidimensional time series. vech(·) sums all of the
values below the diagonals in the column of a matrix. They derived asymptotic proper-
ties under both the null and the alternative, and they examined financial data from four
companies in different industries to test their results.

2.2 Notation

Let (Xi)i∈[1,T ] = {X1, . . . , XT }, Xi ∈ R ∀i ∈ [1, T ] be a time series, which is stationary
under the null-hypothesis. Denote the median by µ and the Median Absolute Deviation
(MAD) by σ = median|Xi − µ|, the sample median and MAD shall be denoted as µ̂ =
median
i∈[1,T ]

Xi and σ̂ = median
i∈[1,T ]

|Xi − µ̂|. Additionally denote the autocovariance function of

a stationary time series by γ(l) = E ((Xi − µ)(Xi+l − µ)). for two random vectors X,Y
belonging to a probability space (Rp,A,P) the Covariance matrix is given by

Cov (X,Y )i,j = Cov(Xi, Yj) = E[XiYj ] − E[Xi]E[Yj ] (2.1)

A matrix A is said to be positive definite if it has positive eigenvalues only, and will be
denoted by A ≻ 0 The Huber-ϕ function is defined as

ϕ(x) =
{
x if |x| < k

k if |x| ≥ k
(2.2)

will be written as ϕ(x) often in this paper. L∞(Rp,Rs) is the space of functions f : Rp → Rs

such that ∃C ∈ R such that ∥f∥∞ < C ∀x ∈ R. where ∥f∥∞ = sup
x∈R

|f(x)|. Furthermore,

let ∥X∥v =
√
v⊤Xv be the matrix norm.

A sequence an belonging to a topological space (S,S) that converges in to a shall be
denoted an

S→ a. Convergence in probability shall be denoted instead by an
S⇒ a.

2.3 Background
Here the class of time series that are the subject of this paper are introduced, that is
to say strong-mixing, stationary time series. After this Convergence results needed, and
the space that CUSUM-tests are in, the Skorohod Space, will be motivated and defined.
Finally additional results on mixing, and on weak convergence that are used throughout
the paper will be stated in this section.
First standardize the series (Xi)i∈[1,T ] in the following manner

Yi,T = ϕ

(
Xi − µ̂

σ̂

)
Yi = ϕ

(
Xi − µ

σ

)
(2.3)

where Yi is the result of the true standardization, i.e. as T → ∞. The Huber function
ϕ down-weights the effects of outliers, it will be shown later that CUSUM-statistics are
quite sensitive to extreme values. Median and MAD have been shown to be consistent
under strong mixing conditions[44]. Note that under the null hypothesis the standardized
series (Yi,T )i∈[1,T ] has median close to 0 and MAD close to 1.
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Definition 1 (strong mixing). (Rosenblatt 1956[35])
Let (Xt)t∈[1.T ] be a time series. For −∞ ≤ m ≤ p ≤ ∞, let Fp

m denote the σ-field of events
generated by the random variables {Xj ,m ≤ j ≤ p}. For any two fields A and B ⊂ F ,
consider the following measure of dependence [35]:

α(A,B) := sup |P (A ∩B) − P (A)P (B)|, A ∈ A, B ∈ B, (2.4)

and the mixing coefficients:

α0 = 1
4 and αn = α(F0

−∞,F∞
n ) for all n ∈ N∗. (2.5)

If αn → 0 as n → ∞ the sequence X is strongly mixing.

Strong mixing implies that future values of a time series are "almost independent" of the
initial values. A general overview of mixing can be found in Bradley’s paper[8], whose
main results on strong α-mixing are from Chande[9]. Strong mixing conditions on ARMA
schemes can be found in Withers[42].
This paper shall follow the same setting proposed by Dürre & Fried, where the series
(Xi)i∈[1,T ] is assumed to be strongly mixing with coefficients (αk)k∈N satisfying αk =
O(k−3−ϵ) for some ϵ > 0; that is to say the mixing coefficients diminish in a manner at
least cubic. Strong mixing is a useful property for the study of asymptotic properties of
a time series. One might ask what this means for the mixing of the process (Yi,T )i∈[1,T ].
This is addressed in the following result

Lemma 1. For a strongly mixing sequence (Xi)i∈Z with mixing coefficients αn and Borel-
measurable function f : (X,FX) → (Y,Fy), (f(Xi))i∈Z is also strongly mixing with coeffi-
cients α (f(Xi)) ≤ α (Xi).

This is proven by the author, but it should be noted that this is actually a narrowing of
a result from Bradley(theorem 5.2, pg. 20 [8]). (Yi)i∈[1,T ] = ϕ(Xi − µ

σ
)i∈[1,T ] meets the

requirements for this lemma.
It can be broken up into a composition of the affine function f(x) = x− µ

σ
, followed by

the function ϕ(x).
f(x) is Borel-measurable in the standard topology as all affine functions are.
The preimage of any open set V ⊂ R in ϕ has several options:

1. k ∈ V or −k ∈ V : The pre-image is {x ∈ (−∞,−k]} ∪ (V ∩ [−k, k]) or {x ∈
[k,∞)} ∪ (V ∩ [−k, k]) respectively, Both are the union of Borel-sets, and therefore
Borel-sets

2. V ∩ [−k, k] ⊆ [−k, k]: The preimage is an open subset of [−k, k] and therefore in B

So ϕ(·) is Borel-measurable too, so their composition makes for a α-mixing process with
mixing constants satisfying α′

k ≤ αk.
A second property of the time series (Yi,T )i∈[1,T ] is its long run variance

u = lim
T →∞

Var
(

1√
T

T∑
i=1

Yi,T

)
(2.6)
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For the needs of this text it is better to look at the long-run covariance matrix, for a
p-dimensional time series (Y i,T )i∈[1,T ] let

U = lim
T →∞

Var( 1√
T

T∑
i=1

Y i,T ) (2.7)

be the long-run covariance matrix. It is not guaranteed that this limit is bounded. In
principle, a strongly mixing sequence becomes eventually independent. Meaning that the
covariance terms are always decreasing.
This can be shown with the use of a covariance inequality which is derived in Davydov[13].
The inequality requires that two moments p and q be bounded for a series such that
1
p + 1

q < 1, and that the mixing coefficients satisfy αk ≤ Cak for some a ≤ 1 and C ∈ R.

|Cov(Y1, Y1+j)| ≤ Cα(|j|)1− 1
p

− 1
q

(
[E[Y1]p]

1
p [E[Y1+j ]q]

1
q

)
Thanks to the mixing conditions C = 1

4 is a sufficient upper bound, also notice α(|j|)1− 1
q

− 1
p →

0 regardless of what moments p, and q are chosen. The norms are bounded too and well
defined thanks to the function ϕ. This gives a nice bound, leading to bounded Long run
covariance

T∑
j=1

|Cov(Y1, Y1+j)| ≤
T∑

j=1

∣∣∣Cα(|j|)1− 1
p

− 1
q

(
[E[Y1]p]

1
p [E[Y1+j ]q]

1
q

)∣∣∣
All terms inside the summation are bounded, so the entire summation is bounded too,
therefore

T∑
j=1

|Cov(Y1, Y1+j)| < ∞

as T → ∞.
Often long run variance is instead written as follows:

lim
T →∞

Var( 1√
T

T∑
i=1

Y i) (2.8)

= lim
T →∞

Cov( 1√
T

T∑
i=1

Y i,
1√
T

T∑
i=1

Y i) (2.9)

= lim
T →∞

1
T

T∑
i=1

T∑
j=1

Cov(Y (j)
i ,Y

(j)
i ) (2.10)

= lim
T →∞

T −1∑
k=−(T −1)

(T − k

T
) Cov(Y i,Y i+k) (2.11)

= lim
T →∞

Cov(Y 1,Y 1) + 2
T −1∑
k=1

(T − k

N
) Cov(Y i,Y i+k) (2.12)

= Cov(Y 1,Y 1) + 2
∞∑

k=1
Cov(Y i,Y i+k) (2.13)

Long run covariance is incredibly useful here, as it can be shown that the covariance matrix
of a partial sum ∑k

i=1Xi of random variables is close to the long run covariance matrix,
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lets call this U . This will come up later.
Convergence & The Skorohod Space:
As asymptotic properties of CUSUM-tests are the main subject of this paper the space in
which this convergence occurs is a critical detail. A CUSUM-test is a function of random
variables, so it would be natural to induce a topology with |·|∞. This leads to problems
in the set-up in the thesis. To see this recall the test(1.1)

CST = max
1≤k≤T −1

∣∣∣∣∣
k∑

i=1
Xi − k

T

T∑
i=1

Xi

∣∣∣∣∣ (1.1)

For starters, functions composed partial sums of random variables are not continuous in
R. The space of these functions must be defined

Definition 2 (Skorohod Space). Let (M,d) be a metric space and let E ⊆ R. A function
f : E → M is called a càdlàg function if, for every t ∈ E,

• the left limit f(t−) := lims→t− f(s) exists; and

• the right limit f(t+) := lims→t+ f(s) exists and equals f(t).

That is, f is right-continuous with left limits. Let the Skorohod Space D[0, 1] be the
collection of càdlàg functions on the interval [0, 1]

The term càdlàg is derived from the French "continue à droit, limite à gauche", and is the
home of CUSUM-tests. To see this denote partial sums as S⌊T x⌋ = ∑⌊T x⌋

i=1 Xi parametrized
by x ∈ [0, 1]. Notice that f(x) is a collection of disjoint constants:

when x ∈ [0, 1
T ): S⌊T x⌋(ω) = X1(ω)

when x ∈ [ 1
T ,

2
T ): S⌊T x⌋(ω) = X1(ω) +X2(ω)

...

If the max norm |·|∞ were equipped the space would not be separable. That is to say,
there does not exist a sequence (xi)i∈N of functions such that every non-empty open subset
of the space contains at least one element of the sequence. This can be constructed by
counter example, consider the following uncountable family of functions

{ζt(x) = 1[0,t)(x), t ∈ [0, 1]} (2.14)

notice that for any two elements of this family, d|·|∞(ζt, ζs) = supx∈[0,1] |ζt(x) − ζs(x)| =
supx∈[0,1] 1t,s = 1. i.e. regardless of the choice of t, s (t ̸= s) these functions are within 1
from each other in the |·|∞ topology. So these elements of D[0, 1] are not dense countable.
This resolve this consider the following topology.

Definition 3 (The Skorohod Topology). (Billingsley, [7], page 123) Let Λ denote the set
of strictly increasing, continuous mappings of [0, 1] onto itself. If λ ∈ Λ, then λ(0) = 0
and λ(1) = 1. For x and y in D[0, 1] define d(x, y) to be the infimum of those positive ϵ
for which there exists λ ∈ Λ satisfying:

sup
t

|λ(t) − t| = sup
t

|t− λ−1(t)| < ϵ (2.15)
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and

sup
t

|x(t) − y(λ(t))| = sup
t

|x(λ−1(t)) − y(t)| < ϵ (2.16)

This can be expressed more compactly by

d(x, y) = inf
λ∈Λ

{∥λ− I∥ + ∥x− y(λ))∥} (2.17)

This metric induces the Skorohod Topology D[0,1]

The functions λ essentially "tie together" all of the jumps and discontinuities. And the
smallest λ is chosen such that the error between the gap between the functions x and y
and their parameterized λ(x) and λ(y) is no more than ϵ of a jump.
Convergence in this topology shall be denoted D[0,1]→ . Now that the topological space has
been clarified the necessary definitions for treating convergence of random variables can
be introduced.

Definition 4 (weak convergence). (Pollet,[21], Definition 18.1, pg. 151 ) Let Pn and
P be probability measures on Rd (d ≥ 1). The sequence Pn converges weakly to P if∫
f(x)Pn(dx) converges to

∫
f(x)P (dx) for each f which is real-valued, continuous and

bounded on Rd

let D[0,1]⇒ denote weak convergence in the Skorohod space. Notice that the definitions does
not vary over the function f but instead over a sequence of probability measures Pn. Since
the induced measure PX(A) = P (X ∈ A) entirely characterizes the distribution of X, the
following extension can be made

Definition 5 (Convergence in Distribution). (Pollet,[21], Definition 18.2, pg. 151 ) Let
(Xi)i∈N, X in Rp-valued random variables. Xi converges in distribution to X if the dis-
tribution measures PXi converges weakly to PX . We write Xi

D→ X.

