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Summary

This thesis addresses the critical challenge of nitrogen leaching from agricultural
activities, which poses both economic and environmental risks. While some ni-
trogen loss to leaching is unavoidable, excessive nitrogen application has pushed
total leaching levels beyond what ecosystems can tolerate, leading to groundwater
contamination. In many cases, fertilizer is applied at rates that exceed not only envi-
ronmental limits but also economic efficiency, where additional nitrogen no longer
translates into higher yields. This imbalance between input and benefit highlights
the need for more precise nitrogen management strategies. A key part of improving
nitrogen management is the ability to accurately estimate leaching losses, allowing
for better decision-making in fertilizer application.

To achieve this, accurate and practical methods for estimating nitrogen leaching,
particularly in the context of grey water footprint calculations, are required. Three
commonly used approaches are the Tier 1, 2 and 3 method. The Tier 1 method
is a simplified approach that relies on generalized assumptions or a fixed leach-
ing fraction, making it easy to apply but often lacking accuracy across different
agricultural conditions. In contrast, Tier 2 and 3 are advanced modeling approach
that incorporates detailed, region-specific data, providing more accurate estimates.
However, its complexity and high data requirements limit widespread adoption.
Since Tier 1 lacks the accuracy, but Tier 2 is often too data-intensive for practical
use, this study focuses on evaluating and refining the Tier 1 method to improve its
accuracy while maintaining its accessibility, narrowing the gap between simplicity
and precision in nitrogen leaching estimation.

First, a Python-based automated script was developed to support the application
of the Tier 1 method by both implementing the approach and automating the data
input from global datasets, improving scalability and efficiency. Next, a literature
review of Tier 2 and Tier 3 studies was conducted to compare their approaches with
Tier 1 and identify key differences in nitrogen leaching estimation. A sensitivity
analysis was then performed on the Tier 1 method to determine its most influential
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parameters. Finally, based on these insights, key parameters were optimized to
improve accuracy while maintaining the Tier 1 method’s simplicity.

While automation successfully integrated datasets such as nitrogen application rates,
soil texture, and precipitation, certain inputs such as soil texture, drainage class and
management practices still required manual entry due to the lack of a suitable global
datasets. Despite this, the automated Tier 1 method demonstrated high accuracy
compared to other Tier 1 studies, with minimal bias and low variance in its results,
making it a reliable tool for Tier 1 calculations in this thesis.

The study identified the most influential factors in the Tier 1 method and took
insights from the Tier 2 and 3 method. From this analysis the nitrogen application
rate emerged as the most practical factor for optimization due to its high data
availability and significant impact on leaching outcomes. Optimization efforts
focused on adjusting the weight of nitrogen application rates and increasing the
maximum leaching fraction («,q;) in the Tier 1 equation. By raising a4, from
0.25 to 0.475 and increasing the application rate weight to 20%, the refined Tier
1 method reduced RMSE and MAE by more than 20%, aligning more closely with
Tier 2 results. While the original Tier 1 method has a systematic negative bias,
underestimating leaching, the optimized version has a slight positive bias, improving
alignment with observed field values on average but still struggling to accurately
predict individual data points.

In conclusion, this thesis demonstrates that the Tier 1 method can be effectively
refined to improve its accuracy while maintaining its simplicity and scalability. The
refined and automated Tier 1 method developed in this study provides a more
user-friendly and accurate tool for assessing nitrogen leaching than the original Tier
1 method of Franke et al. (2013), but its ability to support sustainable nitrogen
management remains limited by its inability to capture results from advanced models
or field experiments.

Future research should expand the literature review to improve dataset variability,
ensuring better representation of key factors. Conducting an early multi factor
exploratory analysis would help identify dataset gaps and refine nitrogen application
influences. Further improvements should focus on automating soil texture and
drainage classification, quantifying management practices, and integrating higher-
resolution datasets for nitrogen fixation, plant uptake, and application rates.
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Introduction

Agriculture relies heavily on fertilizers to improve crop growth and health, with
nitrogen being the primary source (Alnaass et al., 2024). In the soil, there is often
sufficient total nitrogen, but not enough plant-available nitrogen (such as nitrate or
ammonium) to optimally supply the crop (Robertson et al., 2009). To address this
nitrogen gap, farmers worldwide use fertilizers, applying either organic sources like
manure or synthetic alternatives. Over the past decades, the global mean nitrogen
fertilizer application rate has steadily increased. In 1990, the average application
rate was approximately 50 kgN per hectare of cropland, rising to 70 kgN per hectare
by 2020, before declining slightly to 65 kgN/ha in 2022 (FAOSTAT, 2024a). However,
there are considerable regional variations in nitrogen application rates, influenced
by factors such as soil fertility, economic constraints, agricultural practices and policy
interventions. In North America and Europe, rates range between 60-100 kgN/ha
and have begun to level off, while in Asia rates are notably higher and continue
to rise, reaching 110-230 kgN/ha. In contrast, many countries in Sub-Saharan
Africa apply significantly lower amounts, often as little as 10 kgN/ha, often due to
economic constraints and limited access to fertilizers (World-data, 2024).

The increase in nitrogen fertilizer application has been important for boosting crop
yields to meet the crop demands of a growing global population. Although plants ab-
sorb a substantial portion of the nitrogen, a significant amount often remains unused
due to excessive or inefficient use of nitrogen fertilizers, leading to environmental
issues such as water pollution, greenhouse gas emissions, and soil degradation. This
inefficiency is driven by several factors such as excessive application, poor timing, or
unfavourable weather conditions (EOS, 2024). Traditionally, farmers have applied
more fertilizer than crops require to maximize yield and profitability. However, this
approach is increasingly recognized as unsustainable (Kitchen et al., 2008). The
unused nitrogen can leach through the soil as water moves downwards, especially
in sandy or coarse-textured soils where water drains quickly. Leaching is also more
likely to occur during periods of excessive precipitation or irrigation, which saturates
the soil and pushes water and the dissolved nitrogen beyond the crop’s root zone
(ESN, 2024). Therefore, adopting sustainable nitrogen management practices is
crucial to balance agricultural productivity with environmental conservation.



The loss of nitrogen through leaching is a major concern in agriculture because it
represents both an economic loss for farmers and an environmental hazard. For
farmers, leaching represents waste of a valuable and costly resource. Nitrogen
fertilizers are expensive, and when they leach away, farmers lose a portion of their
investment in crop productivity. This can lead to reduced yields if insufficient nitro-
gen remains available for plant uptake, forcing farmers to apply additional fertilizer,
further increasing their costs. More significantly, nitrogen leaching poses serious
environmental and public health risks. Nitrogen that leaches into groundwater can
contaminate drinking water supplies, and it can also enter rivers, lakes, and coastal
waters through runoff (Hina, 2024).

Determining the leaching of excessive nitrogen application presents several chal-
lenges. Firstly, numerous factors influence nitrogen leaching, including climate
conditions, soil type, texture, land characteristics, management practices, and field
drainage patterns (Rupp et al., 2024; Bibi et al., 2016). Secondly, while field ex-
periments offer precision, they demand substantial investments in both time and
money. Additionally, their small-scale nature and the unique factors of each field
make extrapolating results difficult. This is where modelling becomes important,
offering relatively accurate results in a faster and more cost-effective way by making
certain assumptions. Although modelling results may be an approximate value and
not the exact value, they still reveal large-scale patterns and can incentivize farmers
to adopt environmentally friendly practices (Mandrini et al., 2022).

1.1 Three-tier approach in Water Footprint
Assessment

The water footprint assessment (Hoekstra et al., 2012) categorizes water use into
three components: green, blue and grey water footprints. The green water footprint
relates to the volume of precipitation consumed (evapotranspired) by a crop during
the entire growth process. The blue water footprint involves the consumptive use of
surface and groundwater resources withdrawn for irrigation that are not returned to
their source. The grey water footprint measures the amount of freshwater required
to dilute pollutants, such as nitrogen, to meet acceptable water quality standards
(Hoekstra et al., 2012). Accurate calculation of the grey water footprint depends
on precise estimation of the pollutant levels. To assess how much nitrogen leaches
and runs off during crop growth, a three-tier approach was developed by the Water
Footprint Network (Hoekstra et al., 2011). Advancing from Tier 1 to Tier 3, the
accuracy of estimation improves, but the feasibility and scalability of the analysis
decrease because higher tiers require more detailed data, making it more challenging

1.1 Three-tier approach in Water Footprint Assessment
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to repeat the method across different regions, crops, or systems without excessive
data and resource demands.

Tier 1 can be seen as the most simplistic, where a fixed fraction or a rough calculation
is used to estimate the amount of chemical leaching to the groundwater or surface
water system. Tier 2 involves a more data-intensive process, using standardized or
simplified models based on data such as management practices, local soil attributes,
and climatic conditions. Tier 3 is the most advanced way of estimation and uses
process-based modelling techniques and may require on-site measurements. It
provides the most accurate and reliable results but requires substantial resources
and is challenging to implement widely.

1.1.1 Tier 1

Within Tier 1, the nitrogen leaching-runoff fraction can be calculated using four
distinct methods, each using one of two underlying approaches. The first approach
involves determining the leaching-runoff fraction («) of the entire nitrogen applied
to estimate the total nitrogen leaching. Alternatively, the second approach calculates
the nitrogen surplus, defined as the total nitrogen applied minus the crop offtake.
This leaching-runoff fraction (3) is higher than in the first approach due to the higher
boundaries, as shown in Table 1.2. While under reasonable N-application rates, the
results of both approaches can yield similar results, they deviate at excessive rates.
when the soil reaches saturation, the surplus in nitrogen increases which leads to
greater nitrogen leaching in the second approach.

Table 1.1 presents an overview of the four Tier 1 methods, arranged from least
to most preferable and from least to most data demanding. Methods 1 and 2
are simpler to execute, whereas methods 3 and 4 offer greater accuracy although
with increased complexity. The nitrogen surplus methods are favoured due to
the significant variability in crop offtake across different crop types (Franke et al.,
2013).