These results are essential for studying the asymptotic properties of CUSUM-tests, and
will be used in key results in this paper. A process that is often discussed alongside
CUSUM-tests is Brownian Motion. This is a mathematical object based on the motion of
a particle suspended in fluid, and is generalized as a stochastic process (Bt)t∈R under four
conditions:[24]

1. B0 = 0

2. the sample trajectories t 7→ Bt are continuous, with probability one

3. for a finite sequence of time t0 < t1 < · · · < tn, the increments

Bt1 −Bt0 , Bt2 −Bt1 , . . . , Btn −Btn−1

are mutually independent random variables

4. For any given times 0 ≤ s ≤ t, Bt −Bs has Gaussian distribution N(0, t− s) with 0
mean and variance t− s

8



In short a Brownian motion is fixed at t = 0, a.s. continuous in t, increments are inde-
pendent Gaussian distributed.
Additional Results:
The earlier definitions and lemmas are the backbone of the results that will follow in this
paper, but to make use of these tools and properties a slew of additional theorems and
lemmas will be required.

Theorem 1. (Continuous Mapping Theorem) (Billingsley[7], page 20)
Suppose h maps a metric space S, with Borel σ-field S onto another metric space S′

with metric ρ and Borel σ-field S′. If h is measurable S/S′, then each probability P on
(S′,S′) induces on (S,S) a probability Ph−1 defined by Ph−1(A) = P (h−1A). Let Pn be
a sequence of probability measures, and let Dh ⊂ S′ be the collection of points where h−1

is not continuous.
If Pn → P and PDh = 0, then Pnh

−1 → Ph−1.

The continuous mapping theorem allows for a function with known convergence behaviour
to be studied in place of a trickier function, provided there is a Borel measurable map h−1

between the two functions.

Theorem 2. (Slutsky’s Theorem[37]) Let Xn,Yn be sequences of random elements. if Xn

converges in distribution to a random element X and Yn converges in probability to a
constant c ̸= 0 then

• Xn + Yn
D→ X + c

• XnYn
D→ Xc

• Xn/Yn
D→ X/c

where D→, again, is convergence in distribution. Another tool in this class of results is the
Cramer-Wold theorem.

Theorem 3 (Cramer-Wold Theorem). (Wooldridge White [43], Proposition 4.1, pg. 221)
Let {Wn}n∈N be a sequence of random elements of Dl[0, 1], and let W be a random el-
ement of Dl[0, 1], an l-dimensional vector composed of elements of the Skorohod space
D[0, 1] (not necessarily Brownian motion.) Then Wn

Dl[0,1]→ W if an only if

l∑
i=1

λiWn,i
D[0,1]⇒

l∑
i=1

λiWi

for each linear combination λ with λT λ = 1

The Cramer-Wold theorem considers the linear combination of elements of a vector, and
if all such combinations converge then so too does the vector. This is undoubtedly much
easier than showing element-wise convergence of a vector. Two additional results will be
used later in this paper that are more specific. Both of these will be listed here

Theorem 4 (Weak Law of Large Numbers[17]). Let (Xi)i∈[1,T ] be a strongly mixing se-
quence, with sample mean X̄T = 1

T

∑T
t=1Xt. if

lim
B→∞

sup
T

1
T

T∑
t=1

E[Xt1|Xt|>B] = 0

9



then

E
∣∣∣X̄T − E[X̄T ]

∣∣∣ S→ 0

and

X̄T − E[X̄T ] S⇒ 0

as T → ∞, for a topological space S.

This is needed as the weak law of a large numbers is strictly defined for independent,
identically distributed random variables. Note that the original definition requires only
weak mixing, where limT →∞

1
T

∑T
k=1Xt = 0. This has been replaced since strong mixing

implies weak mixing. If limk→∞ αk = 0 then the sample averages will also tend to 0,
meaning that limT →∞

1
T

∑T
k=1 αk = 0. The second result is the following.

Theorem 5. (Merlevede & Peligrad[28] pg. 8 ) Suppose that (Xi)i∈[Z] is a strictly sta-
tionary, centered, strong mixing sequence with finite second moment. Additionally for
Sn = ∑n

j=1Xj, quartile function

Qw(u) = inf{t ≥ 0 : P (W > t) ≤ u} (2.18)

and mixing constants αn assume:

• lim inf
n→∞

E[S2
n]

n
> 0

•
∫ αn

0 Q2
|X0|(u)du = o( 1

n) as n → ∞

Then Wn(t) =
∑⌊nt⌋

i=1 Xi√
(π/2)E|Sn|

converges in distribution to a standard Brownian Motion in

D[0, 1].

The conditions for this result are either assumed, or may be shown with a some effort.
With this work done the main body of the paper may begin.
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The modified CUSUM-test: RT

In this section it will be shown how a mean change-point detection CUSUM-test like (1.1)
can be adapted to detect changes in autocovariance at lag l. The asymptotic properties
of this test will be shown, and only then will it be extended to the quadratic CUSUM-test
RT . In order to prove the asymptotic properties of RT a detour will be taken to the related
test W 2

T (x), this is an earlier test made by Dürre & Fried[39] and the progenitor to RT .
The limiting distribution of W 2

T (x) will first be shown so that RT ’s distribution may be
stated as a corollary.

3.1 Autocovariance Changepoint-Detection

Recall that by standardization the series (Yi,T )i∈[1,T ] has median close to 0 and MAD
close to 1. The closeness here is largely determined by the size of the sample T , since
consistency has been shown[44] this means

lim
T →∞

(
median Yi,T

i∈[1,T ]

)
= 0 & lim

T →∞

(
median
i∈[1,T ]

|Yi,T − σ̂|
)

= 1 (3.1)

Define a new series by Z
(l)
i = YiYi+l for i ∈ [1, T − l], and some lag l ∈ [0, . . . , p], p ∈ N.

Since (Yi)i∈[1,T ] is stationary under the null-hypothesis note that E[Z(l)
i ] = E[YiYi+l] = γ(l),

the autocovariance function at l. In fact, under H0

E[Z(l)
1 ] = E[Z(l)

2 ] = · · · = E[Z(l)
T −l] = γ(l)

This can be leveraged to detect autocovariance changes: for a centred, stationary process
the test

H(l)
0 ) cov (Y1, Y1+l) = cov (Y2, Y2+l) = · · · = cov (YT −l, YT )

H(l)
1 ) ∃k ∈ [1, T − l], cov (Y1, Y1+l) = · · · = cov (Yk, Yk+l) ̸= cov (Yk+1, Yk+1+l) = · · · = cov (YT −l, YT )

can be rewritten as a mean changepoint-test

H(l)
0 ) E[Z l

1] = E[Z l
2] = · · · = E[Z l

T −l] (3.2)

H(l)
1 ) ∃k ∈ [1, T − l],E[Z l

1] = · · · = E[Z l
k] ̸= E[Z l

k+1] = · · · = E[Z l
T −l] (3.3)

A standard choice of test-statistic for the test (3.2) would be the CUSUM-test(1.1), for
T̃ = T−l note that a sample autocovariance taken over size k and size T̃ should be roughly
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close to each other under the null hypothesis (3.2), i.e.

1
k

k∑
i=1

Z
(l)
i ≃ 1

T̃

T̃∑
i=1

Z
(l)
i

1
k

k∑
i=1

Z
(l)
i − 1

T̃

T̃∑
i=1

Z
(l)
i ≃ 0

k∑
i=1

Z
(l)
i − k

T̃

T̃∑
i=1

Z
(l)
i ≃ 0 (Under H(l)

0 )

Once more, large values of this are unlikely under the null-hypothesis. So by letting
S

(l)
k = ∑k

i=1 Z
(l)
i and taking the maximum over k ∈ [1, T − l] the test becomes

CS(l)
T̃

:= max
1≤k≤T̃ −1

1√
Tu

∣∣∣∣S(l)
k − k

T̃
S

(l)
T̃

∣∣∣∣ (3.4)

where u is the long-run covariance. In order to study the asymptotic distribution of
equation-3.4 it must instead be written as

CS(l)
T̃

= sup
x∈[0,1]

1√
Tu

∣∣∣S(l)
⌊T̃ x⌋ − xS

(l)
⌊T̃ x⌋

∣∣∣ (3.5)

The asymptotic distribution of CS(l)
T̃

(3.5) is well-known, and it’s distribution can be shown
a number of ways. These depend very much on the assumptions made in the paper. This
paper shall prove these results under the assumptions of strong-mixing, to this end mixing
conditions given by Merleveed & Peligrad[28] provide sufficient conditions to find the
asymptotic distribution.

Lemma 2. Suppose (Zi)i∈[1,T ] is a strictly stationary, centred, strongly mixing sequence
with finite second moment. Furthermore, let

lim inf
T̃ →∞

E[(S(l)
T̃

)2]
T̃

> 0,∫ αT̃

0
Q2

|X0|(u) du = o

( 1
n

)
.

Where Q(x) is the quartile function defined in (2.18). Then, CS(l)
T̃

D→ BB(x), where
BB(x) is a standard Brownian Bridge

This is the first instance in this paper of Long-run covariance affecting the limiting distri-
bution of a CUSUM-test, which will come up many times over the course of this paper.
However u contains a limit and must be estimated. Durre & Fried use a kernel estimator
and show that this is consistent for u, Berkes [5] use a Bartlett estimator as their test
depends on the long-run variance of a fixed lag γ(l). Betken et al[6] instead choose to use
a sample estimator for u before, and after the change-point. This can be used to either
estimate the critical values of the test per dataset[39][5], or to normalize the test and
create an uncorrelated limiting distribution[14][6].
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3.2 Testing autocovariance changes at multiple lags: RT

The aim of this section is to extend the CUSUM-test (3.4) such that it can test multiple
lags simultaneously and to make a start at showing the asymptotic distribution of this
test. If a sufficiently large change occurs in at least one lag then the test will reject the
new hypothesis

H0)

 Cov(Y1, Y1)
...

Cov(Y1, Y1+p)

 = · · · =

Cov(YT −p, YT −p)
...

Cov(YT −p, YT )

 (3.6)

H1) ∃k < T :

Cov(Yk−p, Yk−p)
...

Cov(Yk−p, Yk)

 ̸=

 Cov(Yk, Yk)
...

Cov(Yk, Yk+p)

 (3.7)

The same process can be applied here. Due to centring the hypothesis can be restated.

H0)

E[Z0
1 ]

...
E[Zp

1 ]

 = · · · =


E[Z0

T −p]
...

E[Zp
T −p]

 (3.8)

H1) ∃k < T :

E[Z0
k ]

...
E[Zp

k ]

 ̸=

E[Z0
k+1]
...

E[Zp
k+1]

 (3.9)

To begin to make a multi-lag test define the vector

Sp
T =


S0

T

S1
T
...
Sp

T

 =


∑T

i=1 YiYi∑T −1
i=1 YiYi+1

...∑T −p
i=1 YiYi+p


Then the multi-dimensional CUSUM-test can be defined

RT := max
1<k<T̃

1
T̃

∥∥∥∥Sp
T − k

T
Sp

⌊kT̃ ⌋

∥∥∥∥2

W
(3.10)

= max
1<k<T̃

1
T̃


S

(0)
k − k

T̃
S

(0)
T̃...

...
S

(p)
k − k

T̃
S

(p)
T̃



⊤ 
w0 0 . . . 0
0 . . . . . . ...
... . . . . . . 0
0 . . . 0 wp




S

(0)
k − k

T̃
S

(0)
T̃...

...
S

(p)
k − k

T̃
S

(p)
T̃

 (3.11)

Where W is a diagonal matrix with values w0, . . . , wp. If a sufficiently large change were
to occur at a lag l ∈ [0, p] for some point then a large value would occur at the lth entry.
There is little precedent to choose a matrix norm using the diagonal matrix W , to the
authors knowledge no other test of it’s kind in the literature does this. In fact, choosing the
inverse long-run covariance matrix U−1(2.7) arguably gives a better limiting distribution.
W provides flexibility in the test in several ways:

1. Methods for estimating U are computationally expensive to calculate. Using a kernel
method gives each component complexity O(T̃ 2), total complexity of estimating U
is O

(
(p+1

2 )2T̃ 2
)
. This can become problematic when testing higher lags, which is

the entire benefit of the test RT .

13



2. The diagonals of U−1 scale the components of the vectors based on their variance.
This is incredibly useful as it reduces the likelihood of false positives in the test
statistic due to unusually large values caused by higher variance. One can set W to
be the diagonals of U−1 to do this much more cheaply than computing the entire
matrix.

3. The covariance function are often "tight" i.e. γ(l) diminishes rapidly as l increases,
this is always the case when a sequence is strongly mixing thanks to Davydov’s
inequality[13]. Choosing W such that the diagonals descend from 1 to 0 to prevent
proportionally large changes at higher lags which may not indicate a structural
change.

The long-run variance of interest for this test is that of the vector of values [Z0
i , . . . , Z

p
i ]⊤:

U = lim
h→∞

Cov



Y1Y1
Y1Y2

...
Y1Y1+p

 ,

Y1+hY1+h

Y1+hY2+h
...

Y1+hY1+h+p


 (3.12)

This can be estimated using a kernel-based method:

Ûi,j = 1
T

T̃∑
t=1

T̃∑
s=1

(
ŶsŶs+i − 1

T̃
S

(i)
T̃

)(
ŶtŶt+j − 1

T̃
S

(j)
T̃

)
k

(
|s− t|
bT̃

)
(3.13)

where k : R → [−1, 1] is a kernel function and bT̃ is the bandwidth. The choice of kernel
function seems highly data dependent, and the choice should be based on the dimension
of the test[14], which relates to the number of lags p taken in this setting. The flat-top
kernel is chosen here

k(x) =


1 0 ≤ |x| ≤ 0.5
2 − 2|x| 0.5 < |x| ≤ 1
0 |x| > 1

in the same fashion as in Dürre and Fried(2020)[39], where bT̃ = T̃
1
3 . This kernel-based

estimator is shown to be weakly consistent for U(3.12), but it has not been shown for a
series standardized in the same manner as Y .

Lemma 3. The Long-run covariance estimator for the series (Yi,T )i∈[1,T ], Û , gotten from

the estimated standardization Yi,T = ϕ

(
Xi − µ̂

σ̂

)
, is a consistent estimator for U

This matrix, and its estimator Û , will be essential in characterizing the limiting distribu-
tion of RT . The proof of this distribution is known, and loosely proven in the literature.
To prove this, in more detail than currently exists, the following steps will be taken

1. Show the limiting distribution of the column 1√
T

(Sl
T̃

− τSl
⌊T̃ x⌋)x∈[0,1]

2. Use this result to show the limiting distribution of the test(
W 2

T (x)
)

x∈[0,1]
=
(∥∥∥Sl

T − xSl
⌊T x⌋

∥∥∥2

Û−1

)
x∈[0,1]
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3. Finally, show the limiting distribution of RT as a Corollary

Step-1 will be shown here. Step-2 will require a detour, W 2
T (x) is an earlier iteration of

the test RT for which the asymptotic distribution has been shown in some capacity. The
next section will detail this step, and from there step-3 comes quite naturally.
First, for step-1:

Proposition 1. (Xi)i∈N be a 1-dimensional stationary, and strongly mixing sequence with
mixing coefficients (αk)k∈N satisfying αk = O(k−3−ϵ) for some ϵ > 0. Let ϕ : R → R be a
bounded, non-zero, function such that Yi = ϕ(Xi−µ

σi
) where µ is the median and σi is the

MAD.
for some p and T̃ = T − p, and assume that matrix

U =
∞∑

h=−∞
Cov

 Y1Y1
...

Y1Y1+p


 Y1+hY1+h

...
Y1+hY1+h+p


is positive definite. Then

1√
T̃

(Sp
⌊T x⌋ − ⌊Tx⌋

T
Sp

T ) D→ BB(x), (3.14)

where BB(t) is an p-dimensional Brownian-Bridge with covariance matrix Var (BB(t)) =
t(1 − t)U .

Remark:
Most of these requirements are assumed in the setting of this paper, the only one that
has not been addressed yet in this paper is that U is positive definite. This implies that
there is no linear-dependence between any of the columns of U . A column represents the
long-run covariance of one particular lag with every other lag being tested, and so any two
points Z l

i1 , Z
(l)
i2

should not correlate with a particular column [Z(1)
j , . . . , Z

(p)
j ]⊤ in the same

way. This is not a strong requirement in a strongly mixing series, nor is it common that
a series does not fulfil this, but the sample covariance Û is almost never positive definite.
This will be discussed more in the Simulations section, and a work-around shown.

3.3 W 2
T (x) and the limiting distribution of RT

In this section the related test W 2
T (x) is introduced, it’s asymptotic properties shown, and

finally the asymptotic size of RT is shown.

W 2
T (x) = 1

T

∥∥∥S(p)
⌊T x⌋ − xS

(p)
T

∥∥∥2

Û−1
(3.15)

= 1
T

(
S

(p)
⌊T x⌋ − xS

(p)
T

)⊤
Û−1

(
S

(p)
⌊T x⌋ − xS

(p)
T

)
(3.16)

Dürre & Fried introduced this test in their 2019 paper[14]. It is a more generic test but has
only been stated here for such that it can detect changes in cross-sectional dependence.
This was done since it is only used for comparison, and for results concerning RT . After
applying a functional like supx∈[0,1] its only surface-level difference is its use of Û−1 in
place of W . Additional assumptions are made for this test, most of which are covered by
our more constrained system.
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Assumption 1 Let (Xi)i∈N be strongly-mixing with mixing constants (ak)k∈N fulfilling
ak = O(k−2−ϵ)
Remark 1 This is a weaker mixing assumption than what is already made in this paper
on the series (X)∈N, which is ak = O(k−3−ϵ). Any results that hold for this mixing must
also hold for a stronger mixing series.
Assumption 2. Let ψ : Rp → Rs be a function fulfilling:

• ψ ∈ L∞(Rs,Rp)

• Every component of ϕ is two times continuous differentiable in R\D and there exists
C1, C2 > 0 and |ϕ(i)(′x)Tx| ≤ C1 and xTϕ

′′(i)(x)x ≤ C2, ∀x ∈ RC and i = 1, . . . , s

Remark 2. The function ϕ is not the only function that may be used to pre-process in
this setting, standardizing is still done using µ and MAD. These assumptions cover a
variety of requirements, such as non-degenerate limits, robustness, etc. This is important
as a variety of functions can be used to preprocess the time series X. As we only focus
on the function ϕ these assumptions are true, and not really in need of stating. The ϕ
function is continuous at all points. ϕ(x) is undefined at {x ∈ R : |x| = k}, this requires a
little care but is addressed in lemma-3.
Assumption 3. det(U) > 0 where

U =
∞∑

h=−∞
Cov


 Y1Y1

...
Y1Y1+p


 Y1+hY1+h

...
Y1+hY1+p+h


 (3.17)

Remark 3. This is another way of requiring U ≻ 0, which is already assumed in prop-1.
Assumption 4.Let (µT )T ∈N and (σT )T ∈N be real valued stochastic processes fulfilling

µT − µ = OP(T− 1
2 ) and σT − σ = OP(T− 1

2 )

Remark 4. Dürre and Fried note that this is likely not necessary, as it has been shown
in Yoshihara(1995)[44] that median and MAD are consistent under strong mixing and
continuous density of innovations.
These results, and the remainder of the setting already assumed in this paper, are necessary
for the following result:

Theorem 6. Let Xi be a stationary 1−dimensional series. Let ψ : R → R be a bounded
function such that Yi = ψ

(
Xi − µ

σ

)
where µ is the median and σ is the MAD. Further-

more, let assumptions 1-4 hold. Then

(WT (x)2) D→
p∑

i=0
B̄Bi(x)2 , (3.18)

where (B̄Bi(x))i∈[0,p] are mutually independent standard Brownian Bridges.

This is an incredibly powerful result, because the components of the vector are decorre-
lated. Meaning that under the null-hypothesis the test statistic, and the critical values
used, are not dependent on the underlying data This is the benefit of normalizing the test
with the matrix Û . It is quite natural now to state the following
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Corollary 1. (Xi)i∈N be a 1-dimensional, centred, stationary, and strongly mixing se-
quence with mixing coefficients (αk)k∈N satisfying αk = O(k−3−ϵ) for some ϵ > 0. Let
ϕ : R → R be a bounded, non-zero function such that Yi = ϕ(Xi−µ

σi
) where µ is the median

and σi is the MAD. Let U ≻ 0 where U is the long-run covariance (3.17). Then

RT (x) D→ (BB(x))⊤ (BB(x)) (3.19)

Where BB(x) is a p+ 1 dimensional Brownian Bridge with covariance matrix

Cov (BB(x),BB(y)) = x(1 − y)U .

This is already a slightly weaker result than that of W 2
T (x) since the asymptotic distri-

bution is dependent on the underlying series, and its long-run covariance U . However
p-values can be estimated quicker, and it might be that other methods of weighting the
test give similar with less runtime. The effectiveness of this sacrifice will be the topic of
the next section.
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Simulations

The test will be examined to see if it has sufficient power in a number of examples, and
some features of the test will be verified. Three different choices of weight values w0, . . . , wp

of (3.11) will be tested. Constant weights wi = 1 may be a good choice if little is known
about the underlying data, and there is no obvious choice of weighting matrix W that can
improve the test, this shall be denoted Re

T .
Descending weights, modelled by wi = 1− i

p can down-weight smaller changes at later lags.
This may be a good choice when strong-mixing is assumed, as the covariance decreases at
later lags. A small shift could cause an unusually large value, so this weighting may reduce
type 1 errors at higher lags. At p = 1 this creates a 0 entry in the second diagonal of W
making for a test for change in variance only. It will therefore be omitted until testing
p ≥ 2. This will be denoted as Rd

T

Finally, weights taken from the diagonals of Û , where wi = Û−1
i,i could prevent errors by

suppressing large variance in the series (Zi)i∈[1,T̃ ] caused by the underlying data. This
choice will be denoted by Rs

T

wi are defined in the range i ∈ {0, . . . , p}. For comparison two tests detecting changes in
the autocovariance structure of the time series are selected.

Test 1

Berkes et. al. [5] suggest a similar CUSUM-based test that can be used to detect changes
in autocovariance. Consider the stationary series (X)i∈[T ] and, for

M (p)
n (t) =

{
1

n2
∑⌊(n+1)t⌋

i=1

(
(Xi − X̄n)(Xi−p − X̄n) − X̄

(p)
n

)
,

define the following two CUSUM test statistics:

B
(p)
T = 1

γ̂(p) sup
0<t<1

M (p)
n (t) (4.1)

B
′(p)
T = 1

γ̂(p) sup
0<t<1

∣∣∣M (p)
n (t)

∣∣∣ (4.2)

Where γ̂n(p) is an estimator for

γ2(p) = lim
n→∞

1
n

Var
(

n∑
i=1

(Xi − µ)(Xi−p − µ)
)

at some lag p.
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Berkes et. al. do not outline how γ2(p) is estimated. Since they use a Bartlett
estimator to estimate the long run variance the same method shall be used here.

γ̂2(p) = 1
n

n∑
i=1

(Xi − µ)(Xi−r − µ) − 1
n

n∑
j=1

(Xj − µ)(Xj−r − µ)

 (4.3)

+ 2
q∑

j=1

(
1 − j

q + 1

)( 1
n− j

) n−j∑
i=i

(
(Xi − µ)(Xi−r − µ) − 1

i

i∑
l=1

(Xl+j − µ)(Xl−r − µ)
)

(4.4)

·

(Xi+j − µ)(Xi+j−r − µ) − 1
i+ j

i+j∑
l=1

(Xl − µ)(Xl+j−r − µ)

 (4.5)

Berkes’ et al do not suggest any form of pre-processing before applying B
(p)
T and B

′(p)
T ,

and both tests only detect changes at a chosen lag p. Furthermore B
′(p)
T is a two-tailed

test which is uncommon for CUSUM-tests. These differences make for a good choice for
comparison to RT , as they could show if the additionally assumptions, preprocessing, and
computation time necessarily improve results.

Test 2

Betken and Micali et. al. [6] proposed a test to detect structural changes using ordinal
patterns. For time series data (ξi)i∈[0,r] let (Xi)i∈[1,r] be the series of increments where
Xt := ξt − ξt−1. Additionally let (π0, . . . , πr) be its permutation, where πj is the rank
of Xj based on its magnitude in the series (Xi)i∈[1,r]. Let the function Π perform this
ordering, where Sr is the set of r + 1 permutations:

Π : Rr+1 → Sr, (X0 . . . Xr) → (π0, . . . , πr) (4.6)

The test is based on estimating the turning rate of the series across a sliding window, over
length 3 the set of τ = {(0, 2, 1), (2, 0, 1), (1, 2, 0), (1, 0, 2)} is the collection of permutations
where a change occurs. In the differenced series this is a zero-crossing. For a differenced
time series of size T and a block of size m the collection of Tb = ⌊ T + 2

m+ 2⌋ random variables
q̂1,m . . . , q̂Tb,m each represent the turning rate over a block of size m and are defined by

q̂j,m = 1
m

m−1∑
i=0

∑
γ∈τ

1(Π(X(j−1)(m+2), X(j−1)(m+2)+i+1, X(j−1)(m+2)+i+2) = γ) j = 1, . . . , Tb

(4.7)

Sinn and Keller [36] show that a change in this zero-crossing estimator series indicates
a change in the autocovariance structure of a time series. To detect a change in this
zero-crossing estimator Betken and Micali propose a CUSUM test

GT = max
k=1,...,Tb

∣∣∣∣∣∣
k∑

j=1
q̂j,m − k

Tb

nn∑
j=1

q̂j,m

∣∣∣∣∣∣ (4.8)

Power of this test is known when (Xi)i∈[1,T ] is stationary, admits a linear representation
Xi = ∑∞

j=0 ajZt−j with ∑∞
j=0 |aj | < ∞, with (Zj)j∈N

i.i.d∼ N (0, σ2
Z) admitting continuous
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bounded density and finite second moment E[|Zj |2] < ∞.