Tab. 1.1: Overview of the Tier 1 methods for estimating the nitrogen leaching-runoff
fraction

Method

1. | Assumed or average leaching-runoff fraction («) times nitrogen application
Assumed or average leaching-runoff fraction (3) times nitrogen surplus

3. | Estimated leaching-runoff fraction («) (calculated with leaching-runoff po-
tential) times nitrogen application

4. | Estimated leaching-runoff fraction (/) (calculated with leaching-runoff po-
tential) times nitrogen surplus

»
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1.1.1.1 Assumed leaching-runoff fraction

As shown in Table 1.1 the Tier 1 methods are divided into a simple (method 1 &
2) and somewhat more extensive methods (method 3 & 4). The simpler options
involve using an assumed or average leaching-runoff fraction, facilitating a quick
and straightforward analysis suitable for exploring large-scale patterns. However,
this approach lacks precision as it overlooks crucial local factors such as soil char-
acteristics, climatic conditions, and agricultural practices, which can significantly
influence the leaching-runoff fraction (Franke et al., 2013).

Despite their limitations, these methods are widely used in global studies or as an
initial assessment in water footprint. Studies such as those conducted by Gobin
et al. (2017), Mekonnen et al. (2014), and Yin et al. (2022) have used the average
leaching-runoff fraction («) of 10%. However, Mekonnen et al. (2015) used a higher
a value of 18%.

1.1.1.2 Estimated leaching-runoff fraction

The somewhat more extensive methods involve estimating the leaching-runoff frac-
tion based on several local variables with the help of the following two equations:
1.1 (for method 3) and 1.2 (for method 4).

The equation for « calculates the leaching-runoff fraction assuming a linear depen-
dency on each of the factors considered. Eventually, the grey water footprint can be
calculated with the « and the nitrogen application rate. The equation adjusts the
value of « within the specified range of i t0 qq, using a weighted average of
several factors:

Zi S - Wy

M} : (amax - Oémin) (1.1)

a:amin+|:

Where:

® (min and amax: Represent the minimum and maximum possible leaching-runoff
fractions for the application-based method, from Table 1.2.

* s;: The score assigned to each factor, ranging from O to 1, where O relates to a
very low leaching potential and 1 for the highest possible leaching potential.

* w;: The weight of each factor, from Figure 5.1 in the appendix.

. ZZ% Represents the weighted sum of the scores (s;) for each factor, divided
by the total weight (w;). This accounts for the relative contribution of each
factor based on its assigned weight.

1.1 Three-tier approach in Water Footprint Assessment



By adding this weighted term to ami,, the equation ensures that the resulting «
lies within the specified range and accounts for the cumulative influence of all
contributing factors.

Similarly, the equation for 5 (Equation 1.2) calculates the leaching-runoff fraction
based on the nitrogen surplus method, unlike Equation 1.1, § operates over a wider
range and calculates the grey water footprint using the nitrogen surplus rather than
the application rate. The nitrogen surplus accounts for the nitrogen applied minus
the nitrogen offtake, which is the amount of nitrogen absorbed by the crop and
harvested.

B = o + [ZZSMM] - (Bmas — Binin) (1.2)

Where:

* Bmin and Smax: Represent the minimum and maximum possible leaching-runoff
fractions for the surplus-based method.

* The other parameters (s;, w;, and the weighted average) are defined similarly
to those in Equation 1.1.

According to Franke et al. (2013), these equations bound the resulting values within
minimum and maximum thresholds (Table 1.2), which they consider to represent
realistic leaching-runoff scenarios.

Tab. 1.2: minimum, average, and maximum values for leaching-runoff fractions for both
the application-based («) and surplus-based (3) method.

Application-method | Surplus-method
Minimum leaching-runoff fraction | au,, | 0.01 Bmin | 0.08
Average leaching-runoff fraction Qqvg | 0.1 Bavg | 0.44
Maximum leaching-runoff fraction | a;,q. | 0.25 Bmaz | 0.8

Both equations compute values (« and 3) that represent the leaching-runoff fraction
for nitrogen, both equations are based on specific local variables, such as:

* Atmospheric deposition: Nitrogen from the atmosphere deposits onto land
surfaces. This has a significant impact, as higher deposition rates mean a more
saturated retention capacity of the soil, increasing the likelihood of leaching.

* Soil texture: This refers to the composition of soil particles, which can vary
widely and impact the soil’s ability to retain water and nutrients. Soil with
larger particles, like sand, has larger pore spaces between particles, allowing

Chapter 1 Introduction



water to move more freely. However, this also means that water drains more
quickly through sandy soil, carrying nutrients like nitrogen with it.

* Natural drainage patterns: This refers to how water moves through the soil,
which can vary each field. Poorly drained soils may have low leaching rates
but are prone to runoff losses after heavy rain.

* Climate conditions: Particularly precipitation patterns can cause a sudden peak
in leaching, especially after a dry period. When the retention capacity of the
soil is exceeded, the nitrogen is transported quickly through the soil profile or
is lost through overland flow.

* Agricultural management practices, including the timing and method of nitro-
gen application, irrigation practices, and tillage methods, can greatly affect
nitrogen dynamics in soils. Excessive irrigation, for example, can increase
soil water content and facilitate leaching. Implementing best management
practices tailored to specific crops and local conditions is crucial for optimizing
nitrogen use efficiency.

While the estimation methods may be time-consuming, especially in global studies,
they offer a feasible and scalable solution for local assessments on various scales,
including national, provincial, or on farm level if the appropriate data is available,
as shown by Gil et al. (2017), and Muratoglu (2020).

1.1.2 Tier 2 and Tier 3

In contrast to the generalized assumptions or fixed leaching fractions used by Tier 1,
Tier 2 and Tier 3 methods rely on more detailed modeling approaches, incorporating
site-specific variables to improve accuracy. Tier 2 methods typically use models that
simulate agricultural and environmental processes based on available regional or
site-specific data, striking a balance between complexity and practicality. In contrast,
Tier 3 methods employ fully process-based modeling approaches combined with
extensive field studies and direct site-measurements, providing the most accurate
nitrogen leaching estimates but requiring substantial data inputs.

Several widely used models fall within these categories, differing in scope and com-
plexity. At the field scale, Tier 2 models such as DSSAT (Decision Support System for
Agrotechnology Transfer) simulate crop growth, soil interactions, and management
effects (Jones et al., 2003), while EPIC (Environmental Policy Integrated Climate)
integrates soil, weather, crop growth, and management practices to assess the envi-
ronmental and economic impacts of nitrogen use (Lychuk et al., 2021). At a larger
spatial scale, the SWAT (Soil and Water Assessment Tool) model evaluates nitrogen
transport across landscapes by incorporating land use, hydrology, and management
practices (Akhavan et al., 2010).

1.1 Three-tier approach in Water Footprint Assessment
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In contrast, Tier 3 models, which rely on fully process-based simulations and ex-
tensive field data, include HYDRUS-2D, which models water, nutrient, and solute
movement in unsaturated soils, making it particularly useful for studying leaching
dynamics (Simtinek et al., 2016). RZWQM(2) (Root Zone Water Quality Model) eval-
uates how different agricultural practices affect water and nitrogen movement within
the root zone (Hanson et al., 1998). APEX (Agricultural Policy/Environmental eXten-
der), while often applied at a watershed scale, incorporates detailed process-based
simulations, aligning it with Tier 3 methodologies (Chukalla et al., 2018).

While these models vary in complexity and scale, they provide valuable insights for
refining Tier 1 nitrogen leaching estimates. Additionally, this study incorporates
field experiments, which are considered part of Tier 3, as they provide direct mea-
surements of nitrogen leaching under different conditions. However, the distinction
between Tier 2 and Tier 3 models is not essential for this research, as both are used
to evaluate and improve the Tier 1 approach.

1.2 Problem Statement

Nitrogen fertilizers play a critical role in supporting global food production by
promoting plant growth and improving agricultural productivity. However, the inef-
ficient and excessive application of nitrogen fertilizers leads to significant nitrogen
leaching, particularly in coarse-textured soils or under excessive precipitation and
irrigation conditions. This leaching not only represents an economic loss for farmers
but also poses severe environmental and public health risks (Hina, 2024; Dybowski
et al., 2020).

While detailed field experiments can accurately measure nitrogen leaching, they are
often costly, time-consuming, and challenging to scale due to variations in climate,
soil properties, and management practices. As a result, water footprint assessments
rely on estimation methods that balance accuracy, feasibility, and scalability. The
Tier 1 approach, which uses assumed or estimated leaching-runoff fractions, is
widely adopted for its simplicity and lower data requirements. However, it lacks the
precision of the more advanced Tier 2 approach, which incorporates site-specific
variables and environmental models to improve accuracy.

This creates a gap: the Tier 1 method is practical and accessible but imprecise,
while the Tier 2 method is more accurate but complex and data-intensive. The
inability of Tier 1 to reliably estimate nitrogen leaching undermines its utility for
sustainable nitrogen management and water footprint assessments. Narrowing this

Chapter 1 Introduction



gap is essential to provide farmers, policymakers, and researchers with a tool that
balances usability, accuracy, and scalability.

Conducting a Tier 1 study involves significant manual effort, as researchers must
identify, extract, and process data from various sources. This approach is time-
consuming and prone to errors, particularly when dealing with the large datasets
required for accurate nitrogen leaching-runoff calculations. Furthermore, finding
relevant, location-specific data for each study can be a complex and inefficient task
when done manually.

Automating this process with a Python script improves efficiency, consistency, and
scalability. By integrating predefined links to global datasets, automation allows
for the quick retrieval of necessary environmental variables, reducing the time and
effort required to locate and process data. Additionally, by minimizing human input
errors, automation ensures that nitrogen leaching estimates are more reliable and
reproducible. These improvements are essential for making Tier 1 studies more
practical and scalable across different locations and agricultural systems.

To analyze and refine the Tier 1 method, this study focuses on maize, the most
widely produced cereal crop globally, playing a crucial role in global food security
and livestock feed production (FAOSTAT, 2025). It has become one of the most
nitrogen-intensive crops (Adalibieke et al., 2023; Heffer et al., 2016). This makes
maize a particularly relevant crop for studying nitrogen leaching dynamics.

The first step in addressing this problem is to evaluate the accuracy of the Tier 1
method and identify potential refinements that could improve its performance. This
study systematically optimizes key parameters, including «,,., which sets the upper
limit of the leaching fraction, and the weight of the N-application rate, which is a
key contributor to nitrogen leaching and has significantly higher data availability
to other factors. By doing so, it investigates whether Tier 1 can achieve accuracy
levels closer to Tier 2 while maintaining its simplicity. If successful, it could enable
better nitrogen management practices, reduce environmental impacts, and support
sustainable agriculture on local and global scales.

1.2 Problem Statement



1.3 Research objective

The objective of this thesis is to evaluate and refine the current Tier 1 nitrogen
leaching-runoff approach to better match the results from the more detailed Tier
2 and 3 approaches while retaining the key advantages of the Tier 1 approach.
These advantages include its lower data requirements, which reduce complexity, and
its ease of use, making it accessible and practical for broader regional and global
applications.

1.4 Research questions
In order to fulfil the research objective, three research questions were formulated.

1. How does the performance of the Tier 1 estimation method compare to Tier 2
and 3 in estimating the nitrogen leaching fraction?

2. Which factors in the Tier 1 estimation method are most significant in determin-
ing the leaching-runoff potential?

3. How can the Tier 1 nitrogen leaching estimation method be optimized to better
align its results with Tier 2 and 3 studies?

10 Chapter 1 Introduction



Methodology

Refining the current Tier 1 estimation method requires a structured research ap-
proach, as illustrated in the flowchart in Figure 2.1. The process begins with the
automation of the Tier 1 estimation method through the development of a Python
script that streamlines the calculations, reducing manual effort and integrating
global datasets. Next, a literature review is conducted to evaluate the performance
of the Tier 1 method compared to Tier 2 and field studies, identifying deviations and
potential refinements. A sensitivity analysis follows to determine the most influential
factors within the Tier 1 method. Subsequently, a parameter optimization process is
carried out using a subset of the literature review data. Finally, the optimized model
is validated against the remaining dataset to ensure its performance remains reliable
beyond the calibration dataset.

METHODOLOGY
Validation
Optimization
Sensitivity Tier 1

Literature review analysis Tier 1

Automating Tier2&3

Tier 1

Fig. 2.1: Research methodology flowchart
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2.1 Tier 1 python program

This section outlines the systematic approach used for automating the Tier 1 estima-
tion method. A Python script was developed to identify, extract, and process data
from multiple global datasets, reducing the need for manual effort. The script inte-
grates predefined links to these datasets, enabling the retrieval of location-specific
information based on geographic coordinates or other inputs. By automating this
workflow, the script ensures a more efficient and consistent approach to the Tier 1
method.

The Tier 1 estimation methods is based on Equation 1.1 and Equation 1.2, which cal-
culate the nitrogen leaching-runoff fraction by incorporating multiple environmental
and agricultural factors, such as:

* Atmospheric nitrogen deposition
* Soil texture

* Soil drainage class

* Precipitation

* Nitrogen fixation

* Nitrogen application rate

* Plant uptake

* Management practice

To start of the process appropriate worldwide datasets are identified for all the
factors. To gather relevant datasets, an extensive review of online databases and
environmental portals, such as the Food and Agriculture Organization (FAO), NASA,
and the World Bank, was conducted. Evaluation criteria were established to ensure
the selected datasets were suitable for use. These criteria included the use of
a compatible unit commonly used in other nitrogen leaching studies, which is
kgN/ha/year for the nitrogen application rate. Both temporal and spatial resolution
were considered, ensuring that factors such as nitrogen deposition and precipitation
were available at appropriate intervals and spatial scales, making them suitable
for broad regional studies. However, the selection of datasets was constrained by
both data availability and computational efficiency. While higher-resolution datasets
exist for some variables, they often come with significantly longer processing times,
making them impractical for large-scale applications. Lastly, it was essential that the
data was formatted in a file type compatible with python. The datasets selected for
the script are listed in Table 2.1. However, the datasets for soil type and drainage
class were not suitable for automation, and no dataset was available for management
practices. As a result, three out of the eight factors could not be automated and
require manual input, which will be explained later. Once the relevant datasets
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were identified, the next phase involved developing and testing the Python script to
retrieve and process this data.

Tab. 2.1: Overview of factors, their corresponding spatial and temporal resolution, unit,
and data sources.

Factor Spatial res. Temporal res. | Unit Source
N-deposition 56 x 56 km Annual KgN/ha | (ISIMIP, 2024)
Soil type 1x1km - -

Drainage class 1x1km - - (HWSD, 2024)
Precipitation 278 x 278 km | Monthly Mm (GPCP, 2024)
N-fixation Country Annual KgN/ha

Plant uptake Country Annual KgN/ha (FAOSTAT, 2024b)
Application rate Country Annual KgN/ha | (Ludemann et al.,

2022)
Management practices | Country - - -

To begin using the script for a specific case study, a set of essential inputs is required
to ensure that the calculations for the nitrogen leaching-runoff fractions are accurate,
an example is shown in Table 2.2. One of the primary inputs needed is the country
name and the crop type, which are used to retrieve N-fixation, plant uptake data
and the appropriate nitrogen application rate from their dataset. The information
for each factor is sourced from a CSV file that contains country and crop-specific
application rates for several years, enabling the script to match the provided input
with the correct values for use in the calculation. In some cases, deviations arise
between country names used in the different datasets due to variations in naming
or differences in regional definitions. This is particularly relevant when aligning
application rate data with N-fixation or plant uptake datasets. For example, some
dataset may use "China" while the others specify "China, mainland" or one may use
"Turkey" while the other uses "Tiirkiye". When this occurs, the script allows for an
alternative country name (country2) to be used for the N-fixation and plant uptake
datasets, ensuring consistency and accurate data matching.

Tab. 2.2: Example of input variables for the automation script.

Input variables Manual input values | Used for which dataset

Country China App. rate

Country2 China, mainland N-fix. and plant uptake

Crop Maize App. rate, N-fix. and plant uptake
Longitude 38.9333 N-dep. and precipitation

Latitude 115.5333 N-dep. and precipitation
Management practices | Worst -

Soil type 7 -

Drainage class P -

For other environmental factors, geographical coordinates (longitude and latitude)
must be provided to pinpoint the location for which the leaching-runoff fraction
is being calculated. These coordinates are crucial for extracting location-specific

2.1 Tier 1 python program
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data such as N-deposition and precipitation from the respective datasets. The N-
deposition data is sourced from a NetCDF (.nc4) file, which the script can directly
access once the coordinates are provided. Similarly, precipitation data is obtained
from a .nc file.

The soil type and drainage class were not automated yet and still require manual
input due to the absence of a suitable dataset for the drainage classes. While
automating soil type seperately might have been possible, the viewer displays both
soil type and drainage class together. Therefore, searching for a better soil type
dataset was unnecessary, as the drainage class remained the limiting factor. These
factors can be identified using the HWSD2 viewer, which is a global soil database
that provides detailed information on soil characteristics. To obtain this data, the
user has to pinpoint at the same coordinates as previously used for other factors
in the HWSD2 viewer, and manually search for the corresponding soil type and
drainage class, and then transfer this information into the script. The identified soil
type is selected from a list of 13 possible categories, ranging from heavy clay to sand,
each of which plays a critical role in influencing the nitrogen leaching potential
of the soil. The drainage class, similarly, has seven possible categories, from "Very
poorly drained" (VP) to "Excessively drained" (E), which also significantly affects the
potential for nitrogen runoff. The soil texture and drainage class inputs are shown
in Table 5.1 in the appendix.

The script also requires input regarding management practices. In the original
methodology, this involved a detailed yes/no questionnaire, which was often too
specific for broader studies that cover larger regions. To simplify this process,
the script allows users to input a general assessment of management practices as
"best," "good," "average," or "worst." This simplification makes it easier to estimate
management efficiency.
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2.2 Tier 2 and 3 analysis

To address the first research question, “How does the performance of the Tier 1
estimation method compare to Tier 2 and 3 in estimating the nitrogen leaching
fraction?”, an extensive literature review was conducted, that focuses on Tier 2 and
Tier 3 (field) studies. An initial search, with the following description: ("leaching
rate" OR "leaching loss" OR "leaching fraction" OR "leaching ratio") + "maize" yielded
110 research papers, from which 25 studies were selected that reported nitrogen
leaching results for one or a few cases.

For a study to be deemed appropriate for this analysis, it needed to specify essential
variables: the location of the research site, the nitrogen application rate, and the
nitrogen loss in kilograms per hectare (kg/ha). These criteria ensured that the data
was both relevant and comparable across studies. Among the selected papers, 11
out of those 25 were Tier 2/3 studies, and 14 were field experiments. Figure 2.2
highlights the geographical distribution of studies from the literature review.

Study Locations on an Equal Earth Projection

@ Field study
@ Tier 2 study

Fig. 2.2: Geographic distribution of study locations identified from the literature review,
representing field experiments and Tier 2/3 studies across multiple countries.

The more specific characteristics, such as the soil texture and number of observations
of each study are shown in Table 2.3. Most studies are a multi-year investigation
between two and five years providing insights into temporal variability and soil
behaviour. Additionally, many studies test different methods in applying fertilizer or
management practices such as irrigation techniques, crop covering, and reducing
tillage. All studies are based on maize or a rotation between maize and soybeans.