For (Zj)j∈Z forming a stationary Gaussian time series, it can be shown that a change in
the mean of the turning rate series is associated with a change at lag 1 of the autocovariance
structure of (Xt)t. However, since ordinal patterns distributions do not vary under the
assumption of stationarity (null hypothesis), a corresponding change in the expectation of
the turning rate must be reflected in some structural change of the underlying time series.
Thus, the test do not restrict to detecting changes in autocovariance structure only. On top
of this flexibility it has a fast computation time compared to RT : calculating permutations
for small lengths has negligible computation time, q̂j,m has complexity O(|τ | ·m), and GT

itself is linear in T . This makes for a good test of comparison as it promises the same
flexibility as RT in a smaller package, and requires almost no additional assumptions to
work.

4.1 Estimating Critical Values
Before experiments can be conducted it is necessary to estimate p-values. Since the test
involves a norm, and a supremum is being applied it is a 1-tailed test. A critical value
must be estimated for each choice of lag p, and the weighting w0, . . . , wp too.
The limiting distribution of the test includes the long-run covariance U , and so a crit-
ical value must also be estimated per dataset being tested. The following procedure is
suggested in Dürre & Fried[39]:

1. generate (p + 1) · T̃ independent standard normal variables and store them in a
T̃ × (p+ 1) matrix Z

2. reproduce the cross sectional dependence by multiplying Z with L of the Cholesky
decomposition Û = LLT of the long-run covariance of the dataset of interest. Set
V = ZL.

3. calculate the weighted test statistic

R̃T = 1
T

max
k=1,...,T̃

(
k∑

t=1
V[t,] − k

T̃

T̃∑
t=1

V[t,])W (
k∑

t=1
V[t,] − k

T̃

T̃∑
t=1

V[t,]) (4.9)

Step 1 and 2 together generate correlated data under the null-hypothesis. Step 3 generates
a sample statistic R̃T̃ , which can be repeated many times to estimate the distribution for
this particular choice of weighting, lag, and dataset. Critical values at any desired signif-
icance level can be taken from the quantiles. In this paper the significance will be taken
to be 5%.
This is an application of the Monte Carlo method, and is useful for estimating critical val-
ues when an analytical solution is not readily available. The drawback is that this could
be computationally intense, fortunately most of the time complexity of this process comes
from estimating the matrix U - which need only be done once per dataset & weighting -
and the number of sample statistics R̃T̃ that are generated.
It is worth noting that estimating U using the kernel method in line (3.13) could be af-
fected by the new regime if the change-point is early in the dataset, and perhaps should
only be estimated for a portion of the dataset to prevent this. This could make for a poor
estimation of U due to a small sample, and deciding where to cut off the estimating may
be tricky when the exact change-point is unknown (indeed, in a practical application of
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the test RT it likely is not.)
Critical values for several datasets, lags, and weightings can be found in table(4.1). Some-
thing that can be seen already from this table is that critical values are sensitive to the
type of data, and the maximum lag being tested. AR(1) Heavytail, which here denotes
an AR(1) model with white noise ϵt t-distributed with 5 degrees of freedom, experiences a
large jump from T = 100 to T = 500. This hints at the fact that the test might have poor
power for heavytail models. Additionally, the AR(1) experiences a large jump in critical
value for p = 3 over the two sample sizes, this may affect the size of the test over higher
lags, and increase the amount of false positives.

95th Percentile

W p AR(1) AR(1) Heavytail MA(1)

T=100 T=500 T=100 T=500 T=100 T=500

0 6.1423 6.6068 4.107 10.825 3.4844 4.7256
e 1 3.67024 4.741151 5.073585 13.1973 1.633085 3.722304

3 6.3277 16.3715 8.2018 60.480096 5.94137 6.039725

0 5.3154 6.4292 4.4615 10.546 3.4968 4.8262
d 1 1.9786 7.4186 8.1899 6.7745 3.5809 10.517

3 3.7106 13.8782 5.97125 53.39764 5.21845 4.551697

0 0.62855 2.2094 0.42038 0.7665 2.7439 1.0645
s 1 1.397702 1.654273 1.014046 2.347253 0.663165 1.940664

3 3.9838 11.31809 0.81145 9.3283 2.49872 4.95891

Table 4.1: 95th percentile values for different models and sample sizes, where e,d,
and s refer to the choice of weight matrix W .

4.2 Run time and complexity
Something that will be apparent throughout this part of the paper is that RT will not
have results for sample sizes larger than T = 500, and lags p > 3 will rarely appear. This
is due to the limited computing power of the author, paired with the greater complexity
of the algorithm. A small experiment to determine the average run time required to use
each in a variety of scenarios.
All scripts are run in Matlab, on an Asus Vivobook with Intel Core-i7 CPU, and 8 giga-
bytes of RAM. and results can be found in tables (4.2) to (4.4).At lag 1 Re

T ,Rd
T , BT , and

B′
T all take less than one millisecond per iteration per test statistic. GT takes a little bit

longer, but does not seem to suffer from running higher samples.
RT requires the computation of T̃ test statistics, the (p + 1)T̃ cumulative sums Sp

k can
be precomputed, each one with O(k), and the matrix multiplication can be done in only
p + 1 multiplications since W is diagonal. RT therefore has total time complexity is
O
(
(p+ 1)T̃

)
, and scales relatively well in T and p.
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Rs
T is the slowest of all tests examined, and increases dramatically in runtime for higher

samples T . This can be entirely attributed to the estimation of the diagonals of the long-
run-covariance matrix Û . Indeed the kernel method used involves a double sum over T̃ ,
and each involves a computation of a cumulative sum. If the Cumulative Sums Sp

T̃
are

pre-computed the total complexity if Ûi,j = O(T̃ 2), which must be computed p+ 1 times.
The bottle-neck in computing power for all RT tests is in fact the matrix Û that must be
estimated, and factorized to estimate p-values. For sample sizes higher than 3 and samples
larger than 500 the matrix Û can not be computed in acceptable time on the computer
being used.

T = 100 T = 500 T = 2000
GT 0.01413 0.0038655 0.011185
Re

T 0.0061709 0.00010816 0.00013246
Rd

T 0.00040296 5.9085e-05 9.675e-05
Rs

T 0.049672 2.4555 128.72
B′

T 0.0038594 0.00046854 0.0010246
BT 0.0012601 0.00049515 0.0009838

Table 4.2: Runtime Results for Lag = 1

T = 100 T = 500 T = 2000
Re

T 6.6775e-05 0.00011123 0.00016282
Rd

T 5.0615e-05 6.869e-05 0.00013906
Rs

T 0.070947 3.6889 193.29
B′

T 0.00037804 0.00046277 0.0010125
BT 0.00035018 0.00045823 0.00094086

Table 4.3: Runtime Results for Lag = 2

r = 3 r = 5
T = 100 T = 500 T = 2000 T = 100 T = 500 T = 2000

Re
T 0.00021916 8.972e-05 0.00023064 0.00032436 0.00010988 0.0006473

Rd
T 0.00017937 7.037e-05 0.00017176 0.00023621 9.2465e-05 0.00060691

Rs
T 132.12 5.0013 265.23 0.40667 7.3578 420.67

B′
T 0.0011603 0.0004481 0.0011003 0.0010972 0.00043094 0.00098113

BT 0.00080713 0.00041662 0.0010448 0.0010799 0.00042909 0.00092548

Table 4.4: Runtime Results for Lag = 3 and 5

4.3 Sensitivity to changepoint, and the Huber ϕ function
In this section a some general properties of RT that were highlighted earlier in the paper
shall be addressed. Namely sensitivity to location of change-point, and outliers. Firstly,
note that CUSUM-type tests are more effective when the change occurs in the middle
of a sample. This is because it has an equal amount of data on both regimes, meaning
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sufficient data to accumulate deviations under both regimes in equal amount. To test this,
three models were considered.

Xt =
{
ϕ0Xt−1 + ϵt t ∈ [1, ⌊Tx⌋]
ϕaXt + ϵt t ∈ [⌊Tx⌋ + 1, T ]

, Xt =
{
ϕ0ϵt−1 + ϵt t ∈ [1, ⌊Tx⌋]
ϕaϵt + ϵt t ∈ [⌊Tx⌋ + 1, T ]

(4.10)

Where the first is an AR(1) process, and the second is an MA(1) process, both with
ϵ ∼ N (0, 1). And finally

Xt =
{
ϕ0Xt−1 + ϵt t ∈ [1, ⌊Tx⌋]
ϕaXt + ϵt t ∈ [⌊Tx⌋ + 1, T ]

(4.11)

Where instead ϵ is t-distributed with 5 degrees of freedom, this process will be written as
AR1ht (meaning AR(1), heavytail) in the graphs below. The power was examined for RT

with weighting e (wi = 1), and s (wi = Ûi,i), coefficients ϕ0, θ0 = 0.3, ϕa, θa = 0.8 and
changepoint x ∈ {0.1, 0.2, . . . , 0.9}.
Results can be found in figures-4.1. Both tests perform worse when the change-point is
close to the start or end of the series, regardless of the model. The middle graph, where
the series with t-distributed ϵ, has the strongest performance regardless of location.
Rs

T is least effective here, this seems to imply that this instance of the test performs worse
when the variance if larger and will be addressed in later sections.
The MA(1) model is both most sensitive to the change-point, and and performs worst for
Re

T , this hints that processes that are ’more random’ can benefit more from the weighting
used in Rs

T .

Figure 4.1: Power at changepoint for ϕ0 = 0.3 to ϕa = 0.8 for different change-
points x ∈ [0, 1]

Secondly, CUSUM-type tests are sensitive to outliers, functionals like sup & max easily
give false positives if the data contains a sharp change in estimate. The function ϕ down-
weights the affect of these outliers, to test this power will be examined for RT when the
cap of the huber-phi function is k = {1.5, 1000} for a dataset with frequent outliers. The
following experiment is proposed.

1. Generate an MA(1), with ϵt ∼ N (0, σ), time series of length T under the null-
hypothesis

2. at a random point in the series add a constant c ∈ [1, 4]

The results over the set c can be found in figure-4.2. The graph shows that the size of Re
T

is quite poor when a large boundary is chosen for ϕ, regardless of how large the outlier
actually is.
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Figure 4.2: Size of RT for outliers of different magnitudes

What is peculiar is that Rs
T has good size regardless of the choice of k inside the function

ϕ. The minor spike after magnitude 3 seems more like an anomaly as the size is close to
0 afterwards. This seems to indicate that robust standardizing, both of the time-series Xi

and the test RT , is effective at suppressing the effect of outliers. However Re
T , k = 1.5

suffers from no anomalies, so it seems to be slightly more effective to apply ϕ.

4.4 Effectiveness of testing p = 0

RT does not compare directly to GT or BT and B′
T even when changes in lag 1 are

examined only. This is because even at lag 1 RT considers changes in variance. This
makes for unfair comparison, since it is difficult to create a change in autocovariance at
one location only without affecting the variance. To test if RT truly benefits from this the
following two modified tests will be examined.

R1,e
T = max

k∈[1,T −1]

(
S1

k − k

T − 1S
1
T

)2
and R1,s

T = max
k∈[1,T −1]

Û−1
2,2

(
S1

k − k

T − 1S
1
T

)2

(4.12)

Where Û−1
2,2 is the inverse of the second diagonal of the matrix Û . These two tests will

be compared to Re
T and Rs

T for AR(1) both with white noise ϵt normally distributed
with N (0, 1) and t-distributed with 5 degrees of freedom, and MA(1) for sample sizes
T ∈ {100, 500} and changepoints x ∈ {0.1, 0.25, 0.5}, with a parameter change ϕ0 = 0.3
to ϕa = 0.8.
Results can be seen in tables 4.5 to 4.7. These results contradict the assumption that
testing for variance too creates an advantage or should improve results. Across the board
R1

T outperforms or matches RT . These results, together with observations made on the
critical value, imply that any advantage gotten from testing multiple changes simultane-
ously likely makes for a slightly unstable critical region for the test. For the remainder of
this section RT alone will be tested.