Once relevant Tier 2 and field studies are identified, the next step is to apply the
Tier 1 estimation method to the same case studies from the literature review. This

2.2 Tier 2 and 3 analysis
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Tab. 2.3: Summary of study locations obtained from the literature review, including country,

study/model type, soil texture, number of observations (Obs.), and references for

each study.
Country | Region Type Soil texture | Obs. | Reference
USA Illnois APSIM Silty loam 6 (Pasley et al., 2021)
USA Arlington IBIS Silty loam 3 (Kucharik et al., 2003)
China Xianyang RZWQM2 | Silty loam 5 (Xu, Cai, et al., 2020)
China Tianjin WHCNS Silt 8 (Liang et al., 2020)
China Qiaodi RZWQM2 | Silty loam 5 (Xu, Wang, et al., 2020)
China Bayannaoer | APSIM Sandy loam | 3 (Ren et al., 2024)
China Yuzhou RZWQM?2 | Sandyloam | 1 (Ding et al., 2020)
Italy Po Valley SWAP Loamy clay | 5 (Perego et al., 2012)
China Changping | DNDC Silty loam | 3 (Y. Zhang et al., 2015)
Spain Badajoz APEX Loam 7 (Chukalla et al., 2018)
South- Nxuba EPIC Sandy clay | 10 (Choruma et al., 2021)
Africa loam
China Tongxin Field Loam 6 (Guo et al., 2023)
China Qiyang Field Sandy loam | 3 (Huang et al., 2017)
USA New York Field Silty loam | 17 (Sogbedji et al., 2000)
China Ya’an Field Sandy clay | 8 (Yao et al., 2021)

loam

China Xushui Field Sandy loam | 4 (Du et al., 2019)
USA Corvallis Field Sandy loam | 4 (Weitzman et al., 2022)
China Yutian Field Clay 8 (Fan et al., 2017)
China Tianjin Field Clay loam | 5 (J. Zhang, He, et al., 2020)
Iran Tehran Field Sandy loam | 24 (Gholamhoseini et al., 2013)
China Yixing Field Loamy clay | 6 (Qiao et al., 2022)
China Qingpu Field Silty loam | 12 (J. Zhang, Sha, et al., 2015)
China Pengyang Field Sandy loam | 20 (Liu et al., 2023)
Iran Tehran Field Sandy loam | 6 (Gholamhoseini et al., 2013)
Denmark | - Field Sand 6 (Simmelsgaard, 2007)

step involved gathering the necessary input data for the Tier 1 calculation, using the

same geographic regions and conditions as the Tier 2 studies. In cases where the Tier

1 method is already included in the Tier 2 study, the existing data will be utilized

for direct comparison. If not, the Tier 1 method will be independently applied using

global datasets to replicate the conditions as accurately as possible. This can possibly

lead to minor deviations in the results due to the use of different datasets compared

to those used in the Tier 2 study, which are often more detailed and specific to the

area of interest.
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2.3 ldentifying key factors in Tier 1

To address the second research question, “Which factors in the Tier 1 estimation
method are most significant in determining the leaching-runoff potential?”, a case
study was selected, and a sensitivity study was conducted. The objective was
to evaluate the significance of each individual factor and their influence on the
leaching-runoff fraction, and see if modifications to the equation would narrow the
gap between Tier 2 and 1. The case study was conducted in South-Africa, based
on the work of Choruma et al. (2021), because it was well-documented and used
a broad range of N-application rates. The Tier 1 method was configured using the
same nitrogen application rate and other relevant local input values used in the Tier
2 study. While this specific case study was used, it is expected that another case
studies would yield comparable ranges for each factor. The focus of the sensitivity
analysis is on the significance of the individual factors themselves, rather than the
unique attributes of the selected case study.

To determine the influence of each factor, a sensitivity analysis was conducted, by
manually modifying one factor at a time while keeping the others constant. This
approach enabled the isolation of individual effects and facilitated the identification
of the most impactful factors. For example in the original Tier 1 calculation for
this case study the N-deposition is very low and assigned a value of 0. To test the
equation the N-deposition is set at very high with a value of 1. The resulting changes
in the leaching fraction were then compared and plotted to the Tier 2 study. This
process was repeated for all factors to evaluate their relative impact on the Tier 1
method. While the primary objective of the sensitivity analysis was to examine how
changes in individual factors affect the Tier 1 leaching estimates. The comparison
with Tier 2 aimed to assess whether Tier 1 consistently underestimates leaching or if
certain conditions allow it to produce similar estimates.

After the analysis of all the factors, the focus shifted to improving the accuracy
of the equation with the help of two modifications: adjustment of the weight of
the application rate, and increasing the a,q,, which limits the predicted value of
the Tier 1 method. The outcomes of the modified scenarios were compared to the
results of the original Tier 1 calculations and the Tier 2 study, which served as the
benchmark for the accuracy.

2.3 |dentifying key factors in Tier 1
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2.4 Tier 1 optimization

In the previous chapter only a single parameter in the equation was modified at the
time, but this is ultimately insufficient to narrow the gap between the Tier 1 and
Tier 2 approaches. To address this, an optimization process involving a combination
of the previously explained modification was implemented. A Python script was
developed specifically for this purpose. From the original literature review dataset,
15 studies were randomly selected for optimization, while the remaining studies
were used for validation. Some control was applied in the selection process to ensure
that both Tier 2 and field studies were represented in both the optimization and
validation sets. These studies are listed in Table 2.4.

Tab. 2.4: Randomly picked studies from the literature review used for optimization.

Optimization studies
Country | Region Type Soil texture | Obs. | Reference
China Tianjin WHCNS Silt 8 (Liang et al., 2020)
Italy Po Valley | SWAP Loamy clay | 5 (Perego et al., 2012)
China Qiaodi RZWQM2 | Silty loam 5 (Xu, Wang, et al., 2020)
South- Nxuba EPIC Sandy clay | 10 (Choruma et al., 2021)
Africa loam
USA Arlington | IBIS Silty loam 3 (Kucharik et al., 2003)
USA Illinois APSIM Silty loam 6 (Pasley et al., 2021)
China Yixing Field Loamy clay | 6 (Qiao et al., 2022)
China Pengyang | Field Sandy loam | 20 (Liu et al., 2023)
China Tianjin Field Clay loam | 5 (J. Zhang, He, et al., 2020)
USA Corvallis | Field Sandy loam | 4 (Weitzman et al., 2022)
USA New York | Field Silty loam | 17 (Sogbedji et al., 2000)
China Qingpu Field Silty loam | 12 (J. Zhang, Sha, et al., 2015)
China Tongxin Field Loam 6 (Guo et al., 2023)
China Yutian Field Clay 8 (Fan et al., 2017)
Iran Tehran Field Sandy loam | 24 (Gholamhoseini et al., 2013)

The optimization process focuses on two key parameters in the equation: c;,q, and
the weight for the application rate. «,,q, serves as the backbone of the equation,
significantly impacting the overall results, a higher «,,,, increases the calculated
values substantially. The application rate is equally crucial, based on the literature
study that was conducted, where field and model studies show a significant rise in
leaching fraction when the application rate increases. So to make the application rate
more influential in the equation, the weights will be alternated. When the weight of
the application rate increases, another weight has to decrease. This decision is based
on the results of section 3.3 which highlights the factors that are less influential in
the equation. To make the optimization process easier, upfront ten weight sets are
made with different weights for the application rate, increasing with steps of 5%,
from the original 10% up to 55%. The maximum of 55% was used to ensure each of
the other factor contributes at least 5%, preventing any factor from being entirely
neglected. In the original Tier 1 method, the minimum weight was also 5%, but no
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clear justification was given for this choice or for the allocation of the other weights.
The weight sets are shown in the appendix in Table 5.2.

To perform the optimization, the script uses the scipy.optimize.minimize library. A
total of nine optimizations were conducted, each corresponding to a different weight
set, treated as a discrete variable. In each case, oy, was optimized as a continuous
variable, adjusting accordingly and taking any value within the range of 0.25 to 1.

To determine the best o, and weight set, the RMSE (Root Mean Square Error)
and MAE (Mean Absolute Error) were used. These are widely recognized metrics
for evaluating model accuracy, each with distinct advantages. RMSE gives more
importance to larger errors by squaring them, making it useful when larger errors
need to be minimized. MAE, on the other hand, takes the average of all errors
equally, providing a clearer measure of overall accuracy (Chugh, 2024; Chai et al.,
2014). Both were used in this study to ensure the optimization improved general
accuracy (MAE) while also reducing large deviations (RMSE). To determine the best
amaz and weight set, the optimization aimed to minimize the sum of RMSE and
MAE.

To evaluate the optimized model, the remaining studies from the literature review
were used as the validation dataset, as listed in Table 2.5. For the validation, the op-
timized parameters for «,,, and the weights were applied. The performance of the
optimized model was measured using the same metrics as in the optimization phase,
including RMSE and MAE. These results were then compared to the performance of
the original method to determine the improvements achieved.

Tab. 2.5: Randomly picked studies from the literature review used for validation.

Validation studies
Country | Region Type Soil texture | Obs. | Reference
China Xianyang RZWQM2 | Silty loam | 5 (Xu, Cai, et al., 2020)
China Bayannaoer | APSIM Sandy loam | 3 (Ren et al., 2024)
China Yuzhou RZWQM2 | Sandyloam | 1 (Ding et al., 2020)
China Changping | DNDC Silty loam | 3 (Y. Zhang et al., 2015)
Spain Badajoz APEX Loam 7 (Chukalla et al., 2018)
China Qiyang Field Sandy loam | 3 (Huang et al., 2017)
China Ya’an Field Sandy clay | 8 (Yao et al., 2021)

loam

China Xushui Field Sandy loam | 4 (Du et al., 2019)
Iran Tehran Field Sandy loam | 6 (Gholamhoseini et al., 2013)
Denmark | - Field Sand 6 (Simmelsgaard, 2007)

2.4 Tier 1 optimization
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Results

3.1 Tier 1 python program

The Python script was validated against several published Tier 1 studies to evaluate
its performance in estimating nitrogen losses using global datasets. The results, sum-
marized in Table 3.1, provide a comparison of the o and 3 values derived from the
Python script and the values reported in the respective studies. These comparisons
reveal valuable insights into the script’s accuracy and the factors contributing to any
deviations.

Tab. 3.1: Results of Tier 1 case studies comparing published values with outputs generated
by the automated Python program, demonstrating its performance across different

locations.
Case study Location Study results | Python script results
o B o B
(Muratoglu, 2020) Turkey 0,124 | 0,345 | 0,112 | 0,362
(Brueck et al., 2016) Germany | - 0,471 | 0,094 | 0,331
(Gil et al., 2017) Colombia | 0,14 | - 0,128 | 0,386
(Rodriguez et al., 2024) | Argentina | 0,128 | 0,42 | 0,136 | 0,446

In the case of Turkey (Muratoglu, 2020), the Python script produced an « value
slightly lower than the study’s result (0.112 vs. 0.124). This difference may stem
from the assumptions used in the study, which adopted very conservative estimates
for nitrogen fixation, application rates, and plant uptake. A key factor contributing to
this deviation is the nitrogen application rate. The study capped nitrogen application
at a maximum of 60 kgN/ha, while the mean N-application rate for maize in Turkey
from the global dataset is 170 kgN/ha. This higher application rate increased the «
by 0.08, explaining most of the observed difference. By contrast, the global dataset
used in the Python script may incorporate less restrictive assumptions about nitrogen
inputs, resulting in a smaller «. The /3 value from the script (0.362) closely matched
the study’s result (0.345). This close alignment reflects that 3, being more dependent
on environmental factors like precipitation and soil texture, exhibits less variability
due to assumptions about application rates and plant uptake.