4.5 Power when p = 1
In this section the power under the alternative hypothesis will be tested under several
ARMA models at lag p = 1. This will be compared to the other tests introduced at the

24



T = 100 T = 500
τ = 0.10 0.25 0.50 0.10 0.25 0.50

Re
T 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Rs
T 0.9210 0.9990 0.9840 1.0000 1.0000 1.0000

R1,e
T 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R1,s
T 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4.5: Power of both RT and R1
T tests for AR(1) with change at different

change-points, for T = {100, 500}.

T = 100 T = 500
τ = 0.10 0.25 0.50 0.10 0.25 0.50

Re
T 0.865 0.923 0.904 0.91 0.949 0.957

Rs
T 0.268 0.465 0.282 0.372 0.513 0.917

R1,e
T 0.978 0.983 0.988 0.988 0.2999 1.0000

R1,s
T 0.548 0.754 0.862 0.633 0.849 0.981

Table 4.6: Power of both RT and R1
T tests for MA(1) with change at different

change-points, for T = {100, 500}.

start of this section.

AR(1) The first example generated by synthetic data is an AR(1) process

Xt =
{
ϕ0Xt−1 + ϵt t ∈ [1, ⌊Tx⌋]
ϕaXt−1 + ϵt t ∈ [⌊Tx⌋ + 1, T ]

where |ϕ0|, |ϕa| < 1 and the change-point x ∈ (0, 1), the autocovariance of this process has
three cases.

• Case 1. t, t+ k ≤ ⌊Tx⌋

Cov(Xt, Xt+k) =


1

1 − ϕ2
0

k = 0

ϕk
0

1 − ϕ2
0

k > 0

• Case 2. t ≤ ⌊Tx⌋, and t+ k ≥ ⌊Tx⌋ + 1

Cov(Xt, Xt+k) = Cov(Xt, ϕaXt+k−1 + ϵt+k)
= Cov(Xt, ϕa(ϕaXt+k−2 + ϵt+k−1) + ϵt+k)
...

= Cov(Xt, ϕ
m
a Xt+k−m +

m∑
i=0

ϕi
aϵt+k−i)
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T = 100 T = 500
τ = 0.10 0.25 0.50 0.10 0.25 0.50

Re
T 0.905 0.917 0.88 1.0000 1.0000 1.0000

Rs
T 0.997 0.999 0.999 0.998 1.0000 1.0000

R1,e
T 1.0000 1.0000 0.995 1.0000 1.0000 1.0000

R1,s
T 0.994 0.984 0.924 1.0000 1.0000 1.0000

Table 4.7: Power of the tests for AR(1), with white noise ϵt t-distributed, with
change at different change-points, for T = {100, 500}.

Where m = ⌊Tx⌋ − k, and the second term in the covariance is uncorrelated with
Xt, so we disregard it going forward.

Cov(Xt, Xt+k) = ϕm
a Cov(Xt, Xt+k−m)

= ϕm
a Cov(Xt, ϕ0Xt+k−m−1 + ϵt+k−m−2)

...

= ϕm
a Cov(Xt, ϕ

k−m
0 Xt +

k−m∑
i=0

ϕi
0ϵt+k−m−i)

Giving the final covariance function

Cov(Xt, Xt+k) =


1

1 − ϕ2
0

k = 0

ϕm
a ϕ

k−m
0 k > 0

• Case 3. t, t+ k ≥ ⌊Tx⌋ + 1

Cov(Xt, Xt+k) =


1

1 − ϕ2
a

k = 0

ϕk
a

1 − ϕa
k > 0

A brief examination of the power of all three tests for this AR(1) process can be found
in figure 4.3. Here ϕ0 is fixed at 0.3 and the power is instead measured over the change
h = ϕa − ϕ0 with three choice of change-point x ∈ (0, 1). Additionally table-4.10 shows
power for different choices of T for the same change-points.
On a surface level Re

T has better size under the null-hypothesis, but worse power across
most of the graph than Rs

T . GT is much more consistent, with a size very close to 0.05
under the null-hypothesis, and has shallower increase as h goes up.
BT fails to detect the change at all, regardless of location and sample size. B′

T performs
much better, but still has quite poor power, This discrepancy can only be because of the
use of a supremum. BT likely contains many "large" results that were negative, and in
cases where a change in covariance creates a large negative value in the test it goes un-
detected. Indeed a change from ϕ0 = 0.3 to ϕa = 0.8 would create a large negative value
within the CUSUM.
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Figure 4.3: Power of RT (left) and GT (right) for different changes h

Interestingly the power becomes worse the closer to x = 0.5 the changepoint is. This is
likely because of the bartlett estimator, when it has an equal amount of data on both
regimes it does not fit very well, and so standardizes the test poorly. It manages to over-
come this when the sample size is sufficiently large, however.

T = 100 T = 500 T = 2000
x = 0.1 0.25 0.5 0.1 0.25 0.5 0.1 0.25 0.5

Re
T 0.954 0.942 0.889 1.0 1.0 1.0

Rs
T 0.468 0.648 0.881 0.587 0.997 1.0

GT 0.183 0.221 0.2590 0.073 0.246 0.39 0.156 0.721 0.916
B

(1)
T 0 0 0 0 0 0 0 0 0

B
′(1)
T 0.393 0.205 0.044 0.441 0.009 0.109 0.560 0.243 1.00

Table 4.8: Power under AR(1) with change ϕ0 = 0.3 to ϕa = 0.8 at different
change-points, for T = {100, 500, 2000}

MA(1) Next the power of the test under a moving average process is examined

Xt =
{
θ0ϵt + ϵt−1

θaϵt + ϵt−1
(4.13)

Again ϵt ∼ N (0, 1) normally distributed at all points t ∈ [0, T ], there are three cases to
consider here

• Case 1. t, t+ k ≤ ⌊Tx⌋

Cov(Xt, Xt+k) =


1 + θ2

0 k = 0
θ0 k = 1
0 otherwise

(4.14)

• Case 2. t ≤ 150, and t+ k ≥ ⌊Tx⌋ + 1

Cov(Xt, Xt+k) = Cov(θ0ϵt + ϵt−1, θaϵt+k)
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Figure 4.4: Power of RT (left) and GT (right) for different changes h, for T = 300

this is 0 in all cases, as k must be at least 1 for this example to happen, and this
creates no overlap in the ϵ terms.

• Case 3. t, t+ k ≥ ⌊Tx⌋ + 1

Cov(Xt, Xt+k) =


1 + θ2

a k = 0
θa k = 1
0 otherwise

(4.15)

T = 100 T = 500 T = 2000
x 0.1 0.25 0.5 0.1 0.25 0.5 0.1 0.25 0.5
Re

T 0.391 0.433 0.456 0.587 0.869 0.94
Rs

T 0.666 0.781 0.835 0.752 0.966 0.997
GT 0.194 0.196 0.185 0.061 0.145 0.215 0.099 0.451 0.706
B

(1)
T 0 0 0 0 0 0 0 0 0

B
′(1)
T 0.456 0.267 0.084 0.5 0.047 0.018 0.154 0.006 0.935

Table 4.9: Power under MA1 with change θ0 = 0.3 to θa = 0.8 at different
change-points, for T = {100, 500, 2000}

Here Rs
T performs far better than Re

T , this was hinted at by the better consistency of the
p-values for Rs

T across different sample sizes for this model. GT struggled greatly with
this model, a slight change in the coefficient likely did not induce a large enough change
in the turning rate for significant power.

Heavy-tail AR(1) An AR model with a ϵt t-distributed is looked at next.

Xt =
{
ϕ0Xt−1 + ϵt t ∈ [1, ⌊Tx⌋]
ϕaXt−1 + ϵt t ∈ [⌊Tx⌋ + 1, T ]

(4.16)

Where ϵt is t−distributed with degrees of freedom df = 5. The covariance structure of
this time series also has three cases.
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• Case 1. t, t+ k ≤ ⌊Tx⌋

Cov(Xt, Xt+k = Cov(ϕ0Xt+k−1 + ϵt+k−1)
...

= Cov(Xt, ϕ
k
0Xt +

k∑
i=0

ϕi
0ϵt+k−i)

there is no choice of i in the sum where ϵt+k−i coincides with something which gives
a non-zero covariance, so the sum is 0.

Cov(Xt, Xt+k) =ϕk
0 VarXt

=



∞ 1 < df ≤ 2
df

df−2
1 − ϕ2

0
k = 0, df > 2

ϕk
0( df

df−2)
1 − ϕ2

0
k ≥ 1, df > 2

• Case 2. t ≤ ⌊Tx⌋, and t+ k ≥ ⌊Tx⌋ + 1

Cov(Xt, Xt+k) = Cov(Xt, ϕaXt+k−1 + ϵt+k)
= Cov(Xt, ϕa(ϕaXt+k−2 + ϵt+k−1) + ϵt+k)
...

= Cov(Xt, ϕ
m
a Xt+k−m +

m∑
i=0

ϕi
aϵt+k−i)

Where m = ⌊Tx⌋ − k, and there is no choice of i in the sum that gives non-zero
covariance with Xt so it is 0 and can be disregarded.

Cov(Xt, Xt+k) = ϕm
a Cov(Xt, Xt+k−m)

= ϕm
a Cov(Xt, ϕ0Xt+k−m−1 + ϵt+k−m−2)

...

= ϕm
a Cov(Xt, ϕ

k−m
0 Xt +

k−m∑
i=0

ϕi
0ϵt+k−m−i)

Giving the final covariance function

Cov(Xt, Xt+k) =


∞ 1|df ≤ 2

df
df−1

1 − ϕ2
0

k = 0, df > 2

ϕm
a ϕ

k−m
0 k > 0, df > 2
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Figure 4.5: Power of RT (left) and GT (right) for different changes h

• Case 3. t, t+ k ≥ ⌊Tx⌋ + 1
In the same manner as case 1

Cov(Xt, Xt+k = Cov(ϕaXt+k−1 + ϵt+k−1)
...

= Cov(Xt, ϕ
k
aXt +

k∑
i=0

ϕi
aϵt+k−i)

=ϕk
a VarXt

=



∞ 1 < df ≤ 2
df

df−2
1 − ϕ2

a

k = 0, df > 2

ϕk
a( df

df−2)
1 − ϕ2

a

k ≥ 1, df > 2

T = 100 T = 500 T = 2000
x 0.1 0.25 0.5 0.1 0.25 0.5 0.1 0.25 0.5
Re

T 0.913 0.91 0.861 1.0 1.0 1.0
Rs

T 0.994 1.0 0.999 1.0 1.0 1.0
GT 0.179 0.22 0.246 0.067 0.229 0.364 0.143 0.707 0.927
B

(1)
T 0 0 0 0 0 0 0 0 0

B
′(1)
T 0.289 0.168 0.034 0.37 0.04 0.07 0.063 0.044 0.985

Table 4.10: Power under AR(1), with ϵi t-distributed with 5 degrees of free-
dom, with change phi0 = 0.3 to ϕa = 0.8 at different changepoints, for T =
{100, 500, 2000}

Both GT and Rs
T performed remarkably well for this model. Rs

T benefitted greatly from
the normalisation done by the diagonals of Ûi,i, Re

T failed to detect changes until h > 0.3,
this is likely due to the extremely large critical values estimated for this case.
A broader experiment is conducted in tables 4.11 to 4.14. All possible changes in parameter
in ϕ0, θ0 ∈ {−0.3, . . . , 0.3} and ϕa, θa ∈ {−0.5 . . . , 0.5} are examined for the three ARMA
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schemes for sample sizes T = 500 and again for T = 2000. Tables for RT were not made
here due to the time constraints of the model.
These tables clarify some things about GT and both Berkes tests BT , B′

T . Firstly, any
poor performance by GT earlier can be attributed to small sample size. GT demonstrates
good power in table-4.11 and table-4.12 when T = 2000. Size close to 0.05 under the null-
hypothesis can be seen in the diagonals of both tables too. GT can also be run extremely
quickly compared to RT , making it feasible for datasets with large size.
Results for BT and B′

T fail to match those in the Berkes paper[5], and continue to perform
poorly in tables-4.13 and 4.14. B′

t shows good size when there is a change in sign in the
coefficients, and almost never detects a change otherwise. BT has good power in some
cases when the coefficient changes from negative to positive, and when a large, positive
θ0 changes to a θa close to 0. The biggest indicator of the issue is the fact that power
is almost 0 at every point where ϕ0 = 0. A poor estimation of γ(r) would explain this
discrepancy, and without knowing how it was estimated in the original paper this can not
be improved.