The results for Germany (Brueck et al., 2016) showed a more significant deviation
in the g value, with the Python script estimating a lower value (0.331) compared to
the study’s reported mean (0.471). Upon further investigation, this difference can



largely be attributed to an incorrect calculation of soil texture and drainage class in
the study. In the original method, soil texture influences both leaching (15%) and
runoff (10%), meaning that for a loam soil, leaching is assigned a value of 0.67 and
runoff 0.33. However, in the study, the leaching value (0.67) was mistakenly applied
to both leaching and runoff, inflating the overall leaching fraction and leading to a
B value approximately 0.08 higher than expected. Second, the study assumed an
N-deposition value of 1, whereas the global dataset used 0, which further increased
B by 0.04. The study did not provide a specific source for this assumption but
referenced general findings that nitrogen deposition is currently higher than in
pre-industrial times. These factors combined suggest that the overestimated 3 in the
study primarily stems from miscalculations in soil texture effects and an assumed
higher nitrogen deposition.

For Colombia (Gil et al., 2017), the Python script estimated an « value of 0.128,
slightly lower than the study’s result of 0.14. Although « showed relatively good
alignment, the study did not provide a  value, limiting further comparison. The
close match between the two « values suggests that the estimate based on global
dataset factors closely matches the estimate derived from locally determined values.
However, this does not confirm the accuracy of the leaching estimate, it only confirms
that the script’s assumptions produce similar results to the study’s calculations.

The comparison for Argentina (Rodriguez et al., 2024) demonstrated similar results
as the other studies. The « values were quite similar (0.136 vs. 0.128), indicating
that the global dataset used in the script aligns well with the local conditions for
non-leaching nitrogen losses in this region. However, the 5 value estimated by the
Python script was slightly higher than the study’s result (0.446 vs. 0.42). This small
overestimation may arise from the generalized assumptions in the script regarding
precipitation, which could lead to a slightly elevated nitrogen leaching potential
compared to the locally derived study values.

3.1 Tier 1 python program
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3.2 Tier 2 and 3 analysis

In this section, the results of the literature review are analysed to identify the key
distinctions between Tier 2 and field studies compared to the Tier 1 method. By
examining these differences, patterns can be uncovered that can help to improve the
Tier 1 method.

The results of the literature review are illustrated in Figure 3.1, which represents the
relationship between the N-leaching fraction and the N-application rate. This figure
combines data points from Tier 1, Tier 2, and field studies, with separate regression
lines fitted for each dataset to represent the mean of each study type.

Application Rate vs. Leaching Fraction

0.8
—— Mean Tier 2 studies
071 ¢ . —— Mean Field studies
Mean Tier 1 studies
0.6

o
&)

Leaching Fraction
o
S

0.3
0.2
° l!.
({ ] [ % P (] > | :
0.1 . -
°® o ° l
0% 5 o B0
0.0 T — : : . . ;
0 100 200 300 400 500 600 700

Application Rate [kgN/hal

Fig. 3.1: Relationship between application rate and leaching fraction, showing the trends
for Tier 1 studies, Tier 2 studies, and field studies, with all observations as colored
points and the mean represented by colored lines.

The red line represents the mean trend of Tier 2 studies, which are advanced models
like APEX, SWAP, RZWQM2, and DNDC. It starts at 0.19 for low application rates
and rises steadily to 0.41 at the highest application rates. The upwards slope of
this line indicates a positive relationship between N-application rate and N-leaching
fraction, suggesting that as nitrogen application rates increase, Tier 2 studies predict
a significant rise in nitrogen leaching.

The green line represents the mean trend observed in field studies, derived from
real-world experiments under natural field conditions. However, the slope of the line
does not show any correlation between the application rate and the leaching fraction.
This could be attributed to the limited number of data points in the literature review,
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making it vulnerable to the influence of outliers. To address this, Figure 3.2 presents
the same data categorized into bins based on the N-application rates: in steps of 50
kgN/ha up to 300 kgN/ha, followed by steps of 100 kgN/ha thereafter.
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Fig. 3.2: Leaching fraction in bins to show study variability.

In the binned analysis in Figure 3.2 the green line initially starts high at 0.35 for
application rates between 0 and 50 kgN/ha. This is due to the findings of Sogbedji
et al. (2000), which indicate that in this field study at low N-application rates,
high residual nitrogen in the soil and the presence of sandy soil contribute to an
increased leaching fraction. From 50 to 450 kgN/ha there is a gradual increase in
the N-leaching fraction from 0.18 to 0.28, except for a notable dip in the range of
200 to 250 kgN/ha. This can be attributed to findings from (Fan et al., 2017), where
nitrogen losses were reported for different fertilizer types at a fixed application rate
of 225 kgN/ha. Compared to other field studies the reported losses were remarkably
low, ranging from 0.001 to 0.05 for maize. This was likely due to the clayey soil
texture, which inherently prevents high leaching losses. Overall, the field studies
reveal an increasing trend in nitrogen leaching fraction with higher application rates,
though the slope is somewhat less steep than the Tier 2 line.

The orange line in Figure 3.1 & Figure 3.2 represents the Tier 1 method conducted in
the same locations as the Tier 2 and field studies, but unlike them, the Tier 1 line has
a much flatter slope, indicating only a slight increase in leaching fraction from 0.1 to
0.13 at higher application rates. This suggests that Tier 1 studies may consistently
underestimate nitrogen leaching compared to both field and Tier 2 studies, especially
at higher nitrogen application rates.

3.2 Tier 2 and 3 analysis
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The scatterplot in Figure 3.3 shows all Tier 2 and field study data points on the
x-axis plotted against their corresponding Tier 1 values on the y-axis. This figure
highlights the greater variability observed in Tier 2 and field studies compared the
Tier 1 method. Unlike Figure 3.1, which focuses on the mean values, this scatterplot
shows the lack of alignment in a clearer way.
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Fig. 3.3: Comparison of Tier 1 and Tier 2 leaching fractions from the literature review, with
the 1:1 line indicating perfect agreement between the two tiers.

The leaching fractions for the Tier 1 method studies are tightly clustered and con-
centrated between 0.1 and 0.15, constrained by the boundaries (0.07 - 0.19) of the
equation, this narrow range indicates a relatively consistent but low leaching rate
across these data points and shows low variability in the method. This clustering
suggests that the Tier 1 methodology, even across different studies, produces similar
leaching fraction estimates, which may indicate potential methodological limitations
that do not fully capture variations in nitrogen leaching across different conditions.

In contrast, the Tier 2 and field study data points show a much wider spread, ranging
from O up to 0.5. This suggests that Tier 2 studies capture more variability and, on
average, report higher leaching fractions. Tier 2 methods, possibly due to greater
sensitivity or model complexity, are observed to be more responsive to environmental
factors that impact nitrogen leaching.
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The significant differences between Tier 1 and the other study types suggest that
relying solely on Tier 1 could lead to an underestimation of nitrogen leaching,
potentially resulting in recommendations for nitrogen applications that exceed what
the environment can safely tolerate.

3.3 ldentifying key factors in Tier 1

This section presents the results of the evaluation of the Tier 1 method. To assess
the method, a sensitivity analysis of the Tier 1 method is conducted. This isolate
the influence of individual factors on the leaching fraction, identifying the most
significant contributors to variability within the Tier 1 method. This analysis not
only highlights the method’s strengths and limitations but also pinpoints areas where
adjustments could improve its alignment with the Tier 2 method.

The results of the sensitivity analysis from the case study by Choruma et al. (2021)
are shown in Figure 3.4. The blue line in the figure represents the original leaching
fraction value of 0.129, calculated using the Tier 1 method, and serving as the
baseline for the analysis. The red lines indicate the boundaries of the Tier 1 method:
the minimum leaching fraction of 0.07 and the maximum of 0.19. For comparison,
the Tier 2 study in the case study, based on a N-application rate of 250 kgN/ha,
reported a leaching fraction of 0.33.

Boundaries Tier 1 study South-Africa (Choruma, 2021)

0.35
c—o—— 66— o o6 o6 o 5
0.30 1 —e— Original Tier 2 study results
---- Tier 1 lower boundary: 0.07
0.25 ---- Tier 1 upper boundary: 0.19
c —eo— Tier 1 results
2 ¢ Tier 1 factor variation
® 020
=
£
< 0.151
@©
(0]
|
0.10 1
0.05 1
0.00 T ‘\. T T T T T
V\@QQ' 0 5\(\3‘3‘a \na’i\o(\ W 0 @* 09""\&' Q&
,( . M (\‘
Q o eC\Q N\ Q\a(\‘ W

Tier 1 factors

Fig. 3.4: Tier 1 method range bar per factor, shown alongside Tier 1 boundary and original
Tier 2 study results.
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Each factor is represented with a range bar in the figure, showing the variability in
leaching fraction when that specific factor is varied between 0 and 1. A wider range
bar indicates a greater influence of the factor on the leaching fraction.

The results of Figure 3.4 are quantified in Table 3.2, which highlights the range of
each factor in the Tier 1 method. Among these factors, precipitation is identified as
the most influential, in this case study the annual precipitation is below 600 mm,
so a score of 0 is given, but would this have been a location where it rains more
than 1800 mm annually the leaching fraction would be increased by 0.036. The
significant impact is attributed to the 15% weight assigned to precipitation in the
Tier 1 method, although it is not the highest weighted factor.

The highest weights are assigned to soil texture (25%) and drainage classes (20%).
However, their influence is considerably lower than that of precipitation, with a
range of only 0.012 each. This reduced impact arises from the factors being divided
between promoting leaching and runoff. For instance, sandy soils, which allow rapid
water infiltration, receive a high leaching score (1) but a low runoff score (0). This
balancing effect decreases their overall contribution to the leaching fraction, despite
their high weights.

Tab. 3.2: Ranges of influence of each Tier 1 factor on the N-leaching fraction.

Tier 1 factor Range
N-deposition 0.024
Soil texture 0.012
Drainage class 0.012
Precipitation 0.036
N-fixation 0.024
Application rate 0.024
Plant uptake 0.012
Management practices | 0.024

Other factors, including nitrogen deposition, nitrogen fixation, application rate, and
management practices, also contribute to the leaching fraction but are less impactful
compared to precipitation, with ranges at 0.024. This indicates that while these
factors contribute to nitrogen dynamics, their effects are more consistent and do not
result in the same level of variability seen with precipitation.

Of all the factors, the application rate is the most suitable factor for improving the
Tier 1 method. It is a key contributor to nitrogen leaching and has significantly
higher data availability to other factors. Unlike precipitation, soil texture, and
drainage class, which are static and region-specific values, the application rate is
dynamic and can vary significantly even within the same region. Furthermore,
factors such as nitrogen deposition, nitrogen fixation, and management practices
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are either influenced by external environmental conditions or too complex to isolate
for effective optimization. The application rate’s flexibility, impact, and practicality
make it the ideal choice for improving the Tier 1 method.

To address the underestimating of nitrogen leaching in the Tier 1 method, several

adjustments were tested, focusing on modifying specific factors within the equation.

The first adjustment was the weight assigned to the nitrogen application rate, which
was originally set at 10%, resulting in a leaching fraction of 0.129 for high application
rates in the study of Choruma et al. (2021). The aim was to determine whether
increasing this weight could improve the model’s prediction. As shown in Table 3.3,
even when the weight factor was increased to the maximum level of 55%, where all
the other factors are 5%, then leaching predicted by Tier 1 only increased from 0.129
to 0.194, which still fell far short compared to the Tier 2 predictions of 0.33. This
demonstrates that modifying the weight of the application rate alone is insufficient
to resolve the underestimation issue.

The leaching fraction at 100 kgN/ha does not follow a consistent increasing trend,
showing small fluctuations as the weight factor changes. This variation is caused by
the redistribution of the weight of the other factors. As the application rate weight
increases, the contributions from other factors decrease at different rates, leading
to minor deviations in the final leaching fraction. In this case study, some factors
have a value of 1, meaning they have a stronger influence when the weight of that
specific factor is downgraded. When factors with lower values are downgraded, they
contribute less to the overall calculation, which can cause the leaching fraction to
remain stable rather than increasing as expected.

Tab. 3.3: effect of varying weights of application rate on leaching fractions under normal
and high application rates.

Weight of application | Leaching fraction | Leaching fraction
rate (100 kgN/ha) (250 kgN/ha)
10% (normal) 0.113 0.129

20% 0.117 0.141

30% 0.113 0.161

40% 0.109 0.173

50% 0.102 0.182

55% 0.106 0.194

The fundamental issue appears to be the maximum leaching fraction (a,4.) applied
within the Tier 1 method, which is 0.25. This has a significant impact on the overall
equation because it creates a maximum boundary of 0.19, essentially limiting the
potential leaching that could be predicted at higher application rates. To address
this, the next test involved increasing ..., allowing the equation to better reflect
conditions of elevated nitrogen inputs. The results of this test for very high and low

3.3 lIdentifying key factors in Tier 1
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N-application rates are shown in Table 3.4. The adjustment of a,,,, showed the
most promise, producing results close to those of the Tier 2 method when an a4,
of more than 0.625 is used.

However, increasing the a,,,4, has the side effect of elevating the entire equation,
leading to an overestimation at lower application rates. Additionally, further reducing
amin is unlikely to resolve this issue, as it is already set at only 1%, meaning the
lower boundary is already near the lowest possible leaching levels. The optimal
solution would likely involve selecting an a;,,, value between 0.25 and 1, combined
with adjustments to the weight of the application rate, to achieve a balance that
accurately reflects leaching across the full range of conditions.

Tab. 3.4: Effect of varying «,,., values on leaching fractions under high and low N-
application rates.

Omaz Leaching fraction | Leaching fraction
(250 kgN/ha) (50 kgN/ha)
0.25 (normal) | 0.129 0.105
0.375 0.191 0.154
0.50 0.253 0.204
0.625 0.315 0.253
0.75 0.377 0.303
0.875 0.439 0.352
1 0.501 0.402
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3.4 Optimization

In this section the results of the optimization of «,,,, and the weight of the N-
application rate are reported. The objective of the optimization was to reach the
lowest sum of RMSE and MAE as possible. For each weight set a new optimization
was conducted that came with its own «;,,. This approach was necessary because
it allowed a4, to adjust with the changing weight, this led to a lower RMSE and
MAE, improving the overall model fit.

Table 3.5 presents the optimization results for all the predefined weight sets, sum-
marizing the key metrics. The table includes the optimal «,,, for each weight set,
the evaluation scores (Root Mean Square Error, RMSE, and Mean Absolute Error,
MAE).

Tab. 3.5: Optimization results for each weight set, including «;,,.. and evaluation scores.

Scores

RMSE | MAE | Sum
10% | 0.250 | 0.166 | 0.121 | 0.287
15% | 0.495 | 0.134 | 0.114 | 0.248
20% | 0.475 | 0.133 | 0.114 | 0.247
25% | 0.475 | 0.135 | 0.115 | 0.250
30% | 0.452 | 0.135 | 0.115 | 0.250
35% | 0.439 | 0.136 | 0.115 | 0.251
40% | 0.430 | 0.138 | 0.116 | 0.254
45% | 0.433 | 0.140 | 0.117 | 0.257
50% | 0.443 | 0.141 | 0.117 | 0.258
0. | 55% | 0.420 | 0.141 | 0.117 | 0.258

Weight set | aaz

N R I R B Il B R

The scores, RMSE and MAE, represent the model’s predictive accuracy, with lower
values indicating better performance. Weight set 3, which assigns 20% weight to the
N-application rate in combination with an optimized o, of 0.475, was selected as
the most optimal configuration because it achieved the lowest combined RMSE and
MAE. Specifically, it produced the lowest RMSE (0.133) and MAE (0.114) among all
tested weight sets. Compared to the original method, this optimization led to a 20%
reduction in RMSE (from 0.166 to 0.133), and the MAE also decreased by 6% (from
0.121 to 0.114).

In Table 3.6 two sets of boundary values are shown. The low, high, and range
columns represent the possible value range of the new Tier 1 method, defining
the theoretical limits within which the new method can operate. The minimum,
maximum, and range columns refer to the actual observed value range for the
specific cases considered in the optimization.

3.4 Optimization
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Tab. 3.6: Theoretical method boundaries and optimization case study boundary ranges for
each optimized weight set.

Weight set Theoretical method boundaries | Optimization results
Low High | Range Min. | Max. | Range
1. | 10% | 0.070 | 0.190 | 0.120 0.090 | 0.142 | 0.052
2. | 15% | 0.131 | 0.374 | 0.243 0.160 | 0.281 | 0.121
3. | 20% | 0.126 | 0.359 | 0.233 0.154 | 0.285 | 0.131
4. | 25% | 0.126 | 0.359 | 0.233 0.138 | 0.300 | 0.162
5. | 30% | 0.121 | 0.342 | 0.221 0.132 | 0.308 | 0.178
6. | 35% | 0.096 | 0.353 | 0.257 0.117 | 0.317 | 0.200
7. | 40% | 0.094 | 0.346 | 0.252 0.104 | 0.321 | 0.217
8. | 45% | 0.095 | 0.348 | 0.253 0.095 | 0.327 | 0.232
9. | 50% | 0.075 | 0.378 | 0.303 0.089 | 0.334 | 0.245
10. | 55% | 0.072 | 0.359 | 0.287 0.085 | 0.331 | 0.246

The optimization results demonstrate a significant expansion in the method’s bound-
aries, with the theoretical range nearly doubling from 0.120 to 0.233. This increase
is driven by a rise in the upper boundary from 0.190 to 0.359, while the lower
boundary also shifts upward from 0.070 to 0.126. When the Tier 1 method is applied
to Tier 2 case studies, the original values range from 0.090 to 0.142, but under the
optimized method, this range increases to 0.154 and 0.285. In comparison, the
original Tier 2 values span a much wider range, from 0.004 to 0.682, making direct
comparison challenging.

Optimization results: Application rate vs. leaching fraction
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Fig. 3.5: Optimization results showing the relationship between application rate (kgN/ha)
and leaching fraction, comparing mean values from Tier 2/field studies, optimiza-
tion Tier 1, and original Tier 1 values.
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Figure 3.5 compares the mean leaching fraction of the original Tier 1, Tier 2/field
studies and the optimized Tier 1. The optimized model with an «y,,, of 0.475 and
a weight of 20 % achieves a close alignment with the mean of the Tier 2 and field

studies. All data points of the optimization fall within the range of 0.154 and 0.285.

In contrast, the original method has narrower boundaries of 0.090 to 0.142.

The scatter plots in Figure 3.6 presents the relationship between the Tier 1 values
and the observed Tier 2 and field study values, where Figure 3.6a shows the original
method’s results and Figure 3.6b shows the optimized method’s results. This figure
provides a more nuanced view of the optimized Tier 1 method’s performance. The
optimized Tier 1 values generally cluster closer to the 1:1 line than the original
method, particularly in the range of 0.15 to 0.30. However, notable deviations
remain, especially for lower leaching fractions (0 to 0.15), where the optimized
method overestimates values. This indicates that the optimization process could not
fully capture the observed patterns.
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Fig. 3.6: Scatterplot comparison between original and optimized Tier 1 method

While the optimization significantly reduces RMSE and MAE, it is constrained by the
variability of the input data and the simplicity of the Tier 1 approach. Figure 3.5
reveals that while general trends are well captured, predicting individual data points
across diverse case studies remains a challenge as shown in the scatter plots in
Figure 3.6.

3.4 Optimization
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3.4.1 Validation

The validation results, presented in Figure 3.7, demonstrate similar outcome to the
optimization phase. The mean line of the optimized Tier 1 values initially starts
below Tier 2 and field study values but surpasses them at higher application rates.
However, it is important to note that this dataset lacks data points above 500 kgN/ha,
resulting in a shorter trend line compared to the optimization results.

Validation results: Application rate vs. leaching fraction
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Fig. 3.7: Validation results showing the relationship between application rate (kgN/ha) and
leaching fraction, comparing mean values from Tier 2/field studies, optimization
Tier 1, and original Tier 1 values.