ϕ0\ϕa -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.3 10.3 6 5.6 7 14.5 27.7 45.4 66.1 79 86.5 92.5

T = 500

-0.2 21.1 12.1 6.3 4 6.9 15.5 30.8 50.7 62.3 77.7 86.3
-0.1 34.8 24.8 16.1 7.2 3.9 7.2 13.4 32.5 45.2 62.6 70.9
0.0 51.7 39.8 26.6 15 8.1 5.5 5.7 15 31.1 43.9 53.2
0.1 72.5 58.9 45.9 30 14.9 6.9 4.1 6.7 15.8 25.8 34.7
0.2 85.2 77 64.5 47.5 30.4 16.1 8.1 5.2 6.4 12.2 19.9
0.3 93.4 88.1 80.1 63.2 47.6 29.3 13.6 6.5 4.3 7.3 10.1
-0.3 31.1 14.2 3.5 16.4 48 80.1 96 99.6 100 100 100

T = 2000

-0.2 66.9 40.7 15 4.8 17.2 54.4 83.9 97.3 99.3 99.8 100
-0.1 90.8 75 48.8 16.8 5.4 19.6 52 85.7 95.4 99.1 99.9
0.0 97.5 93.9 79 54.3 20.1 3.6 18.3 55.4 80.7 94 98.3
0.1 99.5 99.5 96.9 85.4 55.6 17 5 17 48 74.8 89.2
0.2 100 99.9 98.8 96.7 84.4 52.9 16.5 4.9 14.7 42.1 65.9
0.3 100 100 100 99 96.2 79.2 48.4 13.4 3.9 12.6 35.4

Table 4.11: GT for a MA(1) process with change at x = 0.5 and parameter
change ϕ0 to ϕa when T = 500 and T = 2000

4.6 Power when p > 1
In this section, a change in autocorrelation at lags greater than 1 is examined. Given that
strong-mixing is assumed in this paper it is of particular interest to see if the location of
the change within the autocovariance function affects power. Furthermore, it is of interest
to see if RT performs better if a change is distributed across multiple lags, say by changing
the magnitude of the variance of ϵ in an ARMA scheme.
MA(r) models
The following moving average process will be tested here.

Xt =
{
ϵt t ∈ [1, ⌊Tx⌋]
θϵt−r + ϵt t ∈ [⌊Tx⌋ + 1, T ]

(4.17)
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ϕ0\ϕa -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.3 20.6 8.3 4.1 7.9 16.6 36.1 58.7 75 87.6 94.6 98.2

T=500

-0.2 36.8 20.1 8.9 5.4 8.7 19.6 36 56.9 77.2 87.8 94.7
-0.1 57.7 35.3 17.9 7.9 4.5 8.9 19.5 38.9 56.7 76.2 88.8
0.0 75.5 56.2 37.6 17.7 9.4 4 8.1 19.4 36.5 57 75.3
0.1 87.5 76.6 60 37.7 21.3 8.3 4.9 7 19.8 36 60.9
0.2 95.3 88 73.6 59.3 39.5 18.4 8 4.3 7.3 18 36
0.3 97 94.8 85.7 76.8 57.3 38 18.7 7.6 4.9 7.3 19.3
-0.3 63.1 23.8 5.3 22.6 61.7 91 98.6 100 100 100 100

T=2000

-0.2 92 63 20.6 4.6 23.6 66 92.5 98.8 99.8 99.9 100
-0.1 98.7 91.1 62.3 22.4 3.2 18.5 64.1 89.6 99.2 99.9 100
0.0 99.9 98.6 90.9 61.7 21.7 4.4 25.8 64.6 93.2 98.5 100
0.1 100 99.9 98.5 91.3 64 22.8 4.5 20 60.4 89 98.4
0.2 100 100 99.6 99.1 91.6 61.9 22 4.2 20.2 62.9 89.4
0.3 100 100 100 100 98.9 90.8 60.2 22.7 4.1 19.8 67.1

Table 4.12: GT for a AR(1) process, with ϵt t-distributed with 5 degrees of
freedom, change at x = 0.5 and parameter change ϕ0 to ϕa when T = 500 and
T = 2000

Where ϵ ∼ N (0, 1), and r ∈ N. There are several cases for the covariance function γ(l)
here:

Case 1. t, t+ k < ⌊Tx⌋

Cov (Xt, Xt+k) = Cov (ϵt, ϵt+k) =
{

1 k = 0
0 otherwise

Case 2. t < ⌊Tx⌋, t+ k > ⌊Tx⌋ + 1

Cov (Xt, Xt+k) = Cov (ϵt, ϵt+k + θϵt+k−r)
= Cov (ϵt, ϵt+k) + Cov (ϵt, θϵt+k−r)

=


1 k = 0, r ̸= 0
θ |k| = r ̸= 0
1 + θ k = r = 0
0 otherwise

Case 3. t, t+ k > ⌊Tx⌋ + 1

Cov (Xt, Xt+k) = Cov (ϵt + θϵt−r, ϵt+k + θϵt+k−r)
= Cov (ϵt, ϵt+k) + Cov (ϵt, θϵt+k−r) + Cov (θϵt−r, ϵt+k) + Cov (θϵt−r, θϵt−r+k)

=


1 + θ2 k = 0, r ̸= 0
θ |k| = r ̸= 0
1 + 2θ + θ2 k = r = 0
0 otherwise
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ϕ0\ϕa -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.3 7.6 9.6 5.3 10.4 51.7 92.5 99.6 100 100 100 100

B
′
T

-0.2 3.2 6.1 5.1 5.4 17.5 70.2 98.6 100 100 100 100
-0.1 0.1 2.3 3.9 4.2 6.0 25.6 78.5 97.2 99.9 100 100
0.0 0 0 0.1 0.5 3.0 4.3 3.6 0.7 0 0 0
0.1 100 100 99.7 97.6 77.8 26.9 4.3 3.8 4.1 1.2 0.3
0.2 100 100 100 100 97.2 78.5 21.2 6.1 4.9 6.1 3.0
0.3 100 100 100 100 99.7 93.7 57.5 10.5 5.5 8.6 7.5
-0.3 0.5 3.4 8.5 11.8 22.8 31.0 35.2 48.9 59.5 70.1 75.7

BT

-0.2 0.1 0.2 2.0 4.1 10.8 21.1 33.9 53.8 77.5 85.0 89.9
-0.1 0 0 0.3 0.6 4.8 20.9 52.3 83.8 94.6 96.9 97.5
0.0 0 0 0 0.9 2.8 4.5 1.6 0.1 0 0 0
0.1 0 0 2.1 13.9 34.9 29.6 3.8 0.5 0 0 0
0.2 0.3 2.6 17.7 48.0 83.1 85.1 39.7 4.6 0.1 0 0
0.3 4.4 18.4 47.2 81.2 97.7 97.3 72.9 26.4 3.3 0.2 0

Table 4.13: BT and B
′
T for a MA(1) process, change at x = 0.5 and parameter

change ϕ0 to ϕa.

(a) B′
T at lag 1 for

4.17
(b) B′

T at lag 2 for
4.17

(c) B′
T at lag 3 for

4.17

Figure 4.6: B′
T at lags∈ {1, 2, 3} over model-4.17

This time series will be examined for RT with several choices of maximum lag p to be
tested. θ = 0.8 will be chosen first, and power will be estimated r ∈ {1, . . . , 6}.
This will be the only tests done for RT , due to it’s hefty runtime once p > 1. But θ will
be varied for B(r)

T , B(r)′

T , and GT since they can all be run in adequate time. Results for
B′

T are found in figure 4.7, BT are found in figures, and GT is in

AR(r) models A similar auto-regressive model will be studied

Xt =
{
ϵt t ∈ [1, ⌊Tx⌋]
ϕXt−r + ϵt t ∈ [⌊Tx⌋ + 1, T ]

(4.18)

The auto-covariance function is determined by 3 cases:

Case 1. t, t+ k ≤ ⌊Tx⌋

Cov (Xt, Xt+k) = Cov (ϵt, ϵt+k) =
{

1, k = 0
0, k > 0
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(a) BT at lag 1 for
4.17

(b) BT at lag 2 for
4.17

(c) BT at lag 3 for
4.17

Figure 4.7: BT at lags∈ {1, 2, 3} over model-4.17

Figure 4.8: GT over model-4.17
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ϕ0\ϕa -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.3 7.2 4.8 4.0 23.5 70.9 96.7 100 100 100 100 100

B
′
T

-0.2 1.3 3.5 5.6 5.2 24.8 70.9 97.4 99.6 100 100 100
-0.1 0.9 0.6 2.9 5.0 6.2 22.9 77.0 97.6 99.9 100 100
0.0 0 0 0.1 0.9 3.5 3.4 4.1 0.8 0.1 0 0
0.1 100 100 100 96.2 74.2 21.3 4.9 3.5 2.4 0.7 0.2
0.2 100 100 100 99.9 98.5 79.5 19.9 4.3 4.5 3.9 1.0
0.3 100 100 100 100 99.8 96.6 66.5 28.1 6.1 5.4 6.5
-0.3 0.1 1.4 3.4 11.0 21.0 32.2 41.6 50.6 64.0 71.5 86.0

BT

-0.2 0 0 0.6 7.0 12.5 24.3 39.0 58.5 79.4 90.6 96.8
-0.1 0 0 0.2 0.4 6.6 18.1 51.8 84.7 93.6 97.0 99.6
0.0 0 0 0 0.8 4.7 4.5 2.3 0.3 0 0 0
0.1 0 0 1.3 13.0 36.3 26.2 4.9 0.2 0 0 0
0.2 0 2.4 14.1 46.0 85.4 88.3 42.4 5.4 0.3 0.1 0
0.3 1.4 16.4 45.3 81.2 98.1 99.1 83.2 41.8 8.7 0.4 0

Table 4.14: BT and B
′
T for a AR(1) process, with ϵt t-distributed, change at

x = 0.5 and parameter change ϕ0 to ϕa .

Figure 4.9: RT for AR(r) model, with change at x = 0.5

Case 2. t ≤ ⌊Tx⌋, t+ k ≥ ⌊Tx⌋ + 1

Cov (Xt, Xt+k) = ϕm Cov (ϵt, ϵt+k−mr) for m = ⌊k
r

⌋

=
{
ϕm, t+ k −mr = t

0, otherwise

Case 3. t, t+ k ≥ ⌊Tx⌋ + 1

Cov (Xt, Xt+k) = ϕ⌊k/r⌋

Results for power are found in tables -
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(a) B′
T at lag 1 for

4.18
(b) B′

T at lag 2 for
4.18

(c) B′
T at lag 3 for

4.18

Figure 4.10: B′
T at lags∈ {1, 2, 3} over model-4.17

(a) BT at lag 1 for
4.18

(b) BT at lag 2 for
4.18

(c) BT at lag 3 for
4.18

Figure 4.11: BT at lags∈ {1, 2, 3} over model-4.18

Figure 4.12: GT over model-4.18
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Discussion

RT has been shown to perform quite well over a number of models. Furthermore, it
performs better than any of the other tests for small sample sizes (T ≃ 500.) The two
biggest issues that RT faces are its poor runtime, and poor size under the null-hypothesis.
There may be room to improve this runtime, a better PC would be the most obvious. The
bottleneck is mostly due to the sheer number of partial sums that are taken in this test,
so improving the runtime significantly is unlikely.
The size under the null-hypothesis is only improved when the diagonals of the matrix
W were taken to be the diagonals of Û−1. Results could be further improved if Û were
estimated using a sample up to only the point k, i.e. giving the test the following form

RT = max
k∈[1,T̃ ]

∥∥∥∥Sp
k − k

T̃
Sp

T̃

∥∥∥∥
Wk

Where, Wk =


wk,o 0 . . . 0

0 wk,1
. . . ...

... . . . . . . ...
0 . . . . . . wk,p

 , wk, i = Ûk
i,i

and Ûk
i,i =

k∑
t=1

k∑
s=1

(
ŶiŶi+s − 1

k
Si

k

)(
ŶiŶi+t − 1

k
Si

k

)
k

(
|s− t|
bT̃

)
.