Figure 3.8 presents the relationship between the optimized Tier 1 values and the
observed Tier 2 values in a scatterplot. Figure 3.8a presents the original method’s
results, which yielded an RMSE of 0.178 and an MAE of 0.127, while Figure 3.8b
displays the optimized method’s results, which improved to an RMSE of 0.135 and
an MAE of 0.098. As summarized in Table 3.7, the optimization led to a 20%
reduction in RMSE and a 6% improvement in MAE during the optimization phase,
while validation saw even greater improvements of 24% and 23%, respectively.

Tab. 3.7: Comparison of RMSE and MAE for the original and new methods in optimization
and validation.

Optimization Validation
RMSE | MAE | RMSE | MAE
Original method | 0.166 | 0.121 || 0.178 | 0.127
New method 0.133 | 0.114 || 0.135 | 0.098
Improvement (%) 20 6 24 23
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Despite these improvements, visual observations indicate a greater spread in the

validation phase, with a noticeable overestimation of leaching fractions in the

0.1-0.2 range. This range represents a significant portion of the dataset, but there is

a wide array and random variability in application rates. this complicates further

adjustments to the optimized method, as any modification risks negatively affecting

model performance in regions where it already aligns well. Similarly, reducing

amaee could lower predictions across all data points, potentially decreasing the

RMSE and MAE, but failing to specifically address the overestimation in this dataset.

This highlights the inherent trade-offs in the optimization process, where global

parameters affect the entire dataset, limiting the model’s ability to target specific

regions without introducing new errors elsewhere.

3.4 Optimization
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Discussion

4.1 Tier 1 Python script

While the python script produced results that aligned reasonably well with published
values in some cases, significant challenges and limitations emerged during its
application, which impacted the reliability and efficiency of the process. These
challenges highlight areas for improvement in the script and dataset choices.

The initial goal was to develop a fully automated Tier 1 method. However, this
proved to be unreachable due to several obstacles, still demanding manual inputs
into certain parts. A key limitation was the inability to automate the soil texture
and drainage class data. Currently, these values must be manually taken from the
HWSD 2.0 viewer. This manual process arises because the underlying data used by
the viewer is difficult to access in a format that allows for an integration with python,
and the data structure makes it challenging to retrieve the correct information solely
based on input coordinates.

Another significant challenge was the reliance on global datasets for N-application
rates, N-fixation and plant uptake. The dataset used provides values at a national
level rather than at a high spatial resolutions. This lack of spatial resolution proved
problematic, particularly in larger countries, where N-application rates can vary
widely across regions. While this limitation did not significantly affect the results of
this study, since the application rates from Tier 2 and field studies were used, future
research focused solely on deriving Tier 1 values for specific regions would greatly
benefit from datasets with finer spatial resolution to improve accuracy.

4.2 Literature review

One of the primary reasons the optimization process did not achieve ideal results is
the limited size and diversity of the literature review dataset. In the end, the dataset
lacked representation from a wider range of regions globally, which is essential for
capturing the variability in the environmental factors that influence nitrogen leaching.
The dataset was dominated by loam soils, which also meant that drainage class



was mostly moderately well-drained, limiting variability in this factor. Precipitation
levels were generally low, with few studies from higher-rainfall regions, making it
difficult to assess the impact of wetter conditions. Additionally, some data, such as
management practices, nitrogen fixation, and plant uptake, were reported at the
national level, reducing differentiation, especially in large countries with diverse
agricultural conditions, such as China. Plant uptake was also not crop-specific,
further limiting variability. These limitations will be explored in more detail in
section 4.4.

The challenges began during the literature review, primarily due to insufficient
attention to the variety of terminology used in nitrogen leaching studies. While
terms like: "leaching rate", "leaching loss", "leaching fraction" and "leaching ratio"
were included in the search, the variability in terminology may have resulted in the
exclusion of relevant studies. Many papers may not explicitly use these terms or may
focus on only one component without combining them. This lack of standardization
in the terminology complicated the process of identifying all relevant literature.
Expanding the scope to include additional synonyms such as "leachate," "leakage,"

nn

"leaching flux," "percolation," and "seepage," along with related concepts, could have

improved the literature review.

Additionally, focusing solely on maize further narrowed the pool of studies. While
maize is a common and widely studied crop, this restriction excluded research
on other crops that could have provided valuable insights into nitrogen leaching
under different conditions. Expanding the scope to include other major crops, such
as wheat, rice, and soybeans, could help determine whether the observed trends
in nitrogen leaching hold across different crop types. Similarly, beyond nitrogen
leaching, the applicability of the optimized method to other pollutants such as
phosphorus or other pesticides remains uncertain. Testing the optimized method
against these pollutants would help determine whether the optimized method
remains robust or if modifications are needed for other pollutants to account for
different contaminant behaviors.

Another challenge is that including Tier 2 model names, such as DSSAT, in the search
terms for the literature review does not effectively yield relevant studies on nitrogen
leaching. While this approach generates a large number of search results, most of
these studies use the models for broader agricultural or environmental analyses,
where nitrogen leaching is only a secondary outcome rather than the primary focus.
As a result, many of the retrieved papers lack the necessary details, such as nitrogen
application rates or direct leaching estimates, making them unsuitable for inclusion
in the dataset. This limits the usefulness of model-based keyword searches.

4.2 Literature review
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4.3 Linear model limitations

A fundamental limitation of the Tier 1 method is that it assumes a linear relationship
between nitrogen application, environmental factors, and leaching, whereas nitrogen
leaching in reality follows nonlinear patterns and involves complex interactions.
This makes it challenging to calibrate the Tier 1 method using field data and Tier 2
studies, as these naturally capture nonlinear effects. While the optimized method
improves performance by adjusting key parameters, the linear nature of Tier 1 still
restricts its ability to fully reflect nitrogen leaching under different conditions.

Calibrating a linear model with nonlinear field and Tier 2 data presents several
challenges. One of the main issues is that nitrogen leaching does not respond
proportionally to changes in nitrogen application, precipitation, or other environ-
mental factors. In reality, leaching does not always start low. In some cases, it is
already high at low nitrogen levels, depending on soil and plant uptake. As nitrogen
input increases, leaching can rise even more sharply when the retention capacity
is exceeded. A linear model such as the Tier 1 method cannot capture this shift,
often underestimating leaching at high nitrogen levels and overestimating it at low
nitrogen levels. As a result, fitting a straight-line model to nonlinear data forces a
compromise across the dataset, introducing bias that affects accuracy.

Another difficulty arises from how the Tier 1 method handles precipitation. Instead
of accounting for short-term heavy rainfall events, which cause most nitrogen losses,
Tier 1 relies on annual precipitation. However, nitrogen leaching is highly event-
driven, occurring primarily when rainfall exceeds soil infiltration capacity. Two
regions with the same total precipitation may have very different leaching risks,
depending on whether rainfall is evenly distributed or occurs in extreme storms.
Since the linear model applies a fixed leaching rate, it cannot capture sudden spikes
in nitrogen loss after storms, making calibration with field and Tier 2 data difficult.
These limitations highlight why Tier 1 calibration remains constrained, even after
optimization.

4.4 Variability per factor

A reason why the optimization process could not fully capture the observed patterns
is the variability in leaching fractions for different factors in the Tier 2 and 3 studies,
which is visualized in Figure 4.1 to Figure 4.4, where scatterplots show the spread
of values for each distinct range (very low, low, high, and very high), with Tier 1
plotted on the y-axis and Tier 2/3 on the x-axis.
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In Figure 4.1a, the variability of the application rate factor between Tier 1 and Tier
2/3 is illustrated. In Tier 1, clear color-segmented groupings appear along the y-axis
due to the categorical nature of the scoring system of Tier 1. A very high application

rate (yellow) contributes heavily to the calculation, clustering these points at the top.

Conversely, a very low application rate results in lower leaching fractions, leading to
a clear segregation between the four score categories (very low, low, high, and very
high). However, in Tier 2/3, no apparent relationship exists between application rate

and leaching fraction, as individual data points are more scattered across the x-axis.

This suggests that on a basis of individual data points leaching fraction in Tier 2/3 is
not solely influenced by application rate, this differs from the case in the mean trend
analysis of these data points where the application rate seemed more important. This
could mean that other factors also play a significant role in determining leaching
fraction in Tier 2/3 models, and suggest that in further refinements, other factors

should be given greater attention to improve accuracy.

Scatterplot of Tier 2 vs Optimized Tier 1: N-application rate Scatterplot of Tier 2 vs Optimized Tier 1: Soil texture
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Fig. 4.1: Variability in the leaching fraction as influenced by application rate and soil texture.

In Figure 4.1b, the variability in soil texture is examined. Studies involving loam/sand
(pink), loam (purple), and silt/loam (blue) textures reveal a considerable spread in
leaching fraction along both axis, while silt (yellow) clusters around 0.2 for both
methods. A notable mismatch appears in the clay/silt (orange) texture, where Tier
2 values remain very low, whereas Tier 1 values approach 0.25. However, these
observations are limited by the fact that each texture category that shows clustering

is represented by only a single study.

While application rate and soil texture displayed some degree of variability, other
factors showed minimal variability, limiting their usefulness for further analysis for
now because of the lack of data availability in this thesis. With more Tier 2/3 data
in future research, a more detailed analysis will be possible. The leaching fractions

4.4 \Variability per factor
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Scatterplot of Tier 2 vs Optimized Tier 1: Nitrogen fixation Scatterplot of Tier 2 vs Optimized Tier 1: Plant uptake
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Fig. 4.2: Variability in the leaching fraction as influenced by nitrogen fixation and plant
uptake.

for nitrogen fixation (Figure 4.2a), plant uptake (Figure 4.2b), and management
practices (Figure 4.3a) remained largely uniform. This lack of variation can be
attributed to the datasets used, which reported values at a national level, reducing
the differentiation between data points. Additionally, a large portion of the data
used in the optimization originated from China, contributing to the uniformity in
these factors.

Scatterplot of Tier 2 vs Optimized Tier 1: Nitrogen deposition
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Fig. 4.3: Variability in the leaching fraction as influenced by management practices and and
nitrogen deposition.