This type of standardization has precedent, Berkes et al [5] did not outline it explicitly
but stated that they estimated γ2(r) up until a known changepoint. GT likely performs so
well because it does this too, but would likely be infeasible until the runtime is addressed.
The power of RT under the null-hypothesis was shown in this thesis in more detail than
exists in the literature. What was a 6 line proof in Dürre & Fried[14] has been extended
to a proposition and a theorem showing all details needed.
The Power of RT under the alternative was beyond the scope of this thesis, and would be
a good point to continue this work. Dürre & Fried themselves note that this would require
a lot of care because of the use of a non-linear function ϕ, and the standardization used
with it too.[14].
Another important detail of RT is its strong-mixing requirement. It is difficult to verify
if data is, indeed, strong mixing, and most authors do not demonstrate the strong-mixing
property of their data. A more thorough method for examining if a series is strong-mixing,
and just how strong this is, would be a good addition to the work done here.
BT failed to match its performance in the literature, and as stated this is likely due to
the estimator γ̂2(r). Improving this with a better estimator was not possible in the time
remaining in this thesis.
GT outperformed every other test for sufficiently high samples. For higher samples it
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seems like the best choice, and there is a lot of room to continue work on this test. It
may be possible to detect changes beyond the first lag using GT , though these changes in
turning rate are very fine and might need a different treatment before applying the test.
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Conclusion

In this work the modified CUSUM-test RT is introduced, some results proven, and demon-
strated through implementation and simulations. The power of the test under the null-
hypothesis with strong-mixing conditions is proven in greater detail than exists in the
literature currently. This result is verified through simulations, comparing the test the
similar CUSUM-tests BT and B′

T , and the ordinal-pattern based test GT .
The Power of RT was shown to be good under certain choices of weight-matrix W , and with
smaller sample sizes than the other tests. It’s runtime, especially when testing changes
in the autocovariance greater than 1 is a huge deficit to the test and has little room for
improvement outside of a stronger computer. The size of the test was shown to be poor
for constant weights Re

T , and seemed prone to giving false positives. Rs
T was the best

version of the test under most circumstances, especially moving average processes. The
test additionally suffers from its flexibility, as critical values appear to grow unstable when
attempting to test many lags.
BT and B′

T were not implemented in a way that matched performance in the paper they
were taken from, and failed to give good results across all examples tested. This can be
attributed to poor standardization, and only B′

T gave results that could compete with the
other tests in this paper.
GT outperformed RT , and demonstrated better size under the null-hypothesis, all with a
much faster runtime. Until this test is modified to possibly detect changes in autocovari-
ance greater than 1 RT seems to be the best choice for detecting structural changes in
autocovariance at high lags.
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Appendix

Lemma 1 For a strongly mixing sequence (Xi)i∈Z with mixing coefficients αn and Borel-
measurable function f : (X,FX) → (Y,Fy), (f(Xi))i∈Z is also strongly mixing with coeffi-
cients α (f(Xi)) ≤ α (Xi).

Proof. f : (X,FX) → (Y,FY ) is Borel-measurable if the preimage f−1(V ) of any open set
V ⊂ Y is measurable in FY , where FY is the smallest sigma-field generated by all open
sets in the target space Y .
This ensures that applying f to a process (Xi)i∈Z preserves measurability with respect to
the original sigma-field. Specifically, for every I ⊂ Z, we have:

σ (f(Xi), i ∈ I) ⊂ σ (Xi, i ∈ I) (5.1)

In other words, the sigma-field generated by (f(Xi))i∈I is a sub-sigma-field of that gener-
ated by (Xi)i∈I .
To show why this implies strong-mixing of (f(Xi))i∈I note that by applying f to any sets
A ∈ F0

−∞ and B ∈ F∞
n and taking the supremum gives the following inequality

sup
A′∈f(F0

−∞), B′∈f(F∞
n )

∥P (A′ ∩B′) − P (A′)P (B′)∥ ≤ sup
A∈F0

−∞, B∈F∞
n

∥P (A ∩B) − P (A)P (B)∥ = α(Xn)

(5.2)

As the sets f(F0
−∞) and f(F∞

n ) at most retain the element of F0
−∞ and F∞

n that results
in the supremum on the right, and otherwise create a smaller expression.
Since α (f(Xi)) is therefore bounded above by α (Xi) and below by 0 the squeeze theorem
gives the mixing coefficients α (f(Xi)) → 0 as i → ∞

Lemma 4. Û with estimated standardization Ŷi = ϕ

(
Xi − µ̂

σ

)
is consistent for U

Û = 1
T̃

T̃∑
s=1

T̃∑
t=1

(
ŶsŶs+i − 1

T̃
S

(i)
T̃

)(
ŶtŶt+j − 1

T̃
S

(j)
T̃

)
k

(
s− t

bT

)

with kernel function k(x), T̃ = T − p and S(p)
T̃

= ∑T̃
i=1 ŶiŶi+p

Proof. Let S
′(i)
T̃

= ∑T̃
k=1 YkYk+i be the series gotten from the standardized series Yi =

ϕ

(
Xi − µ

σ

)
with true µ and σ. Without loss of generality, take the difference

1
T̃

T̃∑
s=1

T̃∑
t=1

(
ŶsŶs+i − 1

T̃
S

(i)
T̃

)(
ŶtŶt+j − 1

T̃
S

(j)
T̃

)
k

(
s− t

bT

)

− 1
T̃

T̃∑
s=1

T̃∑
t=1

(YsYs+i − γ(i)) (YtYt+j − γ(j)) k
(
s− t

bT

)
(5.3)
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and perform the following decomposition

(5.3) = 1
T̃

T∑
t=1

T∑
s=1

(
ŶsŶs+i − 1

T̃
S

(j)
T̃

)(
ŶtŶt+j − YtYt+j − 1

T̃

(
S

(j)
T̃

− S
′(i)
T̃

))

+ 1
T̃

T∑
t=1

T∑
s=1

(
ŶsŶs+i − 1

T̃
S

(j)
T̃

)(
ŶsYs+i − YsYs+i − 1

T̃

(
S

(i)
T̃

− S
′(i)
T̃

))

+ 1
T̃

T∑
t=1

T̃∑
s=1

(YsYs+i − γ(i))
(
γ(j) − 1

T̃
S

′(j)
T̃

)

+ 1
T̃

T̃∑
t=1

T̃∑
s=1

(YtYt+j − γ(j))
(
γ(i) − 1

T̃
S

′(j)
T̃

)
=K1 +K2 +K3 +K4

Denote these four summands by K1, K2, K3, and K4 respectively. Before going any further
note the second order Taylor decomposition:

ϕ

(
X − µ

σ

)
=ϕ

(
X +

[ 1
σ

− 1
]
X − µ

σ

)
=ϕ(X) + ϕ′(X)

([ 1
σ

− 1
]
X − µ

σ

)
+ 1

2ϕ
′′(X)

([ 1
σ

− 1
]
X − µ

σ

)2
+ R(X)

(5.4)

Where the remainder R(T ) depends on all higher order derived of ϕ(x). Care is required
here, as ϕ is not differentiable everywhere. If taken piecewise the derivative becomes:

ϕ′(x) =


1 if |x| < k

undefined if |x| = k

0 otherwise

ϕ′(x) has a discontinuity at x = {−k, k}, but the random variable X such that X−µ
σ =

k occurs with probability 0 as it two single points. So this is piecewise, almost-surely
continuous . Similarly the second derivative is the a.s. continuous function

ϕ′′(X) =
{

undefined if |x| = k

0 otherwise

At any point |X| ≥ k gives ϕ′(X) = 0 , so (5.3) is 0 at these points and these terms
disappear. Furthermore, since the remainder R(X) depends on higher order derivates
of ϕ(x) it has R(X) a.s= 0 for all X. So convergence need only be checked for the set
{X ∈ X : |X| < k}. Furthermore ϕ′′(X) is 0 everywhere, and the final component of
(5.4) can be disregarded.
Apply this taylor expansion, starting with K1. Looking first at product of the first two
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terms of the second bracket gives

ŶtŶt+j − YtYt+j =
(
ϕ(Xt) −

[ 1
σ̂

− 1
]
Xt − µ̂

σ̂

)(
ϕ(Xt+j) +

[ 1
σ̂

− 1
]
Xt+j − µ̂

σ̂

)
−
(
ϕ(Xt) −

[ 1
σ

− 1
]
Xt − µ

σ

)(
ϕ(Xt+j) +

[ 1
σ

− 1
]
Xt+j − µ

σ

)
=ϕ(Xt)ϕ(Xt+j) − ϕ(Xt)ϕ(Xt+j)

+ϕ(Xt)
(( 1

σ̂
− 1
σ

)
Xt − µ̂

σ̂
+ µ

σ

)
+ϕ(Xt+j)

(( 1
σ̂

− 1
σ

)
Xt+j − µ̂

σ̂
+ µ

σ

)
+XtXt+j

(( 1
σ̂

− 1
)2

−
( 1
σ

− 1
)2
)

+ (Xt +Xt+j)
(( 1

σ
− 1

)
µ

σ
−
( 1
σ̂

− 1
)
µ̂

σ̂

)
+
(
µ̂

σ̂

)2
−
(
µ

σ

)2

Thanks to consistency of µ̂ and σ̂, and an application of the continuous mapping theorem,
every difference involving an estimated µ̂ and σ̂ and their corresponding µ and σ converge
in probability to 0. Looking at the Taylor-expansion applied to the remaining terms in
K1’s second bracket:

1
T̃

(
S

(j)
T̃

− S
′(j)
T̃

)
= 1
T̃

 T̃∑
l=1

Ŷl
ˆYl+j −

T̃∑
l=1

YlYl+j


= 1
T̃

 T̃∑
l=1

(
ŶlŶl+j − YlYl+j

)
Applying the same Taylor expansion to the values inside the sum gives a similar expression

1
T̃

T̃∑
l=1

(
ŶlŶl+j − YlYl+j

)
= 1
T̃

T̃∑
l=1

[(
ϕ(Xl) −

( 1
σ̂

− 1
)
Xl − µ̂

σ̂

)(
ϕ(Xl+j) +

( 1
σ̂

− 1
)
Xl+j − µ̂

σ̂

)

−
(
ϕ(Xl) −

( 1
σ

− 1
)
Xl − µ

σ

)(
ϕ(Xl+j) +

( 1
σ

− 1
)
Xl+j − µ

σ

)]

= 1
T̃

T̃∑
l=1

[
ϕ(Xl)ϕ(Xl+j) − ϕ(Xl)ϕ(Xl+j)

+ ϕ(Xl)
(( 1

σ̂
− 1
σ

)
Xl − µ̂

σ̂
+ µ

σ

)
+ ϕ(Xl+j)

(( 1
σ̂

− 1
σ

)
Xl+j − µ̂

σ̂
+ µ

σ

)
+XlXl+j

(( 1
σ̂

− 1
)2

−
( 1
σ

− 1
)2
)

+ (Xl +Xl+j)
(( 1

σ
− 1

)
µ

σ
−
( 1
σ̂

− 1
)
µ̂

σ̂

)
+
(
µ̂

σ̂

)2
−
(
µ

σ

)2 ]
. (5.5)
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where again, by the assumption that µ and σ are consistent, every difference that appears
here converges to 0 in probability. So the expression K1 converges in probability, K2 does
so in the same way. Again breaking it’s second bracket into the first two and last two
terms.