For nitrogen deposition (Figure 4.3b), no clear patterns emerge along either axis,

with all data points falling within a single range. This could indicate an issue with
the dataset or that the defined ranges are not appropriately set. The classification for
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nitrogen deposition defines values below 0.5 g N m~2yr~! as very low, 0.5-1 as low,
1-1.5 as high, and above 1.5 as very high. For drainage class (Figure 4.4a), nearly all
data points fall within the "moderately well-drained" category, with only one study
classified as "poorly drained" and another as "very poorly drained." This is not due
to limitations in the HWSD dataset, which includes various drainage classes, but
rather a lack of representation in the literature review data. Similarly, precipitation
(Figure 4.4b), despite being derived from coordinates with a reasonable spatial
resolution of 278 km?, is predominantly below 600 mm annually across nearly all
studies. As with drainage class, this appears to be a matter of limited study locations
rather than a data issue. The lack of diversity in the types of studies used prevented
strong conclusions from being drawn about the relationship between these three
factors and the leaching fraction.

Scatterplot of Tier 2 vs Optimized Tier 1: Drainage class Scatterplot of Tier 2 vs Optimized Tier 1: Precipitation
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Fig. 4.4: Variability in the leaching fraction as influenced by drainage class and precipitation.

A missed opportunity in this study was conducting the factor analysis only after
the optimization process, rather than during the dataset gathering stage of the
literature review in the second research question. The lack of variability in most
factors was only recognized too late in the process. Early identification of these
limitations could have informed a more targeted search strategy to include a broader
range of studies, particularly from the underrepresented regions and environmental
conditions. Future research should first conduct a broad literature review to compile
an initial dataset, followed by an exploratory factor analysis to assess variability
in key factors. If the analysis reveals insufficient representation of certain regions,
crops, or soil types, a more targeted literature search should be performed to address
these gaps and ensure a more balanced dataset.

4.4 \Variability per factor
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Conclusion

This thesis aimed to refine the Tier 1 nitrogen leaching-runoff estimation method to
narrow the accuracy gap between the Tier 1 and Tier 2 method, while maintaining
the simplicity and lower data requirements of Tier 1. The refined and automated Tier
1 method developed in this study provides a more user-friendly and accurate tool for
assessing nitrogen leaching than the original Tier 1 method of Franke et al. (2013).
However, the Tier 1 method’s value in supporting sustainable nitrogen management
remains limited by its inability to accurately capture results from advanced models
or field experiments.

While the refined method is a more practical tool for assessing nitrogen leaching,
its value in supporting sustainable nitrogen management depends on improving its
sensitivity to nitrogen application rates. Without such improvement, the method may
still lead to conclusions where environmental impacts are not adequately reflected,
making economic factors the primary driver in nitrogen application decisions.

The development of a Python-based automated Tier 1 script streamlined the tradition-
ally manual process of data collection and calculation. By using global datasets, the
script eliminates the need for extensive manual labor typically required to gather site-
specific data, saving significant time and enabling the analysis of multiple locations
quickly. This makes it a reliable and scalable solution for broad-scale evaluations
of nitrogen leaching. While the script relies on generalized assumptions, its com-
parison with other Tier 1 studies demonstrated that it achieves reasonable accuracy,
even when compared to other Tier 1 studies based on highly localized data. This
balance between practicality and accuracy ensures its effectiveness for large-scale
applications, despite minor deviations caused by its generalized approach.

While the script significantly reduces manual effort, it still depends on both auto-
mated and manual data inputs. Nitrogen deposition, precipitation, nitrogen fixation,
plant uptake, and nitrogen application rates are efficiently retrieved from global
datasets, but soil type, drainage class, and management practices require manual
input due to the lack of a suitable dataset. The full implementation and dataset
details can be accessed at Zenedo (Scholten, 2025).



A detailed analysis of Tier 2 and field studies provided valuable insights into the
limitations of the original Tier 1 method. Compared to Tier 2 models and field studies,
the original Tier 1 method was found to consistently underestimate nitrogen leaching,
particularly at higher nitrogen application rates when the mean of multiple studies
was considered. The analysis revealed that Tier 2 studies captured greater variability
by incorporating dynamic environmental and management factors, which Tier 1
oversimplified. This understanding informed the refinement process, highlighting
the need for greater variability and flexibility in Tier 1 calculations.

Through the evaluation of individual factors, the method was refined to better
account for the most influential variables, particularly precipitation and nitrogen
application rate. Optimizing the nitrogen application rate proved to be the most prac-
tical approach due to its high data availability, allowing for systematic adjustments.
In contrast, the complexity of precipitation as a variable made it more challenging
to implement substantial methodological changes.

The optimization process improved the Tier 1 method. By increasing the maximum
leaching fraction (cyq,) from 0.25 to 0.475 and raising the weight assigned to the
nitrogen application rates from 10% to 20%, the refined Tier 1 method achieved
a 25% reduction in the selected predictive error metrics (RMSE & MAE). This
adjustment also expanded the boundary range, enabling the method to capture
greater variability in nitrogen leaching across different conditions.

While the refined approach aligned more closely with Tier 2 and field study results
when comparing the mean across multiple studies, it showed significant limitations
in accurately predicting individual data points. These limitations, particularly in its
sensitivity to nitrogen application rates, suggest that the model may not be reliable
for precise, localized predictions. It is also difficult to argue that the model is
useful for broad-scale assessments, such as identifying general trends in countrywide
or global nitrogen leaching, when this thesis demonstrates that higher leaching
fractions are not driven by increases in nitrogen application rates.

To further refine the Tier 1 method, future research should focus on expanding the
literature review to incorporate a broader and more diverse range of studies. A
key limitation in this study was recognizing the lack of variability in certain factors
only after the optimization process, rather than during the dataset gathering stage.
Conducting an exploratory multi factor analysis early in the literature review phase
would help identify gaps in regional representation, crop types, and environmental
conditions, enabling a more targeted search strategy to build a more balanced dataset.
By incorporating this data, the influence of the N-application rate across Tier 2 and 3
studies or other factors can be better differentiated. While increasing «,,,, improved
accuracy, it introduces the potential for overestimation in scenarios with low nitrogen
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application rates. Additionally, the automation of the soil texture and the drainage
class from the HWSD 2.0 viewer would be a valuable improvement. Combining
this with well-designed approach to quantify the management practice factor and a
higher spatial resolution dataset for N-fixation, plant uptake and application rate

would complete the script.

Chapter 5 Conclusion
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Appendix

Tier 1

Nitrogen
Leaching-
runoff Very low Low High Very high
Category  Factor potential
Score (s) 0 0.33 0.67 1
Weight* (w)
a B
Atmos-  N-deposition (g N
pheric  myr') (see 10 10 <05 =05 <15 =15
input Appendix || Map 1)
Texture (relevant
for leaching) (see 15 15 Clay Siit Loam Sand
Appendix || Map 2)
Texture (relevant
for runoff) (see 10 10 Sand Loam Silt Clay
Appendix || Map 2)
Environ-
mental Soll ?;::;:L‘:";‘rnag‘e Poorly to very Mm:ﬂ’amhﬂ' Excessively
factors ; 10 15 poorly Well drained 1o extremely
leaching) (see draingd  mperfectly drained
Appendix Il Map 3) drained
?r:lt!ej\rr::'l?;ﬂlrn;%euﬁ} Excessively Well Moderately Poorly to
5 10 to extremely ; to imperfectly  very poorly
(see Appendix Il drained drained drained drained
Map 3)
Precipitation (mm)
Climate (see Appendix Il 15 15 0-600 600-1200 1200-1800 = 1800
Map 5)
N-fixation (kg/ha) 10 10 0 =0 < B0 =60
Agricul- Application rate*™ 10 0 Very low Low High Very high
tural
practice Plant uptake (crop yield)** 5 0 Very high High Low Very low
Management practice 10 15 Best Good Average Worst

Fig. 5.1: Factors influencing the leaching-runoff potential of nitrogen (Franke et al., 2013).

Figure 5.1 shows the information to make the original Tier 1 calculation from Franke

et al. (2013). The table categorizes influencing factors and assigns a score, ranging

from very low (0) to very high (1). Each factor is assigned a weight, indicating its

relative importance in the overall assessment.



Python script

Table 5.1 helps to process the information taken from the HWSD 2.0 viewer to the
Python script for the automated Tier 1 method. In the HWSD 2.0 viewer, users can
select one of 13 soil types, ranging from heavy clay to sand, and one of 7 drainage
classes, from Very Poorly Drained (VP) to Excessively Drained (E). The soil type
number and drainage class abbreviation serve as inputs for the automated Tier 1

method.
Tab. 5.1: List of soil types and drainage classes with their respective descriptions (HWSD,
2024).
Soil type | Description Drainage class | Description

1 Clay (heavy) VP Very poorly drained
2 Silty clay P Poorly drained
3 Clay (light) I Imperfectly drained
4 Silty clay loam MW Moderately well drained
5 Clay loam \W Well drained
6 Silt SE Somewhat excessively drained
7 Silt loam E Excessively drained
8 Sandy clay
9 Loam
10 Sandy clay loam
11 Sandy loam
12 Loamy sand
13 Sand
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Optimization

Table 5.2 presents the weight sets that is used in the optimization of the Tier 1
method. Each row represents a different weighting scenario, where the relative
importance of influencing factors is adjusted to accommodate an increase in the
application rate weight. To streamline the optimization process, ten predefined
weight sets were created, with the application rate weight increasing in increments
of 5%, starting from the original 10% and reaching up to 55%.

Tab. 5.2: Possible weight sets for optimization

N-dep | Tex | | Tex r | Drain_1 | Drain_r | Precip | N-fix | App | Uptake | Prac
1. [10% | 15% | 10% | 10% 5% 15% | 10% | 10% | 5% 10%
2. | 10% |10% | 10% | 10% 5% 15% | 10% | 15% | 5% 10%
3. |10% |10% | 10% | 10% 5% 10% | 10% | 20% | 5% 10%
4. 1 10% |10% | 10% | 10% 5% 10% | 5% | 25% | 5% 10%
5 | 5% 10% | 10% | 10% 5% 10% | 5% | 30% | 5% 10%
6. | 5% 10% | 5% 10% 5% 10% | 5% | 35% | 5% 10%
7. | 5% 10% | 5% 5% 5% 10% | 5% | 40% | 5% 10%
8. | 5% 5% 5% 5% 5% 10% | 5% | 45% | 5% 10%
9. | 5% 5% 5% 5% 5% 10% | 5% | 50% | 5% 5%
10. | 5% 5% 5% 5% 5% 5% 5% 55% | 5% 5%
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