ŶsŶs+i − YtYt+j =
(
ϕ(Xs) −

[ 1
σ̂

− 1
]
Xs − µ̂

σ̂

)(
ϕ(Xs+i) +

[ 1
σ̂

− 1
]
Xs+i − µ̂

σ̂

)
−
(
ϕ(Xs) −

[ 1
σ

− 1
]
Xs − µ

σ

)(
ϕ(Xs+i) +

[ 1
σ

− 1
]
Xs+i − µ

σ

)
=ϕ(Xs)ϕ(Xs+i) − ϕ(Xs)ϕ(Xs+i)

+ϕ(Xs)
(( 1

σ̂
− 1
σ

)
Xs − µ̂

σ̂
+ µ

σ

)
+ϕ(Xs+i)

(( 1
σ̂

− 1
σ

)
Xs+i − µ̂

σ̂
+ µ

σ

)
+XsXs+i

(( 1
σ̂

− 1
)2

−
( 1
σ

− 1
)2
)

+ (Xs +Xs+i)
(( 1

σ
− 1

)
µ

σ
−
( 1
σ̂

− 1
)
µ̂

σ̂

)
+
(
µ̂

σ̂

)2
−
(
µ

σ

)2

Which converges to 0 in probability, the last two terms are also the same

1
T̃

(
Si

T̃
− S

′(i)
T̃

)
= 1
T̃

 T̃∑
s=1

ŶsŶs+i −
T̃∑

s=1
YsYs+i


= 1
T̃

T̃∑
s=1

(
ŶsŶs+i − YsYs+i

)

= 1
T̃

T̃∑
s=1

[(
ϕ(Xs) −

( 1
σ̂

− 1
)
Xs − µ̂

σ̂

)(
ϕ(Xs+i) +

( 1
σ̂

− 1
)
Xs+i − µ̂

σ̂

)

−
(
ϕ(Xs) −

( 1
σ

− 1
)
Xs − µ

σ

)(
ϕ(Xs+i) +

( 1
σ

− 1
)
Xs+i − µ

σ

)]

= 1
T̃

T̃∑
s=1

[
ϕ(Xs)ϕ(Xs+i) − ϕ(Xs)ϕ(Xs+i)

+ ϕ(Xs)
(( 1

σ̂
− 1
σ

)
Xs − µ̂

σ̂
+ µ

σ

)
+ ϕ(Xs+i)

(( 1
σ̂

− 1
σ

)
Xs+i − µ̂

σ̂
+ µ

σ

)
+XsXs+i

(( 1
σ̂

− 1
)2

−
( 1
σ

− 1
)2
)

+ (Xs +Xs+i)
(( 1

σ
− 1

)
µ

σ
−
( 1
σ̂

− 1
)
µ̂

σ̂

)
+
(
µ̂

σ̂

)2
−
(
µ

σ

)2 ]
. (5.6)
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Each difference converges to 0 in probability, so K2 also converges to 0 in probability. K3
and K4 require a different approach, and come about more easily. Taking a look at the
second bracket in K3

γ(j) − 1
T̃
S

(j)
T̃

where γ(j) is the expected value of the series (YiYi+j)i∈N, notice that 1
T̃
S

′(j)
T̃

= 1
T̃

∑T̃
i=1 YiYi+j

is an estimator for the mean of the series (YiYi+j)i∈N. The Law of Large Numbers can be
applied, and 1

T̃
S

′(j)
T̃

P→ γ(j)- meaning K3 converges to 0 in probability. The same argu-
ment applies to K4, looking at the second bracket, and applying the central limit theorem
as shown above gives 1

T S
(i)
T̃

P→ γ(i) and the whole expression converges in probability to
0.

Proposition 1. (Xi)i∈N be a 1-dimensional stationary, and strongly mixing sequence
with mixing coefficients (αk)k∈N satisfying αk = O(k−3−ϵ) for some ϵ > 0. Let ϕ : R → R
be a bounded, non-zero, function such that Yi = ϕ(Xi−µ

σi
) where µ is the median and σi is

the MAD.
for some p and T̃ = T − p, and assume that matrix

U =
∞∑

h=−∞
Cov

 Y1Y1
...

Y1Y1+p


 Y1+hY1+h

...
Y1+hY1+h+p


is positive definite. Then

1√
T̃

(Sp
⌊T x⌋ − ⌊Tx⌋

T
Sp

T ) D→ BB(x) (5.7)

Where BB(t) is an p-dimensional Brownian-Bridge with covariance matrix Var (BB(t)) =
t(1 − t))U .

Proof. Begin by applying a Cramer-wold device, i.e. 1√
T

(
Sp

⌊T x⌋ − ⌊T x⌋
T̃

Sp
T

) D→ BB(x) if
and only if:

(λ)⊤ 1√
T

(
Sp

⌊T x⌋ − ⌊Tx⌋
T̃

Sp
T

)
D→ (λ)⊤(BB(x)) (5.8)

for all λ ∈ Rp+1 such that λ⊤λ = 1. The left side of (5.8) becomes

1√
T

p∑
i=0

λiS
i
⌊T x⌋ − ⌊Tx⌋

T̃

(
1√
T

p∑
i=0

λiS
i
⌊T x⌋

)
(5.9)

To show convergence apply the continuous mapping theorem, define h−1 as follows:

h−1 : D[0, 1] → D[0, 1] (5.10)
s.t f(x) 7→ f(x) − xf(1) (5.11)

This function is continuous in the Skorohod topology, so it need only be shown that

f(x) = 1√
T̃

p∑
i=0

λiS
i
⌊T x⌋

D→ σ(λ0, . . . , λp+1)B(x) (5.12)
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Where B(x) is a p + 1-dimension Brownian-Motion in the Skorohod space D[0, 1], and
σ depends on λ0, . . . , λp. To retrieve this first the convergence property of the series
Z l

i = λi√
T̃

(YiYi+l − γ(l)) must be shown. After that another appropriate map g−1 will
allow an application of the continuous mapping theorem and give the final convergence.
Applying theorem 1.3 of Merleveed & Peligrad[28] to the series (Z l

i)i∈[1,T̃ ] gives

k(x) =
∑⌊T x⌋

1 Z l
i√

π
2 E[
∣∣∣∑T

i=1 Z
l
i

∣∣∣] D→ B(x) (5.13)

Where B(x) is a Brownian Motion. All requirements for this theorem to be used are met
• The addition of a constant γ(l) does not affect the stationarity of YiYi+l, so Z l

i is
also stationary.

• E[Z l
i ] = E[YiYi+l] − γ(l) = γ(l) − γ(l) = 0, so the series is centred.

• By lemma 1 the series Z l
i is at least as strongly mixing as the series (YiYi+l)i∈[1,T̃ ],

and in turn (Yi)i∈[1,T ].

• Since the series (Yi)i∈[1,T ] is stationary it’s second moment is fixed, therefore the
second moment of (YiYi+l)i∈[1,T̃ ] is bounded.

• To show lim inf
E[
(∑T

i=1 Z
l
i

)2
]

T
> 0 see that

1
T

E[
(

T∑
i=1

Z l
i

)2

] = 1
T

E[
T∑

i=1

T∑
j=1

Z l
iZ

l
j ]

= 1
T

T∑
i=1

T∑
j=1

E[Z l
iZ

l
j ]

= 1
T

T∑
i=1

T∑
j=1

E[(YiYi+l − γ(l)) (YjYj+l − γ(l))]

= 1
T

T∑
i=1

T∑
j=1

Cov YiYi+lYjYj+l

=
T −l∑

k=−(T −l

T − k

T
Cov YiYi+lYjYj+l

T →∞→ Ul,k

Where Ul,k > 0 since U ≻ 0.

• Q(u)(2.18) is bounded above by 1. Therefore
∫ α

′
T

0 Q2
|Zl

0|
(u)du has [1, α′

T ] ⊆ [1, T−3−ϵ]

as the bounds being integrating over, for some ϵ > 0, where α
′
k are the mixing

coefficients of the series (Z l
i)i∈[1,T̃ ]. Therefore the entire integral is bounded above

the magnitude of this set times the maximum height of Q2(u) which is 1. So∫ α
′
T

0
Q2

|Zl
0|(u)du ≤ T−3−ϵ = o(T−3−ϵ)

And the final requirement is met.
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So the conditions for (5.13) are met. An application of the continuous mapping theorem
gives (5.12), by defining function g−1

g−1 : D[0, 1] → D[0, 1] (5.14)

s.t. k(x) 7→
√
π

2 (k(x) + γ(l)) E[|k(1)|] (5.15)

is affine, and retrieves the function f(x) in line (5.12). So since f(x) D[0,1]⇒ B(x) then
through the continuous mapping theorem and the map h−1

1√
T

p∑
i=0

λiS
i
⌊T x⌋ − ⌊Tx⌋

T̃

(
1√
T

p∑
i=0

λiS
i
⌊T x⌋

)
D→

p∑
i=0

λi(Bi(x) − ⌊Tx⌋
T̃

Bi(x)) =
p∑

i=0
λiBBi(x)

Where BBi(x) are Brownian Bridges. Which satisfies the requirements for the Cramer-
Wold device (5.8), so

1√
T̃

(
S⌊T x⌋p − ⌊Tx⌋

⌊Tx⌋
Sp

T

)
D→ BB(x)

And we are done, to find the covariance Cov(BB(x), BB(y)) perform the following.

VarSp
⌊T x⌋ = Var


∑⌊T x⌋

i=1 YiYi+1
...∑⌊T x⌋

i=1 YiYi+p



This is a p× p matrix where each entry is written as

Σl,m = Cov(
⌊T x⌋∑
i=1

YiYi+l,

⌊T x⌋∑
j=1

YjYi+m)

=
⌊T x⌋∑
i=1

⌊T x⌋∑
i=1

Cov(YiYi+l, YjYj+m)

An application of kernel estimator to estimate this inner sum gives

=
⌊T x⌋∑
i=1

Ûl,m +O(1)

= ⌊Tx⌋Ûl,m +O(1)
≈ ⌊Tx⌋Ûl,m

So Var Sp
⌊T x⌋ = kÛ . Note that this argument involves a heuristic in places. The variance

of the total expression is therefore

1
T̃

(
Var

(
Sp

⌊T x⌋ − ⌊Tx⌋
T

Sp
T

))
= 1
T̃

(
Var Sp

⌊T x⌋ +
(⌊Tx⌋

T̃

)2
Var Sp

T̃
− 2

(⌊Tx⌋
T̃

)
Cov Sp

⌊T x⌋S
p
T

)

= 1
T̃

(
⌊Tx⌋U +

(⌊Tx⌋
T̃

)2
TU − 2⌊Tx⌋

T̃
⌊Tx⌋

)

= U

(
⌊Tx⌋
T̃

+
(⌊Tx⌋

T

)2
− 2

(⌊Tx⌋
T

)2)
= x(1 − x)U
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Theorem 6. Let Xi be a 1−dimensional, stationary and strongly mixing sequence
with mixing coefficients satisfying αk = O(k−3−ϵ) for some ϵ > 0. Let ϕ : R → R be a
bounded function such that Yi = ϕ

(
Xi − µ

σ

)
where µ is the median and σ is the MAD.

let detU > 0 where U is the long run covariance. Then

(WT (x)2)x∈[0,1]
D→ (

p∑
i=0

B̄Bi(x)2)x∈[0,1] (5.16)

Where B̄Bi(x))i∈[0,p] are mutually independent standard Brownian Bridges.

Proof. From proposition 1 that 1√
T̃

(
Sp

⌊T x⌋ − ⌊Tx⌋
T

Sp
T

)
D→ BB(x), a p-dimensional Brow-

nian Bridge.
Û is positive semi-definite and so allows a Cholesky Decomposition Û = (Û 1

2 )T (Û 1
2 ), using

this with Slutsky’s Theorem gives

Û− 1
2

( 1√
T̃

(
Sp

⌊T x⌋ − ⌊Tx⌋
T

Sp
T

))
D→ Û− 1

2 BB(x) (5.17)

Let g−1 : D[0, 1]p → D[0, 1] be a map X 7→ XTX, note that with this map (5.17) becomes
W 2

T (x) since

g−1
(
Û− 1

2

( 1√
T̃

(
Sp

⌊T x⌋ − ⌊Tx⌋
T

Sp
T

)))
=
(
Û− 1

2

( 1√
T̃

(
Sp

⌊T x⌋ − ⌊Tx⌋
T

Sp
T

)))T (
Û− 1

2

( 1√
T̃

(
Sp

⌊T x⌋ − ⌊Tx⌋
T

Sp
T

)))
= 1
T̃

(
Sp

⌊T x⌋ − ⌊Tx⌋
T

Sp
T

)T

(Û− 1
2 )T Û− 1

2

(
Sp

⌊T x⌋ − ⌊Tx⌋
T

Sp
T

)
= 1
T̃

(
Sp

⌊T x⌋ − ⌊Tx⌋
T

Sp
T

)T

Û−1
(

Sp
⌊T x⌋ − ⌊Tx⌋

T
Sp

T

)
= W 2

T (x)

So by the Continuous Mapping Theorem W 2
T (x) D→ (Û− 1

2 BB(x))T (Û− 1
2 BB(x)). All that

is left to show now is that this results in a sum of squares of mutually independent Brownian
Bridges BBi(x) i = 0, . . . , p

Var
(
Û− 1

2 BB(x)
)

= Û− 1
2 Var (BB(x)) (Û− 1

2 )T

= (Û− 1
2 )
(
x(1 − x)Û

)
(Û− 1

2 )T

= x(1 − x)Ip

Where Ip is the (p+1)× (p+1) identity matrix. Off-diagonals in this matrix represent the
covariance between components of Û− 1

2 BB(x), since these are 0 the vectors components
are mutually independent, call this new vector B̄B(x). So the final expression is W 2

T (x) D→∑p
i=0 B̄Bi(x) where B̄Bi(x) are mutually independent Brownian Bridges.
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